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Abstract
In the literature for mixed integer programming, heuristic algorithms (par-
ticularly primal heuristics) are often considered as stand-alone procedures; in
that context, heuristics are treated as an alternative to solving a problem to
proven optimality. This conceals the fact that heuristic algorithms are a fun-
damental component of state-of-the-art global solvers for mixed integer linear
programming (MIP) and mixed integer nonlinear programming (MINLP).
In the present thesis, we focus on this latter aspect; we study heuristic

algorithms that are tightly integrated within global MINLP solvers and an-
alyze their impact on the overall solution process. Our contributions com-
prise generalizations of primal heuristics for MIP towards MINLP as well as
novel ideas for MINLP primal heuristics and for heuristic algorithms to take
branching decisions and to collect global information in MIP. These are:
. Shift-and-Propagate, a novel propagation heuristic for MIP that does not

require the solution to an LP relaxation,
. a generic way to generalize large neighborhood search (LNS) heuristics

from MIP to MINLP,
. an Objective Feasibility Pump heuristic for nonconvex MINLP that uses

second-order information and a dynamic selection of rounding procedures,
. RENS, an LNS start heuristic for MINLP that optimizes over the set of

feasible roundings of an LP solution,
. Undercover, an LNS start heuristic for MINLP that solves a largest sub-

MIP of a given MINLP,
. Rapid Learning, a heuristic algorithm to generate globally valid conflict

constraints for MIPs,
. Cloud Branching, a heuristic algorithm that exploits dual degeneracy to

reduce the number of candidates for branching variable selection.
Additionally, we propose a new performance measure, the primal integral,

that captures the benefits of primal heuristics better than traditional meth-
ods. In our computational study, we compare the performance of the MIP
and MINLP solver SCIP with and without primal heuristics on six test sets
with altogether 983 instances from academic and industrial sources, including
our project partners ForNe, SAP, and Siemens. We observe that heuris-
tics improve the solver performance regarding all measures that we used – by
different orders of magnitude. We further see that the harder a problem is
to solve to global optimality, the more important the deployment of primal
heuristics becomes.
The algorithms presented in this thesis are available in source code as part

of the solver SCIP, of which the author has been a main developer for the last
years. Methods described in this thesis have also been re-implemented within
several commercial and noncommercial MIP and MINLP software packages,
including Bonmin, cbc, Cplex, Gams, Sulum, and Xpress.
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Zusammenfassung
Heuristische Methoden, insbesondere Primalheuristiken, werden in der Lite-
ratur oft als autarke Verfahren betrachtet und erscheinen somit als Gegenent-
wurf dazu, ein Problem nachweisbar optimal zu lösen. Diese Darstellung ver-
nachlässigt jedoch, dass heuristische Algorithmen ein elementarer Bestandteil
moderner MIP- und MINLP-Löser sind.
Die vorliegende Arbeit befasst sich mit ebenjenem Aspekt und behandelt

heuristische Verfahren, welche unmittelbar in globale MINLP-Löser inte-
griert sind und studiert deren Einfluss auf den Gesamtlösungsverlauf. Unsere
Beiträge umfassen dabei sowohl Verallgemeinerungen von MIP-Heuristiken
auf MINLP, als auch neuartige Primalheuristiken für MINLP, sowie allge-
meinere heuristische Verfahren zum Branching und zur Gewinnung globaler
Information beim Lösen von MIPs. Im einzelnen stellen wir vor:
. Shift-and-Propagate, eine neue Propagierungsheuristik für MIP, die nicht

vom Lösen einer LP-Relaxierung abhängt,
. ein generisches Verfahren zur Verallgemeinerung von Nachbarschaftssuch-

methoden von MIP auf MINLP,
. diverse Erweiterungen einer Zielfunktions-Feasibility-Pump für nichtkon-

vexes MINLP, unter anderem durch das Verwenden zweiter Ableitungen,
. RENS, eine nachbarschaftsbasierte Startheuristik für MINLP, die über den

Raum aller zulässigen Rundungen einer Relaxierungslösung optimiert,
. Undercover, eine Primalheuristik für MINLP, die ein größtes Teil-MIP

eines gegebenen nichtlinearen Problems löst,
. Rapid Learning, ein heuristisches Verfahren um global gültige Konflikte

für ganzzahlige Programme zu generieren,
. Cloud Branching, ein heuristischer Algorithmus, der durch Ausnutzung

dualer Degeneriertheit die Menge der Branching-Kandidaten reduziert.
Darüber hinaus führen wir ein neuartiges Maß ein, das primale Integral,

um die Auswirkung primaler Heuristiken besser zu quantifizieren. In un-
serer Rechenstudie vergleichen wir den Lösungsverlauf des MIP- und MINLP-
Lösers SCIP, mit und ohne Primalheuristiken, auf sechs Gruppen von Pro-
bleminstanzen. Diese umfassen sowohl akademische Benchmarks als auch
Industrie-Instanzen unserer Projektpartner ForNe, SAP und Siemens. Wir
stellen fest, dass Heuristiken das Verhalten in Bezug auf sämtliche Maße,
die wir betrachten, verbessern. Außerdem zeigen wir, dass der Einsatz von
Primalheuristiken umso wichtiger wird, je schwieriger eine Probleminstanz
global optimal zu lösen ist.
Implementierungen der in dieser Arbeit präsentierten Algorithmen sind

als Quellcode innerhalb des MINLP-Lösers SCIP verfügbar, von welchem
der Autor in den vergangenen Jahren einer der Hauptentwickler war. Des
Weiteren wurden viele der in dieser Arbeit vorgestellten Verfahren in diverse
kommerzielle sowie akademische Softwarepakete integriert, unter anderem in
Bonmin, cbc, Cplex, Gams, Sulum und Xpress.
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1. Introduction

“This problem is NP-complete, so it cannot be solved exactly; thus, we had
to use a heuristic instead.” We read and hear sentences like this way too
often, and I do not know which part of that argument to correct first. First,
and probably the least worst, is that a problem class being in NP actually
implies that it can be solved, it just may take a long time. It may! Second,
looking at all the industrial applications I have been faced with during my
time at Zuse Institute Berlin and that the research community is discussing
at numerous operations research conferences every year, the sound conclusion
is that NP-hard optimization problems have to be solved to optimality. Even
more importantly, very often they can be solved within reasonable time! The
good news is that today there is a variety of solver software available for NP-
hard problems. The third slip is more between the lines: sometimes, we tend
to think of heuristics and complete procedures as a dichotomy rather than
as a symbiosis. It is the goal of this thesis to quash this preconception. Not
only might heuristics use complete methods as subroutines,1 global solvers
for optimization problems are full of heuristic algorithms.2
One of the major vendors for mixed integer linear programming (MIP)

software actually promotes its product by emphasizing the importance of
heuristics: “Our advanced MIP heuristics for quickly finding feasible solutions
often produce good quality solutions where other solvers fall flat, leading
to some of our biggest wins vs. the competition.”3 The past twenty years
have witnessed a substantial progress in the development of MIP software
packages. As a consequence, state-of-the-art MIP solvers, commercial and
non-commercial, are nowadays capable of solving a variety of different types
of MIP instances arising from real-world applications within reasonable time,
and mixed integer linear programming has become a standard technique in
planning and logistics.
For mixed integer nonlinear programming (MINLP), today’s situation is

comparable to that of MIP in the early nineties. Techniques to efficiently
solve MINLPs are known in principle. Most of them have been developed

1The famous Christofides heuristic [Chr76] for the metric TSPs, for instance, is based on
computing a minimum spanning tree and a minimum-weight perfect matching.

2We use the terminology of the global optimization community here: A global solver is
a code that solves each instance of a certain class of optimization problems to proven
global optimality (or proves that no such optimum exists). Synonymously, we will use
the term complete algorithm to distinguish global solution procedures from heuristic
approaches.

3http://www.gurobi.com/products/gurobi-optimizer/features-and-benefits,
accessed 20.06.2013

1

http://www.gurobi.com/products/gurobi-optimizer/features-and-benefits
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in academic proof-of-concept implementations, but are not yet well-tested
for a broad range of industrial problems, in particular not for large-scale
applications. MINLP is not only empirically more challenging than MIP,
but also theoretically harder, as can be seen from some complexity results
that hold even when restricting the nonlinearity to quadratic functions:

. Mixed integer quadratic programming (MIQP) is undecidable [Mat70],
whereas MIP is “only” NP-complete [Kar72, BT76].

. Solving the continuous relaxation of an MIQP (i.e., a quadratic pro-
gram) is NP-hard [Sah74], whereas for MIP, solving the LP relaxation
is possible in polynomial time [Kha79].

. Unconstrained 0-1 quadratic programming is NP-hard [GJ79], whereas
a linear objective function can be optimized over {0, 1}n in O(n).

On the practical side, there are many real-world applications that are in-
herently nonlinear and need to by tackled by MINLP, see, e.g., [GS02]. This
induces a growing need for MINLP algorithms that are at the same time
innovative from a theoretical perspective and efficient in practice, properly
integrated into a common, stable software implementation that targets solv-
ing instances of relevant size from a broad field of applications. There is rea-
sonable hope that the success story of computational MIP can be repeated
for the nonlinear case within the next ten to fifteen years.
We see this thesis as one step of this long journey. We present new ideas

for heuristic algorithms that are conceived with a special focus on being
employed within a global MINLP solver. This includes for instance a new
filtering framework for branching heuristics and a heuristic to learn global
bounds and conflict constraints. The main part of this thesis, however, deals
with primal heuristics.
Primal heuristics are algorithms that try to find feasible solutions of good

quality for a given optimization problem within a reasonably short amount
of time.4 There is typically no guarantee that they will find any solution, let
alone an optimal one.
For mixed integer linear programs (MIPs) it is well known that general-

purpose primal heuristics are able to find solutions with a small optimality
gap for a wide range of problems; they have become a fundamental ingredient
of state-of-the-art MIP solvers [Ber06, BFG+00, LPT+09]. Fischetti and
Lodi state that they are “among the most crucial improvements [for MIP]
over the last ten years” [FL10]. For mixed integer nonlinear programming,
the last five years have shown a rising interest in the research community for
general-purpose primal heuristics [BG10, BG14, BHPV11, BCLM09, BG12,
DFLL10, DFLL12, LMN11, NB12, NBL08]. Within this thesis, we discuss
new contributions to this area of research. The contributions of the present

4We will use the term primal heuristic exclusively for procedures that search (heuristically)
for feasible solutions. In all other cases, we will speak of heuristic algorithms.
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thesis comprise generalizations of MIP heuristics towards MINLP as well as
genuinely new ideas for MINLP heuristics and for MIP heuristics.
Previous publications mostly considered primal heuristics as standalone

algorithms. In contrast, we focus on heuristic procedures that are concep-
tualized to be tightly integrated within a global MINLP solver. This often
leads to very different design decisions, as we will show at several points of
this thesis.

Contributions and structure of this thesis.

In the following chapters, we will introduce general concepts and standard
notation of (computational) MINLP, give an overview of available software
and discuss the general embedding of heuristic algorithms within a global
MINLP solver. Afterwards, we will first reason about how the performance
of primal heuristics inside a global solver can be measured. In the following,
we proceed from computationally cheap to more involved primal heuristics,
starting with rounding and propagation heuristics for MIP, going via feasibil-
ity pump algorithms to large neighborhood search (LNS). After two chapters
on branching heuristics and a heuristic algorithm for generating conflict con-
straints, we present our overall computational results. In detail, the content
of this thesis is structured as follows.
In Chapter 3, we introduce a new performance measure to evaluate math-

ematical programming software, the primal integral. This measure takes the
development of the incumbent solution over time into account, thereby fa-
voring finding good solutions early. We show that for SCIP and Cplex the
primal integral changes by a factor of two when disabling primal heuristics.
In Chapter 4, we introduce Shift-and-Propagate, a new pre-root primal

heuristic for MIP that does not require a feasible LP solution as a starting
point. We show that combining five existing rounding and improvement
heuristics with Shift-and-Propagate increases the number of instances for
which a feasible solution is found by 60%. Additionally, we find that the
average primal gap is significantly reduced.
In Chapter 5, we introduce three novel contributions towards a Feasibility

Pump for nonconvex MINLP: using a hierarchy of MIP solvers, employing a
distance function that takes into account second-order information, and gen-
erating valid cutting planes also for the nonconvex part of the given MINLP.
We show that the dynamic use of different MIP solving strategies and in-
corporating the Hessian of the Lagrangian into the auxiliary MIPs improves
the number and the quality of feasible solutions found. The former strategy
additionally decreases the average running time.
In Chapter 6, we introduce a generic way of generalizing large neighborhood

search heuristics from MIP to MINLP. This includes the first presentation
of nonlinear versions of Crossover and the dins heuristic. We show that not
only the generalized LNS heuristics increase the quality of the best feasible
solution after root node computation, but improve the behavior of the solver
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for the global search.
In Chapter 7, we introduce RENS, a large neighborhood search algorithm

that optimizes over the set of feasible roundings of a relaxation solution. We
analyze how the roundability is affected by different relaxations, the usage of
cutting planes and the fractionality of the solution. We show that rens sig-
nificantly improves the primal bound at the root node. Additionally, a version
of SCIP that applies rens frequently during search gives an improvement
of 8% in running time for MINLP.
In Chapter 8, we introduce Undercover, an LNS start heuristic for MINLP

that explores linear subproblems induced by a minimum vertex cover. To
this end, we define the notion of a minimum cover of an MINLP and demon-
strate that MINLPs typically allow for very small covers. We show that for
MIQCPs, applying Undercover at the root node significantly improved the
overall performance of SCIP by 15% and even by 32% for hard instances.
In Chapter 9, we introduce Rapid Learning, a heuristic algorithm to learn

valid conflicts and bound reductions via a partial CP search. We show that
it is particularly useful for IPs and BPs that are infeasible or for problems
where finding good solutions is much harder than proving optimality. For
such problem instances, the mean running time decreases by 25% when using
Rapid Learning.
In Chapter 10, we introduce Cloud Branching, a framework for branch-

ing heuristics to exploit the knowledge of alternative relaxation solutions.
We show that a version of Full Strong Branching that exploits the idea of
Cloud Branching is about 30% faster than default Full Strong Branching on
a standard MIP test set with high dual degeneracy.
Chapter 11 constitutes our main computational study. We conduct ex-

periments on three general, academic benchmark sets for MIP, MIQCP, and
MINLP, namely, the Miplib, the GloMIQO test set, and the MinlpLib.
Further, we present results for real-world applications from projects with in-
dustry partners who the author was associated with during his time at ZIB.
These applications cover MIP (a project with SAP), MIQCP (Siemens),
and MINLP (ForNe/Open Grid Europe). It turns out that primal heuris-
tics consistently help to significantly improve performance on all six test sets.
We observe that primal heuristics have only few impact on easy instances,
but are crucial for solving hard optimization problems.
Figure 1.1 categorizes the content of Chapters 3–10 w.r.t. different criteria:

. The application: Are the presented methods designed for linear or non-
linear problems, even-handedly for both, or primarily for one type of
problems with possible application to the other?

. The technique: Are the described methods primal heuristics or gen-
eral heuristic algorithms, e.g., to choose branching variables, tighten
bounds, generate conflicts. . . ?

. The innovation: Are the new contributions of each chapter extensions of
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existing methods or novel concepts? Further: Does the chapter contain
an individual literature overview on the covered subject?

The implementations of all algorithms5 that are presented in this thesis are
publicly available as part of the constraint integer programming framework
SCIP [Ach09, Sci] of which the author has been a main developer for the last
seven years. Since SCIP is freely available in source for academic and non-
commercial purposes, the C code of the implementations is readily available
for any researcher who wants to analyze, modify, amend, or improve it. We
aim to provide general descriptions of the procedures so that they can be
replicated using other implementations of MIP and MINLP solvers.

Publications.

Significant parts of this thesis have been published in refereed conference pro-
ceedings and international journals, or have been submitted for publication.
These include the following:

. Chapter 3 has been published in Operations Research Letters [Ber13].

. Chapter 4 is joint work with my master student Gregor Hendel and has
been published in Journal of Heuristics [BH15].

. Chapter 5 is joint work with Pietro Belotti from Clemson University
(now Fair Isaac Europe Ltd), a publication is in preparation.

. Chapter 6 is loosely based on joint work with Stefan Heinz from Zuse In-
stitute Berlin (now Fair Isaac Europe Ltd), Marc E. Pfetsch from Tech-
nische Universität Carolo-Wilhelmina zu Braunschweig (now Techni-
sche Universität Darmstadt), and Stefan Vigerske from the Humboldt-
Universität zu Berlin (now GAMS Software GmbH) [BHPV11].

. Chapter 7 has been published in Mathematical Programming Compu-
tation [Ber14].

. Chapter 8 is joint work with Ambros M. Gleixner from Zuse Institute
Berlin and has been published in Mathematical Programming [BG14].

. Chapter 9 is based on joint work with Thibaut Feydy and Peter J.
Stuckey from the University of Melbourne and has been published in
the proceedings of CPAIOR2010, LNCS 6140 [BFS10].

. Chapter 10 is joint work with Domenico Salvagnin from the Università
degli Studi di Padova and has been published in the proceedings of
CPAIOR2013, LNCS 7874 [BS13].

5Except the nonlinear Feasibility Pump of Chapter 5 which has been implemented in
Couenne [BLL+09]
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Figure 1.1.: Categorization of the chapters of this thesis by three different
characteristics.



2. Concepts

In recent years, substantial progress has been made in the solvability of
generic mixed integer linear programs (MIPs) [Ach07a, BFG+00, LPT+09,
Lod10]. Furthermore, it has been shown that successful MIP solving tech-
niques can often be extended to the more general case of mixed integer non-
linear programs (MINLPs) [ALL10, BLL+09, BBC+08]. Analogously, several
authors have shown that an integrated approach of constraint programming
(CP) and mixed integer programming (MIP) can help to solve optimization
problems that were intractable with either of the two methods alone. For an
overview see [Ach09, Hoo07, YAH10].
This chapter gives a brief introduction into the terminology and the solu-

tion strategies for the classes of mathematical optimization problems that we
consider in this thesis. In Section 2.1, we provide basic definitions that we
use throughout the remaining chapters. Section 2.2 introduces the key ideas
efficiently solving MIPs and MINLPs to proven optimality. Further, it con-
tains an overview of available software for solving mixed integer linear and
nonlinear optimization problems. Finally, Section 2.3 discusses how these
solvers employ heuristic algorithms.

2.1. Mixed integer nonlinear programming
Optimization problems that simultaneously feature nonlinear functions as
constraints and integrality requirements for the variables are arguably among
the most challenging problems in mathematical programming. This section
introduces these MINLPs and their sub-classes.

Definition 2.1 (MINLP). A mixed integer nonlinear program (MINLP) is
an optimization problem of the form

min cTx

s.t. gi(x) 6 0 for all i ∈M
lj 6 xj 6 uj for all j ∈ N
xj ∈ Z for all j ∈ I,

(2.1)

where I ⊆ N := {1, . . . ,n} is the index set of the integer variables, c ∈ Rn,
gi : Rn → R for i ∈M := {1, . . . ,m}, and l ∈ (R∪{−∞})n, u ∈ (R∪{+∞})n
are lower and upper bounds on the variables, respectively.

We call cTx the objective function and the gi(x) the constraint functions
of (2.1). Functions which can be represented as aTx+d with a ∈ Rn, d ∈ R are

7
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called linear functions. Functions which can be represented as xTQx+aTx+d
with Q ∈ Rn×n, a ∈ Rn, d ∈ R are called quadratic functions. Without loss
of generality, we assume that Q is symmetric.
Note that the format given in Definition 2.1 is very general. First, max-

imization problems can be transformed to minimization problems by multi-
plying all objective function coefficients by −1. Similarly, “>” constraints can
be multiplied by −1 to obtain “6” constraints. Equations can be replaced
by two opposite inequalities. A nonlinear objective function can always be
reformulated by introducing one additional variable and constraint. We as-
sume without loss of generality that lj 6 uj for all j ∈ N and lj ,uj ∈ Z for
all j ∈ I.
Let B := {j ∈ I | lj = 0,uj = 1}. We call {xj | j ∈ B} the set of binary

variables, {xj | j ∈ I} the set of integer variables, {xj | j ∈ I \ B} the
set of general integer variables, and {xj | j ∈ N \ I} the set of continuous
variables. The interval [lj ,uj ] or the set {lj , . . . ,uj} is called the the domain
of a continuous or integer variable xj , respectively.
We denote by [l,u] := {x ∈ (R ∪ ±∞)n | lj 6 xj 6 uj for all j ∈ N}

the Cartesian product of the variable domains [lj ,uj ], which is sometimes
referred to as the domain box. For a given MINLP P , the set

X̃ (P ) := {x ∈ Rn | gi(x) 6 0 for all i ∈M,x ∈ [l,u],xj ∈ Z for all j ∈ I}

is called the set of feasible solutions of the MINLP. Let c? ∈ R ∪ ±∞ with

c? := inf{cTx | x ∈ X̃}.

If c? = −∞, we call P unbounded; if c? = +∞, we call it infeasible. If c? is
finite, we call it the optimal solution value of P . A solution x ∈ X̃ is called
an optimal solution if and only if cTx = c?. If c = 0, we call P a feasibility
problem.

2 3 4 5 6 7 8 9 10

1

2

3

4

Figure 2.1.: A nonconvex MINLP, the optimal solution is (5, 2).

Example 2.2 (MINLP with two variables and two constraints). Consider
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the following MINLP:

min x1 + 4x2

s.t. cos(6x1)
2 − x2 − 1.8 6 0,

− 2 sin(4x1)√
x

+ x2 − 2 6 0,

1 6 x1 6 10,
0 6 x2 6 4,
x1,x2 ∈ Z.

(2.2)

This example is illustrated in Figure 2.1. The light blue areas correspond to
regions of the x1-x2-plane which fulfill exactly one of the two nonlinear con-
straints, the dark blue areas correspond to regions which fulfill both nonlinear
constraints (the so-called NLP relaxation, see below). The red line shows the
objective function with its normal vector. The small gray points represent
the integer lattice Z2 ∩ ([1, 10]× [0, 4]). The green points illustrate the set of
feasible solutions; the dark green point (5, 2) is the unique optimal solution.

There are many subclasses of MINLP. In this thesis, we particularly focus
on the following:

. If all constraint functions gi are quadratic, problem (2.1) is called a
mixed integer quadratically constrained program (MIQCP).

. If I = ∅, problem (2.1) is called a nonlinear program (NLP).

. If all constraint functions gi are quadratic and I = ∅, problem (2.1) is
called a quadratically constrained program (QCP).

. If all constraint functions gi are linear, problem (2.1) is called a mixed
integer program (MIP), see Definition 2.3.

. If all constraint functions gi, i ∈M are convex on [l,u], we call (2.1) a
convex MINLP.

For disambiguity, general MINLPs are sometimes equally referred to as
nonconvex MINLPs. Note that by our definitions, a convex NLP always has
a convex feasible set, but a convex feasible set does not necessarily imply
that it is defined by a convex NLP.
For nonconvex NLPs, the notion of local optima is common. Let x̃ ∈ X̃ be

a feasible solution of an NLP. If there exists an ε > 0 such that cTx̃ 6 cTx
for all x ∈ X̃ with ‖x̃ − x‖ < ε, then x̃ is a local optimum. An optimal
solution x?, in the above sense that cTx? = c?, is then synonymously called
a global optimum. Obviously, every global optimum is also a local optimum.
For convex NLPs, every local optimum is also a global optimum.
The standard way to define MIPs is in matrix and vector notion. The

chapters of this thesis which solely relate to techniques for linear optimization
problems will refer to this notion. We (re-)define a MIP as follows.
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Definition 2.3 (mixed integer program). Let m,n ∈ Z>0. Given a matrix
A ∈ Rm×n, a right-hand-side vector b ∈ Rm, an objective function vector
c ∈ Rn, a lower and an upper bound vector l ∈ (R∪{−∞})n, u ∈ (R∪{+∞})n
and a subset I ⊆ N = {1, . . . ,n}, the corresponding mixed integer program
(MIP) is given by

min cTx

s.t. Ax 6 b

lj 6 xj 6 uj for all j ∈ N
xj ∈ R for all j ∈ N \ I
xj ∈ Z for all j ∈ I.

(2.3)

Different variable types play different roles in MIP modeling and solution
approaches. In particular, integer variables that only allow for values 0 and
1 are typically used to model logical decisions (“yes/no”,“on/off”). Many
MIP techniques such as probing [Sav94], knapsack cover cuts [Bal75, HJP75,
Wol75], or Octane [BCD+01] work only for 0-1 variables.
Mixed integer programs can be categorized by the classes of variables that

are part of their formulation:
. If N = I, problem (2.3) is called a (pure) integer program (IP).

. If N = B, problem (2.3) is called a (pure) binary program (BP).

. If I = B, problem (2.3) is called a mixed binary program (MBP) or a
0-1 mixed integer program.

. If I = ∅, problem (2.3) is called a linear program (LP).
With a slight abuse of notation, we will use the abbreviation MINLP for

the term “mixed integer nonlinear programming” as well as for the term
“mixed integer nonlinear program” throughout this thesis. The same holds
for all other problem classes. Furthermore, we will sometimes use “a variable
j ∈ N ” synonymously to “a variable xj”.
One of the most striking techniques in MINLP and MIP is the use of

relaxations to provide proven lower bounds on the optimal solution of a given
problem instance. The NLP relaxation of an MINLP arises by omitting the
integrality constraints:
Definition 2.4 (NLP and LP relaxation). Given an MINLP problem P of
the form (2.1), the NLP

min cTx

s.t. gi(x) 6 0 for all i ∈M
lj 6 xj 6 uj for all j ∈ N
xj ∈ R for all j ∈ N ,

(2.4)

is called the NLP relaxation of P . The LP relaxation of a MIP is defined
analogously.
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By knowing the optimal objective function values of a relaxation and of
some (heuristic) solution, we get a dual bound and a primal bound, respec-
tively, for the optimal solution value of an MINLP. To measure the quality
of these bounds w.r.t. the optimal solution value or w.r.t. each other, we use
the notion of gap functions.

Definition 2.5 (primal gap). Let x̃ be a solution for an MINLP, and x? be
an optimal (or best known) solution for that MINLP. We define the primal
gap γp ∈ [0, 1] of x̃ as:

γp(x̃) :=


0, if cTx? = cTx̃ = 0,
1, if cTx? · cTx̃ < 0,
|cTx?−cTx̃|

max{|cTx?|, |cTx̃|} , otherwise.

Definition 2.6 (dual gap). Let x̄ be an optimal solution of a relaxation of
an MINLP, and x? be an optimal (or best known) solution for that MINLP.
Analogously to the primal gap, we define the dual gap γd ∈ [0, 1] of x̄ as:

γd(x̄) :=


0, if cTx? = cTx̄ = 0,
1, if cTx? · cTx̄ < 0,
|cTx?−cTx̄|

max{|cTx?|, |cTx̄|} , otherwise.

The primal-dual gap is a typical information given by MIP and MINLP
solvers during runtime. It is often referred to as optimality gap, a name that
might be considered slightly misleading since it does explicitly not describe
the gap of any of the bounds to optimality, but is, rather, a worst case
estimation.

Definition 2.7 (primal-dual gap). Let x̄ be an optimal solution of a relax-
ation of an MINLP and x̃ be a feasible solution for that MINLP. We define
the primal-dual gap γpd ∈ R≥0 of x̄ and x̃ as:

γpd(x̄, x̃) :=


0, if cTx̄ = cTx̃ = 0,
cTx̃−cTx̄
|cTx̄| , if cTx̄ · cTx̃ > 0,

∞ otherwise.

Different solvers, however, use different definitions of the primal-dual gap.
For this thesis, we chose the definition that is used by SCIP and was intro-
duced in [Ach07b]. The most common version, however, is the one that is
used by Cplex.

Definition 2.8 (primal-dual gap (Cplex)). Let x̄ be an optimal solution of
a relaxation of an MINLP and x̃ be a feasible solution for that MINLP. We
define the Cplex gap γpdcpx ∈ R≥0 of x̄ and x̃ as:
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γpdcpx(x̄, x̃) :=

0, if cTx? = cTx̄ = 0,
|cTx̃−cTx̄|

max{|cTx̄|, |cTx̃|} , otherwise.

The three gap functions from Definitions 2.5–2.7 decrease monotonically
when the dual bound increases or the primal bound decreases. The Cplex
gap, however, is increasing when the primal and dual bound have opposite
signs. The gap functions given in Definitions 2.5 and 2.6 always attain values
between zero and one; for the function in Definition 2.8, this holds unless
both bounds have opposite signs (which is a rare case in practice). The
primal-dual gap given in Definition 2.7 can attain values greater than 100%,
even when both bounds have the same sign. As a simple example, for a dual
bound of one and a primal bound of five, SCIP would report 400% gap,
whereas Cplex would report 80% gap.

2 3 4 5 6 7 8 9 10

1

2

3

4

Figure 2.2.: The NLP relaxation of MINLP (2.2), consisting of six compo-
nents. The global optimal solution (large red point) is approx-
imately (1.55689, 1.30174); there are eight further local optima
(small red points).

Example 2.2 cont. The NLP relaxation of MINLP (2.2) has nine local
optima, as can be seen in Figure 2.2, some of them with an objective func-
tion value which is worse than that of the integer optimum. The unique
global optimum of the NLP is approximately (1.55689, 1.30174), with an ob-
jective function value of about 6.76385. The optimal solution of (2.2) has
an objective function value of 13, hence the dual gap of the NLP optimum is
13−6.76385/13 ≈ 47.97 %.
For two MINLPs P1 and P2 with NLP relaxations P̄1 and P̄2, respectively,

we call P1 a sub-MINLP of P2, if X̃ (P̄1) ⊆ X̃ (P̄2). Particularly, a sub-MINLP
can be obtained by adding constraints or tightening the variable domains.
For a point x̄ ∈ [l,u] (i.e., lj 6 x̄j 6 uj for all j ∈ N ) the index set of all

fractional variables is defined as F := {j ∈ I | x̄j /∈ Z}. This terminology
comes from mixed integer linear programming, for which the values of an LP



2.1. Mixed integer nonlinear programming 13

relaxation are indeed rational, i.e., representable as fractions, when the input
data is rational. For the ease of notation, we will use the term “fractional”
also in the nonlinear case.
In this thesis, we sometimes speak of integer feasible points or integer

points, by which we mean that all integer variables shall take an integral
value; the continuous variables might take arbitrary values (within their do-
main). Shifting the values of all fractional variables to one of the two nearest
integers is called a rounding; formally:

Definition 2.9 (rounding). Let x̄ ∈ [l,u]. The set

R(x̄) := {x ∈ Rn | xj ∈ {bx̄jc, dx̄je} for all j ∈ I, lj 6 xj 6 uj for all j ∈ N}

is called the set of roundings of x̄.

Heuristic algorithms for special classes of optimization problems typically
use very problem-specific information. In the case of heuristic algorithms for
general MINLP, there is little global information available that can be used
for decision-making. Among the most important concepts are the so-called
variable locks which have been introduced for constraint integer programs by
Achterberg [Ach07b].

Definition 2.10 (up- and down-locks). Let gi Rn → R be a constraint func-
tion of an MINLP. The constraint gi(x) 6 0 up-locks (down-locks) variable
xj if there exists a vector x̄ and a scalar ε > 0 (ε < 0) such that g(x̄) 6 0, but
g(x̄+ εej) > 0, with ej being the j-th unit vector. The number of constraints
which up-lock (down-lock) variable xj is denoted by κj (κj) and called the
up-locks (down-locks) of xj.

Variable locks are an indicator for the impact of variable shifts on the
feasibility. More specifically:

Remark 2.11. Let x̄ be a vector that is feasible for the NLP relaxation of a
given MINLP and x̄j 6= uj. If we shift variable xj by an ε ∈ (0,uj − x̄j ], the
vector x̃+ εej will violate at most κj constraints.

For MIPs, the number of up- and down-locks is completely defined by the
signs of the coefficients of matrix A. It holds that κj = |{i ∈M | Aij > 0}|
and κj = |{i ∈M | Aij < 0}|, see, e.g., [Ber06].
In the following paragraphs, we will give some pointers to the compu-

tational complexity of MINLP. For a comprehensive survey of complexity
results for different variants of MINLP, see [HKLW10, Köp12]. When dis-
cussing the complexity of nonlinear programming, additional issues have to
be taken into account as compared to linear programming. First, it is not
given a priori that the constraint functions can be evaluated in polynomial
time. Further, it is possible for the optimal solution to be irrational (consider
the simple NLP min x s.t. x2 > 2) or even transcendental. It is typically
assumed that the nonlinear functions are presented by oracles and that the
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MINLP is to be solved up to a given ε-tolerance (for optimality and constraint
feasibility).
0-1 integer linear programming is among the 21 problems that Richard

Karp showed to be NP-complete in his famous paper “Reducibility among
combinatorial problems” [Kar72]. This is a result that can be extended to
IP [BT76] and MIP, see, e.g. [Fuk11].
Since deciding the feasibility of a BP is NP-complete, BP is NP-hard

by definition. MINLP includes BP as a special case and is therefore NP-
hard, too. Further, each BP can be formulated as an NLP by replacing the
integrality constraints xj ∈ {0, 1} by nonconvex constraints xj(1 − xj) = 0
for all i ∈ I. Thus, NLP is NP-hard. Surprisingly, it has been shown that
pure-integer quadratic programming, and therefore MINLP, is undecidable
in finite time [Mat70].6 The proof relies on unbounded variables; since if all
variables are bounded (and integer), the problem can obviously be decided
in finite time by enumeration. It follows as a corollary that MINLP is not
even in NP.
Solving linear programs, however, is possible in polynomial time. This

was first shown by Khachiyan [Kha79]. Further, convex NLP is solvable in
polynomial time (up to a given ε-tolerance), see Grötschel et al. [GLS81].
Minimizing a nonconvex quadratic function over a polyhedron, however, is
NP-complete [Vav90].
In this thesis, we will primarily focus on the actual measured performance

of algorithms rather than their theoretical worst-case complexity. For this,
we typically consider indicators such as the running time or the number
of branch-and-bound nodes that a solver requires with and without using
a certain feature. Of those numbers, we take averages over a test set of
MINLP problems. We distinguish two different methods for determining a
mean value:

Definition 2.12 (arithmetic and shifted geometric mean). Let n ∈ Z>0,
V = {v1, . . . , vn | vi ∈ R>0 for all i} and s ∈ R>0. The arithmetic mean of
V is defined as

ψ(V) := 1
n

n∑
i=1

vi

and the shifted geometric mean with of V with shift s is defined as

φ(V, s) := n

√√√√ n∏
i=1

(vi + s)− s.

We typically use a shift of s = 10 for time (measured in seconds) and
s = 100 for nodes in order to reduce the effect of very easy instances in the
mean values. Further, using a geometric mean prevents hard instances at, or

6This solved, or rather “unsolved”, Hilbert’s tenth problem [Hil00]
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close to, the time limit from having a huge impact on the measures. Thus,
the shifted geometric mean has the advantage that it reduces the influence
of outliers in both directions.

2.2. Algorithms and global solvers for MINLP
Bixby and Rothberg noted in 2007 that MIP has gone through an “inflec-
tion point” [BR07] from a technology which is powerful but hard to apply,
needing a high degree of customization towards the general applicability of
state-of-the-art solvers which handle general, large-scale models out-of-the-
box. Analogous to Bixby and Rothberg, it is our opinion that the state
of affairs for MINLP is comparable to that of MIP twenty years ago. It is
“viewed as a temptingly powerful modeling paradigm” [BR07], there are nu-
merous (potential) applications, the academic literature features hundreds of
publications describing methods to solve MINLPs, and the development of
general purpose solvers has begun, but they have not yet reached the full ma-
turity of, e.g., commercial MIP solvers. To stay in the rhetoric of Bixby and
Rothberg, computational MINLP still is before the “tipping point”, maybe
even directly in front. This section gives a brief overview of the solvers for
MIP and MINLP currently available and the solution methods they apply.

LP-based branch-and-bound

Branch-and-bound [LD60] is the most widely used algorithm to solve mixed
integer programs. State-of-the-art MIP solvers such as SCIP [Ach09] , FICO
Xpress [FIC], Gurobi [Gur], and IBM ILOG Cplex [IBM] all use LP-
based branch-and-bound as a basic algorithm that is enhanced by various
tricky subroutines to make the solvers efficient in practice. Examples of
these subroutines are presented throughout this thesis.
The idea of branch-and-bound is simple, yet effective: an optimization

problem is recursively split into smaller subproblems, thereby creating a
search tree and implicitly enumerating all potential assignments of the in-
teger variables.
The task of branching is to successively divide the given problem instance

into smaller subproblems until the individual subproblems are easy to solve.
The best of all solutions found in the subproblems yields the global optimum.
During the course of the algorithm a branching tree is created with each node
representing one of the subproblems.
The intention of bounding is to avoid the complete enumeration of all po-

tential integer assignments for the initial problem, which usually are expo-
nentially many. If a subproblem’s lower (dual) bound is greater than or equal
to the global upper (primal) bound, that subproblem can be pruned. Lower
bounds are calculated with the help of a relaxation, which is expected to be
easy to solve. Upper bounds are found if the solution of the relaxation is also
(integer) feasible for the corresponding subproblem.
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Most commonly, an LP-relaxation is solved for bounding. For (linear)
MIPs, the LP relaxation is simply constructed by dropping the integral-
ity conditions, see Definition 2.4. For MINLP, an LP relaxation can be
constructed from the bounds of the variables, gradient cuts7 for convex con-
straints and linear over- and underestimators of the nonconvex terms [McC76,
TS02]. Note that for nonconvex MINLP, it is possible that the LP relaxation
is integral and cannot be strengthened further by gradient cuts, while some
of the nonconvex constraints are still violated. In this case, spatial branching
can be applied, i.e., branching on variables contained in violated nonconvex
constraints, including continuous variables (see, e.g., [HT96]). Subsequently,
the LP relaxation can be tightened in the created subproblems; thereby, the
infeasible relaxation solution is cut off.
Various techniques have been developed to improve this basic algorithm.

Besides involved strategies for making good branching and subproblem se-
lections, this includes supplementary procedures that help in tightening the
lower and upper bounds. At each subproblem, domain propagation can be
performed to exclude values from the variables’ domains. The relaxation
may be strengthened by adding further valid constraints (typically linear in-
equalities), which cut off the optimal solution of the relaxation, but retain all
feasible solutions of the MINLP. In the case where a subproblem is found to
be infeasible, conflict analysis might be performed to learn additional valid
constraints. Primal heuristics are used as supplementary methods to improve
the upper bound. Good overviews on the state-of-the-art in computational
mixed integer linear and nonlinear programming can be found in [Ach07b]
and [Vig12], respectively.

Other algorithms for MIP

Interestingly, years before the explorative branch-and-bound algorithm was
introduced, another, more involved procedure to solve MIPs had been pre-
sented: the cutting plane method [Gom58, Gom60]. The basic idea of the
cutting plane method is to iteratively solve and strengthen the LP relaxation
of a MIP. To do so, in each iteration one or more linear inequalities are added
to the LP relaxation. These inequalities have to fulfill two requirements:

1. they are violated by the current optimum x̄ of the LP relaxation and

2. they are valid for each feasible solution x̃ ∈ X̃ (P )

Since they “cut off” the LP optimum from the relaxation, such inequalities
are called cutting planes or cuts. Algorithms that compute cutting planes are
sometimes called separators. In [Gom58, Gom60], Gomory presented a finite
algorithm to solve integer programs by generating cuts from simplex tableau
rows.

7If a convex nonlinear constraint g(x) 6 0, gi ∈ C1([l,u],R), is violated at some x̄, then x̄
can be cut off by the gradient cut ∇gi(x̄)T(x− x̄) + gi(x̄) 6 0.
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The cutting plane method has two major drawbacks. First, the method
is highly sensitive towards numerical issues – at least when using generic
tableau-based cuts such as Gomory. The coefficients in the cuts are often
highly fractional (in the sense that they do not have an accurate finite preci-
sion floating point representation) and the cuts get more and more “shallow”
(in the sense that the Euclidean distance between the LP solution and the
supporting hyperplane of the cut gets very small). Such errors accumulate
over time and can cause the method to either produce an invalid result or to
stall. Nevertheless, cutting plane separators are typically employed as sup-
plementary procedures within modern branch-and-bound based MIP solvers.
However, strict limits and methods like safe rounding are used to protect the
solver against numerical issues. The numerical challenges of applying Gomory
cuts are discussed in Cook et al. [CDFG09]. The implementation of cutting
plane separators in SCIP and their integration within a MIP framework is
described by Wolter [Wol06].
The second drawback of a pure cutting plane method is that it does not

compute an incumbent solution; the first solution that it finds is optimal.
This implies that if the procedure does not terminate within a given time
limit, no feasible solution will be present. This is undesirable if hard MIPs
have to be solved within industrial applications.
A possible categorization of algorithms to solve optimization problems is

to subdivide them into primal and dual methods. Loosely speaking, a primal
method is an algorithm that produces a sequence of feasible, sub-optimal
solutions until it meets a criterion proving that the current incumbent solu-
tion is optimal. By contrast, a dual method is an algorithm that produces a
sequence of infeasible, “super-optimal” solutions until it finds a first feasible
point – which will be an optimum. As examples, consider the primal and the
dual simplex algorithm.
The added advantage of LP-based branch-and-bound is that it produces

two sequences during the course of the algorithm, providing dual and primal
bounds at the same time.
By the above classification, a pure cutting plane algorithm, like the one

described by Gomory, is a dual method; it approaches the set of feasible
solutions “from the outside”, solving a sequence of relaxations. As soon
as the relaxation finds a point which is feasible for the MIP, the proof of
optimality comes “for free”.
Since the mid-1990’s, there has been a rising interest in primal methods

to solve MIPs. The principal ideas of primal methods, however, date back
to the 60’s and 70’s. Test set algorithms and integral basis methods are two
important groups of primal methods for (mixed) integer programming. Both
procedures require a known feasible solution as a starting point.
Test set algorithms are motivated by the Ford-Fulkerson [FF56] algorithm

to compute maximum flows through a network. A test set for a given integer
program P is a finite set of n-dimensional integral vectors T ⊂ Zn, such that
cTt < 0 for all t ∈ T and for every non-optimal feasible solution x̃ of P ,
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there exists a t ∈ T such that x̃ + t is a feasible solution of P . If given a
feasible start solution and a test set for an IP, the algorithmic idea is straight-
forward; iteratively find an element of the test set that maintains feasibility
when added to the solution. If no such element exists, the current solution is
optimal. When Graver introduced the idea of test sets for integer programs,
he showed that finite test sets exist for every feasible IP [Gra75]. Weismantel
gives a good overview on different methods to computationally obtain test
sets for IPs [Wei98].
The “Simplified Primal Integer Programming Algorithm” suggested by

Young [You68] can be seen as one of the first versions of an integral basis
method or a primal cutting plane method for integer programming. The idea
is to solve IPs only by means of the primal simplex algorithm, hence start-
ing from a feasible solution (and an associated basis) and only performing
simplex pivots that improve the objective, maintaining primal feasibility and
integrality of the basic solution. Since this might not be possible in general,
the constraint matrix is manipulated. In [You68], this is done by adding a
Gomory cut (and its slack variable) for the row that is determined as pivot
when conducting the ratio test of the simplex algorithm. This cut itself will
then be chosen as pivot row instead and by construction the coefficient of the
pivoting variable in the cut and the pivot ratio cancel out. As a consequence,
both, the cut’s slack and the pivot column take integral values in the new
linear system that has been enhanced by one column and one row. A differ-
ent understanding of this procedure is that it cuts off neighboring fractional
points of the incumbent feasible solution until it can make a simplex step
that leads to a new incumbent.
Several extensions of this algorithm have been suggested. Notably, Haus

et al. present an integral basis method that manipulates the columns of the
matrix without any cuts being added [HKW01]. In contrast, Letchford and
Lodi [LL02] suggest several enhancements that make Young’s algorithm con-
verge quicker by adding more cuts. The main improvements come from sepa-
rating classes of cuts other than only Gomory cuts and by potentially adding
several cuts per round, which is typical in dual cutting plane algorithms.
There is a smooth transition between primal methods and primal heuris-

tics. On the one hand, some primal heuristics such as Local Branching or
Proximity Search can be modified such that they become complete algo-
rithms, see [FL03, FM12]. In this case, each of their iterations will take an
integer solution as an input and have either an improved integer solution or
a proof of optimality as output, which is the general concept of primal meth-
ods. On the other hand, complete primal methods such as test set algorithms
or the integral basis method could of course be run for a limited time as a
primal heuristic within a branch-and-bound-based MIP solver.
Primal methods show impressive results for some particular classes of

mixed integer programs, see, e.g., [ABH+00]. In an MINLP context, primal
methods have been used to prove complexity results, see, e.g., Hemmecke
et al. [HKLW10]. However, to the best of the author’s knowledge, there
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is no publication that describes a primal algorithm that is computationally
competitive to LP-based branch-and-bound on the majority of instances of
a general MIP benchmark such as the Miplib8. Further, we are not aware
of any of the major commercial MIP solvers implementing any of the named
methods, not even as a heuristic.

Other algorithms for MINLP

For convex MINLP, several solution approaches have been suggested and
implemented as an alternative to LP-based branch-and-bound.
A straight-forward extension of LP-based branch-and-bound for MIP is

NLP-based branch-and-bound for convex MINLP [GR85]. This involves drop-
ping the integrality constraints and solving (naturally convex) NLP relax-
ations to obtain dual bounds during the tree search. Recall that convex
NLP, just like LP, is solvable in polynomial time, which is not the case for
nonconvex NLP. NLP solvers, however, cannot be as easily hot-started as the
simplex algorithm, which is a disadvantage of NLP-based branch-and-bound
as compared to using LP-based branch-and-bound for MINLP. Besides other
approaches, Leyffer [Ley01] used sequential quadratic programming to solve
and warm-start NLPs within a branch-and-bound algorithm. The clear ad-
vantage of NLP-based branch-and-bound in comparison to using a LP relax-
ation is that the dual bounds are stronger.
Many improvements over using pure nonlinear relaxations come from using

different relaxations within one framework. The classical outer approxima-
tion algorithm by Duran and Grossmann [DG86] was proposed for problems
where the nonlinearity only occurs in the continuous variables. It solves,
alternatingly, MIP relaxations and NLP subproblems. The MIP solutions
are used to define the NLP problems, the NLP solutions are then used to
generate cuts for the MIP relaxation. Westerlund and Pettersson [WP95]
suggest to generate cuts directly from the MIP solution without solving an
additional NLP.
Quesada and Grossmann [QG92] combine LP and NLP relaxations in one

tree search. Their algorithm uses LP relaxations for the majority of the
search, exploiting the hot-start capabilities of the simplex algorithm. Only
when the LP optimum is integer, an NLP relaxation is solved. Mahajan
et al. provide the suggestion of using QP approximations instead of LP re-
laxations [MLK12]. By this, second-order information is captured, but the
QP is not necessarily a relaxation. Thus, the full NLP relaxation might also
need to be solved at nodes that will be pruned.
Since for nonconvex MINLPs, solving the continuous relaxation is in prin-

ciple as hard as solving the original problem9, there are few general methods
8Note, however that the method of Haus et al. [HKW01] succeeded in solving seven of the
65 Miplib 3.0 instances

9Recall that integrality constraints of bounded variables can be expressed as polynomials
over continuous variables.
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that are based upon solving NLPs. A notable exception is the approach
of Androulakis et al. [AMF95] who use a convex NLP relaxation to solve
nonconvex MINLPs.

Software for MIP and MINLP

State-of-the-art MIP solvers are nowadays capable of solving a variety of
different types of MIP instances that arise from real-world applications within
reasonable time [KAA+11], establishing a growing market for mathematical
optimization software.
Among the first commercial mathematical programming softwares were

IBM’s MPS/360 [Per68] and its predecessor MPSX, which were introduced
in the 1960’s; see also [Spi04]. Interestingly, their input data format .mps
is still the standard format for all state-of-the-art MIP solvers about half a
century later.
Today, there is a large variety of commercial MIP solving software, includ-

ing Xpress [FIC], Gurobi [Gur], Cplex [IBM], and Mosek [Mos]; all of
them being capable of solving many MIPs of practical relevance to proven op-
timality. There are also several academic, noncommercial alternatives, such
as cbc [Cbc], glpk [Glp], lpsolve [Lps], Symphony [Sym], or SCIP [Sci];
the best of them being only a factor of five away from the best commercial
packages, in terms of average running time. Recently, Linderoth and Lodi
compiled an overview of current MIP software, see [LL10]. Every two years,
Robert Fourer publishes a list of currently available codes in the field of linear
and integer programming, the 2013 edition being the latest at the time of
writing this thesis [Fou13].
Only a few software packages solve general nonconvex MINLPs to global

optimality, including the free solver Couenne [BLL+09] and the solvers
Antigone [MF14, MF13], baron [Sah96, TS04], and LindoGlobal [LS09,
Lin]. Others, such as Alpha-ECP [WL01], Bonmin [BBC+08, Bon] and
sbb [Sbb], guarantee global optimality only for convex problems, but can
be used as heuristic solvers for nonconvex problems. minotaur [Mio] is a
framework for implementing MINLP algorithms. For a comprehensive survey
of available MINLP solver software, see [BKL12, BV10, DL11].
Recently, the solver SCIP [Ach09, Sci] has been extended to solve noncon-

vex MIQCPs [BHV11] and MINLPs [Vig12] to global optimality. SCIP is
currently one of the fastest noncommercial solvers for MIP [KAA+11, Mit],
MIQCP [Mit] and MINLP [Vig12].
Among the commercial MIP solvers, it seems hard to declare a single solver

as the state-of-the-art. Koch et al. [KAA+11] showed that for the Miplib
2010 benchmark set, all of the three solvers Cplex, Gurobi, and Xpress
have a nearly identical geometric mean of the solution times on a 12 thread
environment, with each solver being the single fastest on several individual
instances. In 2005, a computational study by Neumeier et al. [NSHV05]
compared nine different MINLP solvers, appointing baron the fastest solver
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at that time. In his thesis, Vigerske [Vig12] evaluated the performance of
baron, Couenne, Lindo API, and SCIP on the MinlpLib [BDM03]. He
found that SCIP outperforms the other solvers w.r.t. the number of solved
instances, the average running time and the quality of both, primal and dual
bounds.

2.3. Heuristic methods in MINLP
Primal heuristics are algorithms that try to find feasible solutions of good
objective function quality for a given optimization problem, following some
intuition of how such a solution can be constructed. More generally, a heuris-
tic algorithm is a procedure that takes a decision to a given problem within
short time, given limited information. These “definitions” involve a lot of
hand-waving – What is good? What is short? What is limited? – but they
capture the main characteristic of heuristic algorithms: they are expected to
show a good trade-off between computational effort and success rate.
Furthermore, if an optimization problem could be solved by complete enu-

meration of a discrete set, a primal heuristic will typically perform only a
partial search that is incomplete by design. As a consequence, one might
interpret heuristics as the opposite of complete algorithms, which are guar-
anteed to converge to a globally optimal solution. Such complete (or global)
algorithms, however, often feature heuristic algorithms to make crucial deci-
sions.

Heuristics everywhere. . .

Branch-and-cut and the other algorithms named in Section 2.2 are designed
to find a globally optimal solution of a given MIP or MINLP (up to numerical
tolerances, see also the last paragraph of this section). Within state-of-the-
art implementations of MIP and MINLP solvers, heuristic algorithms are
ever-present, which we will demonstrate in the following.
A vanilla branch-and-bound algorithm, as it is described by Land and

Doig [LD60] or Dakin [Dak65], has two main steps at which a decision is
made: the branching selection and the node selection. Both selections have
a major impact on the overall running time of the algorithm, and both are
normally made by a heuristic criterion that proved to be good on average.
For node selection, this is often a variant of depth-first-search. For branching
selection heuristics, an overview is presented in Chapter 10. Note that for
SAT, Liberatore proved that finding a branching that leads to a minimal
search tree is at least as hard as solving the SAT problem itself [Lib00].
Cutting plane separators also involve many heuristic components. State-

of-the-art MIP solvers like SCIP generate mixed integer rounding cuts from
(heuristically chosen) aggregations of linear constraints, see, e.g., [MW01].
Cuts are filtered w.r.t. their numerical stability, including checks against
several threshold values that are empirically tested to work well in practice.
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Finally, only a subset of the filtered cuts will be actually added to the LP.
This set of cuts is selected by a combination of heuristic criteria such as the
orthogonality amongst each other, the parallelism w.r.t. the objective and
the efficacy of the cuts, see, e.g., [Ach07b].
Presolving and domain propagation typically apply a fixed set of deduc-

tion rules until a fix point of the domain space is reached. However, even for
this part of MI(NL)P solving, which is based on pure logic rather than on
intuition, heuristic algorithms can be found. Probing [Sav94] and Optimality-
based bound tightening (OBBT) [QG93] are time-consuming, explorative pre-
solving techniques which solvers like SCIP, baron, or Cplex only apply to
a limited set of variables. These processes abort prematurely if they do not
prove successful, see, e.g., [GW13]. The order the variables are examined
for probing or for OBBT is determined by a heuristic criterion such as the
number of constraints in which a variable appears. Presolving for knapsack
constraints uses a so-called clique partition [SS94], which is computed by a
greedy algorithm in SCIP.
In LP solving, pivoting rules are heuristic algorithms. The commonly

used ones work well in practice, but can be arbitrarily bad on some involved
polytopes that are constructed to mislead them [KM72]. The analysis of
infeasible LPs to generate conflict constraints is based on a heuristic filtering
of the dual ray, see Chapter 9.2. Further, the factorization of basis matrices
is typically performed in a way that few fill-in is created. To do so, heuristic
algorithms are used, see, e.g. the study of Luce et al. [LTL+09].
In conclusion, heuristic algorithms can be found in almost every part of

state-of-the-art MIP and MINLP solvers. The most visible part, however,
is the search for hidden feasible solutions prior and during the tree search:
primal heuristics.

Primal heuristics

For mixed integer linear programming (MIP) it is well known that general-
purpose primal heuristics, like the Feasibility Pump [AB07, FGL05, FS09],
are able to find high-quality solutions for a wide range of problems. Over
time, primal heuristics have become a substantial ingredient of state-of-the-
art MIP solvers [Ber06, BFG+00, LPT+09]. Discovering good feasible solu-
tions at an early stage of the MIP solving process has several advantages:

. The bounding step of the branch-and-bound [LD60] algorithm depends
on the quality of the incumbent solution; a better primal bound leads
to more nodes being pruned and hence to smaller search trees.

. The same holds for certain presolving and domain propagation strate-
gies, such as reduced cost fixing [NW88]. Better solutions can lead to
tighter domain reductions, in particular more variable fixings. Conse-
quently, this might lead to better dual bounds and the generation of
stronger cutting planes.
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. In practice, it is often sufficient to compute a heuristic solution whose
objective value is within a certain quality threshold. For hard MIPs
that cannot be solved to optimality within a reasonable amount of time,
it might still be possible to generate primal solutions of high quality
quickly.

. Improvement heuristics, e.g., rins [DRP04] or Local Branching [FL03],
need a feasible solution as a reference point.

Similar statements hold for other classes of mathematical programs. Often,
techniques such as reduced cost fixing or cutting planes are more heavily, or
even exclusively, applied at the root node of a branch-and-bound search tree.
Therefore, already knowing good solutions during root node processing is
more beneficial than finding them later during tree search.
Consequently, the last fifteen years have seen several publications on gen-

eral purpose primal heuristics for MIP, including [AB07, BCD+01, BSW04,
BFL07, Ber14, BFS10, FS09, Gho07, GLW00, HMU06, Løk02, Rot07, Wal10].
For literature overviews, see [Ber06, FL10, Lod13, Mar11]. Despite the ris-
ing interest of the research community in recent years, primal heuristics for
MIP date back to the early days of computational integer programming, for
example, [EC68].
The performance improvement of a MIP or MINLP solver achieved by

applying primal heuristics is a natural reason to study their application inside
complete solvers. However, there is another, more surprising motivation.
Recent experiments by Hans Mittelmann indicate that even for the default
application of standalone primal heuristics – finding a single feasible solution
quickly – the portfolios of embedded heuristics in state-of-the-art MIP solvers
are competitive or superior to applying a single standalone heuristic. On the
feasibility test set of the Miplib 2010, the solvers Cplex, Gurobi, Xpress
and the state-of-the-art heuristic code Feasibility Pump 2.0 [FS09] (which
uses Cplex as a subroutine), find solutions for 28 or 29 instances each,
with the Feasibility Pump being a factor of 1.5 to 2.4 slower than the MIP
solvers [Mit13]. One reason for this is that MIP solvers have access to a whole
portfolio of internal primal heuristics; each of Xpress, Cplex, Gurobi,
SCIP, and cbc feature a double-digit quantity of primal heuristics. We
conclude that for forwarding the state-of-the-art in finding feasible solutions
as fast as possible, studying and improving primal heuristics inside global
solvers is a promising way to go.
The present thesis features literature overviews for rounding heuristics, see

Section 4.2, feasibility pumps, see Section 5.2–5.3, and large neighborhood
search heuristics, see Section 6.2–6.3. The following part gives an overview
on classes of primal heuristics for MIP and MINLP that are not covered in
one of the named sections.
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MIP and MINLP primal heuristics: literature overview

Diving heuristics are a kind of “folklore”: Most solvers and many custom
codes use them, but there are few publications on the topic. Generally speak-
ing, diving heuristics iteratively round one or more fractional variables and
reoptimize a relaxation, thereby simulating a depth-first-search in the tree.
One of the first references mentioning “diving” in a pure heuristic context are
Bixby et al. [BFG+00] who state that at this time (2000), “all [of Cplex’]
heuristics involve diving.”10 Danna et al. [DRP04] introduce guided diving,
i.e., rounding a fractional variable that is closest to its value in the incum-
bent to that value. Berthold [Ber06] gives an overview on six different diving
heuristics that are implemented in SCIP.
The Active Constraint Branching of Patel and Chinneck [PC07], the prob-

abilistic Force Change Branching of Pryor and Chinneck [PC11], and the
Foundation Constraint Method by Mahmoud and Chinneck [MC13] are all
aimed at applying branching strategies that quickly find feasible solutions
and neglect the proof of optimality. By this, they actually work like a typical
diving heuristic and should be considered in this context.
Bonami and Gonçalves [BG12] generalize the Fractional Diving heuristic

and the Vectorlength Diving heuristic from [Ber06] to convex MINLP by solv-
ing NLP relaxations instead of LP relaxations. Mahajan et al. [MLK12] sug-
gest a diving algorithm that uses quadratic programming relaxations. While
their algorithm is designed as a global method, it can be easily adopted to be
used as a primal heuristic for a single dive. The author of this thesis, in coop-
eration with Stefan Vigerske from GAMS, implemented nonlinear equivalents
of all six (linear) diving heuristics in SCIP. Additionally, we experimented
with diving rules that prefer variables from a minimum cover, see Section 8.3,
and that are fractional in an LP and NLP relaxation at the same time. Both
ideas improved the heuristic’s behavior.
Pivoting heuristics use knowledge of the index set of integer variables of

a MIP. They manipulate the primal simplex algorithm in such a way that
it tries to force integrality on those variables. Recall that variables in the
non-basis are always at one of their bounds. This implies that continuous
variables and slack variables of constraints should be preferred over binary
variables to be put into the basis. A pivoting heuristic for pure BPs called
Pivot-and-Complement is presented by Balas and Martin [BM80]. It performs
three kinds of simplex iterations, starting from an LP-optimal basis:

1. pivots that maintain primal feasibility and exchange a slack variable in
the non-basis for a fractional binary variable in the basis,

2. pivots that maintain primal feasibility and complement a binary vari-
able (i.e., switch its value from 0 to 1 or vice versa), while reducing the
sum of fractionalities, and

10Note that performing an initial dive (that is not discarded) at the beginning of a branch-
and-bound search has been proposed before, see, e.g., Beale [Bea79].
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3. pivots that sacrifice primal feasibility in order to bring a slack into a
basis in exchange for a fractional binary variable.

Furthermore, they included a complementing step in which sets of two or
three variables are complemented at once, while reducing the sum of frac-
tionalities. This is performed in conjunction with a reduced cost fixing step.
Balas, Schmieta, and Wallace [BSW04] introduce a heuristic called Pivot-

and-Shift, based on a technical report by Balas and Martin [BM86]. In addi-
tion to Pivot-and-Complement, it considers continuous variables and general
integer variables with (small) finite domains, partitioning the latter into bi-
nary variables. As a consequence, the complementing step is replaced by a
shifting step that involves shifting the (integral) solution value of an integer
variable to one of the neighboring integral values. Further, the improvement
phase is amended by a Local Branching procedure, see Section 6.2.
Eckstein and Nediak present Pivot-Cut-and-Dive [EN07], a heuristic for

mixed binary programs. Its main procedure is a rounding method that is
based on simplex pivot operations. This involves combining a concave merit
function, e.g., the Euclidean distance, with the original objective to rate the
potential pivots. This basic algorithm is enhanced by an explicit probing on
pivots when the method reaches a local optimum (w.r.t. the merit function).
If this probing phase fails, an intersection cut can be generated. As a last
resort, the heuristic performs diving (see above) by fixing groups of variables,
thus this procedure is named Pivot-Cut-and-Dive.
A heuristic called Pivot and Gomory Cut by Ghosh and Hayward [GH05]

uses Gomory cuts [Gom58] to guide the pivot selection and to avoid cycling:
like Pivot-And-Complement, it seeks to perform pivots that reduce the overall
fractionality, under the additional restriction to make a previously generated
Gomory cut less violated. Løkketangen et al. [LJS94] describe two ways of
integrating tabu search into Pivot-and-Complement: allowing non-improving
moves in order to escape local minima and defining neighborhoods in a post-
processing improvement phase.
Saltzman and Hillier [SH92] present a so-called ceiling point algorithm

that searches for the closest integer points to one or more of the hyperplanes
defined by the linear constraints. Here, “closest” refers to a local viewpoint:
a point is called “closest” to a hyperplane when within its 1-neighborhood,
there is no point with a smaller Euclidean distance to that hyperplane. An
enumeration of such points is combined with a simple rounding procedure
and a 2-opt postprocessing, compare Chapter 4.
Bastert et al. [BHdV10] propose a generalization of a problem specific

heuristic byWedelin [Wed95] that was developed to solve airline crew schedul-
ing problems. The basic idea is to iteratively solve Lagrangian relaxations of a
mixed integer program. Therefore, the Lagrangian multipliers are computed
from reduced costs and a preference matrix that collects history information
over the iterations.
Glover and Laguna [GL97a, GL97b] propose a scatter search algorithm that
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takes convex combinations of integral points that are derived by roundings
of LP solutions. Their algorithm generates intersection cuts to diversify the
search.
The literature on primal heuristics for general MINLPs can be roughly sub-

divided into large neighborhood search strategies, Feasibility Pumps, variable
neighborhood search approaches, and general meta-heuristics. For a litera-
ture overview on large neighborhood search for MINLP, see Section 5.3. For
a literature overview on nonlinear Feasibility Pumps, see Section 6.3.
Large neighborhood search heuristics explore a single subproblem, which is

defined as the neighborhood of a reference point. This subproblem typically
is of considerable size compared to the original problem. Thresholds like
fixing (only) 50% of the variables are common. Variable neighborhood search
heuristics iteratively explore different neighborhoods, updating the reference
point, thresholds, and the neighborhood size (often growing over time) after
each iteration. Sometimes even changing the way to define neighborhoods is
changed during the course of the algorithm.
RECIPE, an acronym for Relaxed-Exact Continuous-Integer Problem Ex-

ploration, was introduced by Liberti et al. [LNM10, LMN11]. The neighbor-
hoods in RECIPE are defined by Local Branching constraints, see Section 6.2,
and by restricting the bounds of general integer variables. In this neighbor-
hood, random points are sampled as starting points to find a local optimum
of an NLP relaxation. Such a local optimum is then used as a reference
point for a convex MINLP solver which is used to find an integer point – as
a solution candidate and as a reference point for the iterative neighborhood
definition.
The iterative rounding heuristic by Nannicini and Belotti [NB12] alter-

nately solves NLPs and MIPs that are obtained by the relaxation of the
original MINLP, Local Branching constraints, and restrictions of variable
domains. Typically, a couple of integer points close to the NLP solution are
generated by solving a Feasibility Pump-like MIP, and excluding the previ-
ously visited points by no-good cuts.
The Restrict-and-Relax algorithm for MBPs by Guzelsoy et al. [GNS13]

can be modified to run as a variable neighborhood search heuristic. Restrict-
and-Relax fixes variables with integral LP solution value and large reduced
costs. However, during a branch-and-bound-like search, variables may be
unfixed again, depending on the feasibility status and the objective value
of the LP. Additionally, other variables are fixed, thereby defining a new
neighborhood to be searched.
Meta-heuristic approaches are often used to compute promising reference

points for multistart heuristics for nonconvex NLP and MINLP. As an exam-
ple consider the OptQuest/NLP algorithm by Ugray et al. [ULP+07]. Lo-
calSolver [BEG+11, Gar13] is a commercial heuristic software that is based
on local search. It combines several neighborhood search implementations
with constraint propagation, MIP and NLP techniques.
Please note again, that literature overviews on the broad topics of rounding
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heuristics, Feasibility Pumps, and LNS heuristics are given in the correspond-
ing Chapters 4, 5, and 6 of this thesis.

A note on numerics

Exactly speaking, state-of-the-art MIP solvers have an intrinsic heuristic fla-
vor, since they use floating point arithmetic and numerical tolerances. This
means that they only solve an approximation (though typically an extremely
tight one) of the original problem and might accept solutions as feasible that
are only “very close to feasible’.’ Additionally, they might reject solutions
which are “nearly infeasible”. A recent study by Cook et al. [CKSW13] shows
that for standard MIP benchmark instances, an exact and an inexact version
(in a numerical/computer-algebraic sense) of SCIP report identical optimal
objective values for the majority of the cases, and that discrepancies are of
negligible magnitude, if they occur. However, for particularly ill-conditioned
problems the situation may change drastically.
Numerical flaws are a topic of interest for computational MIP, and even

more MINLP, but will not be covered in this thesis. We refer the interested
reader to [Gol91] for an overview and a discussion of the pitfalls of floating
point arithmetic. Finally, the papers of Cook et al. [CDFG09, CKSW13],
and Neumaier and Shcherbina [NS04] discuss approaches for solving MIPs
without floating point errors.





3. Measuring the impact of primal
heuristics

In modern MIP and MINLP solvers, primal heuristics play a major role in
finding and improving feasible solutions early in the solution process. How-
ever, classical performance measures such as time to optimality or number
of branch-and-bound nodes reflect the impact of primal heuristics on the
overall solving process very poorly. Two reasons for this are that standard
performance measures typically depend on the convergence of the dual bound
and that they only consider instances which can actually be solved within a
given time limit – whereas employing heuristics is particularly worthwhile for
hard instances which cannot be solved to proven optimality within reasonable
time, as we will show in Chapter 11.
In this chapter, we introduce a new performance measure, the “primal

integral”, which depends on the quality of solutions found during the solving
process as well as on the points in time when they are found. We argue why
this measure better captures the benefit of using primal heuristics inside a
complete solver and confirm this claim by computational experiments. Our
results reveal that heuristics improve the performance of state-of-the-art MIP
solvers in terms of the primal integral by around 80%. The main part of this
chapter has been published in Operations Research Letters [Ber13].
This chapter is organized as follows. After a short introduction in Sec-

tion 3.1, we review existing measures and discuss the challenge to design a
robust performance indicator in Section 3.2. In Section 3.3, we formally de-
fine the primal integral. Our computational study is presented in Section 3.4.
Finally, we discuss several ways to extend and generalize our definition in
Section 3.5, before we conclude in Section 3.6.

3.1. Introduction
When implementing optimization software, two questions naturally arise:
how does the new code perform with respect to existing codes and which are
the best settings for a particular algorithm? This goes back to the early days
of operations research: Hoffman et al. reported a first computational experi-
ment to compare different implementations of linear programming algorithms
in 1953 [HMSW53]. Just as researchers and software vendors want to distin-
guish their code on general test sets, a user wants to tune an optimization
software for a particular set of problems. However, all parties require suitable
criteria for measuring the performance of a software implementation.

29
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With the rise of computational research, standards and guidelines for con-
ducting computational experiments were proposed [CDM78, JBNP91, Hoo94,
McG96, GGM+97] or recently [Coo08, KMP13]. One key issue of the cited
articles is the choice of suitable performance indicators. In mathematical
programming, the running time to optimality is the “gold standard” for per-
formance comparisons. For branch-and-bound based algorithms, the number
of branch-and-bound nodes is another typical measure. Similarly, when us-
ing a simplex or an interior point based solver, the number of iterations is
commonly used. Both, the number of iterations and the number of nodes,
attempt to estimate the running time by a measure that is less dependent on
the hardware and at the same time better reflects the sheer computational
complexity.
In this chapter, we will use mixed integer linear programming as a showcase

for our computational experiments. One advantage of branch-and-bound
based algorithms, as opposed to, e.g., pure cutting plane algorithms, is that
suboptimal incumbent solutions often are available early during the course
of the algorithm. Primal heuristics boost this characteristic even further. As
a consequence, solutions with a small optimality gap might be available long
before the branch-and-bound search terminates.
Knowing good solutions early during optimization helps to prune the search

tree and to simplify the problem via dual reductions. Further, they help to
quickly check the correctness of the underlying model. Moreover, a practi-
tioner might be satisfied with a solution that is proven to be within a certain
gap to optimality. As a matter of fact, a typical use case in industrial appli-
cations of optimization is to find the best possible solution within a strictly
predetermined time limit.

3.2. Trading off speed against solution quality

The time needed to find a first feasible solution, an optimal solution, or a so-
lution within a certain gap to optimality (see, e.g., [HP93]) are performance
criteria that concentrate on the primal part of the solution process. Each
of these has its individual strengths and weaknesses. The time to first so-
lution entirely disregards the solution quality: for about one quarter (23/87)
of the Miplib 2010 [KAA+11] benchmark instances, a trivial solution of all
variables set to their lower bound (or all to their upper bound) is feasible11,
but most of the times such a solution does not provide valuable information
to the user. Particularly when analyzing heuristics embedded in a complete
solver, the time to the first solution mainly measures the time needed for
preprocessing and solving the root node relaxation: the MIP solvers Cplex,
Gurobi and Xpress find solutions for 72, 70, and 64 of the 84 feasible Mip-
lib 2010 benchmark instances during root node processing. The time to
11The “trivial” heuristic in SCIP checks the feasibility of these two solutions before pre-

processing starts.
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optimal solution, however, ignores that slightly suboptimal but practically
sufficient solutions might have been found long before. Finally, taking the
time to a certain gap is an attempt to balance this, but the choice of the
threshold is arbitrary by design.
Altogether, the important consideration for primal heuristics is the trade-

off between speed and solution quality. None of the above measures entirely
meets this requirement. In marked contrast, two of the named measures, time
to first solution and time to optimality, rather represent extreme points. It
is our goal to introduce a new performance measure that reflects the devel-
opment of the solution quality over the complete optimization process.
We argue that standard performance criteria are not well suited to describe

the impact that primal heuristics have within a solver. Take the following
observation. On the one hand, for state-of-the-art MIP solvers, the impact of
primal heuristics on the overall running time and the number of branch-and-
bound nodes is typically minor to negligible,12 whereas other components
such as cutting planes or branching rules change these numbers by a factor
of two or three.
On the other hand, the solver vendors, such as Cplex, Gurobi or Xpress,

seem to consider primal heuristics to be a “trade secret”. It stays unrevealed,
which heuristics they use, when those are called, or just how many of them
a solver features – whereas for other components, there are plenty of user
parameters and statistical output available.13 One interpretation of this dis-
crepancy might be that primal heuristics are considered a – if not the –
crucial part of the software, and their value is simply not reflected by the
performance measures that we commonly use.

3.3. The primal integral

In this section, we introduce a new performance measure, in particular for
benchmarking primal heuristics, that takes into account the whole solution
process. The goal is to measure the progress of the primal bound’s conver-
gence towards the optimal solution over the entire solving time. Therefore, we
make use of the primal gap of a feasible solution, consider this as a function
over time, and compute the integral of that function. Recall Definition 2.5,
the primal gap of a feasible solution:

Definition (primal gap). Let x̃ be a solution for an MINLP, and x? be an
optimal (or best known) solution for that MINLP. We define the primal gap

12Presentations by software vendors mention values in the range of five to ten per-
cent [Bas07, BFG+00].

13Consider the recent study [AW13] of two Cplex main developers: They present exhaus-
tive computational results for ten different classes of cutting planes and nine presolving
strategies. The only published heuristic for which they give numbers is rins [DRP04].
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γp ∈ [0, 1] of x̃ as:

γp(x̃) :=


0, if cTx? = cTx̃ = 0,
1, if cTx? · cTx̃ < 0,
|cTx?−cTx̃|

max{|cTx?|, |cTx̃|} , otherwise.

Note that for two feasible solutions x̃1, x̃2 with sgn(cTx̃1) = sgn(cTx̃2) =
sgn(cTx?) and cTx̃1 < cTx̃2 it holds that γp(x̃1) < γp(x̃2). Now, assume that
we have available the objective function values of intermediate incumbent
solutions and the points in time when they have been found – for a given MIP
solver, a certain problem instance, and a fixed computational environment.
This information can be gathered from the log files that standard MIP solvers
produce.

Definition 3.1 (primal gap function). Let tmax ∈ R>0 be a limit on the
solution time of a MIP solver. Its primal gap function p : [0, tmax] 7→ [0, 1] is
defined as follows:

p(t) :=
{

1, if no incumbent until time t,
γp(x̃(t)), with x̃(t) being the incumbent at time t, otherwise.

The primal gap function p(t) is a step function that changes whenever a
new incumbent is found. It is monotonically decreasing, one at t = 0, and
zero from the point on at which the optimal solution is found.

Definition 3.2 (primal integral). Let T ∈ [0, tmax] and let ti ∈ [0,T ] for
i ∈ {1, . . . , I − 1} be the points in time when a new incumbent solution is
found, t0 = 0, tI = T . We define the primal integral P (T ) of a run as:

P (T ) :=
T∫

t=0

p(t) dt =
I∑
i=1

p(ti−1) · (ti − ti−1).

We suggest using P (tmax) for measuring the quality of primal heuristics.
It features two simple, but important, attributes: First, whenever a better
solution is found at the same point in time, P (tmax) decreases. Second,
whenever the same solution is found at an earlier point in time, P (tmax)
decreases. Briefly: the primal integral favors finding good solutions early.
For the performance measures discussed in the introduction, at most one of
these two attributes holds in general.
The fraction P (tmax)/tmax can be seen as the average solution quality dur-

ing the search process. In other words, the smaller P (tmax) is, the better
is the expected quality of the incumbent solution if we stop the solver at
an arbitrary point in time. Taking the development of the primal bound as
a measure even reflects some psychological consideration: a quick drop in
the primal bound and the early availability of a high-quality solution will
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most likely be perceived as an indicator of “good performance” by users of
optimization software. The primal integral is an absolute measure in the
sense that it is only defined by a single solver, unlike, for instance, a perfor-
mance profile14 which compares relative performance and is defined by a set
of solvers.
Note that, for pure feasibility problems (instances with a zero objective

function) the primal integral and the overall running time will give the same
measure, up to a constant scaling factor. This follows from the simple obser-
vation that for feasibility instances the primal gap is one, before the solution
is found (and the solution process thereby terminates) and zero afterwards.
Hence when for two different runs the running time differs by a factor of k,
the primal integral p(t) will also differ by a factor of k.
In a recent work on rounding heuristics for MINLP, Nannicini and Be-

lotti [NB10] used the percentage of total running time for which one given
algorithm gave rise to a strictly better solution than another one to compare
two solution processes. This can be formulated in terms of our notation as

1
T

T∫
t=0

χ{p1>p2}(t) dt

with p1 and p2 the primal gap functions of two runs of a solver (with different
settings) and χ{p1>p2}(t) a characteristic function, being one if p1(t) > p2(t)
and zero otherwise. Main differences between this measure and the primal
integral are that this measure neither takes the actual objective function
values of the solutions into account, nor is it an absolute measure, since it
compares the relative performance of two algorithms.
In Section 3.4, we will present computational experiments comparing the

performance of state-of-the-art MIP solvers with and without primal heuris-
tics. Further, we will use the primal integral for our final evaluation in
Chapter 11.

3.4. Computational experiments

We conducted our computational experiments with five state-of-the-art MIP
solvers: cbc 2.7.0 [Cbc], FICO Xpress 23.01.06 [FIC], Gurobi 5.1.0 [Gur],
IBM ILOG Cplex 12.5.0 [IBM], and SCIP 3.0.1 [Ach09] compiled with
SoPlex 1.7.1 [Sop] as underlying LP solver. Cplex, Gurobi, and Xpress
are among the fastest commercial MIP solvers, and cbc and SCIP are among
the fastest open-source MIP solvers [Mit]. Further, these are the five codes
that have been used to compile the Miplib 2010 [KAA+11] benchmark set
14 Performance profiles [DM02] represent the relative performance of a set of algorithms

compared to a virtually best solver as a curve in a graph. A performance profile shows
what percentage of the instances (which is the ordinate) of a given test set a given solver
could solve within a time factor (which is the abscissa) of the best solver.



34 Chapter 3. Measuring the impact of primal heuristics

0 1,000 2,000 3,000
0

10

20

30

40

t in sec.

p
(t
)
in

%

no heur

default

0 1,000 2,000 3,000
0

10

20

30

40

t in sec.

p
(t
)
in

%

Figure 3.1.: Course of the primal gap when running SCIP with and without
primal heuristics

which we chose as a test set for our computational experiments. We excluded
the three infeasible instances ash608gpia-3col, enlight14, and ns1766074.
Additionally, we excluded the instance mspp16, because SCIP and cbc ran
out of memory. This leaves 83 instances in the test set.
The results for running the solvers in default mode are taken from the

benchmarks for optimization software webpage of Hans Mittelmann [Mit],
as of 20. February 2013. Additional results with disabled primal heuristics
were obtained on the actual same computer, a 64bit Intel Xeon X5680 CPU
at 3.20GHz with 12MB cache and 32GB main memory, running an open-
SUSE 12.1 with a gcc 4.6.2 compiler.15 Turboboost was disabled. In all
experiments, there was only one job at a time to avoid random noise in the
measured running time that might be caused by cache misses if multiple
processes share common resources.
As a first test, we compare the performance of SCIP and Cplex when

running with and without primal heuristics. We show the evolution of the
primal gap in Figures 3.1 and 3.2. The red dashed line corresponds to the
average (taken over 83 instances) primal gap function, when running the
solver in default mode. The red shaded area corresponds to the average
primal integral. Accordingly, the blue dotted line and the blue shaded (plus
the red shaded) area correspond to the average primal gap function and the
average primal integral when running the solver without heuristics.
For SCIP, the average value of P (tmax)/tmax was 9.05% when using primal

heuristics and 16.18% without. For Cplex, it was 1.92% and 3.58%, re-
spectively. This indicates that, on this test set, for these two solvers, primal
heuristics lead to an improvement of 78.8% and 86.5% in the primal bound,

15We acknowledge Hans Mittelmann for his help with this experiment.
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Figure 3.2.: Course of the primal gap when running Cplex with and with-
out primal heuristics

on average. As a comparison, the running time to optimality was 819.0
seconds with and 910.5 seconds without primal heuristics for SCIP (11%);
181.1 seconds and 239.9 seconds for Cplex (32%). Both solvers solved four
instances less when not using primal heuristics. Note that for both solvers
the “default” function is strictly smaller than the “no heur” function. This
implies that, independent of the chosen time limit, using primal heuristics is
consistently superior in terms of the primal integral.
We conducted the same experiment with SCIP on the challenge test set of

the Miplib 2010. We removed all instances which are known to be infeasible,
for which the feasibility status is unknown (as of April 2013) and four large
instances for which SCIP runs out of memory before even solving the root
node LP. The reference solution values were compiled from the Miplib 2010
webpage and from additional 24-hour runs of Cplex 12.5 and Gurobi 5.5.
We show the evolution of the primal gap in Figure 3.3. The underlying results
were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at 3.20GHz with
12MB cache and 48GB main memory, running an openSUSE 12.1 with a gcc
4.6.2 compiler, running each job exclusively. For this test set of notoriously
hard MIP instances, the measured impact of using primal heuristics was
even larger. The average value of P (tmax)/tmax was 39.02% when using primal
heuristics and 78.22% without. Hence using primal heuristics reduced the
primal bound by a factor of two on average. Note that from 151 instances in
our test set, there was only one, bnatt400, which was solved to optimality
by either version within the time limit of one hour. Thus, where comparing
running time to optimality is not an option, the primal integral allows for a
meaningful comparison which complies with the previous results.
Of course, we can use the primal integral as another metric to compare the

performance of solvers against each other. It has been argued in [KAA+11]
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Figure 3.3.: Course of the primal gap when running SCIP on the Miplib
2010 challenge test set with and without primal heuristics

(and previously in [JBNP91]) that more than one performance indicator
should be used to evaluate mathematical programming software, ideally based
on different aspects of the optimization process. Figure 3.4 shows the course
of the average primal gap function for cbc, SCIP, Xpress, Gurobi, Cplex
and a virtual best solver (VBS). VBS takes for each instance the minimum
of the primal bounds of the five solvers at each point in time. The results for
the average primal integral, in particular the order of the solvers, are clearly
different from those for the mean time to optimality at [Mit], which shows
yet again that different solvers have different strengths.
Even more important, averages tell you little about a single instance. The

primal integral of the virtual best solver in Figure 3.4 is a factor 3.8 smaller
than the primal integral of the best individual solver, meaning that the port-
folio of solvers is significantly better than any single solver. For 82 of the 83
instances, at least one solver found an optimal16 solution within 800 seconds.
In contrast, for each individual solver, there are at least four instances for
which the solver did not find an optimal solution after one hour. Each solver
contributes to VBS, meaning that each solver has the single best primal
bound for some instances for some time. Altogether, this shows once again
(compare [KAA+11]) that having a portfolio of MIP solvers is beneficial.

3.5. Variants and extensions
Two main directions for modifications of the primal integral are (i) using a
different base measure p(t) and (ii) extending the integral function P (T ).
Concerning (i), analogously to the primal integral, we can define a dual

16Here, we consider a solution x̃ optimal when γp(x̃) ≤ 10−6.
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Figure 3.4.: Course of the primal gap for five different MIP solvers plus a
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integral by considering a dual gap function between the current and a best
known dual bound. Using the “gap closed” (one of the first appearances
was in 1985 [JKS85]) as a measure for the performance of a cutting plane
algorithm has the same pitfall as using the objective function of the best found
solution for primal heuristics: it only considers the final state, ignoring the
path that led there.
Taking the integral over the primal-dual gap of a MIP solver can serve

as a measure of its convergence speed. Again, this might be particularly
worthwhile when a test set contains many instances which hit an imposed
time limit. Reporting the gap at termination is prone to variations caused by
bound changes around the time limit. Using a primal-dual integral instead
reduces the impact of events that happen around the time limit: if as an
extreme example one solver improves the bounds after 3599 seconds and
the other after 3601 seconds, the primal-dual integral will differ by less than
0.1%, whereas the primal-dual gap after one hour can be arbitrarily different.
Unlike the primal integral, a primal-dual integral does not even require the
value of an optimal or best known solution as an input.
Concerning (ii), logarithmic scales are often used to put the focus on the

factor between measured values rather than on their absolute difference. It
can be argued for the time axis as well as for the gap axis that it makes
sense to rather use a logarithmic scale, and incorporate the logarithm into
the definition of P (T ).
We used mixed integer linear programming as a showcase in this chapter,

but never exploited specific structures of this problem class. The suggested
measures can be used for any class of optimization problem which features a
meaningful primal or dual bound, and any algorithm that produces a mono-
tonic sequence of bound values. Similarly, instead of a gap function, any
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performance measure which evolves monotonically over time could be used.

3.6. Conclusion
In this chapter, we introduced a new performance measure to evaluate math-
ematical programming software. The primal integral takes the development
of the incumbent solution over time into account, thereby favoring finding
good solutions early – which is extremely important in practice. It is less
prone, though not immune, to common weaknesses of standard performance
measures, notably the dependence on an (arbitrarily chosen) time limit.
We argued that the primal integral is particularly useful to measure the

progress of an optimization procedure w.r.t. solution quality. To this end, we
showed that for two state-of-the-art MIP solvers, the primal integral changes
by a factor of nearly two when disabling primal heuristics. The running time
to optimality only increased moderately in the same experiment.
We conclude that the primal integral and its variants (e.g., a primal-dual

integral) are a valuable extension of the portfolio of available performance
measures. We will use it for our final evaluation in Chapter 11, where we
also apply it for MINLP test sets.
Although we only suggested this new performance measure very recently,

it already found its way into several professional software packages. It has
been implemented in the paver 2.0 [BDV14] environment for performance
analysis, which is maintained by GAMS Development Corp and it is being
used to tune emphasis settings of Cplex [Ach]. Further, the primal integral
has been employed for computational experiments in some recently published
papers and preprints on primal heuristics [AS14, FLM+13, FM13, FMS14,
Sal14].



4. Rounding and propagation
heuristics for MIP

The start heuristics presented in Chapters 5, 7, and 8 and many other heuris-
tics from the literature [BCD+01, BM80, BSW04, EN07] either solve se-
quences of linear programs or auxiliary MIPs/MINLPs. Moreover, they rely
on an optimal relaxation solution being at hand. Finding this may itself take
a significant amount of time.
This chapter focuses on primal heuristics that only employ computation-

ally quick procedures such as rounding and logical deductions. We give an
overview of existing rounding and propagation heuristics for mixed integer
linear programming. Further, this chapter presents in detail the Shift-and-
Propagate heuristic, a primal heuristic that does not require a previously
found relaxation solution. For this reason, it is applicable already before
the initial root LP relaxation has been solved. Shift-and-Propagate applies
domain propagation techniques to quickly drive a variable assignment that
satisfies the integrality restrictions towards feasibility.
Shift-and-Propagate is a joint work with Gregor Hendel; he presented a

preliminary version of Shift-and-Propagate in his bachelor’s thesis [Hen11].
This chapter is based on a paper that has been accepted for publication in
Journal of Heuristics, a preprint of this submission has been made available
as ZIB-Report [BH15].
This chapter is organized as follows. After a short introduction in Sec-

tion 4.1, we will recall some rounding and improvement heuristics known
from the literature in Section 4.2. All of them are already implemented in
SCIP. Then, we give an overview of MIP domain propagation techniques in
Section 4.3. After that, we introduce key ideas and implementation details
of the Shift-and-Propagate heuristic in Section 4.4, including individual dis-
cussions on two of its main components: the shifting value selection and the
variable ordering. Finally, we present computational results in Section 4.5.

4.1. Introduction
Chapters 4–8 of this thesis deal with primal heuristics. Among those, this
chapter is the only one solely concerned with mixed integer linear program-
ming. We focus on rounding and propagation heuristics that are applied
inside a complete MIP solver. Rounding heuristics set each fractional value
of an LP solution to an integral value, to make an LP-feasible solution feasi-
ble.

39
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Lodi conjectures in [Lod10, Section 16.3.1.2] that a better handling of gen-
eral integer (as opposed to binary) variables is one of the main challenges
for future MIP code development. In constraint programming, using gen-
eral, though mostly bounded, integer variables is the typical rather than the
exceptional case. CP technologies, in particular domain propagation, are
designed for handling general integers. Propagation heuristics, also known
as probing heuristics [Ach04], use domain propagation techniques (see Sec-
tion 4.3) to reduce the search space and drive a partially assigned solution
towards feasibility. In contrast to diving heuristics, see Chapter 2.3 and
[Ber06, DRP04], propagation heuristics do not solve LPs to ensure feasibility
of the linear constraints. Note that, although rounding heuristics are very
fast procedures, they are only applied after the LP relaxation of a given MIP
has been solved. This can sometimes take a long time by itself; compare,
e.g., the XXL instances from Miplib 2010 [KAA+11].
The main contribution of this chapter is the introduction of a new propaga-

tion heuristic, called Shift-and-Propagate, and its computational comparison
against three rounding heuristics and two improvement heuristics when used
inside a complete MIP solver. Both improvement heuristics employ a light
version of domain propagation. The common feature of all these heuristics
is that they do not solve LPs – or even sub-MIPs, as opposed to heuristics
like rins (see Chapter 6 and [DRP04]).
Shift-and-Propagate is intended to be a component of a complete solver

rather than a standalone procedure. For this purpose, we designed it to
be a quick procedure, which might sacrifice success on some instances to
achieve a good trade-off between the number of found solutions and average
running time. It does not require an LP solution as a starting point and
can therefore be applied earlier during the solver’s search than most other
heuristics. Another MIP start heuristic which does not require an LP solution
is Rapid Learning, see Chapter 9. It follows a hybrid propagation and large
neighborhood search approach.

4.2. Rounding and improvement heuristics
Primal heuristics, in particular those that only employ computationally cheap
procedures such as rounding and logical deductions (propagation), are an
important component of state-of-the-art MIP solvers. In this section, we
describe rounding heuristics and two simple improvement heuristics from the
literature [ABH12, Wal10]. They will serve as a comparison for the newly
proposed Shift-and-Propagate heuristic later.

4.2.1. Rounding heuristics

The goal of rounding heuristics is to convert an LP-feasible solution x̄ into
a feasible solution for the MIP by applying rounding strategies to the set of
fractional variables F := {j ∈ I : x̄j /∈ Z}.
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The three rounding heuristics that are implemented in SCIP use the notion
of up- and down-locks, see Definition 2.10. To recall: for a MIP, we call
the number of positive coefficients κj := |{i | Aij > 0}| the up-locks of the
variable xj ; the number of negative coefficients is called the down-locks κj
of xj . If a variable j ∈ F satisfies κj = 0 or κj = 0, it can be trivially
rounded up or down: let x̄ be an LP-feasible solution and x̃ be the solution
obtained by rounding xj into the direction of zero locks. Then it holds for
all constraints that AT

i· x̃ 6 AT
i· x̄ 6 bi and hence x̃ is LP-feasible.

The Simple Rounding heuristic [Ber06] uses this property to produce fea-
sible solutions by rounding variables x̃j ← dx̄je if κj = 0, or x̃j ← bx̄jc if
κj = 0. It will terminate either with a feasible solution or after detecting a
variable j ∈ F with both κj > 0 and κj > 0.
ZI Round [Wal10] reduces the fractionality of an LP-feasible solution step-

by-step by shifting fractional values towards integrality, but not necessarily
rounding them. For each fractional variable j ∈ F , the heuristic calculates
bounds for both possible rounding directions of x̄j such that the obtained
solution stays LP-feasible. The heuristic then shifts x̄j by the corresponding
bound into the direction which reduces the fractionality min{x̄j−bx̄jc, dx̄je−
x̄j} most. ZI Round might process the set of fractional variables several
times. The heuristic either terminates with a feasible solution or aborts if
the integer infeasibility could not be decreased anymore or if the heuristic
reaches a predefined iteration limit.
In contrast to Simple Rounding and ZI Round, Rounding [Ber06] also

performs roundings that potentially lead to a violation of some linear con-
straints, trying to recover from this infeasibility by further roundings later
on. The solutions in the search space of Rounding are a superset of the ones
in the search space of Simple Rounding. Like Simple Rounding, the Roun-
ding heuristic takes up- and down-locks of an integer variable with fractional
LP solution value x̄j into account. As long as no linear constraint is violated,
the algorithm iterates over the fractional variables and applies a rounding
into the direction of fewer locks, updating the activities Ax̃ of the LP rows
after each step, with x̃ being the partially rounded LP solution. If there is a
violated linear constraint, hence AT

i· x̃ > bi for some i, the heuristic will try to
find a fractional variable to round into a direction that decreases the violation
of constraint i. The number of up- and down-locks serve as a tie breaker.
If no rounding can decrease the violation of the constraint, the procedure
aborts.
Rounding is a typical example of a heuristic that follows what we call a fail

fast strategy. Fail first is a common principle for child selection heuristics, in
particular in artificial intelligence and constraint programming. It has been
originally introduced by Haralick and Elliott, who stated: “To succeed, try
first where you are most likely to fail” [HE80]. In analogy, we claim that it is
a good strategy for primal heuristics to take the most critical decisions first,
e.g., try to fix variables on which it seems hardest to achieve feasibility first.
This has two advantages. Firstly, it will be easier to repair infeasibility when
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there are more unfixed variables left. Secondly, if an early decision leads
to a failure of the heuristic, at least it did not not use much running time;
hence the term fail fast. As a marked example, the Rounding heuristic in
SCIP fixes variables in non-increasing order of the number of locks in their
intended rounding direction.
A few more rounding strategies have been suggested by Christophel in his

Diploma thesis [Chr05]. Maybe the most natural one is rounding to the near-
est integer values, which has been used before in, e.g., [BKR98] for instances
from chemical production planning models. For general MIPs, this strategy
rarely gives rise to feasible solutions [Chr05]. When starting from an optimal
solution of a relaxation, rounding all fractional variables towards the direc-
tion of a good objective function is doomed to failure: the resulting vector
would have a better objective function than the relaxation optimum and can
therefore not be feasible. Rounding in the opposite direction, however, can
work well in particular for pure inequality systems. In [Chr05], this strategy
is called unfavorable rounding. In the same thesis, a combined strategy called
gap rounding is suggested, which rounds nearly integral values to the near-
est integer and the remaining variables against the objective function. Re-
cently, Naoum-Sawaya [NS13] introduced (recursive) central rounding, which
is based on the idea to round the analytic center (see [Son86]) of an LP or
NLP relaxation of a MIP or MINLP to the nearest integer vector. The intu-
ition is that, at least for general integer variables, a point in the “middle” of
the relaxation’s feasible region is more likely to have an integer feasible solu-
tion in its vicinity as compared to an extremal solution of the relaxation. The
Octane heuristic [BCD+01] by Balas et al. can be understood as a round-
ing heuristic if it is only applied to the space of fractional variables. This
heuristic exploits the polyhedral duality of hypercubes and hyperoctahedra
and has only been described for BPs. Octane is a ray shooting algorithm
that starts from the LP optimum and proceeds along a ray that is directed
into the “inner” of the LP’s polyhedron. It tests those 0-1 vectors for MIP
feasibility that correspond to the first k facets of the unit hyperoctahedron
which are hit by the ray.
In [Ber06, ABH12], a propagation heuristic named Shifting is described.

The Shifting heuristic is similar to Rounding, but it tries to continue in the
case that no rounding can decrease the amount of infeasibility of a violated
linear constraint. In this case, the value of a continuous variable or an integer
variable with integral value will be shifted in order to decrease the violation
of the constraint. To avoid cycling, the procedure terminates after a certain
number of non-improving shifts. A shift is called non-improving, if it nei-
ther reduces the number of fractional variables nor the number of violated
rows. Achterberg [Ach07b] suggests a modified version called Integer Shift-
ing, that is especially designed for MIPs with continuous variables. It relaxes
the continuous variables, performs the aforementioned Shifting algorithm,
reintroduces the continuous variables and solves a final LP to get optimal
values for them.
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4.2.2. Improvement heuristics

In addition to the described rounding heuristics, we will also employ two
“natural” improvement heuristics, called 1-Opt [Ach07b] and 2-Opt [Hen11].
Taking a MIP-solution x̃ as input, 1-Opt determines for every integer vari-

able j ∈ I with cj 6= 0 the shift δj ∈ Z with maximum |δj | such that cjδj 6 0
and AT

i· x̃+Aijδj 6 bi for all i. Hence, shifting the value of xj in x̃ by δj pre-
serves feasibility for all constraints. Shifting any variable xj with |δj | ≥ 1 by
δj will give an improved solution. All found improving shifts are then sorted
by increasing value of cjδj and executed one by one, except a previously ex-
ecuted shift rendered them infeasible. This is a basic version of constraint
propagation: variable values are inferred from constraint activities.
The 2-Opt heuristic shifts pairs of variables at a time rather than single

variables. In the SCIP implementation of 2-Opt [Hen11], integer variables
are grouped into smaller blocks based on a predefined ratio of rows that two
variables share. During its execution, 2-Opt searches within every such block
for variable pairs {j1, j2} ⊆ I2 which allow shifts δ1, δ2 = ±δ1 improving
the objective (c1δ1 +c2δ2 < 0) and maintaining the feasibility of the solution.
Similarly to 1-Opt, all found improving shifts are sorted w.r.t. to the objective
improvement and then applied starting with the most improving shift. This
approach can easily be extended to a k-Opt or Lin-Kernighan-like [LK73,
ACR03] heuristic.
Combining either of these improvement heuristics with any of the round-

ing heuristics from the previous section yields a greedy algorithm for MIP.
Starting from an LP-feasible solution, all presented rounding algorithms ap-
ply strategies that favor feasibility over optimality. If a solution is found, it
can then be driven towards optimality by the improvement heuristics until
it cannot be further improved by switching single variable values or pairs of
them.
Note that 1-Opt and 2-Opt can be seen as a variant of Limited Discrepancy

Search [HG95], starting with a feasible, but potentially sub-optimal path, and
using a discrepancy limit of one and two, respectively. Limited Discrepancy
Search, however, typically uses domain propagation, 1-Opt and 2-Opt do not.
This combination is a fast and promising approach to find good solutions

early during the solving process, in particular for set covering and packing
problems, see also Section 4.3. Here, the described rounding heuristics will
always yield a solution where all or at least the vast majority of variables
are set to 1 (for covering) or 0 (for packing). The 1-Opt heuristic greedily
flips variables in the order determined by their objective coefficients until it
reaches a local optimum.
There exist, however, MIPs for which even solving the LP relaxation is

hard, such that the LP solver is unable to find a feasible LP-solution within
reasonable time. This preempts the application of any the above heuris-
tics. Examples for such MIPs include the XXL instances from Miplib
2010 [KAA+11]. Therefore, we propose the Shift-and-Propagate heuristic,
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which does not depend on a previously found LP-feasible solution, but uses
domain propagation procedures for MIP to find a feasible solution.

4.3. Domain propagation for MIP

Domain propagation (see, e.g., [Bes06, Tac09]) denotes the process of infer-
ring sequences of local domain reductions at the current node of the branch-
and-bound tree. The goal is to shrink the size of the current subproblem
as much as possible at affordable computational cost. This natural idea is
known under many different names, e.g., node preprocessing, bound tighten-
ing, range reduction, filtering in different communities such as mathematical
programming, constraint programming, satisfiability testing, and artificial
intelligence.
In this section, we want to give an overview of existing domain propagation

rules for linear constraints. The (local) domain of a variable xj is the set of
values within the (local) lower and upper bounds of xj ,

Dj := {z ∈M | lj 6 z 6 uj}

for M ∈ {R,Z} depending on the variable type of xj . In mixed integer pro-
gramming, domain reductions typically consist of tightened variable bounds;
holes in the interval [lj , uj ] are not considered. Reductions on variable
bounds from the activity of linear constraints were first established in Brearly
et al. [BMW75]. Savelsbergh [Sav94] extended these methods by probing
techniques on binary variables and constraints, while Andersen and Ander-
sen [AA95] exploited further presolving techniques for linear programming.
For an overview on presolving techniques in MIP, see [Mah10], for a recent
progress report, see [GKM+13].
For the suggested Shift-and-Propagate heuristic, domain propagation is a

crucial step. In this section, we review which domain propagation rules the
different constraint types in SCIP use. For more information and implemen-
tation details, see Achterberg [Ach07b].
Note that domain propagation rules are applied at two different stages

of the MIP solving process. First, they are applied during preprocessing
before the branch-and-bound search starts. In this case the deductions hold
globally for the problem. Second, they are used locally at nodes within the
branch-and-bound tree to infer reductions from the branching decisions. In
the following, we focus on local propagation during search, and use l,u for
local bounds at a branch-and-bound node.

General linear constraints

In this chapter, we denote the (column) vector corresponding to the i-th
row of the constraint matrix A by Ai·. Thus, the i-th linear constraint of a
given MIP can be written as AT

i·x 6 bi. Given a vector x̄ ∈ Rn and a linear
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constraint AT
i·x 6 bi, the value AT

i· x̄ is called the activity of the constraint
w.r.t. x̄. Taking into account the domains of all variables in a particular
linear constraint, its minimum and maximum activity [BMW75] α and α are
defined by

α := min
{
AT
i·x | l 6 x 6 u

}
and α := max

{
AT
i·x | l 6 x 6 u

}
.

In the same way, we obtain the minimum and maximum residual activity for
variable xj ,

α′j := min
{
AT
i·x−Aijxj | l 6 x 6 u

}
and

α′j := max
{
AT
i·x−Aijxj | l 6 x 6 u

}
resp.,

by excluding the contribution of variable xj .
By these definitions, it is possible to deduce bounds on the variables from

the constraints they appear in. For a positive coefficient Aij of variable xj in
the i-th row/constraint, it holds that

xj 6
bi − α′j
Aij

.

This provides a tighter variable bound whenever uj >
bi−α′j
Aij

. If xj is an
integer variable, the new upper bound can be rounded down. An analogous
inference rule holds for lower bounds in the case of negative coefficients.
Besides the tightening of variable domains, minimum and maximum activ-

ities can also proof local redundancy or infeasibility of a constraint [BMW75].

Special classes of linear constraints
For linear constraints of special form, there often exist stronger or faster
propagation algorithms. In his thesis [Ach07b], Achterberg summarized spe-
cial techniques for the following linear constraint classes: variable lower and
upper bounds, knapsack, set covering, set partitioning, and set packing.
Of course, all of them could be propagated by algorithms for general lin-

ear constraints, but their special structure allows for a more efficient imple-
mentation of the propagation routines. In this section, we briefly describe
propagation algorithms for knapsack and set covering constraints.

Knapsack constraints

A knapsack constraint is a linear constraint in which all involved variables are
binary variables, and all coefficients Aij =: wj plus the right hand side bi are
positive integer values, called the weights and the capacity, respectively. Note
that every linear constraint AT

i·x 6 bi in which all variables are binary and all
coefficients plus the right hand side are rational values can be transformed
into a knapsack constraint, see, e.g., [Ach07b]. Propagation routines for
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knapsack constraints can use efficient integer arithmetic – instead of floating
point arithmetic. Second to that, the only possible reduction is fixing a
variable xj to 0 if the weighted sum of the variables fixed to 1 and the weight
wj together exceed the right hand side. Let

K1 := {j ∈ I | wj > 0 ∧ xj fixed to 1}

denote the set of variables which are already fixed to 1 and w1 := ∑
j∈K1 wj

the sum of their weights. The domain propagation rule then reads

(j unfixed) ∧ (w1 + wj > b) ⇒ (xj ← 0)

Since the weights are nonnegative, and all involved variables are binary, sort-
ing the variables in nonincreasing order of their weights allows for a perfor-
mance improvement.

SCIP also features methods to extract (negated) clique-information about
the binary variables of a problem. A (negated) clique is a set of binary
variables of which at most one variable can take the value 1 (0) in a feasible
solution.
Let therefore denote K0 the set of variables fixed to 0, C ⊆ I \

(
K1 ∪K0)

denote a negated clique of unfixed variables, w(C) be the sum of weights
of variables in C, jmax := argmaxj∈C wj be a clique variable of maximum
weight, and wmin(C) := w(C)−wjmax be the minimum weight of this negated
clique in any feasible solution. The following reductions are now possible
considering negated clique information:

1. (w1 + wmin(C) > b) ⇒ (the subproblem is infeasible)

2. (j ∈ C \ {jmax}) ∧ (w1 + wmin(C)− wj + wjmax > b) ⇒ (xj ← 1)

SeeWinkler [Win14] for more information on propagation of (negated) cliques.

Set covering constraints

Set covering constraints have the form

xj1 + · · ·+ xjk > 1, for {j1, . . . , jk} =: K ⊆ N ,

where K contains only binary variables. The only domain reduction to be
inferred from a set covering constraint is to fix a variable xj to 1 if all other
variables j′ ∈ K \ {j} have already been fixed to 0. The state-of-the-art
algorithm to keep track of the bound changes in this case was introduced
in [MMZ+01]: the two-watched-literals scheme provides a significant speedup
in propagation.
For an overview on presolving and propagation strategies for set partition-

ing constraints, see Borndörfer [Bor98]. An recent overview on presolving
and domain propagation techniques for set covering constraints is given by
Winkler [Win14].
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4.4. Shift-And-Propagate

In this section, we introduce the Shift-and-Propagate heuristic. The purpose
of this primal heuristic is finding a feasible MIP solution at an early stage of
the solution process before solving the root LP. In addition, it is designed
to be computationally cheap, using domain propagation techniques instead
of solving LPs to ensure feasibility of the linear constraints.
The basic idea is as follows: in each iteration, the heuristic selects an un-

fixed variable j ∈ K and a fixing value t∗j inside the domain of xj , to which it
shifts the variable. Then, the heuristic applies domain propagation routines
to infer further reductions from this fixing. If domain propagation detects
that fixing xj ← t∗j is infeasible, a one-level backtracking strategy is applied.
Otherwise, the heuristic proceeds with the next unfixed variable. The goal
of Shift-and-Propagate is to find a good start solution, before the root node
processing of a MIP solver starts, in particular prior to the first LP. This
solution might then serve as a reference point for improvement heuristics (see
Section 4.2.2) and for inferring further domain reductions (e.g., by propagat-
ing the maximum activity of the objective function, see Section 4.3).
The general algorithm is described in Algorithm 4.1. The main degrees

of freedom are the variable selection in line 3, the choice of a promising
fixing value (line 4), and the backtracking strategy including an appropriate
stopping criterion (line 7). These are the main topics for the remainder of
this section. We will first discuss different variable orders, then introduce an
algorithm to select a best shifting value, and finally present a full version of
the Shift-and-Propagate algorithm, including considerations on backtracking.
It was a crucial step in our implementation, to limit the number of backtracks
and propagation rounds.

Implementation details

For the ease of presentation, we assume from now on, w.l.o.g., that all vari-
ables have a lower bound of 0. Otherwise, we apply a suitable problem
transformation: variables with finite lower bound are shifted, variables with
infinite lower bound but finite upper bound are negated (and shifted), and
free variables are decomposed into a negative and a positive part.
Shift-and-Propagate starts with the zero-assignment x̃← 0 which respects

all variable bounds. Therefrom, the activity of all linear constraints is zero
as well. Hence, an assignment is feasible for a linear constraint, if and only if
it has a nonnegative right hand side bi > 0. Subsequent fixing steps Dj ← t∗j
are then processed as shifts, which only affect those constraints in which the
variable xj is involved in. Instead of updating the activity explicitly after
every shift, activities are maintained implicitly by changing the right hand
side.
Note that we distinguish between an assignment to a variable, which is a

temporary solution value, equal to one of the bounds of the variable, and
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Figure 4.1.: The basic Shift-and-Propagate algorithm

Input : MIP problem P
Output: a feasible solution of P , or NULL

1 K ← I, x̃← 0;
2 while K 6= ∅ do
3 select j ∈ K;
4 choose t∗j ∈ Dj ;
5 propagate Dj ← {t∗j};
6 if propagation detects infeasibility then
7 apply one-level backtracking strategy;
8 else
9 x̃j ← t∗j ;

10 K ← K \ {j} ;

11 if x̃ is feasible for P then
12 return x̃;
13 return NULL;

a fixing, which is a final choice and can be equal to a value in the interior
of the variable’s domain. An assigned value may be altered multiple times
through the effects of domain propagation, a fixing is made (at most) once
per variable. Once a variable is fixed, it cannot be selected any longer in line 3
of Algorithm 4.1. Domain propagation in line 5 uses only the values of fixed
variables and the bounds of unfixed ones. The assignments of the unfixed
variables do not affect the propagation. Note that bounds can be changed,
in particular variables can be fixed, as an effect of domain propagation.
Continuous variables are not handled directly by Shift-and-Propagate but

treated as row slacks and projected out of the problem formulation. For a
row Ai·x 6 bi, let xj be a variable with positive row coefficient Aij > 0 and
domain Dj = [lj ,uj ]. Then, it holds that

Ai·x 6 bi ⇒ Ai·x−Aijxj 6 bi −Aijlj .

By subtracting the minimum activity of the variable from the right hand
side bi ← bi − Aijlj and setting Aij ← 0, we obtain a relaxed formulation of
the i-th row without xj . For negative coefficients, the argument remains the
same except that the lower bound lj is replaced by the upper bound uj . Note
that the transformed row is trivially satisfied whenever the variable bound is
infinite.
If the heuristic finds a solution on the integer variables in this transformed

space, a final LP with all integer variables fixed to their heuristic values is
solved to obtain values for the continuous variables. There are two advantages
of this final LP compared to solving an LP relaxation beforehand. First, the
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final LP will be smaller and often significantly easier to solve, since all integer
variables are fixed, and the fixings have been propagated. In particular,
for pure IPs, this stage is completely omitted. Second, it is only employed
when the heuristic found a consistent assignment for the integer variables
and merely the continuous ones need to be adjusted.
As for the variable order, the heuristic sorts the variables nonincreasingly

w.r.t. the initial number of violated rows they appear in,

|{i | Aij 6= 0 and bi < 0}| .

We also tested a different variable order using the importance of a variable
column, which Hendel defined in his bachelor’s thesis [Hen11] as

m∑
i=1
|Aij |+ |{i | Aij 6= 0}| .

We compare different variable orders in Section 4.5.
The choice of a fixing value for the selected variable is obtained by a best

shift selection which is based on the feasibility state of the row w.r.t. the
current assignment. Therefore, we keep track of how many violated rows can
be made feasible and vice versa by a certain shift.

Definition 4.1. For an LP-row i : AT
i·x 6 bi and an unfixed variable j ∈ K,

we define

Ψj
i : Dj → {−1, 0, 1}

t 7→


1, if bi > 0 and bi −Aij · t < 0,
−1, if bi < 0 and bi −Aij · t > 0,
0, otherwise.

We call Ψj
i the row violation function of row i. The row violation functions

of all rows sum up to

Ψj : Dj → Z

t 7→
m∑
i=1

Ψj
i (t).

We call Ψj the row violation sum function of xj. For a particular t ∈ Dj we
call Ψj(t) the violation balance of t.

For every row violation function, it holds that Ψj
i (0) = 0, and that it

changes its value at most once on Dj . The violation balance Ψj(t) is a
measure of how the overall feasibility of a partial assignment changes by a
particular shift t of the variable. A negative value means that more rows
will be made feasible than infeasible by shifting variable xj by a value of
t ∈ Dj . The function Ψj is a step function with at most Mj steps, Mj
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Figure 4.2.: Algorithm to determine the best shift of a variable for the
current partial solution

Input : MIP P , integer variable xj with domain Dj

Output: Best shift t∗ for variable xj
1 Q← ∅;

/* collect row violation functions of the variable */
2 foreach row i with Aij 6= 0 do
3 if bi < 0 and Aij < 0 then
4 t← d biAij e; /* min. shift of xj to make row i feas. */

5 if t ∈ Dj then Q← Q ∪ (t,−1);
6 else if bi > 0 and Aij > 0 then
7 t← b biAij c+ 1; /* min. shift of xj to violate row i */

8 if t ∈ Dj then Q← Q ∪ (t, 1);

9 if Q = ∅ then return 0;
10 σ ← 0, t∗ ← 0, tbefore ← 0, Ψ∗ ← 0;

/* summation gives the row violation balance */
11 foreach (ti, Ψj

i (ti)) ∈ Q in nondecreasing order of ti do
12 if ti > tbefore and σ < Ψ∗ then
13 Ψ∗ ← σ, t∗ ← tbefore;
14 tbefore ← ti;
15 σ ← σ + Ψj

i (ti);

/* takes highest step value into account */
16 if σ < Ψ∗ then t∗ ← tbefore;
17 return t∗;

being the number of nonzeros for variable xj . The best shift selection, see
Algorithm 4.2, searches for a value t∗ which minimizes the violation balance,

t∗ ← argmin
t∈Dj

Ψj(t).

Since Ψj(0) = 0, the heuristic will prefer a shifting value different from 0 if
and only if there is a value t′ > 0 with Ψj(t′) < 0, i.e., if shifting by t′ reduces
the number of currently violated rows. The general idea of selecting values
that minimize the number of violated constraints is not new and has, e.g.,
been used in [MJPL90]. For a recent overview of variable and value selection
methods in CP, see Pesant et al. [PQZ12].
In Algorithm 4.2, the row violation functions are interpreted as tuples

(ti, Ψj
i (ti)) ∈ Dj × {−1, 1}

where ti is the smallest (always positive) value for which the row changes
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its feasibility state, and Ψj
i (ti) ∈ {−1, 1}, depending on the kind of change

in the feasibility state. The ti is called the step value. An empty tuple
means that no value in the variable domain alters the feasibility state of the
row. Algorithm 4.2 collects the row violation functions for all rows i with
nonempty tuples (ti, Ψj

i (ti)) and sorts them in nondecreasing order of the
ti. Since different rows i 6= i′ might have the same step value ti = ti′ the
sum of row violation functions processed so far is stored in the variable σ
and yields the row violation balance Ψj(tbefore) when ti  tbefore, i.e., two
subsequent step values are different. The method returns a value, t∗ ∈ Dj ,
minimizing Ψj . The best shift selection could also be used for continuous
variables, omitting the rounding in lines 4 and 7 of Algorithm 4.2.
The complete Shift-and-Propagate procedure is shown in Algorithm 4.3.

It uses the best shift selection as a subroutine to select a promising fixing
value for some variable xj from the set of unfixed variables K. The fixing is
then performed by shrinking the variable domain to the single value t∗j . The
propagate-callback of SCIP internally calls domain propagation algorithms,
some of which were mentioned in Section 4.3, to deduce domain reductions
for other variables. This is repeated until no further reduction is found or
until a predefined iteration limit is reached. In our experiments, we used an
iteration limit of 10.
An empty domain of some variable after the propagation will cause the

algorithm to apply a one-level backtrack in line 13. If the attempted shift
value was one of the variable bounds, t∗j ∈ {lj ,uj}, the variable domain is
tightened by Dj ← Dj \ {t∗} and repropagated. If the repropagation of the
shrunk domain also detects an empty domain, the execution method of the
heuristic is stopped (line 17).
Two cases remain to be handled: either the original shifting value was in

the inner of the variable’s domain (only for general integer variables) or the
propagation of the shrunk domain did not lead to infeasibility. In both cases,
the variable is assigned to the set of suspicious variables S in line 12 and thus
removed from the set of unfixed variables K (line 20). This ensures that the
best shift selection is only performed at most once for every variable. In our
implementation, we use a limit on the number of backtracks performed; if it
is exceeded, the heuristic stops.
We conclude this section with a small example MIP, for which we describe

the course of the algorithm in detail. Figure 4.4 visualizes the example.

Example 4.2. Let Pex be the following MIP with three integer variables
I = {1, 2, 3} and m = 3 constraints:

min 0
2x1 − x2 − x3 6 1
−x1 − x2 6 −2
−3x1 + x3 6 −3
x1,x2,x3 ∈ {0, 1, 2}.
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Figure 4.3.: The complete Shift-and-Propagate algorithm

Input : MIP P with constraint matrix A and right hand side b,
a limit btlim on the number of performed backtracks

Output: a feasible solution x̃ for P , or NULL
1 Porig ← P ;
2 relax continuous variables s.t. R = ∅;
3 K ← I;
4 sort K w.r.t. to the number of initially violated rows;
5 S ← ∅, x̃← 0; /* S: variables that caused cutoff */
6 while K 6= ∅ and b � 0 do
7 transform P s.t. l = 0; /* has to be ensured each round */
8 select next j ∈ K;
9 t∗j ← bestShift(P , j,Dj);

10 propagate Dj ← {t∗j};
11 if ∃k ∈ K : Dk = ∅ then
12 S ← S ∪ {xj};
13 if |S| > btlim then return NULL;

/* if empty domain, undo propagation, unfix xj */
14 one-level backtrack;
15 if t∗j ∈ {lj ,uj} then
16 propagate Dj ← Dj \ {t∗j};
17 if ∃k ∈ K : Dk = ∅ then return NULL;
18 else
19 x̃j ← t∗j ;
20 K ← K \ ({j ∈ I | |Dj | = 1} ∪ S);
21 if b > 0 then
22 foreach j ∈ K ∪ S do
23 x̃j ← 0; /* all unfixed variables are set to 0 */

24 x̃orig ← retransform x̃; /* undo transform. from line 7 */
25 if Porig contains continuous variables then
26 fix integer variables to x̃orig and solve the remaining LP;
27 if LP infeasible then return NULL;
28 return x̃orig;
29 return NULL;
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Figure 4.4.: Shift-and-Propagate for the MIP defined in Example 4.2. The
shaded volume shows the polytope defined by the inequalities
and variable bounds. The path shows the course of the Shift-
and-Propagate algorithm. Solid arcs depict shifting (value se-
lection) steps; the dashed line indicates the effects of propaga-
tion after fixing x1 = 2.

Pex is a pure feasibility problem. The zero-assignment is not feasible, because
both the second and the third row have a negative right hand side.

The heuristic starts with x1,x2, and x3 appearing in two, one and one
violated row, respectively, so the sorting will keep the variables in place and
select x1 to start with.

The row violation functions and the row violation sum function for variable
x1 from the example Pex are depicted in Figure 4.5. The first row will be made
(temporarily) infeasible by a shift of 1 or 2, whereas the third will be made
feasible by a shift of either 1 or 2. The second row, however, requires a
shift of 2 to be made feasible. Therefore, the algorithm will select t∗1 = 2 as
shifting value for x1 because it minimizes the violation balance Ψ1(2) = −1.
Fixing the domain of x1 to the single value D1 ← {2} and subtracting the
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Figure 4.5.: The row violation functions for variable x1 from Pex for ev-
ery row (smaller pictures) and the resulting row violation sum
function Ψ1(t)

contribution from the right hand side yields a reduced problem

−x2 − x3 6 −3
−x2 6 0
x3 6 3

x2,x3 ∈ {0, 1, 2}.

The feasibility state of every row has changed by the shift of variable x1. The
second and third row are trivially satisfied in this reduced problem. The prop-
agation from Section 4.3 applied to the first row leads to further reductions: 0
is excluded from the variable domains D2 = D3 = {1, 2}. Since the heuristic
requires lower bounds 0 for every variable, the variables are formally replaced
by x̄{2,3} ← x{2,3} − 1, which leads to a changed right hand side vector. The
first row now reads

−x̄2 − x̄3 6 −1
x̄2, x̄3 ∈ {0, 1}.

A shift of variable x̄2 by 1 is selected by Algorithm 4.2 and finally makes
the row feasible again. Since the right hand side b̄ is now nonnegative, the
remaining variable x̄3 can be set to 0 without violating a row. Untransforming
all bound changes, the heuristic finds the solution x̃ = (2, 2, 1).

4.5. Computational experiments
In this section, we present the results of two computational experiments.
First, we evaluate the impact of different variable orders on the performance
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Table 4.1.: Description of variable sortings tested for Shift-and-Propagate
setting Variable xj precedes xi , i 6= j , if xj . . .

|{b < 0}| ↓ . . . appears in more initially violated rows than xi .
|·| ↓ . . . has a higher importance than xi .
|{b < 0}| ↑ . . . appears in less initially violated rows than xi .
|·| ↑ . . . has a smaller importance than xi .

of Shift-and-Propagate. Second, we compare Shift-and-Propagate to round-
ing and improvement heuristics that are implemented in SCIP in order to
get a performant setting for applying cheap heuristics at the root node of a
MIP solver.
We used SCIP 3.0 with SoPlex 1.7.0 [Sop] as the underlying LP-solver.

The results were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at
3.20GHz with 12MB cache and 48GB main memory, running an openSuse
12.1 with a gcc 4.6.2 compiler. Hyperthreading and Turboboost were dis-
abled. In all experiments, we ran only one job per node to avoid random
noise in the measured running time that might be caused by delays if multi-
ple processes share common resources, in particular the memory bus.
For all benchmarks, we chose the mmm test set which comprises 168 MIP

instances from the three publicly available libraries Miplib 3.0 [BCMS98],
Miplib 2003 [AKM06], and the Miplib 2010 benchmark set [KAA+11]. We
excluded the three instances ash608gpia-3col, enlight14, and ns1766074
which are infeasible and ex9 which SCIP 3.0 solves to optimality by prepro-
cessing plus solving the root LP.
As a measure for the quality of a solution x̃ for an instance P , we consider

the primal gap, see Definition 2.5. By the choice of γp(·), every solution has
a gap γp(x̃) 6 100 %.
In a first experiment, we compare the impact of using different variable

orders. We regard sorting variables by their importance, see Section 4.4, by
the initial number of infeasible rows, or randomly. The importance-based
and the violation-based sorting are denoted by the symbols |·| and |{b <
0}|, respectively, together with an arrow indicating the sense in which the
variables are processed: ↓ for nonincreasing and ↑ for nondecreasing. The
symbol |{b < 0}| ↓, e.g., stands for “sorting w.r.t. the number of initially
violated rows, nonincreasing”. A description of the four variable settings
that we tested (besides random) can be found in Table 4.1.
For all settings, we disabled cutting plane routines in order to avoid the LP

relaxation to be re-solved and to make sure that the primal solutions were
indeed obtained by the Shift-and-Propagate heuristic.
The performance of the five variable sortings is shown in Table 4.2 (see Ta-

ble B.1 in the appendix to see results on particular instances) and compared
with respect to three criteria: The average solution gap γ̄p , the absolute
number of solutions obtained (#sols), and the geometric mean of the time
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Table 4.2.: Aggregated results for tested variable sortings
setting γ̄p (%) #sols theur (s)

|{b < 0}| ↓ 84.73 88 1.21
|·| ↓ 84.98 84 1.20
random 85.95 84 1.17
|{b < 0}| ↑ 87.66 83 1.17
|·| ↑ 86.85 81 1.20

Best 78.61 102 1.11

spent by the heuristic theur (s). The average gap ranges from 84.7% to 87.7%,
and the number of found solutions differs by up to 7. The setting |{b < 0}| ↓
scores best regarding the number of found solutions and also the average gap,
but is the slowest setting w.r.t. its geometric mean time.
A closer look at the results on specific instances shows more variety than

the overall results: A feasible solution for rail507 was found with two of
the five settings, namely |·| ↑ and |{b < 0}| ↑, which took 13.78 s and 14.42 s,
respectively. This seems moderate compared to other settings, which termi-
nate unsuccessfully after up to 3600 s (the time limit) with |{b < 0}| ↓. This
is particularly undesirable knowing that the LP solve only takes 10 s on this
instance.
Reasons for long running times on some instances are the propagation itself,

combined with a huge number of backtracking operations due to decisions
which lead to cutoffs, and/or the number of iterations of the internal LP
solve, which can take itself a long time if the number of continuous variables
is large. For the second experiment, where limits on the number of backtracks
and propagation rounds have been employed, these times reduce drastically,
see below.
Table 4.2 has a sixth setting named Best presenting the union of the five

settings, choosing the quickest setting that reaches the best gap in an in-
stance. The total number of instances for which Best succeeds is 102, which
is 14 more than the best single setting in this respect. Best reaches an aver-
age gap of 78.61%, which is considerably better compared to the individual
settings.
Figure 4.6 presents histograms of how many cutoffs were effectively pro-

duced until a feasible solution was found (blue bar), or until the heuristic
terminated without a solution (red bar). Some instances are not included
in the table since the horizontal axis is truncated at 50. Those numbers are
indicated in the legend instead. We show these histograms for two different
settings: |{b < 0}| ↓ and random. These charts reveal two pieces of informa-
tion. First, the number of instances on which the heuristic finds a solution
without or with only a single backtrack (0 or 1 cutoff, the leftmost bar) is
higher for the |{b < 0}| ↓ order than for the random order by almost 10 in-
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Figure 4.6.: Distribution of the instances over the number of cutoffs Shift-
and-Propagate produced during its search for two different
variable sortings: |{b < 0}| ↓ and random

stances. Second, the bars for |{b < 0}| ↓ lie underneath those for the random
sorting, indicating that the sorting method produces less cutoffs on average.
Thus, the sorting method |{b < 0}| ↓ has the advantage to find more feasible
solutions, while producing less cutoffs. We will use this method for the next
experiment.
The observation that solutions were typically obtained after a small number

of cutoffs further suggests that a small absolute limit on the number of cutoffs
as, e.g., 10, will only slightly decrease the number of produced solutions but
trigger a quicker termination on a significant amount of instances for which
the heuristic is not successful. In particular, for the instance rail507, using
a cutoff limit of 10 leads to a running time of 8.25 s instead of hitting the
time limit.
The second experimental setup compares the number of found solutions

and the average solution quality obtained with the rounding and improvement
heuristics from Section 4.2 to the quality of the Shift-and-Propagate heuristic
after processing the root node. Here, the setting RandI uses only rounding
and improvement heuristics. The setting SandP uses Shift-and-Propagate
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Table 4.3.: Results from the root node solve for three different settings
setting γ̄p (%) #sols t (s)

SandP 85.05 85 2.40
RandI 81.40 60 2.36
Both 70.27 96 2.41

as only primal heuristic. A third setting Both refers to a combination of
those heuristics. Neither Shift-and-Propagate nor rounding heuristics take
the objective function into account, but improvement heuristics do. It can
therefore not be expected that SandP outperforms RandI in terms of solution
quality. The hope is rather that it is beneficial in terms of found solutions,
and that we can observe a combined effect in the Both setting.
In this experiment, we used limits on the number of backtracks (at most fif-

teen in total) and propagation rounds (at most ten per iteration). As a conse-
quence, the running times are now less than a minute for all instances. There
are only three instances, namely mspp16, neos-476283, and netdiversion,
for which the running time is more than ten seconds. We conclude that the
employed limits enable us to make efficient use of Shift-and-Propagate within
a global solver.
All instances are presented in Table B.2 in the appendix, together with

their optimal or best known solution. For each setting, the table depicts the
achieved primal bound as well as the solving time (which includes presolving
and the processing of the root node) and the time spent on heuristics.
In Table 4.3, we present the results obtained for these different settings.

The column γ̄p shows the average gap for all instances from the test set. In the
column #sols, the total number of instances is shown for which a solution was
found. The last column shows the geometric mean of the overall solving time.
The table shows that the use of Shift-and-Propagate leads to a primal feasible
solution on 85 instances, whereas rounding and improvement heuristics alone
can only contribute solutions to 60 instances of the test set. Both settings
combined find a solution on 96 instances or 60% more than without Shift-
and-Propagate. The average gap obtained by SandP was 85.05%, compared
to an average gap of 81.40% when using RandI. Here, instances for which no
solution could be found are accounted for by a gap of 100%. The best result
w.r.t. the average gap is the combined setting, Both, which finishes the root
node with an average gap of 70.27%. The increase of the overall geometric
mean solving time is 0.05 s or 2.1%, from 2.36 s with RandI heuristics alone,
to 2.41 for the setting Both.
Figure 4.7 shows the distribution of solution qualities, in terms of the pri-

mal gap, over all instances from 0% to 100% in steps of 20%. The “none”
bar gives the number of instances for which the corresponding setting did not
provide any solution. For Shift-and-Propagate the solution quality on indi-
vidual instances is often worse than for rounding and improvement heuristics.
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Figure 4.7.: Distribution of solution quality after root node processing

In particular, the latter produce more solutions with a gap between 0% and
40% than Shift-and-Propagate. The third setting combines both advantages:
the higher number of solutions found with Shift-and-Propagate and the bet-
ter gap obtained with rounding and improvement heuristics.
As a motivation for Shift-and-Propagate, we mentioned the XXL instances

from Miplib 2010. Nine of these instances could be loaded into SCIP given
the limitation of 48GB RAM. Out of those, Shift-and-Propagate found a
solution for five instances, the rounding and improvement heuristics only for
three. This result is in favor of Shift-and-Propagate, but given the small size
of the test set, it is of limited conclusiveness.

4.6. Conclusion

In this chapter, we gave an overview of rounding and improvement heuris-
tics for mixed integer linear programming and we introduced Shift-and-
Propagate, a new pre-root primal heuristic for MIP. It alternately shifts vari-
ables to promising fixing values in order to make linear constraints feasible
and propagates these fixings to get tighter domains for choosing subsequent
fixing values. Shift-and-Propagate differs from most other MIP heuristics
(exceptions include Rapid Learning, see Chapter 9) in that it is does not
require a feasible LP solution as a starting point, and that it is specifically
designed as a quick start heuristic inside a global solver. The main contri-
butions are the presentation of a quick and reliable procedure to select a
shifting variable and an analysis of different variable orders, which cover the
two main degrees of freedom in the heuristic.
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We conducted two experiments, which revealed that Shift-and-Propagate
alone finds solutions on more instances than three rounding heuristics and
two combinatorial improvement heuristics together. Combining the existing
rounding and improvement heuristics with Shift-and-Propagate increases the
number of instances on which a feasible solution is found by 60%. Further-
more, the average primal gap at the end of root node processing could be
reduced by 14%, while the running time increased only by 2%.
We conclude that Shift-and-Propagate complements existing LP-based root

node heuristics nicely. It is now one of the default heuristics applied in SCIP.
As we recently found out [Ach, Gur14], Cplex and Gurobi feature similar
heuristics which have been independently developed, but not been published
yet.



5. Feasibility Pump(s)

The Feasibility Pump (fp) is probably the best known primal heuristic for
mixed integer programming. The original work by Fischetti, Glover, and
Lodi [FGL05] has been succeeded by more than a dozen follow-up pub-
lications [BFL07, AB07, FS09, BCLM09, BG12, HLM10, BC11, BEE+11,
BEET12, DFLL10, DFLL12, DSLR14, DSLR13] which improve the perfor-
mance of the fp and extend it to other problem classes. One aspect of this
chapter is to provide an overview of the Feasibility Pump literature.
The fundamental idea of all fp algorithms is to construct two sequences of

points which hopefully converge to a feasible solution of a given optimization
problem. One sequence consists of points which are feasible for a continuous
relaxation (e.g., the LP relaxation of a MIP), but possibly integer infeasible.
The other sequence consists of points which are integral, but might violate
some of the imposed constraints. The next point of one sequence is always
generated by minimizing the distance to the last point of the other sequence,
using different distance measures in either cases (e.g., the `1 or the `2 norm).
Among all the cited work there has been only one approach, by D’Ambrosio

et al. [DFLL10, DFLL12], to extend the fp algorithm to the class of problems
which are foremost considered in this thesis: nonconvex MINLPs. Within
this chapter, we propose new ideas for a Feasibility Pump algorithm for
nonconvex MINLP. These result from joint work with Pietro Belotti from
Clemson University (now Fair Isaac Europe Ltd); a joint publication is in
preparation.
The outline of this chapter is as follows. In Section 5.1, we give a short

introduction to the fp idea. Section 5.2 describes the fp paradigm for MIP
(for which fp was originally introduced) and presents various fp variants
from the literature. Section 5.3 extends the fp description to MINLP and
relates to previous work on this subject. Section 5.4 presents, in detail, our
new contributions towards an fp for nonconvex MINLP, while Section 5.5
shows the results of computational experiments17 carried out on a set of
difficult MINLP instances. Section 5.6 provides concluding remarks.

5.1. Introduction
Feasibility Pump algorithms follow the idea of decomposing a mathematical
programming problem into two parts: integer feasibility and constraint feasi-
17Unlike other chapters of this thesis, the implementation of the algorithm has not been

performed in SCIP. Instead, it is based on Couenne [BLL+09], an open-source solver
for MINLP.
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bility. At least for MIP and convex MINLP, both are “easy” to achieve: the
former by rounding, the latter by solving an LP or a convex NLP, respec-
tively, which can be done in polynomial time. Consequently, two sequences
of points {x̃k}Kk=1 and {x̄k}Kk=1, for K ∈ Z>0, are generated such that x̃ con-
tains integral points that may violate constraints and x̄ contains points that
are feasible for a continuous relaxation to the original problem but might not
be integral. These two sequences are related to each other in that the points
of x̃k are obtained through rounding of points in x̄k and these, in turn, are
obtained via projections of points in x̃k.
One focus of this chapter is the application of a Feasibility Pump inside

a global solver. This has an impact on the design choices carried out in de-
veloping the heuristic, in particular balancing efficiency versus completeness.
Nowadays, the state-of-the-art commercial and non-commercial MIP solvers
cbc [Cbc, FLH05], FICO Xpress [FIC], glpk [Glp], Gurobi [Gur], IBM
ILOG Cplex [IBM], SCIP [Ach09], and Symphony [Sym] all feature Feasi-
bility Pump implementations in their portfolios of primal heuristics. These
typically differ from the published algorithms in that they are designed with
a focus on a low average running time, sacrificing success on some instances.
The enumeration phase of the Feasibility Pump presented in [BFL07] is a
typical example of a component that is crucial for its impressive success rate
as a standalone algorithm, but it will most likely not be applied when the
Feasibility Pump is used inside a global solver, see, e.g., [Ber06].
This chapter features three novel contributions aimed at a more flexible

use of an fp within a nonconvex MINLP solver:
(i) using a hierarchy of rounding procedures, ranked by efficiency (typically

converse to the quality of the provided points) for finding integral points;
which routine to use is decided and automatically adapted at runtime,

(ii) an improved distance function for the rounding step, taking into account
second-order information of the continuous NLP relaxation, and

(iii) the separation of linearization cuts that approximate the convex en-
velope of the nonconvex feasible set of (2.1), as opposed to employing
gradient cuts only for the convex part of the problem.

The computational experiments of this chapter are the only ones for which
we did not use SCIP, but Couenne. This is mainly due to a technical reason:
to adapt the idea of an Objective Feasibility Pump [AB07] to MINLP, we
wanted to deal with nonlinear objective functions directly rather than putting
them into a separate constraint. This is possible in Couenne, but not in
SCIP.

5.2. Feasibility pumps for MIP
The Feasibility Pump (fp) algorithm was originally introduced by Fischetti,
Glover, and Lodi in 2005 [FGL05] for mixed binary programs, i.e., for the
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Figure 5.1.: Feasibility Pump for MIP, sequences of constraint-feasible
points (red) and integer feasible points (green), original ob-
jective (dotted red) and distance functions (solid red).

cTx

∆1
∆2

x̃2 = x̄3
x̄2x̃1

x̄1

special case of MIPs in which lj = 0 and uj = 1 for all j ∈ I. The principal
idea is as follows. The LP relaxation of a MIP is solved. The LP optimum x̄
is then rounded to the closest integral point:

x̃ =
{

[x̄j ] if j ∈ I
x̄j if j /∈ I, (5.1)

where [·] represents scalar rounding to the nearest integer. This part of the
fp algorithm is called the rounding step. If x̃ is not feasible for the linear
constraints, the objective function of the LP is changed to an `1 distance
function:

∆(x, x̃) :=
∑
j∈I
|xj − x̃j | =

∑
j∈I : x̃j=0

xj +
∑

j∈I : x̃j=1
(1− xj) (5.2)

and a new x̄ is obtained by minimizing ∆(x, x̃) over the LP relaxation of the
MIP. The process is iterated until x̃ = x̄ which implies feasibility (w.r.t. the
MIP). The operation of obtaining a new x̄ from x̃ is known as the projection
step, as it consists of projecting x̃ to the feasible set of a continuous relaxation
of the MIP along the direction ∆(x, x̃). Two iterations of the algorithm are
illustrated for a simple example in Figure 5.1.
The algorithm thus produces two sequences {x̄k}Kk=1 and {x̃k}Kk=1 for a

finite K, which is either the iteration at which a feasible solution for (2.1)
is found or an iteration limit set to guarantee termination. All points of the
sequence x̄k, with k denoting the iteration count of the fp, are feasible for
the LP relaxation, all points x̃k are integral, i.e., x̃kj ∈ Z for all j ∈ I. Thus,
x̃k = x̄k implies integrality and constraint-feasibility, which means that the
corresponding point is feasible for the MIP.
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The main obstacle for the original Feasibility Pump algorithm (and most
of its successors) is cycling: after some iterations, it may hold that x̃k = x̃k

′

with 1 6 k′ < k. In this case, the procedure would enter a loop, re-visiting
the sequence x̃k′ . . . x̃k−1 (and x̄k

′
. . . x̄k−1) over and over again. Since the

central idea of fp is to bring the sequences closely together, the risk of
cycling is “naturally encoded” in the procedure and occurs very frequently
in computational experiments. In the original Feasibility Pump, this issue is
handled via a simple random perturbation: some of the variables in x̃k are
flipped to the other bound before continuing the procedure. It is a crucial
component of many fp extensions that cycling is addressed directly, made
more unlikely, or avoided completely.
Fischetti, Glover, and Lodi demonstrated in [FGL05] that the Feasibility

Pump is very effective in finding feasible solutions, but these often are of
minor quality – not surprising when regarding the fact that the original ob-
jective is only considered in the very first iteration. The authors suggest to
use subsequent runs of the Feasibility Pump to get better solutions. After
each successful run, a primal bound constraint cTx 6 αcTx̄ + (1 − α)cTx̃ is
added to the MIP, with α ∈ (0, 1), x̄ being an optimal solution of the original
LP relaxation, and x̃ being the solution from the previous fp run.
Bertacco et al. [BFL07] introduced an fp variant for mixed integer pro-

grams with general integer variables. Therefore, the authors use an auxiliary
variable dj and two auxiliary constraints for each general integer variable
xj to represent the two linear pieces of the absolute values |xj − x̃j |. Then,
the objective function for the projection step is a modified version of func-
tion (5.2):

∆(x, x̃) :=
∑

j∈I : x̃j=lj
(xj − lj) +

∑
j : x̃j=uj

(uj − xj) +
∑

j∈I : lj<x̃j<uj
dj

with dj > xj − x̃j and dj > x̃j − xj for all j ∈ I with lj < x̃j < uj .
Further, the authors suggest to split the fp procedure into different stages.

In stage I, the `1-norm objective function is defined only on the binary vari-
ables. The auxiliary variables and constraints are only used in stage II, which
also considers distances on general integers. Finally, stage III is an enumer-
ation phase consisting of a truncated MIP search. For this, the objective
function of the original MIP is replaced by the distance w.r.t. the point x
from the previous stages that was closest to the LP relaxation. This is in the
spirit of the Proximity Search algorithm by Fischetti and Monaci [FM13],
see also Chapter 6. Hanafi et al. [HLM10] introduced an fp variant in which
they apply a MIP search each time the Feasibility Pump is about to cycle.
The principal idea of the Feasibility Pump is to decompose the origi-

nal problems into two problems, retaining linear and integrality constraints.
Many of the extensions described below aim at solving each of the decom-
posed problems with an eye on the constraints of the other problem, in an
attempt to accelerate convergence.
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Improving the rounding step

Fischetti and Salvagnin [FS09] observed that rounding a variable can be
interpreted as a temporary fixing. They suggest to propagate the minimum
and maximum activities of a linear constraint using these fixings as local
bounds. The propagation is done via the well-known bound strengthening
techniques described in [BMW75], see also Chapter 4.3. This procedure
avoids rounding other variables to values that can be proven to not lead to a
feasible solution (given the previous fixings). Using this propagation engine,
the rounded solution might be further away from the last LP optimum than
for the original fp, but it will be closer to the feasible region. The so-
called Feasibility Pump 2.0 needs fewer iterations and produces slightly better
solutions.
Baena and Castro [BC11] and Boland et al. [BEE+11] recently introduced

variants of the Feasibility Pump that use integral reference points x̃ which
are closer to the interior of the LP polyhedron. Therefore, both publications
suggest to connect the LP optimum x̄ with the analytic center [Son86] of the
LP and search for integer points that are roundings of points on that line
segment. The analytic center xac of a bounded polyhedron given in equality
form (Ax = b,x > 0) is defined as

xac = argmin{−
∑
j∈N

ln xj | x > 0,Ax = b}.

Baena and Castro sample points on the line segment x̄ − xac, which are
then rounded and tested for feasibility. If none of the points is feasible, a
new integral reference point x̃ is chosen that minimizes the `∞ distance of the
rounded point to the line segment point it has been rounded from. Boland
et al. [BEE+11] extend this procedure by several innovative ideas. First,
they observe that the set of all integral points which are roundings of some
point of the line segment can be computed very efficiently. This improves
the sampling step. The main overhead of the procedure in [BC11] lies in
the computation of the analytic center in order to get a direction pointing
from the LP optimum towards the interior of the polyhedron. Boland et al.
suggest to use a conic combination of the normal vectors of all constraints
violated by x̃ as a cheap heuristic approximation for a ray pointing towards
the center. To the other extreme, Naoum-Sawaya [NS13] recently proposed
a version of the Feasibility Pump with analytic centers that additionally
applies a recursive central rounding procedure, which iteratively fixes some
of the integer variables and recomputes the analytic center.

Improving the projection step

The main direction of modification for the projection part of the fp was
the use of different objective functions for the LP. Achterberg and Berthold
[AB07] showed a simple trick to overcome a main weakness of the fp: despite
success on many instances, the produced solutions are often of poor quality.
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The authors suggest to replace function (5.2) by a convex combination of (5.2)
and the original objective cTx:

∆α(x, x̃) := (1− α)∆(x, x̃) + α

√
|I|
‖c‖

cTx

with α ∈ [0, 1]. Here, ‖ · ‖ is the Euclidean norm of a vector. The convex
combination factor α, and hence the influence of cTx, is reduced in every iter-
ation. As a nice side effect, this often enables the algorithm, called Objective
Feasibility Pump, to avoid cycling since the objective function ∆α(x, x̃) de-
pends on the iteration count and will be different even when the same point
x̃ is visited more than once.
Eckstein and Nediak [EN07] interpreted the Feasibility Pump as an imple-

mentation of a Frank-Wolfe algorithm [FW56], taking the `1 distance as a
non-smooth concave merit function:∑

j∈I
min{xj , 1− xj}.

Based on this, de Santis et al. [DSLR14, DSLR13] interpreted and suggested
the use of other concave penalty functions for non-integrality. Therefore,
they weighted the different terms of the distance function with coefficients
that depend on the fractionality of the corresponding variable in the last LP
solution.
Boland et al. [BEET12] use a similar penalty system, but also introduce

the idea to perform several rounds of cutting plane generation to prevent the
fp from cycling. This leads to fewer restarts and better and more solutions
being found, but at the price of a significant increase in the complexity of the
LPs (which are amended with cutting planes) being solved repeatedly, and
hence in the total running time.
Besides enhancements of the fp for MIP itself, a natural direction of inves-

tigation is the extension of the fp idea to other applications and to broader
problem classes. In [Ach10, Ach11], Achterberg and Gu suggest to use a
Feasibility Pump like algorithm, called PumpReduce, to generate alterna-
tive LP optima which can be used for improved cut generation and filtering.
In [BS13], Berthold and Salvagnin use a similar algorithm as a basis for a
branching scheme that is based on a set of relaxation optima, see also Chap-
ter 10.
Of particular interest to the research community has been the extension of

the Feasibility Pump to MINLP, which shall be the topic of the next section.

5.3. Feasibility pumps for MINLP
When considering MINLPs instead of MIPs, the obvious question is: how to
adapt the two fp steps for the new problem class, i.e., what kind of relaxation
should be solved in the projection step, and is there a different way to perform
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the rounding step? Nonconvex MINLPs represent an extra burden: even the
continuous relaxation might be disconnected and is, in general, nonconvex;
hence optimization over it is NP-hard.
The first two MINLP versions of the Feasibility Pump were presented by

Bonami et al. [BCLM09] and Bonami and Gonçalves [BG12]. Both teams
of authors considered convex MINLPs and implemented their ideas in Bon-
min [BBC+08].
The paper [BG12] is probably the closest to the original fp. It keeps

the rounding step as in [FGL05] and replaces solving an LP in the projec-
tion phase by solving a convex NLP, using again the distance function (5.2)
as an objective. The perturbation scheme is less aggressive than the one
of [FGL05], flipping only a single variable. Recently, Sharma [Sha13] pre-
sented an integration of the Objective Feasibility Pump idea by Achterberg
and Berthold and the algorithm of Bonami and Gonçalves: a scaled sum of
the distance function and the original objective is used as an objective for
the convex NLP.
In [BCLM09], the authors suggest using an `2 norm for the projection step.

Further, their implementation of the rounding step differs significantly from
all previous fp variants. Instead of performing an instant rounding to the
nearest integer, they solve an MIP relaxation which is based on an outer
approximation [DG86] of the underlying MINLP:

x̃ = argmin{∆(x, x̄) | g(x̄)+Jg(x̄)(x−x̄) 6 0,x ∈ [l,u],xj ∈ Z ∀j ∈ I} (5.3)

where Jg(x̄) denotes the Jacobian of the constraint functions (summarized to
a single function g : Rn 7→ Rm) evaluated at the NLP optimum x̄. Solving a
MIP relaxation, despite of being an NP-hard problem itself, is often compu-
tationally much cheaper than solving the original MINLP, see also Chapter 8.
Interestingly, the two norms have switched roles in this fp version: Where
in [FGL05] and [BG12] the `1 norm was used for the projection step, and
the `2 norm was used for rounding, the opposite holds for [BCLM09]. An
illustration of the algorithm is given in Figure 5.2. Note that for this fp, both
steps use a distance function ∆. We denote the Manhattan distance used for
the rounding step by ∆1 and the Euclidean distance of the projection step
by ∆2, using superscripts for the iteration count.
Solving (5.3) instead of performing a simple rounding x̃ = [x̄] of course

gives rise to better integral points (since feasibility is explicitly addressed in
the rounding step), and has an important effect w.r.t. the main weakness
of Feasibility Pump algorithms: cycling. For convex MINLPs, it is always
possible to derive a cut

(x̄− x̃)T(x− x̄) ≥ 0
and add it to the MIP (5.3). By this, cycling is avoided. However, in the
computational results presented in [BCLM09], the fp did not cycle even
without these cuts.
Similar to the interpretation of the linear Feasibility Pump as a Frank-

Wolfe algorithm [DSLR14, DSLR13], D’Ambrosio et al. [DFLL12] gave a
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Figure 5.2.: Feasibility Pump for MINLP: The truncated blue ellipsis shows
the feasible region of the NLP relaxation, the light blue trape-
zoid depicts the MIP relaxation for the second iteration, the
very light blue rectangle (which include the trapezoid) is the
MIP relaxation after the first iteration. The sequence of NLP-
optima is shown as red points, the sequence of MIP-optima as
green points. Each red and green point also indicates for which
function it is optimal: the original objective (cTx, light red), a
`2 distance function (∆1

2, dark red and bent), and `1 distance
functions (∆1

1 and ∆2
1, green).

cTx

∆1
2

∆1
1

∆2
1

x̄1

x̃1

x̄2

x̃2 = x̄3

classification of a nonlinear fp as a successive projection method. The par-
ticular difficulty addressed in [DFLL10, DFLL12] is that of handling the
nonconvex NLP relaxation if adapting the algorithm of [BCLM09] to the
nonconvex case. The authors suggest using a stochastic multistart approach,
feeding the NLP solver with different randomly generated starting points,
and solving the NLP to local optimality as if it was a convex problem. In the
event that this does not lead to a feasible solution, a final NLP is solved in
which the integer variables are fixed and the original objective is re-installed
on the continuous variables, similar to Step 5 of the Algorithm in Figure 8.3.

Further, D’Ambrosio et al. considered solving a convex MINLP or a con-
vex MIQP instead of an MIP in the rounding step, but gave computational
evidence that this is not beneficial. To avoid cycling, their algorithm pro-
vides the MIP solver with a tabu list of previously used solutions. Linear
constraints for the MIP problem are only generated from convex MINLP
constraints. Finally, they showed that using an `∞ norm instead of `1 as a
MIP objective is competitive.
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5.4. New tricks for a nonconvex objective feasibility
pump

This section discusses, in detail, new ideas for a Feasibility Pump for non-
convex MINLP. In accordance with the fp paradigm, the suggested algo-
rithm generates two sequences: one fulfilling the integrality constraints, the
other satisfying the continuous, nonlinear constraints. The integral points
are generated by finding a feasible solution of a MIP in form (2.3), simi-
lar to [BCLM09] and [DFLL10, DFLL12]. This MIP is obtained from the
MINLP (2.1) through a procedure that uses reformulation techniques and
generates a system of linear inequalities which provide a linear relaxation to
the continuous relaxation of (2.1), see [McC76, TS04, SP97] and Chapter 2.1.
More specifically, the general version of a nonlinear Feasibility Pump re-

ceives as input an optimum (w.r.t. the original objective) of an NLP relax-
ation x̄1 and generates the two sequences as follows, for k = 1, . . . ,K:

x̃k = argmin ∆int(x, x̄k)
s.t. Ax 6 b

lj 6 xj 6 uj for j ∈ N
xj ∈ Z for j ∈ I;

(5.4)

x̄k+1 = argmin ∆nl(x, x̃k)
s.t. gi(x) 6 0 for i ∈M

lj 6 xj 6 uj for j ∈ N .
(5.5)

The two objective functions ∆int and ∆nl are typically the `1 norm for ∆int
and the `2 norm for ∆nl. The rounding and the projection step are carried
out by solving problems (5.4) and (5.5), respectively. Variable bounds are
enforced in both problems (5.4) and (5.5) since they can be dealt with by both
MIP solvers and NLP solvers. Though finding a global optimum would be
desirable for problem (5.5), implementations of nonlinear Feasibility Pumps
typically resort to searching for a local optimum in the case of nonconvex
problems.
We introduce several ideas for enhancing the performance of this basic

algorithm. The main contributions that distinguish of Feasibility Pump im-
plementation from existing approaches are the following:

. At every iteration, we choose one from a set of procedures to search
for a feasible solution of (5.4). All these procedures are implemented
within SCIP. They range from very fast but inaccurate methods (such
as rounding in 5.1) to slow, but very effective methods (such as a trun-
cated search of a full-fledged MIP solver). This list contains algorithms
that vary broadly in terms of running time and solution quality, and
our algorithm features an automatic adaptation that aims at balancing
running time and solution quality at every iteration.18

18This is related to the “goldilock” mechanism used in the rins heuristic [BRG09a] to
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. We use a parameterized version of both ∆int(x, x̄k) and ∆nl(x, x̃k),
which also takes into account second-order information from the nonlin-
ear constraints and the objective function of problem (2.1) – note that
the latter feature already appears in the objective Feasibility Pump for
MIP [AB07].

. Our fp method takes into account not only convex, but also nonconvex
constraints directly to refine the linear relaxation, using linearization
constraints generated by Couenne. This is in major contrast with
known fp methods for MINLP [BCLM09, DFLL12], where nonconvex
constraints are either ignored or approached with a local NLP solver
to obtain a local optimum.

In the remainder of this section, we will discuss these three ideas and a few
other implementational tricks in detail.

Hierarchy of rounding procedures

In the preceding publications on Feasibility Pump heuristics, several ideas
have been proposed to generate good integer points during the rounding
step. The original work [FGL05] and one of the nonlinear fps [BG12] sug-
gest plain rounding in order to get a point which is closest w.r.t. the `2 norm.
The Feasibility Pump 2.0 [FS09] uses an iterated “round-and-propagate”
procedure in order to get a point which is close w.r.t. the `2 norm but
“more feasible” for the relaxation. The nonlinear Feasibility Pumps sug-
gested by [BCLM09, DFLL12] solve an MIP to get the closest integer point
w.r.t. the `1 norm that fulfills all constraints of the linear relaxation.
The observed shift from “stay close to the previous point” to “stay close,

but also fulfill the relaxation” leads us to the idea of trying several rounding
procedures which address these goals in various ways. In order to obtain a
point x̃ that satisfies the integrality constraints, we select a procedure from
the following list:

(i) Solve the MIP relaxation with a node limit and an emphasis on good
solutions.

(ii) Solve the MIP relaxation with a node limit (smaller than in (i)), dis-
abling time-consuming cutting plane separation, branching and presolv-
ing strategies.

(iii) Solve the root node of the MIP relaxation of method (i), then apply the
rens heuristic, see [Ber14] and Chapter 7.

automatically adapt variables fixing thresholds for the creation of a subproblem or
the step size adaptation in VNS heuristics [HM01, HMU06]. The named procedures
automatically change the size (and thereby the complexity) of an auxiliary problem
that should be considered, whereas we change the complexity of the method used to
heuristically exploit a given auxiliary problem.
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(iv) Solve the root node of the MIP relaxation, then apply an Objective
Feasibility Pump 2.0 [FS09] for MIPs.

(v) Apply a round-and-propagate algorithm of [FS09]: selectively round
a fractional variable to the nearest integer and then apply a domain
propagation to restrict the feasible set, until either a feasible solution
is found or all solutions are eliminated. Compare also Chapter 8.4.

(vi) Choose an integral point from a solution pool (e.g. from suboptimal
solutions of applying procedure i), see below.

(vii) Apply a random perturbation to x̄k−1 and obtain an integer x̃k.

Note that the integral points generated by procedures (v) to (vii) might be
infeasible for the MIP problem (5.4) of the current iteration.
Having this variety of options to produce integral points, the question

remains which to apply when. At the first iteration of the fp, we employ
procedure (ii). If the current procedure successfully provides us with a “new”
(not yet visited) integer point for three iterations in a row, we proceed with
the next (cheaper and less aggressive) method of the above list. If, at any
iteration, the current procedure either does not terminate within the given
limits or produces a point that was already visited, we proceed with the
previous (more expensive and more powerful) method of the above list. Note
that the list of procedures from (i) to (vii) has decreasing complexity and,
in general, declines in solution quality. At subsequent iterations of the fp
we use the procedure that was successful previously, but switch down to a
cheaper routine when there were three successful iterations in a row.
In principle, the list could be prepended at the head to include methods

that capture constraint feasibility even better (and are most likely more time
consuming), for instance a convex (nonlinear) relaxation of the nonconvex
MINLP. However, computational results presented in [DFLL12] indicate that
this results in a significant computational overhead with little impact.
If procedures (i), (ii), or (iii) are used for the rounding step, these may

produce more than one MIP-feasible solution. The suboptimal points might
be used for later iterations, and are therefore stored in a solution pool. This
approach is motivated by two observations: first, in (i) we solve similar MIPs
over and over again, mainly using a different objective (plus some new cuts).
Each known feasible point from a previous call may be used as a starting
solution in subsequent calls. Procedures (iii) and (iv) will also benefit from a
given upper bound as they consider a restricted search space. Second, consid-
ering a point which was initially a candidate, but was then discarded, carries
more information about the problem than one generated through random
perturbation. Thus, the previously collected points are used as a second last
option in (vi). We rank the points in the pool by the value of the distance
function at the current iteration.
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Improved distance functions

The `1 and `2 norms were used in nearly all fp variants that we described in
Sections 5.2 and 5.3. The Feasibility Pumps for MIP use the `1 for the pro-
jection step; the nonlinear fps by Bonami et al. [BCLM09] and D’Ambrosio
et al. [DFLL12] use `2 for the projection and `1 for rounding. Either way, ex-
clusively using these norms as objective functions for auxiliary optimization
problems ignores the fact that a “close” solution is not necessarily a “good”
one: the original objective function is completely neglected and there is no
information involved by how much the constraints are violated.
To overcome this issue, we use the norm of a vector obtained from a linear

transformation applied to x− x̄k. As a motivating example, consider first an
unconstrained integer nonlinear optimization problem min{f(x) : x ∈ Zn},
where f ∈ C2(Rn,R). Assume that x̄ is a local optimum of the continuous
relaxation min{f(x) : x ∈ Rn}. Level curves of the `1 and the `2 distance
functions w.r.t. x̄ are given in Figure 5.3. In either norm, x̃ is the closest
integer point.

x̄

x̃

(a) ∆(x, x̄) = ||x− x̄||1

x̄

x̃

(b) ∆(x, x̄) = ||x− x̄||2

Figure 5.3.: Level curves (gray) of different norm functions ∆ (x,x̄) for
problem (5.4). The closest integer point to x̄ is x̃. In 5.3(a) and
5.3(b), the norm || · ||p is used for p = 1 and p = 2 respectively.

Now consider the second degree Taylor series approximation of f at x̄:

f(x) ≈ f(x̄) +∇f |Tx̄ (x− x̄) + 1
2(x− x̄)TH(x− x̄) (5.6)

which is convex and quadratic. We want to use (5.6) for constructing an im-
proved distance function which uses information about f . Since the problem
is unconstrained, the gradient of f is null, i.e., ∇f |x̄ = 0, and its Hessian is
positive semidefinite, i.e., H = ∇2f |x̄ � 0. Thus, minimizing (5.6) is equiv-
alent to minimizing (x− x̄)TH(x− x̄) given that the first two terms can be
ignored (the first one is constant and the second one has a null gradient).
As shown in Figure 5.4(b), the level curves of this new function are el-

lipsoids whose axes and axis lengths are defined by the eigenvectors and
eigenvalues of H. Note that this relation is inverse proportional, i.e., the
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x̄

x̃′

(a) ∆(x, x̄) = ||H 1
2 (x− x̄)||1

x̄

x̃′

(b) ∆(x, x̄) = ||H 1
2 (x− x̄)||2

Figure 5.4.: Level curves (grey) of different norm functions using second
order information associated with the objective function of the
original problem. The distance function in 5.4(b) and its piece-
wise linear approximation in 5.4(a) both lead to x̃′ as best in-
tegral point in the vicinity of x̄.

larger the eigenvalue, the steeper the ascent, the shorter the corresponding
axis. A convex, piecewise linear approximation of this objective function is
||H

1
2 (x − x̄)||1. Its level curves are represented in Figure 5.4(a). This is a

“distance” function that incorporates information about the original objec-
tive function. Both functions that are displayed in Figure 5.4 find x̃′ as best
(w.r.t. the Hessian) integral point near x̄. Hence, x̃′ might be a better can-
didate for the next iteration of a Feasibility Pump algorithm. Note that, in
general, neither ||H 1

2 (x − x̄)||1 nor ||H 1
2 (x − x̄)||2 yield a minimum in R(x̄)

(see Definition 2.9), i.e., the hypercube [bx̄c, dx̄e] containing x̄. The advan-
tage of using the Hessian H, which incorporates second-order information
about the current optimal solution of the nonlinear problem, is that a min-
imizer of ||H 1

2 (x − x̄)||1, while possibly far from x̄ in terms of the `1 norm,
corresponds to an integer point whose objective function is close to that of
x̄, hence providing a “good” solution from the objective function standpoint.
Let us now generalize this to the constrained version. If we considered

an MINLP with a nonlinear objective function, the Hessian of the objective
function would, in general, be indefinite at the optimum x̄ of the relaxation
(that is, there might be active constraints). In case of a linear objective, as
in Definition 2.1, the Hessian is constant zero. Therefore, we use the Hessian
of the Lagrangian function of the NLP relaxation of the original MINLP.
Note that we explicitly assume that the objective function of the MINLP

might be nonlinear in this chapter. Unlike SCIP, Couenne handles nonlin-
ear objectives directly. This was the main reason to perform the implemen-
tation and the computational experiments in this chapter with Couenne.

Definition 5.1 (Hesse-distance). Let H̃ ∈ Rn × Rn be the Hessian of the



74 Chapter 5. Feasibility Pump(s)

Lagrangian and a reference point x̄ ∈ [l,u] be given. We call

∆̃int(x, x̄) = ||H̃
1
2 (x− x̄)||1

the Hesse-distance of x to x̄.

We suggest to incorporate the Hesse-distance into the objective functions
of the auxiliary MIPs that are solved in the rounding step of the nonlinear
Feasibility Pump. In the spirit of the Objective Feasibility Pump, we came
up with the following combinations:

∆int(x, x̄) = αdist||x− x̄k||1 + αH∆̃int(x, x̄) + αorigcTx;

if the original objective of the MINLP is a linear function cTx, and

∆int(x, x̄) = αdist||x− x̄k||1 + αH∆̃int(x, x̄) + αorigz;

otherwise, with z being an auxiliary variable that is constrained by a linear
approximation of the original (nonlinear) objective. Typically, one would
increase αdist in every iteration, making it converge to one and fade out
the other two, thereby shifting the focus from solution quality towards pure
feasibility. Note that for any value of these parameters the objective function
is piecewise linear and convex. Note further that one can easily extend the
definition of the Hesse-distance to the Euclidean case and incorporate it into
the objective function for the projection phase. Preliminary experiments
revealed, however, that this is not beneficial.

Separation of linearization cuts

Techniques to generate a linear relaxation of an MINLP can be used in an
incremental fashion as a separation procedure: given a solution x̃ to a MIP
relaxation, that is not feasible for the MINLP itself, find a linear cut aTx ≤ d
that is fulfilled by all solutions of the MINLP, but aTx̃ > d (or show that no
such inequality exists). LP-based branch-and-bound solvers for MINLP, such
as Couenne or SCIP, typically solve such separation problems to improve
local dual bounds at each node. For details on branch-and-cut for MINLP,
see, e.g., [TS02, Vig12]. In marked difference to previous nonlinear Feasibility
Pumps, our implementation also separates linear over- and underestimators
for nonconvex functions and not exclusively gradient cuts for convex parts of
the problem.
A typical problem occurring in iterative heuristics such as the fp is cy-

cling. Some versions prevent cycling by adding no-good cuts as outlined in
the previous section. Our fp variant attempts to avoid cycling in two ways.
First, linear inequalities for nonconvex MINLPs are added to eliminate in-
feasible integer points. For convex constraints, gradient cuts are added. For
nonconvex constraints, the situation is more involved. Couenne, similar to
SCIP, uses the standard approach of reformulating nonconvex constraints
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via an expression tree whose nodes are variables and elementary nonlinear
functions. For these nonlinear functions, underestimators are used to pro-
duce valid linear relaxations. For instance, nonconvex bilinear terms can be
addressed via McCormick underestimators [McC76]. This might still allow
for permanently separating the MIP solution from the feasible region.
However, when MIP (5.4) terminates with an optimal solution that is infea-

sible for the (nonconvex) MINLP, but inside the convex hull of its feasible set,
no linear cut can be added to separate the solution from its feasible set. This
leads to the second way of avoiding cycling: We forbid particular assignments
to the integer variables by adding bound disjunction constraints [Ach07b] to
the MIP (5.4); this is effectively an implementation of a tabu list.

Postprocessing

If a MINLP feasible solution x̃ is found, the values for the continuous variables
are only optimal for the distance objective used at the last iteration. To check
whether there are better solutions, we run a simple local search improvement
heuristic. We obtain a restriction the original MINLP by fixing all integer
variables to the values of the Feasibility Pump solution x̃ and solve it with
a convex NLP solver such as Ipopt, compare Step 5 of the Algorithm in
Figure 8.3.

5.5. Computational experiments
We implemented the Feasibility Pump within Couenne 0.4.7 [BLL+09],
where the latter is based on cbc 2.8.9 [Cbc]. Within our implementa-
tion, the auxiliary MIP problems, see Equation (5.4), are solved by SCIP
3.0.2 [Ach09], linked against SoPlex 1.7.2 [Wun96]. The auxiliary NLPs,
see Equation (5.5), are solved by Ipopt 3.11.7 [WB06, Ipo]. The results
were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at 3.20GHz with
12MB cache and 48GB main memory, running an openSuse 12.3 with a
gcc 4.7.2 compiler. Turboboost was disabled. In all experiments, we ran
only one job per node to reduce fluctuations in the measured running times
that might be caused by interference between jobs that share resources, in
particular the memory bus.
As a test set, we used 218 instances from MinlpLib [BDM03]. We com-

pared the following six different settings of the nonlinear Feasibility Pump:

. default uses a Manhattan distance function, without contributions of
the Hessian of the Lagrangian or the original objective; this setting
does not add convexification cuts for non-convex parts of the problem;
the auxiliary MIP is always solved by running SCIP with a stall node
limit of 1000 and aggressive heuristic settings

. cuts uses cuts for nonconvex parts of the problem (in addition to stan-
dard MIP cuts and gradient cuts); otherwise the same as default
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. hierarchy uses different algorithms to solve the MIP in different iter-
ations of the Feasibility Pump, see Section 5.4; otherwise the same as
default

. hessian constructs the objective of the auxiliary MIP as a combina-
tion of the Manhattan distance and the Hessian of the Lagrangian, see
Section 5.4; we chose αdist = 1 − 0.95k and αH = 0.95k at the k-th
iteration; otherwise the same as default

. objective constructs the objective of the auxiliary MIP as a combina-
tion of the Manhattan distance, the Hessian of the Lagrangian and a lin-
ear approximation of the original objective; we chose αdist = 1− 0.95k,
αH = 0.95k, and αorig = 0.9k at the k-th iteration; otherwise the same
as default

. simple applies rounding to the nearest integer instead of solving an
auxiliary MIP in the rounding phase, compare [BG12]

In Table B.3 in the appendix, each double-column gives the time needed for
processing the root node and the objective value of the incumbent solution
after root node processing for one of the settings mentioned above. A dash in
the “solution” column indicates that no feasible solution was found with this
setting. Table 5.1 shows a summary that aggregates the results of Table B.3.
For each of the six settings, we give three performance indicators: feas,

the number of instances (out of 218) for which this setting found a feasible
solution, bet : wor, the number of instances for which this setting found a
better/worse solution (in terms of the objective function value) as compared
to the default setting, and time, the running time in shifted geometric mean,
including Couenne’s presolving and reformulation algorithms being applied.
We used a shift of 100 for the number of branch-and-bound nodes and a shift
of of 10 seconds for the running time.

Table 5.1.: performance of different Feasibility Pump versions for a single
call at the root node (aggregated results)

setting feas bet : wor time

default 150 – 14.9
cuts 155 24 : 48 13.6
hierarchy 157 23 : 20 14.0
hessian 154 25 : 16 22.8
objective 138 45 : 30 23.9
simple 97 17 : 78 12.1

First of all, we observe that each of the five non-default settings outper-
forms the default in at least one of the three measures of performance. The
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hierarchy setting is the only one to outperform the default in all three mea-
sures.
We further see that the cuts and the hessian setting both lead to slightly

more solutions being found. This could be expected since both attempt to
better incorporate the structure of the nonlinear feasibility region into the
auxiliary MIP formulation. While using the Hessian leads to better solutions
being found, applying cutting plane separation for nonconvex constraints
deteriorates the quality of the found solution more often than it improves
it. Computing the Hessian itself might take considerable time, both settings
that make use of this feature show an increase in running time by more than
50%.
Similar to results for linear Feasibility Pumps, using the original objective

often leads to better solutions being produced by the Feasibility Pump, but
at the same time reduces the number of solutions being found. Note that the
bet : wor statistic includes those cases for which only one of the settings found
a solution. Finally, the “simple” setting, which does not use an auxiliary MIP
at all, is only slightly faster than the default setting, but much worse in terms
of found solutions and solution quality.
For our implementation, we observe another behavior typical for Feasibility

Pumps: although they are very successful in finding feasible solutions (about
75% of the instances for the hierarchy setting), these solutions are often of
a mediocre quality. In only 25 of the test instances, our Feasibility Pump
implementation found a solution with less than 10% gap to optimality (using
the hierarchy setting). Then again, there were 26 instances with an optimality
gap of more than 100%. In geometric mean, the primal gap of the found
solutions was 34%.

5.6. Conclusion
In this chapter, we gave a literature overview on Feasibility Pump heuristics
for MIP and MINLP. Among the fourteen publications that we reviewed,
there has been only one approach, by D’Ambrosio et al. [DFLL10, DFLL12],
to extend the Feasibility Pump algorithm to nonconvex MINLP. We pre-
sented and evaluated three novel ideas for solving nonconvex MINLPs with
a Feasibility Pump: the generation of valid cutting planes for nonconvex
nonlinearities, using a hierarchy of MIP solving procedures, and applying
an objective function for the auxiliary MIPs that incorporates second-order
information. For the latter, we introduced the so-called Hesse-distance.
In our computational experiments, the dynamic use of various MIP solving

strategies showed the favorable behavior to produce more solutions and better
solutions in a shorter average running time. A convex combination of the
Hesse-distance function and the Manhattan distance likewise improved the
number of found solutions and their quality, but at the cost of an increased
running time.





6. Large Neighborhood Search: From
MIP to MINLP

Large neighborhood search (LNS) heuristics are an important component of
modern MIP solvers, see, e.g., [Ber06, FL10, Lod13]. To define the neighbor-
hood, the feasible region of the MIP is restricted by additional constraints:
most often variable fixings or some very restrictive cardinality constraint.
For MIP, the LP relaxation plus the integrality constraints suffice to define
the search space. However, for more general problem classes, the LP relax-
ation alone may not contain enough information about the original problem
to find feasible solutions via LNS, e.g., if the problem is nonlinear or not all
constraints are present in the current relaxation (which may be the case in
branch-and-cut applications).

In this chapter, we discuss a generic way to extend LNS heuristics that
have been developed for MIP to MINLP. This chapter is based on work to-
gether with Stefan Heinz, Marc E. Pfetsch, and Stefan Vigerske [BHPV11]
in which we discussed the extension of LNS heuristics to constraint integer
programming – more specifically to MIQCP, nonlinear pseudo-Boolean op-
timization, and resource-constrained project scheduling problems. In this
context, the author of this thesis implemented extended versions of the fol-
lowing LNS improvement heuristics: Local Branching [FL03], rins [DRP04],
Crossover [Ber06, Rot07], and dins [Gho07]. Our results indicate that the
suggested generalization considerably improves the success rate of these pri-
mal heuristics.

This chapter gives an overview of LNS heuristics for MIP that have been
presented in the literature in recent years, describes a generalization to
MINLP and presents new computational experiments, extending the results
of [BHPV11] via a study on the overall impact of the presented heuristics
on the global search. The chapter is organized as follows. After a brief in-
troduction in Section 6.1, we review LNS heuristics for MIP in Section 6.2
and for more general classes of mathematical programs in Section 6.3. Sec-
tion 6.4 discusses two variants of generalizing LNS heuristics from MIP to
MINLP and describes the implementation in SCIP. Finally, we present com-
putational experiments in Sections 6.5 and 6.6 as well as our conclusions in
Section 6.7.

79
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6.1. Introduction

Large neighborhood search [Sha98] is a variant of the local search paradigm
that has been widely used in constraint programming, operations research,
and combinatorial optimization [AL97, PSF04, PG99]. LNS has proved to
be an extremely successful metaheuristic for a wide range of applications in
recent years, see, for example, Pisinger and Røpke [PR10]. The main idea is
to restrict the search for “good” solutions to a neighborhood centered at a
particular starting point – typically the incumbent or another feasible solu-
tion. The starting point is often synonymously referred to as the reference
solution. The hope is that such a restricted search space makes the sub-
problem much easier to solve, while still providing solutions of high quality.
Of course, these restricted subproblems do not have to be to solved to opti-
mality; we are mainly searching for an improving solution. Obviously, any
LNS heuristic will then benefit from a good performance of (other) primal
heuristics on its subproblem.
In mixed integer linear programming, LNS has recently been realized in

a series of primal heuristics [FL03, DRP04, Ber06, Rot07, Gho07, Ber14,
FM13]. It is one form of the MIPping [FLS10] idea that suggests to take cru-
cial decisions within a MIP solver by solving auxiliary MIPs. The so-called
Local Branching [FL03] heuristic has been further extended to constraint pro-
grams [KLMP07, KLMP12] and mixed integer nonlinear programs [NBL08].
A rins heuristic for convex MINLP has been suggested in parallel to our
work [BHPV11] by Bonami and Gonçalves [BG12].

6.2. Large neighborhood search for MIP

Many MIP primal heuristics published in recent years [FL03, DRP04, Ber06,
Rot07, Gho07, Ber14, FM13] are based on large neighborhood search. These
heuristics investigate a neighborhood of a single starting point (or a small
set of starting points) such as the incumbent solution or the optimal solution
of the LP relaxation. They create a sub-MIP of the original MIP, typically
by fixing some variables to values that are taken from the given points. For
problems with binary variables only, another possibility is to add linear con-
straints, which restrict the number of variables that are different from the
given point. By the use of auxiliary variables, this can be extended to prob-
lems with general integer variables while maintaining linearity. Moreover,
the objective function might be modified to direct the search into a region
with many feasible solutions. Finally, an objective cutoff constraint is added
to enforce that a solution found by the sub-MINLP will be better then the
current incumbent. This is particularly worthwhile if the incumbent itself
was feasible for the sub-MINLP (in order to avoid the same solution being
found twice).
Obviously, a good definition of the neighborhood is the crucial point:
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. the neighborhood should contain high quality solutions,

. these solutions should be easy to find, and

. the neighborhood should be easy to process.

Naturally, these three goals are conflicting in practice. In the remainder of
this section, we will give a brief introduction to large neighborhood search
heuristics for MIP that have been proposed in the literature of the last ten
years.
Assume that we are in the process of solving a MIP by a branch-and-bound

algorithm. In the following, let x̃ be the incumbent solution and x̄ be the
optimum of the LP relaxation at the current node.

Local Branching

Local Branching [FL03] measures the distance to the starting point in Man-
hattan norm on the integer variables and only considers solutions which are
inside a k-neighborhood of the reference solution, where k is typically be-
tween 10 and 20. This is done by adding a linear constraint that sums up the
distance to the starting point, typically the incumbent, over all variables:∑

j∈I
|xj − x̃j | 6 k (6.1)

Inequality 6.1 is sometimes referred to as a “Local Branching constraint”.
Using the Manhattan norm has the advantage that it is easy to linearize, as
opposed to, e.g., the Euclidean norm. Note that for the binary part of the
problem, it holds that∑
j∈B
|xj − x̃j | =

∑
j∈B

(xj − 2xj x̃j + x̃j) =
∑
j∈B

(x2
j − 2xj x̃j + x̃2

j ) = ‖xj − x̃j‖2B,

with ‖·‖B denoting the Euclidean norm restricted to the index set B of binary
variables. For general integer variables, auxiliary variables might have to be
used for a linearized model of the absolute values.
Originally, Fischetti and Lodi introduced Local Branching as a branching

strategy that is tailored towards improving the primal bound quickly.19 They
suggested to interleave the standard branching rules of a MIP solver with
branching on general disjunctions∑j∈I |xj−x̃j | 6 k ∨

∑
j∈I |xj−x̃j | > k+1

as soon as a feasible solution x̃ is available. The idea to use the search space
of the smaller branch as a neighborhood for an improvement heuristic came
up at the same time. In Cplex 9.0, released in 2002, there was the possi-
bility to use a Local Branching heuristic via a hidden parameter [Ach], with
Cplex version 9.1, this became available as a public parameter. This makes
Local Branching an excellent example for the connection between branching
heuristics and primal heuristics: it can be employed either way.
19In [FL03], this is referred to as improving the “heuristic behavior” of a MIP solver.
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In a follow-up publication, Fischetti and Lodi suggested to use Local
Branching as a repair heuristic, by starting it with an infeasible reference
solution [FL08].

Relaxation Induced Neighborhood Search (RINS)

The Relaxation Induced Neighborhood Search (rins) [DRP04] is an improve-
ment heuristic based on the fact that an improving MIP solution fulfills three
conditions: it is integral, feasible for the linear constraints, and it has an ob-
jective function value smaller than the incumbent. rins uses two starting
points: The incumbent MIP solution which fulfills the first two requirements
and the optimum of the LP relaxation which fulfills the latter two. At each
branch-and-bound node, it holds that cT x̄ < cT x̃ (otherwise the node could
be pruned); this implies x̄ 6= x̃. The rationale of rins is that those values
which coincide in both solutions give rise to a partial solution of good ob-
jective value. Therefore, rins defines the neighborhood by fixing all integer
variables which take the same value in both solutions.
One can argue that fixing a binary variable principally reduces the search

space of a MIP by a factor of two: for a BP the number of potential solutions
(i.e. 0-1 points) reduces from 2B to 2B−1. Thus, fixing only a few variables can
make a big difference in the computational effort which is needed to solve a
problem. This consideration is amplified by the fact that MIPs arising from
industrial applications often have a hierarchical structure. Fixing a “top-
level” variable will often trigger a series of propagations; in an extreme case,
the sub-MIP might even decompose. Nevertheless, fixing too few variables
might result in a sub-MIP which is not significantly easier than the original.
In SCIP, this case is handled by imposing a fixed threshold for the mini-

mum percentage of variables to be fixed [Ber06]. Gomes et al. [GSS13] sug-
gest to employ this threshold after presolving of the subproblem and use a
binary search to find a suitable limit on the problem size. Bixby, Rothberg
and Gu [BRG09a] proposed a method that dynamically adjusts the fixing
threshold after each call of rins. If rins reaches a node or time limit with-
out finding an improving solution, the threshold is increased; if it proves the
reference solution to be optimal for the sub-MIP, it is decreased. They refer
to this procedure as the goldilocks method. The reasoning behind this is that
in the first case the subproblem was to hard – the feasibility status could not
be decided within the given limits –, hence at the next call of rins a smaller
problem should be considered. In the latter case, the subproblem was to re-
strictive, thus, we may allow for larger subproblems. If an improving solution
is found, the threshold remains unchanged.

Relaxation Enforced Neighborhood Search (RENS)

In contrast to rins, the Relaxation Enforced Neighborhood Search (rens),
see Chapter 7 and [Ber14] does not require an incumbent solution and thus
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can be used as a start heuristic. The idea of rens is to search the space of
feasible roundings of a given fractional reference solution. Therefore, rens
fixes all integer variables that take an integral value in the optimal solution
of the LP relaxation. For the remaining integer variables, the bounds get
tightened to the two nearest integral values. We discuss the details of rens
in Chapter 7.

Crossover

Crossover [Ber06, Rot07] is an improvement heuristic that is inspired by ge-
netic algorithms and requires more than one feasible solution. Crossover seeks
to fix variables to values that coincide in (at least) two solutions, motivated
by the following observations:

. Often, variables need to be fixed to a certain value in order to obtain
feasibility. Presolving should eliminate easy incarnations of this case.
However, presolving does often not detect fixings that are only implied
by a conjunction of constraints.

. Variables might need to be fixed to certain values in order to obtain
a good objective function value. This often holds for variables that
correspond to strategic decisions.

Thus, the reasoning behind Crossover is that often good feasible solutions
have a lot of variable values in common. There might, however, be other
reasons for solution values to coincide:

. Solutions have been found in the same part of the tree, i.e., they share
local fixings, or by the same primal heuristic.

. Chance.

Crossover aims at fixing variables that coincide for the first two reasons while
coincidences that result from the latter two reasons might better be ignored.
One strategy to avoid variables to be fixed by chance is using not only two
“parent” solutions (as is typical for genetic algorithms), but a larger set.
Further, the Crossover implementation in SCIP requires that its reference
solutions have not been found all by the same heuristic at the same node.
Otherwise, Crossover would most likely optimize over the same, or at least a
similar, search space as the other heuristic did. In genetic algorithms (as the
one suggested by Rothberg to polish MIP solutions [Rot07]), a mutation step
is implemented as the natural adversary to Crossover. It is used to diversify
the set of reference solutions. In a MIP solver with many start heuristics and
a solution pool storage [Ach07b] such as SCIP or Cplex, this is typically not
required. Interestingly, the solution pool has always20 been part of SCIP,
20Precisely, it has been introduced three months after the project start, before the first

running version.
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long before Crossover had been developed. Cplex only introduced it with
version 11.0, whereas solution polishing (including a mutation step) has been
introduced in version 10.0.

Distance Induced Neighborhood Search (DINS)

Ghosh suggests the Distance Induced Neighborhood Search (DINS) [Gho07].
dins combines the ideas of rens, rins, Crossover and Local Branching. It
defines the neighborhood by introducing a distance function between the
incumbent solution and the optimum of the LP relaxation. When applied
during a branch-and-bound search, it further takes into account how variables
change their values at different nodes of the tree. The hinge of the dins
algorithm is to search for MIP solutions that are closer to the relaxation
optimum x̄ than the current incumbent x̃ is, i.e. for which∑

j∈I
|xj − x̄j | 6

∑
j∈I
|x̄j − x̃j | (6.2)

holds, with x̄ being the optimal solution of a (local) relaxation and x̃ the
current incumbent. To achieve this, dins fixes general integer variables for
which the relaxation and the incumbent differ by less than 0.5 to the value
of the incumbent (similar to rins), tightens the bounds of the remaining
general integer variables (as rens), fixes binary variables for which all previ-
ous incumbents took the same value (similar to Crossover) and adds a Local
Branching constraint on the remaining binary variables.

Proximity Search

Fischetti and Monaci published a preprint on Proximity Search [FM13] in
2013. Proximity Search combines ideas from Local Branching and the Feasi-
bility Pump (see Chapter 5). It is designed at the borderline between global
and heuristic algorithms. It does not solve a subproblem, but it modifies the
original problem in that it replaces the objective function by a so-called prox-
imity function. Obviously, this does not restrict the set of feasible solution
vectors. The proximity objective function is basically identical to the Local
Branching constraint (6.1):

min
∑
j∈I
|xj − x̃j |.

In their paper, Fischetti and Monaci evaluate the performance of Proximity
Search for MBPs and convex 0-1 MIQCPs, using the primal integral discussed
in Chapter 3 as performance measure. Furthermore, the authors suggest
to exploit a combined strategy of Local Branching and Proximity Search;
computational results for this, however, are not presented.
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6.3. LNS for other problem classes

There have been a few publications on transfering MIP large neighborhood
search heuristics to other problem classes. We first give a brief literature
overview, before discussing two different possibilities to implement large
neighborhood search heuristics in SCIP.
Bonami and Gonçalves describe an extension of the rins heuristic to con-

vex MINLPs [BG12]. They use an optimum of the NLP relaxation as a second
reference solution besides the incumbent. Interestingly, for their implemen-
tation in Bonmin, the resulting sub-MINLPs are solved by the Quesada and
Grossmann algorithm [QG92], whereas for the original MINLP an NLP-based
branch-and-bound algorithm is used. The former is much closer to the way
SCIP solves MINLPs (and sub-MINLPs). The authors employed a mini-
mum fixing ratio of 10% and stop the sub-MINLP after the third improving
solution, as it has also been suggested in [Ber06].
In [NBL08], Nannicini, Belotti, and Liberti introduce a Local Branching

heuristic for nonconvex MINLPs. It solves a Local Branching MIP which
is derived from a linear relaxation of the original MINLP, the integrality
constraints, and a Local Branching constraint (6.1). Subsequently, an NLP
local search is performed by fixing the integer variables to the values from
the Local Branching MIP’s incumbent – which is not necessarily feasible for
the original MINLP– and solving the resulting continuous problem.
Kiziltan et al. [KLMP07, KLMP12] show how to integrate Local Branching

as a search strategy into a constraint programming framework. They present
a reduced-cost based propagation rule specifically for the Local Branching
constraint and test the efficiency of their approach on instances of the asym-
metric traveling salesman problem with time windows. In [PM12], Parisini
and Milano introduce Sliced Neighborhood Search, which can be understood
as a combination of Local Branching and Mutation: |I| − k integer variables
are randomly chosen and fixed to the value of a feasible reference solution;
on the remaining k variables, a Local Branching constraint is imposed. Due
to this combination, typically larger values for k can be chosen as compared
to Local Branching. The authors tested their approach as standalone proce-
dure and integrated it into a CP framework, showing promising results for
instances of the Asymmetric Traveling Salesman Problem with Time Win-
dows.
The author is not aware of publications on dins or Crossover heuristics for

MINLP. However, Lübbecke and Puchert [LP12, Puc11] suggest a variant
of Crossover that is designed to be used inside the branch-and-price solver
gcg [Gam10, GL10]. They define a Crossover neighborhood by fixing vari-
ables that coincide in several integer, but infeasible, extreme points which are
obtained by solving pricing problems. Proximity Search has been tested for
convex MIQCPs in the original publication of Fischetti and Monaci [FM13].
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6.4. Two variants of a generalization

In the previous section, we have seen that there are two natural ways of
extending LNS heuristics for MIP towards MINLP. First, in [NBL08], Nan-
nicini, Belotti, and Liberti used a linear relaxation plus the integrality con-
straint to create an auxiliary MIP which is typically not a subproblem of the
original MINLP. Second, in [BG12], Bonami and Gonçalves used a proper
sub-MINLP of the original MINLP. The first approach comes with the ad-
vantage that the new problem might be significantly easier (see Chapter 8 in
which we consider sub-MIPs of nonconvex MINLPs). The second comes with
the important characteristic that each feasible solution of the new MINLP
will be a solution of the original MINLP.
Originally, the LNS heuristics implemented in SCIP created the LNS sub-

problem by taking a copy of the LP relaxation, adding integrality constraints,
and fixing variables (or adding a local branching constraint). This corre-
sponds to the approach of [NBL08]. For the release 2.0 in 2010, we im-
plemented copying procedures in SCIP and redesigned all LNS heuristics
to copy the original problem (rather than the relaxation) into a new SCIP
instance and to apply the neighborhood search on this copy, in the spirit
of [BG12].
For MIP, both approaches give rise to the same subproblem, since a MIP is

fully specified through its LP relaxation and the integrality constraints. This,
however, is not true for more general problem classes, such as MINLP. In this
case, a feasible solution of an LNS problem which is constructed from the LP
relaxation plus integrality constraints is no longer guaranteed to be feasible
for the original problem. As a consequence, the chances that a LNS heuristic
finds a feasible solution reduce when working only on the relaxation of the
problem.21 Summarizing, the first approach, using auxiliary MIPs, solves a
potentially smaller instance22 of an “easier” problem class; the second, using
sub-MINLPs, solves a smaller problem of the same problem class; compare
our discussion on the Undercover heuristic in Chapter 8.
Copying the whole problem, restricting the search space to a neighborhood

of some point, and solving the resulting, hopefully easier, problem seems more
promising, but may come with a significant computational overhead. A main
part of reworking SCIP’s LNS heuristics, also compared to [BHPV11], has
been in introducing strategies to “fail fast”, cf. Chapter 4.2, on subproblems
that are hard to solve. To this end, all LNS heuristics that employ variable
fixings now have a minimum fixing ratio, below which the subproblem solving
will not be started. Further, all LNS heuristics now use a stall node limit,
i.e., search in the subproblem will be aborted after a few (typically 50) nodes
without finding a new incumbent solution. Additional improvements towards
21In [NBL08], the authors tackled this problem by performing an NLP postprocessing.
22The feasible region is restricted (by variables fixings or Local Branching constraints) and

relaxed (by considering the LP rows instead of the original constraints) at the same
time.
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a “fast failure” have been made w.r.t. an issue that is much more likely to
appear for MINLP than for MIP: long processing times of individual branch-
and-bound nodes. This is mainly due to long cutting plane loops: the (weak)
LP relaxation is strengthened further and further by gradient cuts, often
generated by the same constraint(s) again and again. In particular when all
integer variables are fixed, cutting plane generation is preferred over spatial
branching. All of this makes much sense when the goal is to solve the problem
to proven optimality, for a partial solve inside an LNS heuristic, however,
it is better to leave such nodes unsolved (or with a weak dual bound) and
continue search at other parts of the tree. This has been realized by employing
additional limits on the number of LPs solved and the number of enforcement
loops. See Achterberg [Ach09] for the concept of constraint enforcement in
SCIP and Vigerske [Vig12] for its implementation in the case of nonlinear
problems.
Note that the LNS heuristics from Section 6.2 do not make any particular

assumptions on the problem class, except for being able to express linear con-
straints and objective functions for Local Branching and Proximity Search,
respectively. Thus, using a copy of the original problem enables the easy
application of the described LNS heuristics to any problem class for which
the corresponding SCIP plugins implement the required copy methods.
Taking a different perspective, SCIP can be seen as an interface here: the

formulation of a problem as a problem that SCIP can handle23 allows the
access to all methods described in Section 6.2. Unlike for most metaheuristic
approaches, no additional problem specific adaption of the heuristic is nec-
essary. An additional benefit comes from the fact that the copied instance
allows for stronger constraint propagation than that of linear constraints and
separation of problem specific cutting planes.

6.5. Computational experiments

The aim of our computational experiments is to investigate the potential of
LNS heuristics, applied inside a branch-and-bound process, for MIQCPs. We
performed two experiments: first, we set a node limit of one, i.e., we only
solved the root node of the branch-and-bound tree, in order to evaluate the
performance for single calls of the LNS heuristics. Second, we made a run
without a node limit, but with a time limit of one hour, to evaluate the
overall performance when solving instances to proven optimality.
All computations presented in the following used SCIP version 3.0.1.3.

As the underlying linear programming solver we choose SoPlex 1.7.1, con-
tinuous nonlinear subproblems were solved by Ipopt 3.11, we further used
CppAD version trunk (20120101.3) for computing function derivatives. The
23In [BHPV11], we considered pseudo-Boolean optimization and resource-constrained

project scheduling as further examples for transfering MIP heuristics to other prob-
lem classes.
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results were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at 3.20GHz
with 12MB cache and 48GB main memory, running an openSuse 12.3 with
a gcc 4.7.2 compiler. Turboboost was disabled. In all experiments, we ran
only one job per node to avoid random noise in the measured running time
that might be caused by delays if multiple processes share common resources,
in particular the memory bus.
For our computational experiments we used a heterogeneous test set of

nonconvex MIQCPs, introduced in [BGHV12], from which we removed in-
stances that SCIP 3.0.1.3 reformulates as MIPs during presolve, since we
are interested in measuring the performance of LNS heuristics when applied
beyond MIP. This leads to a test set of 92 instances. For the second exper-
iment, we additionally had to remove instance itointqor, for which SCIP
aborts prematurely (in all tested settings).
We performed both experiments with three different parameter tunings,

which alter SCIP’s default as follows:

. the no LNS setting, that disables all LNS heuristics,

. the aux. MIP setting, which calls all before-mentioned LNS heuristics
once at the root and frequently during search, using the LP relaxation
as a basis for the neighborhood definition (i.e., the resulting auxiliary
problems are MIPs),

. the sub-MINLP setting, which calls all before-mentioned LNS heuristics
once at the root and frequently during search, using the MINLP itself as
a basis for the neighborhood definition (i.e., the resulting subproblems
are MINLPs).

Tables 6.1 and 6.3 give aggregated results for the root node and the overall
runs, respectively. Table 6.2 shows information on the performance of in-
dividual heuristics. Tables B.4 and B.5 in the appendix depict the detailed
results for single instances.

Table 6.1.: Overall performance of LNS heuristics at the root node (aggre-
gated results)

setting feas better obj time

no LNS 52 – 3.0
aux. MIP 56 33 4.2
sub-MINLP 63 49 5.6

In Table B.4 in the appendix, each double-column gives the time needed
for processing the root node and the objective value of the incumbent so-
lution after root node processing for one of the settings mentioned above.
A dash in the primal bound column indicates that no feasible solution was
found with this setting. Table 6.1 depicts the number of instances for which
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Table 6.2.: individual performance of LNS heuristics at the root node for
sub-MINLP setting

RENS Local Proxy RINS DINS Cross

calls 56 36 42 45 60 28
found 23 18 15 21 24 15
best 6 5 3 8 14 10

a feasible solution was found during root node processing, the number of
instances for which the solution was better than for the no LNS setting, and
the shifted geometric mean of the root node processing time taken over all
92 instances. Table 6.2 shows the individual performance of the six LNS
heuristics described in Section 6.2 for the sub-MINLP setting (the results for
the aux. MIP setting are similar). The rows calls, found, and best give the
number of instances for which the heuristic has been called, the total number
of solutions it found and for how many instances the heuristic gave rise to
the best solution found during root node processing. The columns are sorted
by the order in which the heuristics have been called within our experiment.
The conditions when to call a LNS heuristic differ in detail for each of them.

For example, Proximity Search and Local Branching will only run when the
problem has a certain amount of binary variables, Crossover needs at least
three feasible solutions, rins and dins require a minimum percentage of
variables to be fixed by their neighborhood definitions. Table 6.2 shows that
the numbers of instances for which the heuristics got called are all different.
The success rate in terms of found solutions is quite consistent, being between
35% and 55% of the calls. Further, for each of the heuristics there are at
least three instances for which it produced the solution which is incumbent
after the root. Of course, these numbers have to be taken with a grain of
salt since they depend on the order in which the heuristics are called. The
dependence might be in either way: on the one hand, a heuristic that is called
later will only search regions of an improving objective, thereby exploiting
information from its predecessors; on the other hand, a heuristic that is called
earlier has the advantage of the “first pick” on high quality solutions. We
performed some additional experiments with different orders, the results did
not change tremendously.
Considering Table 6.1, we observe that using LNS heuristics leads to more

feasible solutions and better objective function values, coming with an in-
crease in running time, which could be expected. This goes even further
when the LNS problems are constructed as MINLPs. There are 10% more
instances for which feasibility can be proven in the root, for more than half
of the instances the primal bound improves, but at the same time the mean
root node running time increases by around 80%. During this additional
80% of running time, on average four sub-MINLPs were solved (there were
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362 calls of LNS heuristics in total over the whole test set). Note that there
is one extreme outlier, uflquad-40-80, for which the running time increases
from 1.8 seconds to 538.3 seconds.24 If this one instance was excluded from
the test set, the increase would “only” have been 62%, which is still much.
So, the question remains whether the improvements on the primal bound are
worth the computational overhead in the long run. This shall be answered
by our second experiment.

Table 6.3.: Performance of LNS heuristics during tree search (aggregated
results)

setting feas obj time nodes prim. int.

no LNS 78 – 24.9 1688 81434
aux. MIP 79 4:2 26.1 1382 76980
sub-MINLP 79 5:1 25.0 1227 75431

In Table B.5 in the appendix, we see double columns for the number of
branch-and-bound nodes and the running time a certain setting of SCIP
needs to prove optimality. In case that SCIP did not terminate within the
time limit of one hour, “timeout” is written in the corresponding column.
Table 6.3 gives a summary of these results, showing the number of instances
for which feasibility could be proven, for which the corresponding setting
terminated with a better or worse objective than the “no LNS” setting, the
shifted geometric mean of the running times, the shifted geometric mean
of the number of branch-and-bound nodes, and the average primal integral
P (tmax), see Chapter 3 and [Ber13]. For this experiments, all three settings
led to the same set of 57 instances to be solved to optimality. The shifted
geometric means of the times and nodes are taken over these 57 instances.
In Figure 6.1, we see the evolution of the primal gap for the three different

settings. The dotted green line corresponds to the average (taken over all
92 instances) primal gap function, when running SCIP with LNS heuristics
based on a full copy of the original problem. The green shaded area corre-
sponds to the average primal integral. Accordingly, the orange dashed line
and the yellow shaded (plus the green shaded) area represent a run of SCIP
with LNS heuristics based on the LP relaxation; the solid red line and the
red shaded (plus the green and yellow shaded) area stand for running the
solver without any LNS heuristic. We see a typical picture that resembles
the observations made in Chapter 3: In the beginning, there is a steep de-
scent of p(t), which converges to a certain level for every setting. Although
there are some intersections of the three functions in the beginning, for most
of the time it holds that the average primal gap of “sub-MINLP” is strictly
24This was also the maximum running time observed for any instance, i.e. the time limit

was never hit. The increase in running time for this particular instance came from long
separation times in several nodes of the subproblem.
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Figure 6.1.: Course of the primal gap when running SCIP with different
settings for LNS heuristics

smaller than the one of “aux. MIP” which itself is strictly smaller than “no
LNS”.
We observe that when using LNS heuristics in either setting, there is one

more instance for which a feasible solution is found, and for those 35 in-
stances which cannot be solved within one hour, LNS heuristics more of-
ten lead to an improvement in the primal bound at termination than to
a deterioration. Concerning the running time for the solved instances, the
setting that uses sub-MINLPs is performance-neutral whereas the LP-based
version slightly decreases performance. Using LNS heuristics leads to a sig-
nificant reduction in the number of branch-and-bound nodes that are needed
to prove optimality, but this saving is complete equalized by the computa-
tional overhead which they produce. The primal integral reduces by 8%
when using LNS heuristics, which leads us to the conclusion that, although
being performance-neutral on a first glimpse, they are a valuable component
of SCIP. Our experiments further showed that using a sub-MINLP instead
of an auxiliary MIP is better w.r.t. the overall running time as well as w.r.t.
the quality of the primal bounds.

6.6. SCIP vs. LocalSolver

In 2011, the first version of LocalSolver was released. LocalSolver is
a heuristic software for mixed integer optimization problems, it uses neigh-
borhood search techniques to find feasible solutions. Since release 4.0, Lo-
calSolver features full support of MIP, including handling of continuous
variables. On the LocalSolver homepage, impressive results for 21 of the
164 challenge instances of Miplib 2010 can be found, accompanied by the
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statement that “For many instances, the conclusion is that none of the fastest
MIP solver [sic!] is currently able to provide high-quality solutions quickly
in short running times, as it is needed today in the practice of optimization
and operations research.” [Loc]
We performed an additional experiment for which we ran SCIP 3.1 with

SoPlex 2.0 as LP solver against LocalSolver 4.0 on the benchmark set of
Miplib 2010.25 We had to exclude five instances, namely dfn-gwin-UUM, ex9,
msc98-ip, n4-3, and rocII-4-11, that could not be read after an automatic
conversion of *.lp files into the *.lsm format. Note that unlike the rest
of this chapter, the present section is purely concerned with mixed integer
linear programs. The results were obtained on a 64bit Intel Core i7-3610QM
2.30GHz with 256KB cache and 4GB main memory, running a Windows 8.1
operating system. Since we had to use Windows to run LocalSolver, the
environment is different from the other experiments in this thesis.
We adopted the computational setup to match the setup used for the re-

sults shown by [Loc]. Firstly, we used a time limit of five minutes. Secondly,
since LocalSolver is a pure heuristic solver that does not explicitly com-
pute and strengthen dual bounds, we only focus on the primal side of the
problem, namely on the development of the primal bound. Thirdly, since Lo-
calSolver mainly uses neighborhood search techniques, we decided to use a
setting for SCIP which has an emphasis on neighborhood search. We opted
for the winning setting from the previous experiment, that applies different
LNS heuristics throughout the branch-and-bound search of SCIP.
The outcome of this experiment is visualized in Figure 6.2, where we see

the evolution of the primal gap for the two solvers. The dotted blue line
corresponds to the average (taken over 82 instances) primal gap function
of the SCIP run, the shaded blue area corresponds to the average primal
integral, see Chapter 3. Accordingly, the red dashed line and the red shaded
area (plus the blue shaded area) represent the LocalSolver performance.
We observe that w.r.t. the average quality of the incumbent solution, Lo-

calSolver is superior to SCIP for the first ten seconds of this experiment;
for the rest of the time, the incumbent solution of SCIP is better than the
one given by LocalSolver. Furthermore, we see that the primal gap func-
tion of LocalSolver stalls after about one minute. Thus, five minutes is a
reasonable choice for a time limit. SCIP, however, keeps improving w.r.t. so-
lution quality, although like-wise its primal gap function “bends” after about
one minute. In total, the average primal gap of SCIP on the Miplib 2010
benchmark set during the first five minutes of the solution process is 36.4%,
the average primal gap of LocalSolver is 65.8%.
Looking at the results after the time limit of five minutes, there are six

instances for which LocalSolver finds a feasible solution, but SCIP does
not. For 23 instances, SCIP finds a feasible solution, but LocalSolver does
not. There are 17 instances for which both solvers fail to find any feasible

25We are indebted to Gerwin Gamrath for his support with this particular experiment.
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Figure 6.2.: Course of the primal gap when running SCIP with aggressive
LNS heuristics and LocalSolver, time limit: five minutes

solution. This leaves 36 instances for which both solvers succeed in finding
solutions. Out of these, both solvers end up with the same primal bound in
six of the cases. In four of these cases, the final solution (after five minutes)
reported by LocalSolver is better than the one by SCIP, in 26 cases,
SCIP is superior. Moreover, for 20 out of 87 instances, SCIP did actually
not need the full five minutes, but could prove optimality and therefore stop
before the time limit, whereas LocalSolver would always exhaust the full
time limit.
We conclude that on a test set of general MIPs, a MIP focused solver seems

to be preferable over a pure neighborhood search in most of the cases, even
when only looking at the quality of the primal bound within a quite restricted
time interval. As always, averages do not tell the story for single instances
and for certain problem classes, e.g., the opm instances from Miplib, a local
search might perform significantly better than state-of-the-art MIP codes.

6.7. Conclusion

In this chapter, we provide an overview on large neighborhood search heuris-
tics for MIP and existing approaches to extend them to MINLP. As a further
contribution, we described a generic and straightforward way of generalizing
large neighborhood search heuristics from mixed integer linear programming
to mixed integer nonlinear programming, using MIQCP as a showcase. We
implemented and tested MINLP versions of six LNS heuristics that are known
from the literature. To the best of our knowledge, for Crossover and dins
this is the first time that nonlinear variants have been described and tested.
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Both showed promising results, dins being the heuristic providing the most
solutions in our root node experiment, Crossover the one with the highest
success rate given by “solutions per call”.
Our computational results did not only show that the generalized LNS

heuristics increased the quality of the best feasible solution after root node
computation, but also that they improve the behavior of the solver for the
global search. The improvement merely consisted of a faster convergence
towards the optimal solution from the primal side, while not affecting the time
needed to prove optimality. This aligns well with our overall computational
experiments, see Chapter 11. The results further indicate that using an
actual copy of the problem to solve a sub-MINLP is superior to using an
auxiliary MIP based on the LP relaxation. This confirms earlier experiments
with generic implementations of LNS heuristics for MIQCP, pseudo-Boolean
optimization and resource-constrained project scheduling that we presented
in [BHPV11]. In addition, we showed that on the Miplib 2010 benchmark
set, SCIP outperforms a commercial solver that is based on neighborhood
search w.r.t. the quality of primal solutions.



7. RENS: the optimal rounding

At the heart of many MIP improvement heuristics, such as Local Branch-
ing [FL03], rins [DRP04], and dins [Gho07], lies large neighborhood search
(LNS), the paradigm of solving a small sub-MIP which promises to contain
good solutions. Recently, these LNS improvement heuristics have been ex-
tended to the more general case of MINLP, cf. Chapter 6.
In this chapter, we introduce the relaxation enforced neighborhood search

(rens), a large neighborhood search algorithm for MINLP. It constructs a
sub-MINLP of a given MINLP based on an optimal solution of a linear or
nonlinear relaxation. rens is designed to compute the optimal – w.r.t. the
original objective function – rounding of a relaxation solution. Unlike the
primal heuristics mentioned above, rens is not an improvement algorithm:
it does not require a feasible solution as a reference point. A slightly modified
version of this chapter has been published in Mathematical Programming
Computation [Ber14].
This chapter is organized as follows. Section 7.1 motivates our approach

and Section 7.2 introduces the generic scheme of the rens algorithm. In
Section 7.3, we discuss the algorithmic design and describe implementation
details, in particular for the application of rens as a subsidiary method
inside a global solver. The setup for the computational experiments is pre-
sented in Section 7.4. Section 7.5 provides detailed computational results
and Section 7.6 contains our conclusions.

7.1. Introduction
Many LNS heuristics, diving and of course all rounding heuristics are based
on the idea of fixing some of the variables that take an integral value in a
relaxation solution. Therefore, the question of whether a given solution of a
relaxation is roundable, i.e., all fractional variables can be shifted to integral
values without losing feasibility for the constraint functions, is particularly
important for the likelihood of many primal heuristics to succeed.
The rens algorithm which is introduced in this chapter can be applied

in two different ways: as a standalone algorithm to compute an optimal
rounding of the given start solution and as a primal heuristic inside a global
MINLP solver.
Following the former, we use rens to analyze the roundability of instances

from different classes of mathematical programs, and to demonstrate the
computational impact of using different relaxations, namely an LP and an
NLP relaxation. We evaluate the performance of several rounding heuristics,

95
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see Chapter 4, by a comparison against these results. Finally, we investi-
gate the effectiveness of rens applied as a start heuristic at the root node
of a branch-and-cut solver. For these experiments, we use general, pub-
licly available MIP, MIQCP and MINLP test sets obtained from the Miplib
3.0 [BCMS98], the Miplib 2003 [AKM06], the Miplib 2010 [KAA+11], the
MinlpLib [BDM03] and the MIQCP test set compiled in [BGHV12].

7.2. A scheme for an LNS rounding heuristic
Given a mixed integer program, the paradigm of fixing a subset of the vari-
ables in order to obtain subproblems that are easier to solve has proven
successful in many MIP improvement heuristics such as Crossover [Ber06,
Rot07], rins [DRP04], and dins [Gho07]. These strategies can be directly
extended to MINLP, see Chapter 6 and [BHPV11].
Before we formulate the rens algorithm, let us formalize the notion of an

optimal rounding. Recall Definition 2.9:

Definition (rounding). Let x̄ ∈ [l,u]. The set

R(x̄) := {x ∈ Rn | xj ∈ {bx̄jc, dx̄je} for all j ∈ I, lj 6 xj 6 uj for all j ∈ N}

is called the set of roundings of x̄.

In general, R(x̄) is a mixed integer set, a disjoint union of 2|F| polyhedra,
with F being the set of fractional variables. Note that in the special case
of pure integer problems, hence I = N , the set of roundings of x̄ is a 2|F|-
elementary lattice, more precisely, the vertices of an |F|-dimensional unit
hypercube:

R(x̄) = {x ∈ Zn | xI\F = x̄I\F ,xF ∈×
j∈F
{bx̄jc, dx̄je}} ⊆×

j∈I
{lj , . . . ,uj}.

Here, xF and xI\F denote the projection of x to the space of fractional and
integral variables, respectively.

Definition 7.1 (optimal rounding). Let an MINLP P , x̄ ∈ [l,u] and x̃ ∈
R(x̄).

1. We call x̃ a feasible rounding of x̄, if gi(x̃) 6 0 for all constraints i ∈M
of P .

2. We call x̃ an optimal rounding of x̄, if x̃ ∈ argmin{cTx | gi(x) 6
0 for all i ∈M,x ∈ R(x)}.

3. We call x̄ roundable if it has a feasible rounding.

The idea of our newly proposed LNS algorithm is to define a sub-MINLP
that optimizes over the set of roundings of a relaxation optimum x̄. This
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Figure 7.1.: rens for MIP: original MIP (light), sub-MIP received by fixing
(dark, left) and 0-1 sub-MIP by additional bound reduction
(dark, right). The red point A shows the optimum of the LP
relaxation, the green point B is the optimal rounding of A.

A

B
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B

is done by fixing all integer variables that take an integral value in x̄. For
the remaining integer variables, the bounds get tightened to the two nearest
integral values, see Figure 7.1. Note that in the case of a problem for which
all integer variables are binary and that has a completely fractional relaxation
optimum, the subproblem would be identical to the original. We will therefore
use a threshold for the percentage of integral variables, see next section.
If the sub-MINLP is solved by using a linear outer approximation, tight-

ening the variable bounds to the nearest integers often improves the dual
bound, since reduced domains give rise to a tighter linear relaxation. Tech-
nically, all integer variables can be easily transformed to binary variables,
by substituting x′j = xj − lj . Binary variables are preferable over general
integers since many MIP-solving techniques such as domain propagation via
probing [Sav94], knapsack cover cuts [Bal75, HJP75, Wol75], or the primal
heuristic Octane [BCD+01] are only used for binary variables.
As the sub-MINLP is completely defined by the relaxation solution x̄, we

call the procedure relaxation enforced neighborhood search, or shortly rens.
Note that unlike rins [DRP04], rens does not require a known feasible so-
lution.
Figure 7.2 shows the basic algorithm, which by construction has some

important properties:

Lemma 7.2. Let the starting point x̄ be feasible for the NLP relaxation.

1. A point x̃ is a feasible solution of the sub-MINLP if and only if it is a
feasible rounding of x̄, in particular:

2. a point x̃ is an optimal solution of the sub-MINLP if and only if it is
an optimal rounding of x̄, and

3. the sub-MINLP is infeasible, if and only if no feasible rounding of x̄
exists.

Two major features distinguish rens from other MIP and MINLP primal
heuristics known from the literature. Firstly, the rens algorithm does not
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Figure 7.2.: Generic rens algorithm

Input : MINLP P as in (2.1)
Output: feasible solution x̃ for P or ∅
/* compute optimal solution of the NLP relaxation of P */

1 x̄← argmin{cTx | gi(x) 6 0 for all i ∈M,x ∈ [l,u]};
2 forall the j ∈ I do
3 if x̄j ∈ Z then
4 fix xj : lj ← x̄j ,uj ← x̄j ;
5 else
6 change to binary bounds: lj ← bx̄jc, uj ← dx̄je;

/* solve the resulting sub-MINLP of P */
7 x̃← argmin{cTx | gi(x) 6 0 for all i ∈M,x ∈ [l,u],xj ∈ Z for j ∈ I};
8 return x̃;

require a known feasible solution, unlike other large neighborhood search
heuristics that have been described for MIP, namely rins [DRP04], Lo-
cal Branching [FL03], Crossover [Ber06, Rot07], dins [Gho07], or Proxim-
ity Search [FM13]. It is a start heuristic, not an improvement heuristic.
The same holds for nonlinear variants of these heuristics [BHPV11, BG12,
NBL08], see also Chapter 6.
Secondly, rens solves a single sub-MINLP. In contrast, most primal heuris-

tics for MINLP, in particular the various nonlinear feasibility pump ver-
sions [BCLM09, BG12, DFLL10, DFLL12] and Chapter 5, RECIPE [LNM10,
LMN11] and Iterative Rounding [NB12], solve a series of auxiliary MIPs, of-
ten alternated with a sequence of NLPs, to produce a feasible start solution.
The number of iterations is typically not fixed, but depends on the instance
at hand.

7.3. Design and implementation details

In this section, we discuss the details of our rens implementation. A partic-
ular focus is set on the application of rens as a subsidiary method inside a
complete branch-and-bound solver.
In principle, an arbitrary point may be used as starting point in line 1 of the

rens algorithm, see Figure 7.2. Most global solvers for MINLP are based on
branch-and-bound and involve the solution of an NLP relaxation or a linear
outer approximation. Their optima are natural choices as starting points.
While the NLP optimum is supposed to be “closer” to the feasible region of
the MINLP, the LP optimum can usually be computed faster and often gives
rise to smaller subproblems. More precisely, the NLP fulfills all nonlinear
constraints gi(x) ≤ 0, whereas the LP, if solved with the simplex algorithm,
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tends to fulfill more integrality constraints, which reduces the computational
complexity of the rens subproblem. Also, when using rens inside a complete
solver, one or both points (optima of the LP and the NLP relaxation) may
already have been computed in advance by other components of the solver
and they may therefore be used “for free”. Altogether, both relaxations have
their pros and cons; which one proves better in practice will be investigated
in our empirical studies, see Section 7.5.
When using a linear outer approximation (the LP relaxation in case of

MIP), an important question is whether we should use the optimum of the
initial LP relaxation or the LP solution after cutting planes have been ap-
plied. As before, cutting planes strengthen the formulation, but it is generally
assumed that they tend to produce more fractional LP values. As before, in
Section 7.5 we examine which relaxation works best.
If rens is used as a primal heuristic embedded in a complete solver, further

modifications are necessary to obtain a good overall performance. When pri-
mal heuristics are considered as standalone solving procedures, e.g., the Fea-
sibility Pump [AB07, BFL07, BCLM09, DFLL10, DFLL12, FGL05, FS09],
the algorithmic design typically aims at finding feasible solutions for as many
instances as possible, even if this takes substantial running time. However,
if they are used as supplementary procedures inside a complete solver, the
overall performance of the solver is the main objective.
To this end, it is often worth sacrificing success on a small number of

instances for a significant saving in average running time. The Stage 3 of
the Feasibility Pump for MIPs26 is a typical example of a component that
is crucial for its impressive success rate as a standalone algorithm, but it
will not be applied when the Feasibility Pump is used inside a complete
solver, see [Ber06]. rens principally is an expensive algorithm that solves an
NP-hard problem; therefore, the decision of when to call it should be made
carefully to avoid slowing down the overall solving process. The remainder
of this section describes some algorithmic enhancements, most of which are
concerned with identifying which subproblems are the most promising for
calling rens and on which subproblems it should be skipped.
First, rens should only be called if the resulting sub-MINLP seems to be

substantially easier than the original one. This means that at least a specific
ratio of all integer variables, say r1 ∈ (0, 1), or a specific ratio of all variables
including the continuous ones, say r2 ∈ (0, 1), should be fixed. The first
criterion limits the difficulty of the discrete part of the sub-MINLP itself,
the second one limits the total size of the relaxations that will have to be
solved. For example, think of a MIP which consists of 20 integer and 10 000
continuous variables. Even if one fixes 50% of the integer variables, rens
would be a time-consuming heuristic since solving the LPs of the sub-MIP
26Stage 3 of the Feasibility Pump solves (a reformulation of) the original MIP with a

new objective function. It minimizes the distance to an infeasible point gained from
the pumping algorithm; more precisely to the one which was closest to the polyhedron
associated to the LP relaxation. For details, see Chapter 5 or [FGL05].
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would be nearly as expensive as solving the ones of the original MIP. Since
by propagation, fixing integer variables might also lead to fixed continuous
variables, e.g., for variable bound constraints, we check the latter criterion
only after presolving the subproblem.
Second, the sub-MINLP does not have to be solved to proven optimality.

Therefore, we decided to use limits on the solving nodes and the so-called
stalling nodes of the sub-MINLP. The absolute solving node limit nl1 is a
hard limit on the maximum number of branch-and-bound nodes that should
be processed. The stalling node limit nl2 indicates how many nodes should
at most be processed without an improvement to the incumbent solution of
the sub-MINLP.
Third, partially solving the sub-MINLP aims at finding a good primal so-

lution quickly. Hence, algorithmic components that mainly improve the dual
bound, such as cutting plane separation, and that are very time-consuming,
such as strong branching, can be disabled or reduced to a minimum. Further
on this list are conflict analysis, pairwise presolving of constraints, probing
and other LNS heuristics. As branching and node selection strategies we use
Inference Branching and Best Estimate Search, see, e.g., [Ach07a].

rens could be either used as a pure start heuristic, calling it exclusively
at the root node, or frequently throughout the branch-and-bound search to
find rounded solutions of local LP optima. In particular when the integrality
of the root LP relaxation falls below the minimum fixing ratio r1, it seems
reasonable to employ rens at deeper levels of the tree where the number
of fractional variables tends to be smaller. For the case of repeated calls
of rens, we implemented a few strategies to determine the points at which
rens should be called.
How often rens should be called mainly depends on two factors: how

expensive is it for a particular instance and how successful has it been in
previous calls for that instance? The first can be estimated by the sum nrens
of branch-and-bound nodes rens used in previous calls in comparison to
nall, the number of branch-and-bound nodes already searched in the master
problem. The second can be measured by the success rate s = nsols+1

ncalls+1 , where
ncalls denotes the number of times rens has been called and nsols denotes the
number of times it contributed an improving solution, respectively. In our
implementation, we computed the stalling nodes limit as

nl2 = 0.3nall · s− nrens + 500− 100ncalls.

The last term represents the setup costs for the subproblem which accrue even
if subproblem solving terminates quickly. The offset of 500 nodes ensures that
the limit is reasonable for the first few calls of rens. We only start rens if
nl2 is sufficiently large.
In an LP-based branch-and-bound search, consecutive nodes tend to have

similar LP optima. This is due to the similarity of the solved problems as
well as to the warm-starting technique of the simplex algorithm, which is
typically used for this purpose. Since similar LP optima most likely lead to
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similar results for the quite involved rens heuristic, it should not be called
in consecutive nodes, but the calls should rather be spread equally over the
tree. Therefore, we use a calling frequency f : rens only gets called at every
f -th depth of the tree.

7.4. Experimental setup

This section proposes three computational experiments that evaluate the
potential of rens to find optimal rounded solutions, compare rens to other
rounding heuristics, and demonstrate the impact of rens inside a full-scale
branch-and-bound solver. We conduct these experiments on three different
test sets of MIPs, MIQCPs, and MINLPs in order to analyze rens on different
classes of mathematical programs. All test sets are compiled from publicly
available libraries.
For all computational experiments, we used SCIP 2.1.1.1 compiled with

SoPlex 1.6.0 [Wun96, Sop] as LP solver, Ipopt 3.10 [WB06, Ipo] as NLP
solver, and CppAD 20110101 [Cpp] as expression interpreter for evaluating
general nonlinear constraints. The results were obtained on a cluster of 64bit
Intel Xeon X5672 CPUs at 3.20GHz with 12MB cache and 48GB main mem-
ory, running an openSuse 11.4 with a gcc 4.5.1 compiler. Hyperthreading
and Turboboost were disabled. In all experiments, we ran only one job per
node to avoid random noise in the measured running time that might be
caused by delays if multiple processes share common resources, in particular
the memory bus.

Test sets

We used all instances from Miplib3.0 [BCMS98], Miplib2003 [AKM06], and
the Miplib2010 benchmark set [KAA+11] as MIP test set. We excluded
instances air03, ex9, gen, manna81, p0033, vpm1, for which the optimum
of the LP relaxation (after SCIP presolving) is already integral, instance
stp3d, for which SoPlex cannot solve the LP to optimality within the given
time limit and instances sp97ar, mine-166-5, for which SoPlex 1.6.0 fails
in computing an optimal LP solution. This leaves 159 instances. We will
refer to this test set as mmm (as an abbreviation for three Miplibs).
For MIQCP, we used the test set described in [BGHV12] that comprises

instances from several sources. We excluded instances ex1263, ex1265, sep1,
uflquad-30-100, for which the LP optimum is already integral (but in none
of the cases feasible for the quadratic constraints), instances nuclear14,
isqp1, nuclearva, for which the LP relaxation is unbounded, the instance
200bar, for which SoPlex produces an error, 108bar, isqp0, for which
SCIP’s separation loop has not terminated within the time limit, and those
18 instances that are linear after SCIP presolving, see [BGHV12]. This test
set contains 70 instances.
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We further tested rens on general MINLPs from MinlpLib [BDM03], ex-
cluding those that are MIQCPs, that are linear after SCIP presolving, or
that contain expressions which cannot be handled by SCIP, e.g., trigono-
metric functions. We also excluded 4stufen, csched1a, st_e35, st_e36,
waters, for which the optimum of the LP relaxation is integral, and instances
csched2, minlphix, uselinear, for which the LP relaxation is unbounded,
leaving 105 instances. It remains to be said that this particular test set is
not as heterogeneous as the others, since there are many instances of similar
type.27

Analyzing roundability and computing optimal roundings

In a first test, we employ rens to analyze the roundability of optimal relax-
ation solutions. For this, we ran rens without any node limits or variable
fixing thresholds on the test sets described above. A time limit of two hours,
however, was set for solving the rens subproblem.
We used an optimal solution of the LP relaxation as starting point for

the MIP test. We compare the performance of rens using the “original”
LP optimum before the cutting plane separation loop versus the one after
cuts. One question of interest here is how the integrality of the LP solution
interacts with the feasibility of the sub-MIP. The desired situation is that
the LP solution contains a lot of integral values, but still gives rise to a
feasible rens problem. For this and the following experiments, we restricted
ourselves to analyzing the optimal solution which is reported by SoPlex; we
did not investigate differences in performance when using alternative optimal
solutions as it has been done for instance in [Ach10, Ach11] for cutting planes.
For the MIQCP and the MINLP test run, we further evaluate how different

types of relaxations, namely the LP and the NLP relaxation, behave w.r.t. the
roundability of their optima and the quality of the rounded solutions. The
results shall give an insight into which solutions should be used as starting
points for rens and other primal heuristics. Here, the performance in terms
of running time of the rens heuristic has to be weighed up against the success
rate and quality of solutions produced with different relaxations.

Evaluating the performance of rounding heuristics

In a second test, we use rens for the analysis of several MIP rounding heuris-
tics, see Chapter 4. The results shall give an insight into how often these
heuristics find a feasible rounding and how good the quality of this solution
is compared to the optimal rounding.
All considered rounding heuristics iteratively round all variables that take

a fractional value in an optimal solution of the LP relaxation. One round-
ing is performed per iteration step, without resolving the relaxation. We
27This holds, to a certain extent, for all general MINLP test sets that the author is aware

of.
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recapitulate from Chapter 4 that

. Simple Rounding only performs roundings, that maintain feasibility;

. ZI Round conducts roundings, using row slacks to maintain primal
feasibility;

. Rounding conducts roundings, that potentially violate some constraints
and reduces existing violations by further roundings.

The main decision criterion for all these primal heuristics is the number of
down- and uplocks, see Definition 2.10. ZI Round and Rounding both are
extensions of Simple Rounding. Both are more powerful, but also more time-
consuming. For details on these rounding heuristics and their implementation
in SCIP, see [Ber06, Hen11, Wal10] and Chapter 4.
Note that rounding heuristics are quite defensive, in the sense that they of-

ten round opposite to the variable’s objective function coefficient and thereby
“sacrifice” optimality for feasibility. Hence, we do not expect them to often
detect the optimal rounding computed by rens. The question is rather for
how many of the roundable instances these heuristics find any feasible so-
lution and only as a second point how big the gap to the optimal rounding
is.

Impact of RENS on the overall performance
In a third test, we evaluate the usefulness of rens when applied as a primal
heuristic inside a branch-and-bound solver. For comparison consider the
rins algorithm [DRP04], an LNS improvement heuristic which is applied in
Cplex [DRP04] and Gurobi [BRG09b]. rins uses two starting solutions, a
relaxation optimum and the incumbent. It fixes variables which take identical
values in both solutions, cf. Chapter 6.
The advantage of rens in contrast to rins is that it does not require a

given primal solution and that it always fixes at least the same number of
variables as rins, if applied to the same relaxation solution. The advantage
of rins is that the rins subproblem is guaranteed to contain at least one
feasible solution, namely the given starting solution.
To assess rens as a primal heuristic, we run SCIP with rens applied

exclusively as a root node heuristic and SCIP with rens applied both at
the root and throughout the search. For this experiment, we used a reduced
version of rens which requires a minimal percentage of variables to be fixed
and which stops after a certain number of branch-and-bound nodes, see Sec-
tion 7.3. For comparison, we ran SCIP with rens deactivated.
The main criteria to be analyzed in this test are the impact of rens on the

quality of the primal bound early in the search and the impact of rens on the
overall performance. While we hope for improvements in the former, a major
improvement in the latter is not to be expected. Different studies show that
the impact of primal heuristics on time to optimality often is slim. Bixby
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et al. report a deterioration of only 9% if deactivating all primal heuristics
in Cplex 6.5, Achterberg [Ach07a] presents a performance loss of 14% when
performing a similar experiment with SCIP 0.90i, in [Ber06] differences of at
most 5% for deactivating single primal heuristics are given. Compare also
Chapters 3 and 11. Therefore, a good result for this experiment would be an
improvement on the primal bound side, coming with no deterioration to the
overall performance.

7.5. Computational experiments

As a first test, we ran rens without node or variable fixing limits, to evaluate
its potential to find optimal roundings of optimal LP and NLP solutions.
The results for MIP can be seen in Tables B.6 and B.7 in the appendix,

those for MIQCP in Tables B.8 and B.9, those for MINLP in Tables B.10
and B.11; aggregated results can be found in Table 7.1. Each table presents
the names of the instances, Int, the percentage of integer variables that were
fixed by rens, All, the percentage of all variables that were fixed after pre-
solving of the rens subproblem, TimeS, the time SCIP needed before rens
was called, Time and Nodes, the running time and the number of branch-
and-bound nodes needed to solve the subproblem to optimality, Solution, the
best solution found in the rens subproblem, and Found At, the node in the
subproblem’s branch-and-bound tree at which it has been found. Note that
these values are rounded, e.g., the 100.0% given in column Int of Table B.6
for nw04 represents a ratio of 87460/87482.
If the subproblem was proven to be infeasible or no solution was found

within the time limit, this is depicted by an “–” in the column Solution.
When the time limit of two hours was hit in the rens subproblem, this is
indicated by the term limit in the Time column. Hence, for all instances that
do not hit the time limit, the column Solution depicts the proven optimal
rounding of the relaxation solution and “–” indicates that it was proven that
no feasible rounding exists. Instances for which the optimal rounding is an
optimal solution of the original MINLP are marked by a star.
The correlation between the percentage of fixed variables and the success of

rens is depicted in Figures 7.3–7.6. Each instance is represented by a cross,
with the fixing rate being the x-coordinate, and 0 or 1 representing success or
failure as y-coordinate. The dotted blue line shows a moving average taken
over ten consecutive points and the dashed red line shows a moving average
taken over 30 consecutive points. A thin gray line is placed at the average
success rate taken over all instances of the corresponding test set.
If we have to average running times or number of branch-and-bound nodes,

we use a shifted geometric mean, see Definition 2.12, with a shift of s = 10 for
time and s = 100 for nodes. In the given mean numbers, instances hitting the
time limit are accounted for with the time limit and the number of processed
nodes at termination.
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Unless otherwise noted, the term variables always refers to integer variables
for the remainder of this section. Consequently, by integral variables we mean
integer variables that take an integral value in a given relaxation solution –
as contrasted with fractional variables.
Table 7.1 summarizes the results from Tables B.6–B.11. Each line of it

represents one combination of a test set and a choice of a relaxation. Column
ψ(int) shows the average percentage of integral variables, Columns >90% and
0% show for how many instances more then 90% or none of the variables are
integral, respectively. The Column round depicts the number of roundable
instances in the test set and Column opt shows for how many instances the
optimal rounding actually is an optimal solution of the original problem.
Column bett/wor indicates for two consecutive table lines that refer to the
same test set, how often the one or the other was better or worse w.r.t. to
the objective function value of the optimal rounding. Finally, φ(nodes) and
φ(time) provide us with the shifted geometric means of the branch-and-bound
nodes and the overall running time required to solve the subproblem.

Table 7.1.: rens results for computation of optimal roundings (aggregated
results)

integrality success comp. effort

test set, relax ψ(int) >90% 0% round opt bett/wor φ(nodes) φ(time)

MIP + cuts 71.7% 55 3 95 34 38:7 814.4 22.6
MIP − cuts 73.6% 62 3 80 20 7:38 719.9 21.7
MIQCP (LP) 59.9% 9 10 49 9 1:27 627.7 30.9
MIQCP (NLP) 13.8% 1 47 48 26 27:1 7078.8 168.1
MINLP (LP) 63.5% 6 4 65 13 2:37 11175.6 83.0
MINLP (NLP) 15.0% 1 68 73 47 37:2 93908.0 262.7

Computing optimal roundings: MIP

In Table B.6 in the appendix, we see that for roughly one third (55/159) of
the instances, more than 90% of the variables took an integral solution in
the optimal LP solution. In contrast to that, there are only 22 instances for
which the portion of integral solution values is less than 40%. The average
percentage of variables with integral LP solution value is 71.7%. There are
a few cases with many continuous variables for which fixing the majority of
the integer variables did not result in a large ratio of all variables being fixed,
see, e.g., dsbmip or p5_34. This is the reason that we will use two threshold
values for later tests, see Section 7.3.
For 59.7% (95/159) of the instances, rens found a feasible rounding of the

LP optimum. For 15 of these instances, the rens subproblem hit the time
limit, eleven of them are from Miplib 2010. For the remaining 80 instances,
the solutions reported in Table B.6 are the optimal roundings of the given
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Figure 7.3.: Moving averages of success rate, mmm instances, after cuts

0 10 20 30 40 50 60 70 80 90 100
0

25

50

75

100

% integral variables

%
su
cc
es
s
ra
te

Figure 7.4.: Moving averages of success rate, mmm instances, before cuts

starting solutions. For 34 instances, the optimal rounding coincides with the
global optimal solution.
We further observe that the success rate is only weakly correlated to the

ratio of fixed variables. The success rate on the instances with more than
90% fixed variables was nearly the same as on the whole test set, namely
58.2%. This is an encouraging result for using rens as a start heuristic inside
a complete solver: very small subproblems contain feasible solutions.
The connection between the fixing rate and the success rate is also depicted

in Figure 7.3. We see that the success rate decreases slightly, at about 75%
fixed variables, but the difference between low and high fixing rates is not
huge.
We further observe that proving the non-existence of a feasible rounding is

relatively easy in most cases. For 59 out of 64 infeasible rounding subprob-
lems, infeasibility could be proven in presolving or while root node processing
of the subproblem. There is only one instance, pigeon-10, for which proving
infeasibility takes more than 600 nodes. Considering the running time, infea-
sibility could be proven in less than a second in 56 of 64 cases, with only one
instance, Papp1-2, taking more than 15 seconds. The instance neos-1601936
is the only one for which feasibility could not be decided within the given time
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limit; hence, it is the only instance for which we could not decide whether
the optimal LP solution is roundable or not.
The results for using the LP optimum before cutting plane separation are

shown in Table B.7 in the appendix. Even more instances, 62 compared to 55,
have an integral LP solution for more than 90% of the variables. However,
there is one more (24 vs. 23) instance, for which the portion of integral
solution values is less than 40%. Contrary to what one might expect, the
average percentage of variables with integral LP value is hardly affected by
cutting plane separation: it is 73.6% before separation and 71.7% after.
The number of instances for which rens found a solution, however, goes

down: 80 instead of 95, which is only half of the test set. This is particu-
larly due to those instances with many variables that take an integral value.
Consequently, the success rate of rens drops with an increase in the ratio of
fixed variables. When rens is called before cutting planes are added, fewer of
the optimal roundings are optimal solutions to the original problem: 20 com-
pared to 34, when called after cuts. Note that the better mean running time
which is given in Table 7.1 mainly is due to not performing the separation
loop.
We conclude that, although the fractionality is about the same, LP solu-

tions before cuts are less likely to be roundable and the rounded solutions
are often of inferior quality. In other words: before cutting planes, integral
solution values are more likely to be misleading (in the sense that they can-
not be extended to a good feasible solution). This is an important result for
the design of primal heuristics in general and confirms the observation that
primal heuristics work better after cutting plane separation, see, e.g., [FS09].

Computing optimal roundings: MIQCP

For MIQCP, we tested rens with LP solutions, see Table B.8 in the ap-
pendix, and with NLP solutions, see Table B.9, as starting points. We also
experimented with the LP solution before cuts; the results were much worse
and are therefore not shown.28
The ratio of integral LP values is smaller compared to the mmm problems:

there are only 9 out of 70 instances for which more than 90% of the variables
were integral, but there are 10 instances for which all variables were frac-
tional. Note that this does not necessarily mean that the rens sub-MIQCP
is identical to the original MIQCP, e.g., when general integer variables are
present. In this case, the rens subproblem corresponds to the original prob-
lem intersected with the integral lattice-free hypercube around the starting
28Note that for MIQCP and MINLP, cutting plane separation is even more substantial than

for MIP. In MIP all constraints are present in the LP relaxation from the beginning,
whereas in MINLP cutting plane separation is used to add a local approximation of
them to the LP relaxation. In the extreme case of an MINLP that only consists of
general nonlinear constraints, the LP relaxation before cutting planes will only be the
domain box of the variables. In particular, all integer variables will take integral or
infinite values in an optimal LP solution.
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solution. On average, 59.9% of the variables took an integral value. The
success rate of rens is even better than for MIPs: In 49 out of 70 instances
(70%), rens found a feasible rounding. Note that this is not due to the
10 instances for which all variables were fractional: three of them also fail.
Moreover, the success rate appears not to depend on the percentage of fixed
variables, see Figure 7.5.
Deciding feasibility, however, seems to be more difficult. Out of ten in-

stances hitting the time limit, there were eight for which rens did not find
a feasible rounding. For 13 instances, infeasibility of the rounding problem
was proven, mostly in presolving or within a few branch-and-bound nodes.
Nine times, the optimal rounding was identical to the optimal solution of the
MIQCP.
The next observation we made is that the NLP solution tends to be much

less integral than the LP solution, on average only 13.8% of the variables
take an integral value, see Table B.9 and Figure 7.5. This is due to the
fact that in our experiments the LP solution was computed with the simplex
algorithm which tends to leave variables at their bounds, whereas the NLP
solution was computed with an interior point algorithm that tends to choose
values from the interior of the variables’ domains.
Surprisingly, this did not enhance the roundability. For 48 instances, rens

found a feasible rounding of the NLP optimum, compared to 49 for the LP.
Worth mentioning, this was nearly the same set of instances, and there were
46 on which both versions found a solution. The solution quality, however,
was typically better when using an NLP solution: 27 times the NLP solution
yielded a better rounding, only once the LP was superior. Since the LP
relaxation itself is a relaxation of the NLP relaxation, this result could be
expected. 26 times, the optimal rounding was even an optimal solution of
the original MIQCP.
The higher fractionality of the NLP relaxation is expressed in a much larger

search space. In shifted geometric mean, rens processed 628 search nodes
if starting from an LP solution, 7078 if starting from an NLP solution. The
shifted geometric mean of the running time (Time) is roughly 5.5 times larger:
30.9 vs. 168.1 seconds.
We conclude that the same observation holds as in the MIP case: small

subproblems (in case of using the LP) generate high-quality feasible solutions.
Although the solution quality is improved by using an NLP relaxation, the
computational overhead and the success rate are not encouraging to make
this a standard setting if using rens as a primal heuristics inside a complete
solver.

Computing optimal roundings: MINLP

For MINLP, we again compared two versions of rens: one using the LP
solution and one using the NLP solution as starting point, see Tables B.10
and B.11 in the appendix, respectively. For the same reason as in the MIQCP
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Figure 7.5.: Moving averages of success rate, MIQCP, LP sol., after cuts

case we omitted the results for the LP solution before cuts.
The integrality of the LP solutions is comparable to the MIQCP case. On

average, 63.5% of the variables take an integral value; there are 6 out of 105
instances for which more than 90% of the variables are integral, and only
four instances for which all variables are fractional. For this test set, we see
a clearer connection between the ratio of fractional variables and the success
rate of rens. The more variables are integral, the lower the chance for rens
to succeed, see Figure 7.6.
For seven instances, the rens subproblem hit the time limit of two hours,

always without having found a feasible solution. Overall, 65 out of 105 (62%)
of the LP solutions proved to be roundable, which is similar to the mmm
results. In all cases, rens found the optimal rounding. Generally, rens
needs much more nodes to solve the rounding problem as compared to the
other tests.
Using the NLP instead of the LP relaxation slightly increases the success

rate: 73 times, rens finds a feasible rounding. As for MIQCPs, the quality is
typically better (37 vs. 2 times), which comes with a much lower integrality
of 15% on average, 68 instances having all variables fractional, and a huge
increase in running time: a factor of more than three in shifted geometric
mean.

Computing optimal roundings: summary

Interestingly, the integrality and roundability of LP solutions is very simi-
lar for MIPs, MIQCPs and MINLPs: on average, only 30% to 40% of the
variables are fractional and for 60% to 70% of the instances rens found a
feasible rounding. We further observed that most often the rens subprob-
lem could be solved to proven optimality and that the success rate of rens
is only weakly correlated to the fractionality. These three insights are very
encouraging for applying rens as a start heuristic inside a complete solver,
see below. A summary of the results on computing optimal roundings can
be found in Table 7.1.
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Figure 7.6.: Moving averages of success rate, MINLP, LP sol., after cuts

We further performed a McNemar test, see [McN47] or Section 11.1, to
analyze the statistical significance of the results. As null hypothesis we as-
sume that the LP and the NLP solution (or the LP before and after cuts)
are equally likely to yield a feasible rounding. For the mmm test set, the
null hypothesis gets rejected with a p-value of 0.0011 and for MINLP with
0.0114. For MIQCP, the p-value is 0.6547. This means that for MIP the LP
solution after cuts is more likely to be roundable with very high probability,
for MINLP the NLP solution is more promising with high probability, for
MIQCP there is no statistically significant difference.
We conclude that the solutions found by rens are usually better when it

is applied after cutting plane separation and that using an NLP instead of
an LP relaxation does not give a good trade-off between solution quality and
running time: it might be better, but the computational overhead is huge.

Analyzing rounding heuristics

Our next experiment compares rens applied to the LP solution after cuts
with the three pure rounding heuristics that are implemented in SCIP, see
Chapter 4. The results for the mmm instances are shown in Table B.12 in the
appendix. Instances for which none of the compared methods could provide
a solution are omitted in the presentation.
As implied by definition, the solutions found by rens (if the subproblem

has been solved to optimality) are always better or equal to the solutions
produced by any rounding heuristic. As expected, the solution quality of
Rounding and ZI Round is always better or equal to Simple Rounding, and
ZI Round often is superior to Rounding. Since Simple Rounding, Rounding,
and ZI Round all endeavor to feasibility and neglect optimality, it is not too
surprising that there are only three instances, for which Simple Rounding
and Rounding find an optimal rounding; four in the case of ZI Round.
A comparison of the number of solutions, however, shows that there is a

big discrepancy between the number of instances which have a roundable LP
optimum (95) and the number of instances for which these heuristics succeed
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(37 for ZI Round, 36 for Rounding, and 27 for Simple Rounding). Of course,
this has to be seen under the fact that these heuristics are much faster than
rens. The maximum running time was attained by Rounding on instance
opm2-z7-s2; it was only 0.09 seconds.
For the MIQCP and MINLP test sets, the situation was even more extreme.

The rounding heuristics were unable to produce a feasible solution for any
of the instances – even though the previous experiments proved that 60%
to 70% of the LP solutions are roundable. This is most likely due to the
special design of these heuristics: they solely work on the LP relaxation.
This result demonstrates the need for rounding heuristics that take the special
requirements of nonlinear constraints into consideration. Note that in this
context, we do not consider Iterative Rounding [NB12] to be a rounding
heuristic, since it solves a series of MIPs and NLPs.

Table 7.2.: rens as primal heuristic inside SCIP (aggregated results), num-
bers of instances for which rens was called and succeeded at
least once

at root in tree
called found called found

MIP (of 160) 124 63 154 87
MIQCP (of 70) 45 31 60 42
MINLP (of 105) 45 9 99 39

Table 7.3.: rens as primal heuristic inside SCIP (aggregated results), com-
putational effort

No RENS Root RENS Tree RENS
test set Nodes Time Nodes Time Nodes Time

MIP: arithm.mean 1 446 078 2461.4 1 442 400 2427.0 1 443 404 2414.3
sh. geom.mean 11 248 377.2 10 390 366.3 10 346 365.8

MIQCP: arithm.mean 659 740 2872.3 677 123 2927.0 664 117 2888.6
sh. geom.mean 6 457 229.9 6 361 232.0 6 193 229.9

MINLP: arithm.mean 2 338 903 3274.5 2 324 208 3274.7 1 925 902 3168.7
sh. geom.mean 58 758 466.5 58 406 467.1 51 066 431.3

RENS as primal heuristic inside SCIP

Finally, we evaluate whether a reduced version of the full rens algorithm is
suited to serve as a primal heuristic applied inside a complete solver. Based on
the results from our first experiment, considering the running times and the
node numbers at which the rens subproblems find their optimal solutions,
we decided to use 50% as a threshold value for r1, the minimal fixing rate for
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integer variables, in this run. The minimal fixing rate for all variables r2 was
set to 25%. We used an absolute node limit nl1 of 5000 and computed the
stalling node limit nl2 as given in Section 7.3. Because of the long running
times, we refrained from using an NLP relaxation, although it might produce
better solutions. We always used the LP solution after cutting planes as a
starting solution.
For this experiment, interactions of different primal heuristics among each

other and with other solver components come into play. SCIP applies eleven
primal heuristics at the root node, in particular the rounding heuristics
against which we compared in the previous subsection. Of course, a primal
heuristic called prior to rens might already have found a solution which is
better than the optimal rounding, or in an extreme case, the solution process
might already terminate before rens is called. Further, any solution found
before rens is called might change the solution path. It might trigger vari-
able fixings by dual reductions, which lead to a different LP and hence to a
different initial situation for rens. Since rens is relatively time-consuming,
it is among the last heuristics that are performed. Only Undercover, see
Chapter 8, has a lower priority.
The results are shown in Tables B.13–B.15 in the appendix. We compare

SCIP without the rens heuristic (No RENS) against SCIP with rens applied
at most once at the root node (Root RENS) and SCIP with rens applied at
every tenth depth of the branch-and-bound tree (Tree RENS). Columns Nodes
and Time show the number of branch-and-bound nodes and the running time
SCIP needs to solve an instance to proven optimality. If a limit was hit, this
is indicated by the term limit in the time column and the node number at
which the solution process stopped is preceded by a ’>’-symbol. At the
bottom of the table, the arithmetic means and the shifted geometric means
of the number of branch-and-bound nodes and the running time are given.
A summary of the results is given in Tables 7.2 and 7.3. The Columns called

and found in Table 7.2 show for how many instances rens was called and
found a feasible solution, respectively. Table 7.3 depicts the arithmetic means
and the shifted geometric means of the number of branch-and-bound nodes
and the running time for each combination of the three different settings and
the three test sets.
First, let us consider the results for MIP, see Table B.13. Due to the a-

priori limits, rens was called at the root node for only 124 out of the 160
instances. Out of these, rens found a feasible solution in 63 cases, which
corresponds to a success rate of 50%, compared to 59% without any limits,
see above. We conclude that the quite strong node limits for the subproblem
do not lower the success rate much. In 61 cases, the solution found by rens
was the best solution found at the root node. Considering that there are ten
other primal heuristics applied at the root node, this appears to be a very
strong result. When rens was additionally used during search, it was called
on 154 instances, finding feasible solutions for 87 of them.
As is typical for primal heuristics, the impact on the overall performance
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is not huge. Nevertheless, we see that both versions, calling rens only at the
root and all over the tree, give slight decreases in the arithmetic and shifted
geometric means of the node numbers and the running time. Both versions
were about 3% faster and took 8% less nodes in shifted geometric mean.
For the time-outed instances, Root RENS and Tree RENS provided a better
primal bound than No RENS eight and nine times, respectively, whereas both
were inferior in two cases.
For the MIQCP test set, rens was called at the root for 45 out of 70

instances, finding a feasible solution in 31 cases. This was always the best
solution SCIP found at the root node. The overall performance was about
the same: the running time stayed constant for Tree RENS and was increased
by less than one percent for Root RENS, whereas the number of branch-and-
bound nodes was reduced by 7% and 2%, respectively. When rens is called
during search tree processing, there are four instances with a better primal
bound at timeout, once it was worse. For calling rens exclusively at the
root, this ratio was 2:0. Also, there is one instance, namely nuclear14a, for
which only Tree RENS provided a feasible solution.
For MINLP, the lower success rate for the root LPs with large ratios of

integral variables is confirmed by this experiment. For 45 out of 105 instances,
rens was called, but in only 9 cases it could improve the incumbent solution.
Interestingly, the version that calls rens during the tree performs really well.
There were 42 instances, for which rens could improve the incumbent at
least once during search, ghg_3veh being the front-runner with 27 improving
solutions in 44 calls of rens.
The overall performance reflects that situation. The Root RENS setting

shows the same behavior as No RENS, the running time is nearly equal on
average and in shifted geometric mean, the number of branch-and-bound
nodes goes down by one percent, there are hardly any instances for which
we see any change in performance. For Tree RENS, however, the shifted geo-
metric mean of the running time and the number of branch-and-bound nodes
goes down by 8% and 13%, respectively. One might argue that this is mainly
because of enpro48pb and fo8_ar4_1 which show a dramatic improvement
in performance. But even if we excluded these two instances (and for fairness
reasons also enpro48 and enpro56pb, two outliers in the opposite direction),
the mean performance gain is 3% for running time and 8% for number of
branch-and-bound nodes.
We further performed a variant of the Wilcoxon signed rank test [Wil45]

(see also Section 11.1) to analyze the statistical significance of the results,
using the Stats package of the SciPy project [JOP+ ]. We ranked the results
by the running time factors per instance and calculated one rank sum from
the improving instances and one from those which showed a degradation.
Instances that showed no or hardly any performance difference (less than
one second or less than 1%) were excluded. As null hypothesis, we assume
that a version of SCIP using rens at the root or throughout the tree does
perform equally w.r.t. running time as SCIP without rens. For the mmm
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test set, the null hypothesis gets rejected with a p-value of 0.0236 (for Root
RENS) and 0.0178 (for Tree RENS) which is below the standard threshold of
0.05 used as level of significance. Not surprisingly, the results for MIQCP
indicate that there are no performance differences for this test set: the p-
values are 0.6465 and 0.8753 for Root RENS and for Tree RENS, respectively.
For MINLP, p-values of 0.3980 and 0.2862 are achieved. Although failing to
reject the null hypothesis when a standard threshold is applied, at least the
latter could be taken as an indicator that it is more likely that the results
are not simply acquired by chance.
Altogether, these experiments show that rens, in particular for MIP and

MIQCP, helps to improve the primal bound at the root node, and hence
the initial gap, before the branch-and-bound search starts. Applying rens
exclusively at the root node had a neutral to slightly positive effect on the
overall performance, while giving a user the advantage of finding good solu-
tions early. Applying rens throughout the search was at least as good for all
three test sets and showed a nice improvement in the case of MINLP – which
was partly due to two outliers. Consequently, rens is used in the default
settings of SCIP.

7.6. Conclusion

In this chapter, we introduced rens, a large neighborhood search algorithm
that, given a MIP or an MINLP, solves a subproblem whose solution space
is the set of feasible roundings of a relaxation solution. We demonstrated
that most MIP, MIQCP, and MINLP instances have roundable LP and NLP
optima and that in most cases, the optimal roundings can be computed
efficiently. Surprisingly, the roundability seems not to be related to the frac-
tionality of the starting solution. Knowing the optimal roundings provides us
with a benchmark for rounding heuristics; we discovered that the rounding
heuristics implemented in SCIP, see Chapter 4, often fail in finding a feasible
solution, even though the provided starting point is roundable. They rarely
find the optimal rounding.
We further investigated the impact of a reduced version of rens if applied

as a primal heuristic inside a complete solver. We showed that rens directly
helps to improve the primal bound known at the root node for 38% of the
MIP problems and 44% of the MIQCP problems in the test sets. For MINLP,
a version of SCIP that applies rens frequently during search gave an im-
provement of 8% in running time. The impact on the overall performance is
minor but measurable, which is typical for primal heuristics.
Since version 0.90, a first version of rens for MIPs [Ber06] has been part of

the SCIP standard distribution and has ever since been employed by default.
It constituted one of the first contributions that the author of this thesis made
to the SCIP project. For the SCIP release 2.0.0, we added the capabilities to
apply rens to MIQCPs; SCIP 2.1.0 was the first version featuring solution
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techniques for general MINLPs, including rens for nonlinear problems. The
implementation presented in this chapter is identical to the one released with
SCIP 3.0.0 and can be accessed in source code at [Sci]. Furthermore, versions
of rens have been recently integrated into Bonmin [Bon] and cbc [Cbc];
Cplex29 and Gurobi feature similar heuristics [Ach, Bix].

29In Cplex, the heuristic is called Intinfeas and can be activated by using hidden param-
eters.





8. Undercover

In this chapter, we introduce Undercover, a primal LNS heuristic that ex-
plores a mixed integer linear subproblem of a given MINLP. This sub-MIP
is constructed by fixing a minimal set of variables that suffices to linearize
all nonlinear constraints. Although general in nature, the heuristic appears
most promising for MIQCPs.
Most of this chapter results from joint work with Ambros M. Gleixner

and has been published in the proceedings of the EWMINLP 2010 [BG10]
and in Mathematical Programming A [BG14]. In [BGKV12], Bley, Gleixner,
Koch, and Vigerske analyzed the performance of different solution techniques
for open pit mine production scheduling problems and showed that general
purpose MINLP solvers often are competitive to handcrafted algorithms.
Their model involves nonconvex bilinear mixing constraints apt ost−1 = ast−1o

p
t

for nonnegative continuous variable vectors ap, as, op and os which determine
the amount of metal on the stockpile, of metal sent from the stockpile, of ore
on the stockpile, and of ore sent from the stockpile, respectively, for each time
period t. For this particular problem, fixing either the a or the o variables to
values from a feasible solution of the NLP relaxation will always result in a
feasible linear subproblem.
Motivated by the experiments shown in [BGKV12], Gleixner suggested

a way to generalize this covering structure to generic MINLPs, see Sec-
tion 8.3, and together we designed a primal heuristic that explores covers
of an MINLP. The result of this joint research is presented in this chapter.
It is organized as follows. In Section 8.1, we give a brief introduction and

explain how the Undercover idea differs from other MINLP heuristics. Sec-
tion 8.2 introduces a first generic version of the Undercover algorithm. In
Section 8.3, we describe how to find variables to fix such that the resulting
subproblem is linear. Section 8.4 explains how to extract useful information,
even if the sub-MIP proves to be infeasible. Finally, Section 8.6 provides com-
putational results that show the effectiveness of Undercover. In Section 8.7,
we briefly discuss further variants of the Undercover heuristic that we have
experimented with, and Section 8.8 presents concluding remarks.

8.1. Introduction
Undercover is a large neighborhood search start heuristic that explores a
sub-MIP of a given MINLP. Therefore, it solves a vertex covering problem
to identify a smallest set of variables to fix, a so-called cover, such that each
nonlinear constraint becomes linear in the remaining variables. Subsequently,

117
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these variables are fixed to values obtained from a reference point, e.g., an
optimal solution of a linear relaxation. As typical for LNS heuristics, see
Chapter 6, each feasible solution of the sub-MIP corresponds to a feasible
solution of the original MINLP.
Naturally, fixing variables to values obtained from a relaxation might ren-

der the MINLP infeasible, cf. Chapter 7. We apply domain propagation to
try to avoid infeasibilities, and conflict analysis to learn additional constraints
from infeasibilities that are nonetheless encountered.
During the design of Undercover, our focus was its application as a start

heuristic inside a global MINLP solver such as baron [Sah96, TS04], Bon-
min [BBC+08], Couenne [BLL+09], Antigone [MF14], minotaur [Mio],
or SCIP.
Two major features distinguish Undercover from other primal heuristics

for MINLP that have been suggested in the literature. Firstly, unlike most
of them [BHPV11, BCLM09, BG12, DFLL12, NBL08], Undercover is not an
extension of an existing MIP heuristic towards a broader class of problems.
Moreover, it does not even have a clear counterpart in mixed integer linear
programming. Secondly, Undercover solves two auxiliary MIPs (one for find-
ing a set of variables to be fixed plus the resulting sub-MIP), and at most two
NLPs (possibly one to compute initial fixing values and one for postprocess-
ing the sub-MIP solution). In contrast to Undercover, most large neighbor-
hood search heuristics [BCLM09, DFLL12, LNM10, LMN11, NB12, NBL08]
for MINLP solve an arbitrarily large series of MIPs, often alternated with
a sequence of NLPs, to produce a feasible start solution. The number of
iterations is typically not fixed, but depends on the instance at hand.
For this chapter, we assume w.l.o.g. that li < ui holds for all i ∈ N in Defi-

nition 2.1, i.e., that the interior of the variable domain box [l,u] is nonempty.
This assumption is valid since fixed variables can always be eliminated and
replaced by a constant term.

8.2. A generic algorithm

The paradigm of fixing a subset of the variables of a given mixed integer
program in order to obtain subproblems that are easier to solve has proven
successful in many primal MIP heuristics, see Chapters 6, 7, and [DRP04,
Gho07, Ber14]. The core difficulty in MIP solving is the presence of integrality
constraints. Thus, in a MIP context, “easy to solve” usually means that there
are few integer variables.
Actually, integrality is a special case of nonconvex nonlinearity, since it is

possible to model the integrality of a bounded integer variable xi ∈ {li, . . . ,ui}
by the nonconvex polynomial constraint (xi−ui)(xi−ui+1) · · · (xi− li) = 0.
This insight matches the practical experience that in MINLP, while integral-
ities do contribute to the complexity of the problem, the specific difficulty is
the presence of nonlinearities. Hence, “easy” in an MINLP context can be
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understood as having few nonlinear constraints.
Our heuristic is based on the simple observation that by fixing certain vari-

ables (to some value within their bounds) any given mixed integer nonlinear
program can be reduced to a mixed integer linear subproblem (sub-MIP). Ev-
ery feasible solution of this sub-MIP is then a feasible solution of the original
MINLP.
Whereas in general it holds that many or even all of the variables might

need to be fixed in order to arrive at a linear subproblem, our approach is
motivated by the experience that for several practically relevant MINLPs,
fixing only a comparatively small subset of the variables suffices to obtain a
sub-MIP. The computational effort of solving this subproblem compared to
solving the original problem, however, is usually greatly reduced since we can
apply the full strength of state-of-the-art MIP solving. Before formulating a
first generic algorithm for our heuristic, consider the following definition.

Definition 8.1. Let P be an MINLP of form (2.1) and C ⊆ N be a set of
variable indices of P . We call C a cover of function gk, k ∈ M, if and only
if for all x̄ ∈ [l,u] the set

{(x, gk(x)) : x ∈ [l,u],xi = x̄i for all i ∈ C} (8.1)

is an affine set intersected with [l,u]×R. We call C a cover of P if and only
if C is a cover of all constraint functions g1, . . . , gm.

Trivial examples of covers are the set of all variables or the set of all
variables appearing in nonlinear terms. Many instances of practical interest,
however, allow for significantly smaller covers, as we will show in Section 8.6.
Note that Definition 8.1 refers to the functions gk in the problem formula-

tion and not to the feasible set of an MINLP directly. It does not exploit, for
example, that some of the functions might be redundant. This is motivated
by taking the perspective of a solver, which initially obtains a problem as a
list of individual constraints, and is a common practice in MINLP. Compare,
for instance, how a convex MINLP is typically understood as all gk being
convex rather than the feasible region being convex because only the first
ensures the general validity of gradient cuts.
The following example illustrates how covers of an MINLP are used to

construct a sub-MIP for finding feasible solutions.

Example 8.2 (the Undercover sub-MIP). Consider the following convex
MIQCP:

min − x2 − x3

s.t. x1 + x2 + x2
3 − 4 6 0,

x1,x2,x3 > 0,
x1,x2 ∈ Z.

(8.2)

The only variable that appears in a nonlinear term is x3, hence {3} is a
(smallest) cover of (8.2) w.r.t. the above definition. The (unique) optimal
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A
B

C

Figure 8.1.: A convex MIQCP and the Undercover sub-MIP induced by the
NLP relaxation.

solution of its nonlinear relaxation is (0, 3.75, 0.5) with objective function
value −4.25.
Taking that relaxation, the idea of Undercover is to fix x3 to 0.5, which

renders (8.2) an integer linear program. The (unique) optimal solution of
this is (0, 3, 0.5) with an objective function value of −3.5, which is necessarily
a feasible solution for the MIQCP (8.2). Taking the NLP as dual and the
Undercover solution as primal bound, this gives an optimality gap of roughly
20%. The actual (unique) optimal solution of (8.2) is (0, 4, 0).
This example is illustrated in Figure 8.1. The lightly shaded region shows

the solid corresponding to the NLP relaxation; the parallel lines show the
mixed integer set of feasible solutions of (8.2). The darkly shaded area shows
the polytope associated with the Undercover sub-MIP. The red point B is the
optimum of the NLP, the yellow point A is the optimum of the Undercover
sub-MIP, the light blue point C is the optimum of the MIQCP. The green
points indicate further feasible solutions of the Undercover sub-MIP.

A first generic algorithm for our heuristic is given in Figure 8.2. The crucial
step of the algorithm is found in line 4: finding a suitable cover of the given
MINLP. Section 8.3 elaborates on this aspect of the algorithm in detail.
To obtain suitable fixing values for the selected variables, an approximation

or relaxation of the original MINLP is used. For integer variables, the approx-
imate values are rounded. Most complete solvers for MINLP are based on
branch-and-bound [LD60]. If the heuristic is embedded within a branch-and-
bound solver, using its (linear or nonlinear) relaxation appears as a natural
choice for obtaining approximate variable values.
Large neighborhood search heuristics that rely on fixing variables typically

have to trade off between eliminating many variables in order to make the
sub-MIP tractable and leaving enough degrees of freedom such that the sub-
MIP is still feasible and contains good solutions. Often their implementation
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Figure 8.2.: Generic Undercover algorithm

Input : MINLP P as in (2.1)
Output: feasible solution x̃ (on success)

1 begin
2 compute a solution x̄ of an approximation or relaxation of P ;
3 round x̄i for i ∈ I;
4 determine a cover C of P ;
5 solve the sub-MIP of P given by fixing xi = x̄i for all i ∈ C;

inside a MIP solver demands that a sufficiently large percentage of variables
be fixed to arrive at an easy to solve sub-MIP, see Chapters 6, 7, and [Ber06,
Ber14, DRP04, Gho07].
For our heuristic, the situation is different since we do not aim to eliminate

integrality constraints, but nonlinearities. While it still holds that fixing
variables, even only few, results in a smaller search space, the main benefit
is that we arrive at a MIP.
In a nutshell: instead of solving an easier problem of the same class, we

solve a smaller problem of an easier class.
In order to linearize a given MINLP, in general we may be forced to fix

integer and continuous variables. The fixing of continuous variables, espe-
cially, in an MINLP can introduce a significant restriction, even rendering the
subproblem infeasible. Thus our heuristic will aim at fixing as few variables
as possible to obtain as large a linear subproblem as possible, through the
utilization of minimum covers.

8.3. Finding minimum covers
Minimum covers, i.e., minimal subsets of variables to fix in order to linearize
each constraint of an MINLP, can be computed by solving vertex cover-
ing problems. To show the connection between vertex covers and covers of
an MINLP, we consider the following definition, which is a generalization
of Hansen and Jaumard’s notion of a co-occurrence graph for quadratically
constrained quadratic programs [HJ92].
Definition 8.3 (co-occurrence graph). Let P be an MINLP of form (2.1)
with g1, . . . , gm twice continuously differentiable on the interior of [l,u]. We
call GP = (V ,E) the co-occurrence graph of P with node set VP = N given
by the variable indices of P and edge set

EP =
{
(i, j) | i, j ∈ V ,∃k ∈M : ∂2

∂xi∂xj
gk(x) 6≡ 0

}
,

i.e., an edge connects nodes i and j if and only if the Hessian matrix of some
constraint has a structurally nonzero entry (i, j).
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Note that Definition 8.3 relies on the standard assumption that the non-
linear functions involved are twice continuously differentiable, whereas this
is not required for Definition 8.1.

Remark 8.4. Since the Hessian of a twice continuously differentiable func-
tion is symmetric, GP is a well-defined, undirected graph. It may contain
loops, e.g., if square terms x2

i are present. Trivially, the co-occurrence graph
of a bilinear program is bipartite; the co-occurrence graph of a MIP is an
edge-free graph.

The Undercover algorithm rests on the observation that for an MINLP a
set C ⊆ N is a cover of P if and only if it is a vertex cover of the co-occurrence
graph GP .
Note that any undirected graph G = (V ,E) is the co-occurrence graph of

the QCP min{0 : xixj 6 0 for all (i, j) ∈ E}. Hence, the problem of comput-
ing a minimum vertex cover problem can be transformed to computing a min-
imum cover of an MINLP. Since minimum vertex cover is NP-hard [GJ79], it
follows directly that computing a minimum cover of an MINLP is NP-hard,
even when restricted to quadratic constraints.
Nevertheless, we aim at computing minimum covers exactly. To do so,

we decided to model the covering problem as a simple binary programming
formulation. For an MINLP of form (2.1), define auxiliary binary variables
αi, i ∈ N , equal to 1 if and only if the original variable xi is fixed. Then

C(α) := {i ∈ N : αi = 1}

forms a cover of P if and only if αi + αj > 1 for all (i, j) ∈ EP . For an
MIQCP, for example, this requires all square terms and at least one variable
in each bilinear term to be fixed.

Definition 8.5 (covering problem). Let a general MINLP in form (2.1) with
co-occurrence graph (N ,EP ) and auxiliary variables αi, i ∈ N , be given. We
call the binary program

min
{ n∑
i=1

αi : αi + αj > 1 for all (i, j) ∈ EP ,α ∈ {0, 1}n
}

(8.3)

the covering problem of (2.1).

Problem (8.3) is solved by the Undercover algorithm to obtain a set of
fixing variables that yield as large a linear subproblem as possible.
In our experiments, the binary program (8.3) could always be solved by a

standard MIP solver within a fraction of a second. In all cases, optimality
was proven at the root node, hence without enumeration, despite the problem
being NP-hard in general, as argued above.
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8.4. Fix-and-propagate and conflict learning

Fixing a variable can have a great impact on the original problem and the
approximation we use. An important detail, that is crucial for the success
rate of Undercover, is not to fix the variables in the cover simultaneously, but
sequentially one by one. This section describes how we use domain propa-
gation, backtracking, and conflict analysis to avoid and handle infeasibilities
during this process.

Fix-and-propagate

The task of domain propagation is to analyze the structure of individual
constraints w.r.t. the current domains of the variables in order to infer ad-
ditional domain reductions, thereby tightening the search space. For an
overview of domain propagation techniques applied in MIP and MINLP
solvers, see [Ach09] and [Vig12], respectively. A brief summary of domain
propagation techniques for MIP is also given in Section 4.3.
To prevent obvious infeasibilities, we fix the variables in the cover one after

the other and apply domain propagation after each fixing in order to further
tighten the bounds, in particular those of the yet unfixed cover variables.
During this process, it might happen that the value a variable takes in the
reference solution is no longer contained in its reduced domain. In this case,
we fix the variable to the closest bound instead.30 This fix-and-propagate
procedure resembles a method described by Fischetti and Salvagnin [FS09].
Additionally, we apply it for continuous variables.
In the above scheme, the fixed values of variables depend on the fixing or-

der. Different variable orderings may lead to different propagations, thereby
to different subproblems and different solutions being found.
Of course, it might also happen that a variable domain becomes empty.

Then the subproblem with the currently chosen fixing values is proven to be
infeasible without even having started its solution procedure.
In this case, we apply a one-level backtracking, i.e., we undo the last bound

change and try alternative fixing values, see Section 8.5 for details. Note that
if we cannot resolve the infeasibility by one-level backtracking, Undercover
will terminate. This is a “fail fast” strategy (see Chapter 4.2): if we cannot
easily resolve the infeasibility, we abort at an early stage of the algorithm
without wasting running time.31
Even if fix-and-propagate runs into an infeasibility, we can extract useful

30Alternatively, we could recompute the reference solution to obtain values within the
current bounds.

31If we want to apply Undercover more aggressively, we can try to recover from infea-
sibility by reordering the fixing sequence, e.g., such that the variable for which the
fixing failed will be the first one in the reordered sequence. This is a simple version
of a restarting mechanism. Restarting techniques are commonly used in solving SAT
problems [MMZ+01].
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information for the global solution process. Adding so-called conflict con-
straints prevents us from reaching the same deadlock again.

Conflict analysis in MIP

Conflict learning is a technique that analyzes infeasible subproblems encoun-
tered during a branch-and-bound search. Whenever a subproblem is infea-
sible, conflict analysis can be used to learn one (or more) reasons for this
infeasibility. This gives rise to so called conflict constraints that can be ex-
ploited in the remainder of the search to prune other parts of the tree.
Carefully engineered conflict analysis has led to a substantial increase in the

size of problems modern SAT solvers can solve [MMZ+01]. It has recently
been generalized to MIP [Ach07a, Ach07b]. One main difference between
MIP and SAT solving in the context of conflict analysis is that the variables
of a MIP do not need to be of binary type. Achterberg [Ach07a] has shown
how the concept of a conflict graph can be extended to MIPs with general
integer and continuous variables.
The most successful SAT learning approaches use so-called first unique

implication point (1UIP) learning, which captures a conflict that is “close” to
the infeasibility and can infer new information. Solvers for MIP or MINLP
typically have a longer processing time per node compared to SAT or CP
solvers and they do not restart during search. As a consequence, the overhead
for further exploring the conflict graph is often negligible compared to the
potential savings. That is why MIP solvers with conflict learning such as
SCIP potentially generate several conflicts for each infeasibility. See also
Section 9.2 for a more detailed comparison of conflict analysis in CP and
MIP and a description of its implementation in SCIP.

Conflict analysis for Undercover

The fix-and-propagate strategy can be seen as a simulation of a depth-first
search in the branch-and-bound tree, applying one-level backtracking when a
fixing results in an infeasible subproblem. Hence, using conflict analysis for
these partially fixed, infeasible subproblems enables us to learn constraints
that are valid for the global search of the original MINLP. This is done by
building up the conflict graph that is implied by the variable fixings and the
propagated bound changes. Therefore, the reason for each propagation, i.e.,
the bounds of other variables that implied the domain reduction, needs to be
stored or reconstructed later on.
Note that the generated conflict constraints will not be limited to the vari-

ables in the cover since the conflict graph also contains all variables that have
changed their bounds due to domain propagation in the fix-and-propagate
procedure.
Valid constraints can be learned even after fix-and-propagate. If the sub-

sequent sub-MIP solution process proves infeasibility and all variables in the
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cover are integer, we may forbid the assignment made to the cover variables
for the global solution process. The same constraint can be learned if the
Undercover sub-MIP can be solved to proven optimality, since the search
space that is implied by these fixings has been fully explored. In both cases,
this is particularly useful for small covers.

8.5. The complete algorithm

This section outlines the details of the complete Undercover algorithm, see
Figure 8.3. In the first step, we construct the covering problem (8.3) by col-
lecting the edges of the co-occurrence graph, see Section 8.3. For constraints
of simple form such as quadratic ones, the sparsity pattern of the Hessian
matrix can be read directly from the description of the constraint function.
For general nonlinearities, we use algorithmic differentiation to automati-
cally compute the sparsity pattern of the Hessian (see, e.g., Griewank and
Walther [GW08]).
This assumes that the computational graphs of the constraint functions

are readily available and not given implicitly by an oracle. Furthermore, the
sparsity pattern computed by an algorithmic differentiation code depends
on the formulation of the function. Consider, for example, the linear ex-
pression x3 + 3x2 − (x + 1)3 for which an algorithmic differentiation code
might return unnecessary structural nonzeros in the Hessian. Therefore, the
constraint functions should be reformulated and simplified in advance. In
our implementation, this happens during the preprocessing phase of SCIP.
Although SCIP’s preprocessing does not explicitly take cover sizes into ac-
count, it helps to avoid simple cases of redundant variables in the cover. For
instance, it replaces square terms of binary variables by the binary variable
itself.
We solve the covering problem as a MIP. This is in the spirit of the MIP-

ping [FLS10] approach, that propagates to transfer crucial decisions during
the solution process to (partially) solving auxiliary MIPs. In our computa-
tional experiments, SCIP never took more than a fraction of a second to find
an optimal cover. Nevertheless, since the covering problem is NP-hard, solv-
ing it to optimality may be time-consuming, in general. To safeguard against
this, we only solve the root node and proceed with the best solution found.
This is valid since for covering problems SCIP will always find an incumbent
solution during root node processing: the Trivial and the 1-Opt heuristic
together serve as a greedy algorithm, see also Section 4.2. Subsequently, we
fix the variables in the computed cover as described in Section 8.4.32

32If we want to apply Undercover aggressively and allow for solving the covering problem
multiple times, the following two strategies can be used. First, during the fix-and-
propagate routine, variables outside the precomputed cover may be fixed simultaneously.
In this case, the fixing of some of the yet unfixed variables in the cover might become
redundant. Recomputing the cover with αi = 1 for all i with local bounds l̂i = ûi may
yield a smaller number of remaining variable fixings. Second, if no feasible fixings for
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Figure 8.3.: Complete Undercover algorithm

Input : MINLP as in (2.1), reference point x̄ ∈ [l,u],
ni > 0 alternative fixing values y∗i,1, . . . , y∗i,ni

∈ [li,ui] for all i ∈ N
Output : feasible solution x̃ (on success)
/* Step 1: create covering problem */

1 E ← ∅; /* edge set of co-occurrence graph */
2 foreach k ∈M do
3 Sk ← {i ∈ N : gk depends on xi}; /* variables in gk(x) 6 0 */
4 foreach i ∈ Sk do

5 if ∂2

∂x2
i

gk(x) 6≡ 0 then E ← E ∪ {(i, i)}; /* have to fix xi */

6 else

7 foreach j ∈ Sk, j > i, ∂2

∂xi∂xj
gk(x) 6≡ 0 do

8 E ← E ∪ {(i, j)}; /* have to fix xi or xj */

/* Step 2: solve covering problem (8.3) */
9 α∗ ← arg min

{∑n

i=1 αi : αi + αj > 1 for all (i, j) ∈ E,α ∈ {0, 1}n
}
;

10 C ← {i ∈ N : α∗i = 1};
/* Step 3: fix-and-propagate loop */

11 l̂← l, û← u; /* local bounds */
12 foreach i ∈ C do
13 l̂0 ← l̂, û0 ← û, p← 0; /* store bounds for backtracking */
14 X ← ∅, success← false; /* set of failed fixing values */
15 while ¬success and p 6 ni do
16 if p = 0 then Xi ← x̄i;
17 else Xi ← y∗i,p;
18 if i ∈ I then Xi ← [Xi]; /* round if variable integer */
19 Xi ← min{max{Xi, l̂i}, ûi}; /* project to bounds if outside */
20 if Xi ∈ X then
21 p← p+ 1; /* skip fixing values tried before */
22 else
23 l̂i ← Xi, ûi ← Xi; /* fix */
24 call domain propagation on [l̂, û]; /* propagate */
25 if [l̂, û] 6= ∅ then
26 success← true; /* accept fixing, go to next variable */
27 else
28 call conflict analysis;
29 l̂← l̂0, û← û0; /* infeasible: backtrack */
30 X ← X ∪ {Xi}, p← p+ 1; /* try next fixing value */

31 if ¬success then return; /* no feasible fixing found: terminate */

/* Step 4: solve sub-MIP */
32 solve sub-MIP min

{
cTx : gk(x) 6 0 for all k ∈M, x ∈ [l̂, û], xi ∈ Z for all i ∈ I

}
;

33 if sub-MIP solved to optimality or proven infeasible and C ⊆ I then
34 add conflict constraint

∨
i∈C(xi 6= Xi) to original problem;

/* Step 5: solve sub-NLP */
35 if feasible sub-MIP solution found then
36 x̃← best sub-MIP solution;
37 if sub-MIP not solved to optimality or C 6⊆ I then

/* restore global bounds, fix integers, solve locally */
38 solve min

{
cTx : gk(x) 6 0 for all k ∈M, x ∈ [l,u], xi = x̃i for all i ∈ I

}
;

39 x̃← sub-NLP solution; /* update sub-MIP solution */

40 return x̃;
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As motivated in the beginning of this chapter, we designed Undercover to
be applied within a complete solver. During fix-and-propagate, we call two
routines provided by the solver: domain propagation in line 24 and conflict
analysis in line 28. If the former detects infeasibility, we call the latter to
learn conflict constraints for the global solution process, see Section 8.4.
If domain propagation detects infeasibility after fixing variable xi, i ∈ C,

to the (rounded and projected) value Xi in the reference solution, we try to
recover by one-level backtracking. The following alternatives will be tried:
for binary variables the value 1−Xi; for nonbinary variables the lower bound
li and, if this is also infeasible, the upper bound ui. In the case of infinite
bounds, li and ui are replaced by Xi − |Xi| and Xi + |Xi|, respectively. If
Xi = 0, then −1 and +1 will be used instead. Of course, if fixing values
accidentally coincide, each value is tested only once.
Typically, the sub-MIP solved in the next step incurs the highest com-

putational effort and is controlled by work limits on the number of nodes,
LP iterations, etc. (see Section 8.6 for details). Since by construction the
sub-MIP should be significantly easier than the original MINLP, we expect
that it can often be solved to optimality or proven infeasible. As described in
Section 8.4, we may then forbid the assignment of fixing values to the cover
variables if the latter are all integer, as stated in line 34. Note that the two
learning steps described in lines 28 and 34 are only relevant for the overall
solution process of the complete solver within which Undercover is called.
They do not alter the behavior of the Undercover algorithm itself.
If Undercover finds a feasible sub-MIP solution x̃, we try to improve it

further by fixing all integer variables to their values in x̃ and solving the
resulting NLP to local optimality. Clearly, if all cover variables are integer
and x̃ is optimal for the sub-MIP, this step can be skipped. Otherwise, we
reoptimize over the continuous variables in the cover and may obtain a better
objective value.
For several design decisions, we considered different alternatives which have

been ruled out in preliminary experiments. We tried using alternative objec-
tives for the covering problem, an NLP solution instead of an LP solution for
the fixing values, different variable orders in the fix-and-propagate loop, and
so on. Details can be found in Section 8.7. These variants either altered the
performance only slightly or they were inferior in the sense that they failed
on a significant number of instances for which the default settings succeeded
but did not typically succeed on any instance for which the default failed.
All these choices have been made user parameters of SCIP.
Note that at most four optimization problems have to be solved for running

the algorithm given in Figure 8.3: one for computing the reference solution
x̄ as input, one for solving the covering problem in line 10, one for solving

the cover variables in C are found, we can solve the covering problem again with an
additional cutoff constraint

∑
i∈C(1− αi) +

∑
i 6∈C αi > 1 and try once more. However,

both techniques appear to be computationally too expensive for the standard setting
that we explored in our computational experiments.
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the sub-MIP in line 32 and possibly one for polishing the solution by solving
a sub-NLP in line 38.

8.6. Computational experiments

This section describes the experimental setup and computational results for
using Undercover as a root node start heuristic. We conducted these exper-
iments on two test sets of MIQCPs and MINLPs which have been compiled
from publicly available libraries.
We implemented the algorithm given in Figure 8.3 within SCIP and used

SCIP’s LP solution as reference point x̄. To perform the fix-and-propagate
procedure, we called the standard domain propagation engine of SCIP. Sec-
ondary SCIP instances were used to solve both the covering problem (8.3)
and the Undercover sub-MIP.

Experimental setup

The goal of our computational experiments was to analyze the performance
of Undercover as a start heuristic for MINLPs, applied at the root node.
To this end, we benchmarked against state-of-the-art solvers and measured
its impact on the overall performance of an MINLP solver. We evaluated
the sizes of the actual covers found, the success rate of Undercover, and the
distribution of running time among different components of the algorithm.
We controlled the computational effort for solving the sub-MIP in two

ways. First, we imposed a hard limit of 500 nodes and a dynamic stall node
limit between 1 and 500 nodes. With a stall node limit, we terminate if no
improving solutions are found within a certain number of branch-and-bound
nodes since the discovery of the current incumbent. Second, we adjusted the
SCIP settings to find feasible solutions fast: we disabled time-consuming
presolving techniques and used the “primal heuristics emphasis aggressive”
and the “emphasis feasibility” settings. Furthermore, if the sub-MIP is infea-
sible, this is often detected already when solving the root relaxation, hence
we deactivated expensive pre-root heuristics so as to not lose time on such in-
stances. Components using sub-MIPs themselves are switched off altogether.
For details, please refer to the source code at [Sci].
We performed two main experiments to evaluate the Undercover algorithm.

In order to investigate how Undercover can enhance the root node perfor-
mance of complete solvers, we compare UC with the root heuristics of four
different MINLP solvers. SCIP, for instance, applies eleven primal heuristics
at the root node: three rounding heuristics, three propagation heuristics, a
trivial one, a feasibility pump, a local search, a repair heuristic and an im-
provement heuristic. Our second experiment measures the impact of using
Undercover as a subroutine inside a complete solver on the overall perfor-
mance.
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In our first experiment, we ran SCIP with all heuristics other than Un-
dercover switched off and cut generation deactivated. We used SCIP 2.1.1
with Cplex 12.3 [IBM] as LP solver, Ipopt 3.10 [WB06] as NLP solver for
the postprocessing, and CppAD 20100101.4 [Cpp] as expression interpreter
for evaluating general nonlinear constraints. We refer to this Undercover
standalone configuration as UC.

We tested against three state-of-the-art solvers for nonconvex MINLPs:
baron 9.3.1 [Sah96, TS04], Couenne 0.3 [BLL+09], and SCIP 2.1.1 with
Undercover disabled. Additionally, we included Bonmin 1.6 [Bon], which is
a solver for convex MINLP, but can be used as a heuristic for nonconvex
problems. All solvers were run in their default configuration. In particular,
the algorithm “B-BB” was used for Bonmin. We compare the primal bound
obtained after the solution of the root node. Therefore, all solvers, including
UC, were started with a node limit of one. We further imposed a large time
limit of six hours to enforce termination and a memory limit of 8GB.

Our test set is based on the 172 MIQCPs from the test suite of Misener
and Floudas [MF13, Glo], a broad selection of publicly available MIQCP
and QCP instances. From this test set we removed all instances for which
we knew a-priori that Undercover would never be called. These were seven
very easy instances, mainly of the st_test type, that are solved by SCIP
presolving or the solution of the root LP, i.e., before Undercover would be
executed, and eleven instances that have an unbounded root LP, all of the
nuclear type. For the first experiment, we further excluded three of the
LeeCrudeOil instances for which Bonmin did not terminate within nine
hours (given a time limit of six hours). This left 147 instances.

We further tested Undercover on general MINLPs from MinlpLib, ex-
cluding those which are MIQCPs, linear after SCIP presolving, or contain
expressions that cannot be handled by SCIP, e.g., sin and cos. Addition-
ally, three more instances with unbounded root LP relaxation were removed,
leaving 110 instances. We used the same settings and solvers as described
above.

Our second experiment analyzes the impact of Undercover on the overall
solution process of a complete solver. Therefore, we ran SCIP in its default
settings, with and without Undercover, using a time limit of one hour and
a memory limit of 40GB. For this test, we included the three LeeCrudeOil
instances, and excluded ruiz_flowbased_pw4, for which SCIP terminates
with an error. This gives a test set of 149 instances.

The results were obtained on a cluster of 64bit Intel Xeon X5672 CPUs
at 3.20GHz with 12MB cache and 48GB main memory, running an open-
SUSE 11.4 with a gcc 4.5.1 compiler. Hyperthreading and Turboboost were
disabled. For the latter experiment, we ran only one job per node to avoid
random noise in the measured running time that might be caused by delays
if multiple processes share common resources, in particular the memory bus.
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Cover, Fix&Prop MIP NLP Misc

Figure 8.4.: Distribution of running time among different components of
Undercover heuristic.

Results for MIQCP

The results for the experiments on MIQCPs are shown in Table B.16 in
the appendix. In Columns % cov and % nlcov, we report the relative size
of the cover used by UC as a percentage of the total number of variables
and of the number of variables that appear in at least one nonlinear term,
respectively. A value of 100% in the % nlcov column means that the trivial
cover consisting of all variables appearing in nonlinear terms is the minimum
cover. For all other instances, the solution of the covering problem gives rise
to a smaller cover, hence a larger sub-MIP and potentially more solutions for
the MINLP. All numbers are calculated w.r.t. the numbers of variables after
preprocessing.
Column UC shows the objective value of the best solution found by Un-

dercover. For all other solvers, we provide the objective value of the best
solution found during root node processing.
The computational results for MIQCPs seem to confirm our expectation

that a low fixing rate often suffices to obtain a linear subproblem: 25 of
the instances in our test set allow a cover of at most 5% of the variables,
a further 40 instances of at most 10% and 46 instances of at most 25%.
Eighteen instances were in a medium range of 25% to 50%; for another 18,
a minimum cover contained more than half of the variables.

UC found a feasible solution for 76 test instances. Interestingly, it worked
similarly well with small and large covers. For 15 out of 25 instances with a
cover of at most 5% of the variables, UC found a solution, but also for 30
out of the 36 instances with a cover of at least 25%. In comparison, baron
found a feasible solution in 65 cases, Couenne in 55, SCIP and Bonmin in
98 each.
There were 32 instances for which UC found a better solution than baron,

20 for which it was better than SCIP, 36 for Couenne, and 32 for Bonmin.
We note that for six instances UC found the single best solution compared to
all other solvers and for 27 further instances it produced the same solution
quality as the best of the other solvers.
Out of 147 instances, the time for applying Undercover was less than 0.1

seconds in 131 cases, 14 times it was between 0.1 and 0.5 seconds; the two
outliers are waste (1.31 seconds) and Sarawak_Scenario81 (2.53 seconds).
Figure 8.4 shows the average distribution of running time for solving the
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covering problem, processing the fix-and-propagate loop, solving the sub-
MIP, polishing the solution with an NLP solver and for the remaining parts
such as allocating and freeing data structures, constructing the auxiliary
problems, computing conflict constraints, and so on. This average has been
taken over all instances for which Undercover found a feasible solution, hence
all main parts of the algorithm were executed. The major amount of time,
namely 65%, is spent in solving the sub-MIP. Solving the covering problem
plus performing fix-and-propagate took only about 3% of the actual running
time.
Although the polytope described by the constraints of BP (8.3) is not

integral, the covering problem could always be solved to optimality at the
root node by SCIP’s default heuristics and cutting plane algorithms. In 89
out of 147 cases, the minimum cover was nontrivial, with cover sizes of 8%
to 60% of the nonlinear variables.
We note that in 55 out of the 70 cases for which the resulting sub-MIP

was infeasible, the infeasibility was detected during the fix-and-propagate
stage and in ten of the remaining fifteen cases during root node processing
of the sub-MIP.33 Thus in most cases, no time was wasted trying to find a
solution for an infeasible subproblem, since the most time-consuming part
(see Figure 8.4) can be skipped. This confirms that Undercover follows a
“fast fail” strategy, a beneficial property of primal heuristics applied within
complete solvers, as argued in Chapter 4.2. Also, all except one feasible sub-
MIP could be solved to optimality within the imposed node limit of 500. This
indicates that – with a state-of-the-art MIP solver at hand – the generated
subproblems are indeed significantly easier than the full MIQCP, as can also
be seen when compared to the running times and the number of nodes in
Table B.17, see below.
For 31 out of 76 successful runs, all cover variables were integral. For the

remaining 35 instances, NLP postprocessing was applied; 21 times, it further
improved the Undercover solution.
Recall that an arbitrary point x̄ ∈ [l,u] can serve as a reference solution for

Undercover. A natural alternative to the LP solution is a (locally) optimal
solution of the NLP relaxation. An additional experiment showed that, using
an NLP solution, Undercover only succeeded in finding a feasible solution for
52 instances of the MIQCP test set, instead of 76. If both versions found a
solution, the quality of the one based on the NLP solution was better in 23
cases, worse in eleven. Our interpretation for the lower success rate is that
the advantage of the NLP solution, namely being feasible for all nonlinear
constraints, is dominated by the fact that an NLP solution typically has
a higher fractionality, which leads to a higher chance that infeasibility is
introduced in line 18 of the Undercover algorithm in Figure 8.3. We also
tried using an NLP relaxation for those eleven instances that were excluded
because of an unbounded root LP: in no case was a feasible solution found.

33For one instance, the feasibility status had not been decided within 500 nodes.
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Results for MINLP
As expected, Undercover is much less powerful for general MINLPs compared
to MIQCPs. UC produced feasible solutions for only six out of more than
a hundred test problems from MinlpLib: mbtd, nvs09, nvs20, stockcycle,
synthes1, and johnall. During root node processing, baron found feasi-
ble solutions for 39 instances, Couenne for 23, SCIP for 35. Although it
is clearly outperformed by the other solvers w.r.t. the number of solutions
found, we would like to mention that for each other solver there is at least
one instance for which UC succeeded, but the solver did not.
Nevertheless, the experiments showed that fixing a small fraction of the

variables would often have sufficed to obtain a linear subproblem: for 77 out
of the 110 test instances, the minimum cover contained at most 25% of the
variables, similar to the MIQCP case, but only five MINLPs allowed for a
cover size below 5%. The extreme values were 0.18% for mbtd and 96.97%
for nvs20.
Hence, compared to the MIQCP test set, cover sizes are on average larger

and very small covers occur rarely, but this alone does not explain the lower
success rate. It simply appears to be more difficult to find feasible fixing
values due to the higher complexity of the nonlinear constraints, even if we
use the solution of an NLP relaxation as the reference point x̄. Surprisingly,
Undercover produced feasible solutions for the two instances with the smallest
and the two instances with the largest minimum covers.

Undercover inside a complete solver
The previous experiments showed that for general MIQCP instances, Un-
dercover nicely complements the existing root node heuristics of baron,
Bonmin, Couenne and SCIP. The question remains as to whether this is
beneficial for the overall solution process.
For this experiment, interactions of different primal heuristics with each

other and with other solver components come into play. Obviously, a primal
heuristic called prior to Undercover might already have found a solution
which is better than the optimal solution of the Undercover sub-MIP, or in an
extreme case, the solution process might have terminated before Undercover
is called. Further, any solution found before Undercover is called might
change the solution path. It might trigger variable fixings by dual reductions,
which lead to a different LP and hence to a different initial situation for
Undercover. Because of this, Undercover might succeed for problems where
it failed in the first experiment and vice versa. Note that even in the case
of failure, Undercover might produce conflict clauses (see Section 8.4) and
thereby be beneficial for the overall solution process.
In this experiment, our main criteria for measuring performance are the

running time and the number of branch-and-bound nodes needed to prove
optimality. To average values over all instances of the test set, we use a the
shifted geometric mean, see Definition 2.12.
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Table 8.1.: Comparison of SCIP with and without Undercover (aggregated
results).

both solved (117) time > 10 s (31)

nodes time [s] nodes time [s]

SCIP − UC 702 10.8 21 097 98.2
SCIP + UC 610 9.4 15 619 74.5

shifted geom. mean −15% −15% −35% −32%

The results of running SCIP once with and once without Undercover are
shown in Table B.17 in the appendix, and a summary can be found in Ta-
ble 8.1. In Table B.17, Columns nodes and time [s] show the number of
branch-and-bound nodes and the running time SCIP needs to solve an in-
stance to proven optimality, pb root depicts the primal bound at the root
node. In Table 8.1, Columns nodes and time [s] refer to the shifted geometric
means taken over all instances in the test set.
Both versions of SCIP solved nearly the same set of instances within the

given time limit; there was only one instance, SLay10H, which needed more
than an hour when using SCIP with Undercover, but solved within 35 min-
utes and about 150 000 nodes otherwise. However, for those 117 instances
which could be solved by both variants, the SCIP version that included
Undercover needed 15% fewer nodes and 15% less running time in shifted
geometric mean. If we ignore very easy instances that both versions solved
in less than ten seconds, the improvement is even more significant: for the
31 instances which fall into this category, SCIP without Undercover is 32%
slower and needs 35% more nodes in shifted geometric mean.
Even though the running times for Undercover are moderate (see above)

for instances that solve within a fraction of a second, it sometimes consumes
a significant amount of the running time. However, when we consider the
33 problems that need between one and ten seconds of running time, on
average, Undercover only requires 1.5% of the overall running time; for the
58 instances that need more than ten seconds the ratio is 0.04%.

Further experiments

We experimented with the following extensions of Undercover: reordering the
fixing sequence if fix-and-propagate fails, see Footnote 31; re-solving the cov-
ering problem if the sub-MIP is infeasible, see Footnote 32; using a weighted
version of the covering problem, see Section 8.7. None of those performed
significantly better than our default strategy.
In a complete solver, primal heuristics are applied in concert, hence a fea-

sible solution may be already at hand when starting Undercover. In our
implementation, this is exploited in two ways. First, we use values from the
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incumbent solution as fixing alternatives during fix-and-propagate. Fixing
the variables to values in the incumbent has the advantage that the resulting
sub-MIP is guaranteed to be feasible, compare, e.g., Danna et al. [DRP04].
Second, we add a primal cutoff to the sub-MIP to only look for improving so-
lutions.34 On four instances of the MIQCP test set, SCIP 2.1.1 with default
heuristics including Undercover produced a primal solution that was signif-
icantly better than the best solution found by either SCIP or Undercover
alone; a worse solution was produced only for one instance.

8.7. Variants
We experimented with a few more variants of the Undercover heuristic. Some
of them proved beneficial for specific problem classes. For the standard set-
ting presented in our computational results, however, they showed no signif-
icant impact. As they might prove useful for future applications of Under-
cover, we will provide a brief description.
Our initial motivation for using a minimum cardinality cover was to mini-

mize the impact on the original MINLP. Instead of measuring the impact of
fixing variables uniformly, we could solve a weighted version of the covering
problem (8.3). To better reflect the problem structure, the objective coef-
ficients of the auxiliary variables αi could be computed from characteristics
of the original variables xi such as the domain size, variable type (integer or
continuous), or appearance in nonlinear terms or in constraints violated by
the reference solution.
Instead of fixing the variables in a cover, we could also merely reduce their

domains to a small neighborhood around the reference solution. Especially
for continuous variables this leaves more freedom for the exploration of the
subproblem and can lead to better solutions found. Of course, the difficulty
of solving the subproblem is increased. Nevertheless, small domains may
allow for s sufficiently tight relaxation for an MINLP solver to tackle the
subproblem.
The main idea of Undercover is to reduce the computational effort by

switching to a problem class that is easier to address. While we have focused
on exploring a linear subproblem, for nonconvex MINLPs, convex nonlinear
subproblems may provide a larger neighborhood to be searched and still be
sufficiently easy to solve.

8.8. Conclusion
In this chapter, we have introduced Undercover, a primal MINLP heuristic
exploring large linear subproblems induced by a minimum vertex cover. It
differs from other recently proposed MINLP heuristics in that it is neither
34A primal cutoff is an upper bound on the objective function that results in branch-and-

bound nodes with worse dual bound not being explored.
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an extension of an existing MIP heuristic, nor solves an entire sequence of
MIPs.
We defined the notion of a minimum cover of an MINLP and proved that it

can be computed by solving a vertex covering problem on the co-occurrence
graph induced by the sparsity patterns of the Hessians of the nonlinear con-
straint functions. Although NP-hard, covering problems were solved rapidly
in our experiments. Several extensions and algorithmic details have been
discussed.
Undercover exploits the fact that small covers correspond to large sub-

MIPs. We showed that the majority of MIQCPs from the GloMIQO test
set [Glo] and MINLPs from the MINLPLib [BDM03] allow for covers con-
sisting of at most 25% of the variables.
For MIQCPs, Undercover proved to be a fast start heuristic, that often

produces feasible solutions of reasonable quality. The computational results
indicate that it nicely complements existing root node heuristics in different
solvers.
We further showed that for MIQCPs, applying Undercover at the root

node significantly improved the overall performance of SCIP, in particular
for hard instances. Undercover is now one of the default heuristics applied
in SCIP.
A minimum cover of an MINLP is an abstract structure that can obviously

be studied and employed beyond the application that has been presented
here. In [BG13], Berthold and Gleixner present a branching strategy that
exploits minimum covers to drive the created subproblems towards linearity.





9. Rapid Learning

So far, we have been mainly concerned with primal heuristics, i.e., heuristic
methods that aim to find good feasible solutions. This chapter, however,
deals with a heuristic algorithm to rapidly learn valid conflict constraints for
a given mixed integer (linear) program.
Conflict learning is a technique that analyzes infeasible subproblems en-

countered during a tree search algorithm. Each subproblem can be identified
by its local variable bounds, i.e., by local bound changes that come from
branching decisions and domain propagation at the current node and its
ancestors. If domain propagation detects infeasibility, conflict learning will
traverse this chain of decisions and deductions in a reverse fashion, recon-
structing which bound changes led to which other bound changes, and will
thereby identify explanations for the infeasibility. If it can be shown that a
small subset of the bound changes suffices to prove infeasibility, a so-called
conflict constraint is generated that can be exploited in the remainder of the
search to prune parts of the tree.
In this chapter, we suggest a heuristic algorithm that searches for valid

conflict constraints rather than for primal solutions. Our approach is based
on the observation that a CP solver can typically perform a partial search on
a few hundred or thousand nodes in a fraction of the time that a MIP solver
needs for processing the root node. This is mainly due to the substantial
computational effort needed to solve the initial LP relaxation from scratch
(and partly due to LP resolves during cutting plane generation and strong
branching). The idea of our newly proposed heuristic is to apply a fast CP
branch-and-bound search for a few hundred or thousand nodes, generating
and collecting valid conflict constraints at the root node of a MIP solver.
By this, the MIP solver is already equipped with the valuable information
of which bound changes will lead to an infeasibility, and can avoid them by
propagating the derived constraints. We refer to this quick search for conflicts
as Rapid Learning.
This chapter is based on joint work with Peter J. Stuckey and Thibaut

Feydy which was conducted during a four month research stay of the author
as a NICTA Visiting Researcher at the University of Melbourne. A prelim-
inary version of Rapid Learning for binary programs has been published in
the proceedings of CPAIOR2010 [BFS10].
The remainder of this chapter is organized as follows: in Section 9.1, we

give a short introduction; in Section 9.2, we recap conflict analysis for mixed
integer programming. In Section 9.3, we describe the details of Rapid Learn-
ing and discuss its implementation. Section 9.4 provides computational ex-
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periments, and in Section 9.5 we give our conclusions.

9.1. Introduction

Conflict analysis techniques have been developed and furthered by the ar-
tificial intelligence research community [SS77] and, later, the SAT commu-
nity [MMZ+01]; they led to a substantial increase in the size of problems
modern SAT solvers can handle [MSS99, MMZ+01, ZMMM01]. The most
successful SAT learning approaches use so called one-level first unique im-
plication point (1-UIP) [ZMMM01] learning which in some sense captures
the conflict constraint “closest” to the infeasibility. Conflict analysis also is
successfully used in the CP community [JB00, KB05, OSC09] (who typically
refer to it as nogood learning) and the MIP world [Ach07a, DBS02, SS06].
Constraint programming and mixed integer programming are two comple-

mentary ways of tackling discrete optimization problems. Hybrid combina-
tions of the two approaches have been used for more than a decade [Ach07b,
ABE+02, AHY04, BK98, RWH99, YAH10]. As a notable example, the soft-
ware SCIP [Ach09], which is used for computational experiments throughout
this thesis (except Chapter 5), is based on the idea of constraint integer pro-
gramming (CIP) [Ach07b, ABKW08]. CIP is a generalization of MIP that
supports the notion of general constraints as in CP. SCIP itself follows the
idea of a very low-level integration of CP, SAT, MIP, and MINLP techniques.
All involved algorithms operate on a single search tree and share information
and statistics through global storage of, e.g., solutions, variable domains,
cuts, conflicts, the LP relaxation and so on. This allows for a very close
interaction amongst CP and MIP (and other) techniques.
The approach that we take in the present chapter, though implemented

within SCIP, is different. We split the search in two phases: an incomplete
CP search which feeds the global information storage and a subsequent MIP
search which starts from scratch (the tree created during the CP search will be
deleted), hopefully profiting from the information, in particular the conflict
constraints, that the rapid CP search gathered. The suggested algorithm is
most promising for pure BPs and IPs.

9.2. Conflict learning in MIP

Conflict learning has not played a role in the integer programming commu-
nity until recently (although see [DBS02]). MIP solvers used to rule out a
subproblem as soon as infeasibility is detected or bounding can be applied,
without caring for the reasons of infeasibility; some solvers still do so.
In 2007, Achterberg [Ach07a] generalized the SAT techniques for infeasi-

bility analysis to MIP. A key ingredient for this is a fast heuristic to derive
small conflict constraints from infeasible LPs by constructing a dual ray with
minimal nonzero elements. In [Ach07a], it is shown that conflict learning for
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general mixed integer problems can result in an average speedup of 10%.
Kılınc Karzan et al. [KKNS09] suggest restarting the MIP solver and using a
branching rule that selects variables which appear in small conflict constraints
for the second run. Achterberg and Berthold [AB09] propose a hybrid branch-
ing scheme that incorporates conflict-based SAT and impact-based CP style
search heuristics as dynamic tie-breakers. For branching strategies based on
conflict information, see also Chapter 10.2 of this thesis.
Conflict constraints can further be derived as “by-products” of primal

heuristics (see Section 8.4) when sub-MIPs or auxiliary LPs are solved that
only made deductions which would also be valid for the original MIP. The
remainder of this section shall serve as a brief review of how the analysis
of conflicts that have been detected by domain propagation works in SCIP.
We keep close to the description given in [Ach07a, Ach07b] and refer the
interested reader to these two references for detailed information.
There are two main differences between MIP and SAT solving in the con-

text of conflict analysis: In MIP, the problem variables are not necessarily
binary, and infeasibility is often detected by the LP relaxation rather than
by domain propagation. To deal with the first issue, we have to extend the
concept of the conflict graph. A conflict graph gets constructed whenever
infeasibility is detected in a local search node; it represents the logic of how
the set of branching decisions led to the detection of infeasibility.
More precisely, the conflict graph is a directed acyclic graph in which the

vertices35 represent bound changes of variables and the arcs (u, v) corre-
spond to bound changes implied by propagation, i.e., the bound change cor-
responding to v is based (besides others) on the bound change represented
by u. In general, a vertex will have multiple ingoing arcs which represent all
bound changes that have been used to propagate the corresponding bound
change. In addition to the inner vertices which represent the bound changes
from domain propagation, the graph features source vertices for the bound
changes that correspond to branching decisions and an artificial target vertex
representing the infeasibility. Then, each cut that separates the branching
decisions from the artificial infeasibility vertex gives rise to a valid conflict
constraint. A unique implication point (UIP) is an (inner) vertex of the con-
flict graph which is traversed by all paths from the branching vertices to the
conflict vertex. Or, how Zhang et al. [ZMMM01] describe it: “Intuitively,
a UIP is the single reason that implies the conflict at [the] current decision
level.” UIPs are natural candidates for finding small cuts in the conflict
graph.
For integer programs, conflict constraints can be expressed as so-called

bound disjunction constraints:

Definition 9.1. For an IP, let L ⊆ I,U ⊆ I be index sets of variables, let
λ ∈ ZL with li 6 λi 6 ui for all i ∈ L, and µ ∈ ZU with li 6 µi 6 ui for all
35For disambiguation, we will use the term vertex for elements of the conflict graph, as

opposed to nodes of the search tree.
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x2 ≥ 5

⇒ x1 = 0
x1 = 1

x1 = 1

Figure 9.1.: Conflict analysis helps to reduce the search tree. Assume that
the subproblem at the thick, red node was detected to be in-
feasible and the proof of infeasibility could be reduced to the
two decisions corresponding to the thick, red edges. Then,
(x2 ≤ 4) ∨ (x1 = 0) would be a valid conflict constraint (given
that x1 is binary and x2 general integer). It can be used to
deduce new variable bounds (left dotted arc) and prune nodes
that have been created beforehand and violate the conflict con-
straint (right dotted arc).

i ∈ U . Then, a constraint of the form

∨
i∈L

(xi ≥ λi) ∨∨
i∈U

(xi ≤ µi)

is called a bound disjunction constraint.

For details on bound disjunction constraints and for the case of continuous
variables, see Achterberg [Ach07a]. An graphical example on how conflict
constraints can help to reduce the size of the search tree is given in Figure 9.1.
As before-mentioned, the infeasibility of a subproblem in a MIP search

tree often has its reason in the LP relaxation of the subproblem. In this case,
there is no single conflict-detecting constraint as in SAT or CP solving. One
way of coping with this situation is to analyze the infeasibility certificate of
the LP, which is an unbounded ray in the dual LP. The goal is to identify a
subset of all bound changes that suffices to render the LP infeasible or bound-
exceeding. This is done by searching for a dual ray for which a large number
of coefficients that belong to variable bounds are zero. Intuitively, this means
that from all possible infeasibility certificates, one is chosen that is primarily
derived from problem constraints and requires only few local variable bounds.
In SCIP this is done by a greedy heuristic approach36, see [Ach07a]. Compare
also the generation of irreducible infeasible subsystems [GM91, APT03].
After having analyzed the LP, the algorithm works in the same fashion as

conflict analysis for SAT or CP: it constructs a conflict graph, chooses one or
36Here, we witness again the “omnipresence” of heuristic algorithms in MIP and MINLP

solver software: The generation of conflict constraints in SCIP is based on a heuristic
to adjust the dual ray.
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more cuts in this graph which are identified by UIPs, and produces a conflict
constraint which consists of the bound changes along the frontier of this cut.
However, the Rapid Learning procedure which we introduce in the remainder
of this chapter performs a CP-like search: it does not use the LP relaxation.
Thereby, all conflicts will be derived from infeasibilities detected by domain
propagation.
The power of conflict learning arises because often branch-and-bound based

algorithms implicitly repeat the same search in a slightly different context in
another part of the tree. Conflict constraints help to handle and exploit such
situations and avoid redundant work. As a consequence, the more search is
performed by a solver and the earlier conflicts are detected, the greater the
chance for conflict learning to be beneficial.
Although the conflict analysis methods of SAT, CP, and MIP approaches

are effectively the same, one should note that because of differences in the
amount of work per node each solver undertakes there are different design
tradeoffs in each implementation. A MIP solver will most likely spend more
time processing each node than a CP solver and much more compared to
a SAT solver. For that reason SAT and CP systems typically use 1-UIP
learning and frequent restarts to tackle problems, while this is not the case
for MIP. On the contrary, SCIP only restarts, if at all, at the root node, and
potentially generates several conflict constraints for each infeasibility, using
All-UIP [ZMMM01] by default (see [Ach07a]).

9.3. Rapid Learning for integer programs

The idea of Rapid Learning is based on the fact that a CP solver can typically
perform a partial search on a few hundred or thousand nodes in a fraction
of the time that an MIP solver needs for processing the root node of the
search tree. Rapid Learning applies a fast CP search37 for a few hundred or
thousand nodes, before starting the MIP search. By this, conflict constraints
can be gained beforehand, and not only during (the MIP) search. Very loosely
speaking: The aim of conflict learning is to avoid making mistakes a second
time, whereas Rapid Learning tries to avoid making them the first time.
Rapid Learning is related to the concept of large neighborhood search

heuristics, see Chapter 6. But rather than doing a partial search on a sub-
problem using the same (MIP search) algorithm, Rapid Learning performs
a partial search on the same problem using a much faster algorithm. Rapid
Learning also differs from most of the primal heuristics described in this thesis
in that it merely aims at improving the dual bound by collecting information
on infeasibility rather than searching for feasible solutions.
Each piece of information collected in a rapid CP search can be used to

guide the MIP search or even deduce further reductions during root node
37By CP search we mean that no LP relaxation is solved and that the tree is traversed in

a depth-first manner.
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processing. Since the CP solver is solving the same problem as the MIP
solver

. each generated conflict constraint is valid for the MIP search,

. each global bound change can be applied at the MIP root node,

. each feasible solution can be added to the MIP solver’s solution pool,

. the branching statistics can initialize a hybrid MIP branching rule, see
Chapter 10 and [AB09], and

. if the CP solver completely solves the problem, the MIP solver can
abort.

All five types of information are supposed to be beneficial for a MIP solver,
and are potentially generated by our algorithm which we now describe more
formally.
The Rapid Learning algorithm is outlined in Figure 9.2. Here, l(P̃ ) and

u(P̃ ) shall denote the local lower and upper bound vectors, respectively, of
a subproblem P̃ of an integer program P , the symbol C refers to a single
globally valid conflict constraint explaining the infeasibility of the current
subproblem. Rapid Learning is an incomplete CP search: a branch-and-
bound algorithm which traverses the search space in a depth-first manner
(Line 4), using domain propagation (Line 5) and conflict analysis (Line 8),
but no LP relaxation. Instead, the pseudo solution [Ach07b], i.e., an optimal
solution of a relaxation consisting only of the variable bounds (Line 6), is used
for the bounding step. Variable and value selection takes place in Line 14;
Inference Branching (see Chapter 10.2) is used as branching rule – for details
and the implementation of Inference Branching in SCIP, see the PhD theses
of Achterberg and Heinz [Ach07a, Hei]).
We assume that the domain propagation routines in Line 5 might also

deduce global bound changes and modify the global bound vectors l(P ) and
u(P ), and that single-clause conflicts are automatically upgraded to global
bound changes. Note that it suffices to check constraint feasibility in Line 11,
since the pseudo solution x̄ (see Line 6) will always take the value of one of
the (integral) bounds for each variable.
Our implementation of the Rapid Learning heuristic uses a secondary

SCIP instance to perform the CP search. Only a few parameters need to be
altered from their default values to turn SCIP into a CP solver, an overview
is given in Table 9.1. Most importantly, we disabled the LP relaxation and
use a pure depth-first search with Inference Branching (but without any ad-
ditional tie breakers). Further, we switch from All-UIP to 1-UIP in order
to generate only one conflict per infeasibility. Expensive feasibility checks
and propagation of the objective function as a constraint are also avoided.
We aim to generate short conflict constraints, since such are most likely to
frequently trigger propagations in the upcoming MIP search. Thus, we only



9.4. Computational results 143

Table 9.1.: Settings for Rapid Learning sub-SCIP.
parameter name value effect

lp/solvefreq -1 disable LP
conflict/fuiplevels 1 use 1-UIP
nodeselection/dfs/stdpriority INT_MAX/4 use DFS
branching/inference/useweightedsum FALSE pure inference, no VSIDS
constraints/disableenfops TRUE no extra checks
propagating/pseudoobj/freq -1 no objective propagation
conflict/maxvarsfac 0.05 only short conflicts
history/valuebased TRUE extensive branch. statistics

collect conflicts that contain at most 5% of the problem variables. Finally,
we adapt the collection of branching statistics such that history information
on general integer variables are collected per value in the domain rather than
having one counter for down- and one for up-branches regardless of the value
on which was branched. This can be essential for performing an efficient
CP search on general integer variables, see [Hei], and was a building block
that enabled us to use Rapid Learning on IPs rather than solely on BPs, as
in [BFS10]. In addition to the particular parameters listed in 9.1, we set the
emphasis38 for presolving to “fast”. For technical reasons of SCIP, Rapid
Learning has been implemented as a separator plugin.

9.4. Computational results
For our computational experiments, we used SCIP 3.0.1.4 compiled with So-
Plex 1.7.1 as underlying LP solver. The results were obtained on a cluster
of 64bit Intel Xeon X5672 CPUs at 3.20GHz with 12MB cache and 48GB
main memory, running an openSuse 12.3 with a gcc 4.7.2 compiler. Hyper-
threading and Turboboost were disabled. We ran only one job per node to
reduce random noise in the measured running time that might be caused by
delays if multiple processes share common resources, in particular the mem-
ory bus. We compared SCIP with default settings to a version of SCIP that
runs Rapid Learning once at the root node, after cutting plane separation.
We set a time limit of two hours.
For performing the Rapid Learning search in a CP-like fashion, we used

a secondary SCIP instance (see previous section). As node limit we used
max(500, min(niter , 5000)), with niter being the number of simplex iterations
used for solving the root LP in the main instance. We further aborted the
CP search prematurely if no information that potentially restricts the search
space (i.e., no nogoods, no bound changes, no primal solution) was gained
after 20% of the node limit.
38In SCIP, emphasis settings correspond to a group of individual parameters being

changed.
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We chose two different test sets of pure BPs and IPs; one of the test sets is
focused on optimization instances, the other on problems for which feasibility
is the driving factor. The first test set, which we call mmm-ip, consists of
all BP and IP instances from Miplib3.0 [BCMS98], Miplib2003 [AKM06],
and the benchmark set of Miplib2010 [KAA+11]. The second, feasibility-
focused, test set contains all BPs and IPs from the Infeasible and the Primal
set of Miplib2010; we refer to it as the Feasibility test set. These are
instances which are either known to be infeasible or for which the root dual
bound is equivalent to the optimal solution, i.e., the instance is solved as
soon as an optimal solution is found, the proof of optimality comes “for free”.
Both cases constitute complements of the “standard” MIP case that finding
a good feasible solution is much easier than proving optimality. Our hope
is that a nogood-based search that ignores the LP optimality bound will be
particularly helpful on these instances.
We excluded instances that had more than 10 000 variables or constraints

after SCIP’s default presolving (motivated by an additional experiment, see
below) or that were solved to optimality before Rapid Learning was called.
This leaves 71 instances in the mmm-ip test set and 32 in the Feasibility
test set.
Our computational experiments extend those in [BFS10] in several aspects.

Firstly, we used a newer SCIP version 3.0.1.4 compared to 1.2.0.5. In be-
tween these two versions, 33 new default plugins have been added to SCIP,
among them five new propagators. Secondly, we also give results for IPs
with general integer variables, whereas [BFS10] used Rapid Learning solely
for BPs. Third, we present results on a larger set of instances that we split
by their type (benchmark sets versus feasibility-driven IPs).
Tables B.18 and B.19 in the appendix compare the performance of SCIP

with and without Rapid Learning applied at the root node (Columns SCIP def
and SCIP RL). For both branching variants, Nodes and Time give the num-
ber of branch-and-bound nodes and the computation time needed to prove
optimality, the term limit in the Time column indicates that the time limit
of two hours was reached before proving optimality. The four Rapid Learning
columns provide detailed information on the performance of Rapid Learn-
ing. Time gives the running time of Rapid Learning, Ngds and Bds present
the number of applied nogoods and global bound changes, respectively, and a
checkmark in Column Sol indicates that a new incumbent solution was found.
Table 9.2 shows aggregated results. Columns Nodes and Time present

shifted geometric means for the number of branch-and-bound nodes and the
computation times, taken over all instances that could be solved to proven
optimality by both versions of SCIP. Column Solved shows how many in-
stances each of the versions could solve and Column Obj indicates for how
many of the unsolved instances either version provided a better primal bound
at termination. The three Columns Ngds, Bds, and Sol show for how many
of the instances in the test sets Rapid Learning learned valid nogoods, global
variable bound or a new incumbent solution, respectively.
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Table 9.2.: Summary of Rapid Learning results

Test Set/Param Nodes Time Solved Obj Ngds Bds Sol

MMM-IP
SCIP def 2444 66.4 58 2
SCIP RL 2226 66.1 59 4 40/71 8/71 12/71

Feasibility
SCIP def 3493 264.7 24 0
SCIP RL 2131 199.0 24 1 23/32 7/32 0/32

Note first that Rapid Learning is indeed rapid, there is only one instance
of the mmm-ip test set and six of the Feasibility test set, for which Rapid
Learning takes more than five seconds. Among those are only two instances,
neos-859770 and neos-957389, for which Rapid Learning consumes more
than 10% of the total running time; consequently, the overall performance
deteriorates in both cases. We observe a high variability in the results: in
both test sets, there are many instances for which the overall performance
improves, as well as several for which it deteriorates. Having a look at the
shifted geometric means, we see that for the optimality-focused mmm-ip test
set, Rapid Learning is performance neutral w.r.t. running time; for the Fea-
sibility test set, the running time improves by 25%. The number of nodes
decreases significantly in both cases: for the mmm-ip set, the SCIP version
with Rapid Learning needs only 91% of the nodes compared to SCIP de-
fault, for the Feasibility set, only 61% of the nodes are required. These
numbers are accompanied by the fact that SCIP with Rapid Learning can
solve one more instance to optimality and tends to give better primal bounds
at termination, see Table 9.2.
We performed an additional experiment to evaluate the performance of

Rapid Learning on large instances with more than 10 000 variables or con-
straints. For feasibility instances, it improved the average performance; this,
however, did not hold for large instances from the Miplibs. For the 21 pure
BPs and IPs with more than 10 000 variables or constraints, Rapid Learning
slowed down SCIP by 12% in shifted geometric mean, solving one instance
less. This led to the decision to introduce a parameter for the maximum
size of instances on which Rapid Learning should run (and thereby excluding
those instances from the test set, as stated above).
Learning nogoods constitutes the main contribution of Rapid Learning.

For more than half of the instances in either test set, nogoods are generated
and added to the original SCIP instance. In Tables B.18 and B.19 it can be
seen that if nogoods are generated, then there are typically plenty of them:
a few hundreds or thousands. As a comparison, global variable bounds are
only learned for 10% and 20% of the instances in mmm-ip and Feasibility,
respectively, and hardly ever more than 20 variable bounds improve. For all
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instances, branching statistics were learned for some variables. Interestingly,
there are twelve mmm-ip instances for which Rapid Learning found a new
incumbent solution, but none in the Feasibility test set. Despite the fact
that 40% of the Feasibility instances are infeasible, this indicates that for
the other 60%, finding good feasible solutions is indeed hard. Nevertheless,
excluding infeasible paths in the tree via nogoods seems to help the overall
search. Finally, unlike in [BFS10], there was no instance for which the Rapid
Learning CP search solved the problem to proven optimality. There were,
however, three instances for which the components presolver [GKM+13] of
SCIP solved some of its subproblems via Rapid Learning.
We conclude that Rapid Learning is particularly useful for instances in

which feasibility plays a major role, while not deteriorating (on average) the
performance for “standard” MIPs.

9.5. Conclusion
In this chapter, we introduced a heuristic algorithm that searches for valid
conflict constraints by performing a rapid, incomplete CP search at the root
node of a MIP solver. This can be seen as a new way to combine CP and IP
technologies into a single hybrid framework: a subsidiary CP solver performs
a quick, tentative “run-ahead” search on the (sub-)problem that the “master”
IP solver is about to explore, learning conflict constraints, variable bounds,
and branching statistics that help to guide the IP search. One way of future
research could be to perform truly parallel CP and IP searches, which con-
tinually communicate conflict constraints and bound changes amongst each
other.
So far, our computational experiments indicate that performing a CP

search for valid conflicts once at the root node is particularly beneficial for
infeasible instances and IPs for which the primal part of the search is the
hard one. On general Miplib instances, Rapid Learning performed neutral
w.r.t. running time while reducing the number of branch-and-bound nodes
by about 10%. We conclude that Rapid Learning extends the MIP solving
“bag of tricks” [Fou03] for two classes of problems that are often dismissed
as exceptional cases.
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Figure 9.2.: Rapid Learning algorithm

Input : IP P as in (2.3) (with R = ∅),
node limit limnode,
primal bound c for P (might be ∞)

Output: set of valid conflict constraints LC for P ,
valid global domain box [l,u] for P ,
feasible solution x̃ for P or ∅

1 L ← {P}, nnode ← 0, LC ← ∅, x̃← ∅;
2 while nnode < limnode do
3 if L = ∅ then goto line 17 ;
4 P̃ ← select_dfs(L), L ← L \ P̃ , nnode ← nnode + 1;
5 [l(P̃ ),u(P̃ )]← propagate([l(P̃ ),u(P̃ )]);
6 x̄← argmin{cTx | x ∈ [l(P̃ ),u(P̃ )]};

/* analyze infeasible subproblem, potentially store
globally valid conflict constraint */

7 if [l(P̃ ),u(P̃ )] = ∅ or c(x̄) ≥ c then
8 C ← analyze(P̃);
9 if C 6= ∅ then LC ← LC ∪ {C};

10 goto line 2;

/* check for new incumbent solution */
11 if Ax̄ 6 b and cT x̄ < c then
12 x̃← x̄, c← cT x̄;
13 goto line 2;

14 (xi, v)← select_infer(P̃ , x̄);
15 P̃l ← P̃ ∪ {xi 6 v}, P̃r ← P̃ ∪ {xi > v};
16 L ← L ∪ {P̃l, P̃r};
17 return (LC , [l(P ),u(P )], x̃);





10. Cloud Branching
After five chapters dedicated to primal heuristics and the previous chap-
ter on a heuristic algorithm for conflict learning, we now discuss branching
heuristics.39
Branch-and-bound methods for mixed integer linear programming are tra-

ditionally based on solving a linear programming relaxation and branching
on a variable which takes a fractional value in the (single) computed relax-
ation optimum. In this chapter, we study branching strategies for mixed
integer programs that exploit the knowledge of multiple alternative optimal
solutions of the current LP relaxation, a concept which we refer to as Cloud
Branching. These strategies naturally extend state-of-the-art methods like
Full Strong Branching [ABCC95], Pseudocost Branching [BGG+71, GR77],
and their hybrids.
We show that by exploiting dual degeneracy, and thus multiple alternative

optimal solutions, it is possible to enhance traditional methods. We present
computational results, applying the newly proposed strategy to Full Strong
Branching, which is known to result in small search tress [AKM05, Ach07b].
We observe that Cloud Branching yields search trees of similar size, but
reduces the mean running time by up to 30% on standard test sets.
The idea and implementation of Cloud Branching is joint work with Do-

menico Salvagnin from the Università degli Studi di Padova; most of this
chapter has been published in [BS13]. The description of Hybrid Branching
in Section 10.2 is based on [AB09].
This chapter is organized as follows. After a brief introduction in Sec-

tion 10.1, Section 10.2 gives an overview of existing branching strategies
from the literature. In Section 10.3 we discuss how to generate alternative
optimal solutions (a cloud of solutions), and in Section 10.4 we argue how to
exploit this information to enhance pseudocost-based branching strategies.
In Section 10.5 we give more details on the technique applied to Full Strong
Branching, while in Section 10.6 we report a computational evaluation of the
proposed method. Conclusions are finally drawn in Section 10.7.

10.1. Introduction
Good branching strategies are crucial for any branch-and-bound based MIP
solver (see, e.g., [AW13]). Unsurprisingly, the topic has been subject of con-
stant and active research since the very beginning of computational mixed
39The terms branching heuristic, branching strategy, and branching rule are used synony-

mously in the literature.
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integer programming, see, e.g., [BGG+71, GR77, FLRKS78]. We refer to
[LS99, AKM05, Ach07b] for comprehensive studies of branching strategies.
In mixed integer programming, the most common methodology for branch-

ing is to split the domain of a single variable into two disjoint intervals. For
binary variables this is equivalent to fixing the variable. The ultimate goal is
to find a dichotomy which reduces the computational complexity the most.
Since this is very hard to determine40, the rules for making branching deci-
sions are of a very heuristic nature. In constraint programming, the variable
and value selection are often referred to as “the heuristic”, emphasizing at the
same time that branching is the central component of a branch-and-bound
search and that this central component depends on somewhat arbitrary de-
cisions.
In this chapter, we will address the key problem of how to select such

a variable for an LP-based binary branching scheme. Let x̄ be an optimal
solution of the LP relaxation at the current node of the branch-and-bound
tree and let F = {j ∈ I : x̄j 6∈ Z} denote the set of fractional variables. A
general scheme for branching strategies consists of computing a score sj for
each fractional variable j ∈ F , and then choosing the variable with maximum
score for branching. Different branching rules then correspond to different
ways of computing this score.
The contribution of this chapter is twofold. First, we introduce for the

first time, to the best of our knowledge, a branching strategy that makes
use of multiple relaxation solutions and show how it can be naturally in-
tegrated into existing branching rules. Second, we evaluate one particular
implementation of it in the context of Full Strong Branching – the branching
rule commonly known to be most efficient w.r.t. the number of branch-and-
bound nodes [Ach07b, AKM06]. We demonstrate that it leads to significant
savings in computation time while not increasing the number of nodes.

10.2. Branching heuristics for MIP
This section gives an overview on branching strategies for mixed integer linear
programming that have been suggested in the literature. We concentrate on
the problem of selecting a branching dichotomy; for an introduction to node
and child selection rules see, e.g., Achterberg [Ach07b]. We further restrict
this literature overview to publications that address MIP in general and do
not consider customized branching rules for particular applications of MIP.
Section 10.2.1 is concerned with strategies that employ binary branching41 on
variables, mostly taking the LP relaxation into consideration. The filtering
algorithm which we introduce in Section 10.3 is also designed for branching
on variables. Section 10.2.2 discusses branching strategies that take into
40Liberatore [Lib00] proved that for SAT, it is NP-hard to decide whether branching on

a certain binary variable gives rise to a search tree with a minimum number of nodes.
41Branching with more than two children has been successfully used for special applications,

e.g., [BFM98], but is not commonly used for general MIP solving.
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account general (typically linear) disjunctions, a methodology that has been
widely discussed in recent literature. See Chapter 2.2 for a brief introduction
to the LP-based branch-and-bound algorithm.

10.2.1. Branching on variables

Branching on variables means to select a single unfixed variable xj , j ∈ I, and
to split the current problem into two subproblems based on the disjunction
xj ≤ α

∨
xj ≥ α+1 for some value lj ≤ α < uj . Typically, one chooses j ∈ F

and α = bx̄jc, with x̄ being an optimal solution of the LP relaxation.
A straight-forward idea for selecting the branching variable is Most Frac-

tional Branching, i.e., to branch on the variable xj whose fractional part
x̄j − bx̄jc is as close as possible to 0.5. However, this is known to perform
poorly in practice [BFG+00, Ach07b]. A much more computationally effec-
tive approach is to consider the impact of the branching decision on the dual
bounds (i.e., the objective of the relaxation) of the child nodes. Already in
one of the first papers that suggested to solve MIPs by branch-and-bound,
a branching rule was used that took into account the increase of the objec-
tive function when performing one dual simplex pivot after adding a bound
change [Dak65]. These values are known as Driebeek penalties, referring
to [Dri66]. This method was later refined by Tomlin [Tom71].
A more involved branching strategy is Pseudocost Branching [BGG+71,

GR77], which consists of keeping a history of how much the dual bound im-
proved when branching on a given variable in previous nodes, and then using
these statistics to estimate how the dual bound will improve when branching
on that variable at the current node. For technical details on Pseudocost
Branching, please see Section 10.4. Pseudocost Branching is computation-
ally cheap since no additional LPs need to be solved. It performs reasonably
well in practice [Ach07b]. Yet at the very beginning, when the most cru-
cial branching decisions are taken, there is no reliable historic information to
build upon.
An important of many branching rule is strong branching, which originated

from the TSP community [ABCC95, ABCC07]. The basic idea consists in
simulating branching on the variables in F and then choosing the actual
branching variable as the one that gave the best progress in the dual bound.
Put simply: strong branching computes the values which Pseudocost Branch-
ing estimates. Interestingly, this greedy local method empirically proves to
be the best variable-based branching rule w.r.t. the number of nodes of the
resulting branch-and-bound tree [Ach07b, AKM05], but it introduces a large
overhead in terms of computation time, since 2 · |F| auxiliary LPs need to be
solved at each node. Many techniques have been studied to speed up the com-
putational burden of strong branching, in particular by heuristically restrict-
ing the list of branching candidates and by imposing simplex iteration limits
on the strong branching LPs [LS99]. Implementations of strong branching in
MIP solvers will typically use a couple of such heuristic limits to accelerate
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the branching decision. For disambiguation, we refer to a branching rule that
solves all 2 · |F| strong branching LPs to optimality as Full Strong Branching.
Recent improvements for strong branching include the application of domain
propagation techniques to obtain better bounds [Gam14, Gam13] and neglec-
tion of inferior candidates during the strong branching process to speed up
the decision [FM12]. However, according to computational studies, a pure
strong branching rule is still too slow for practical purposes.
Already in 1977, Gauthier and Ribière [GR77] suggested a version of what

today would be called Pseudocost Branching with Strong Branching initial-
ization. Branching rules such as Reliability Branching [AKM05] or Hybrid
Branching [AB09] refine the idea of combining mechanisms from Pseudo-
cost Branching with strong branching. Reliability Branching performs strong
branching on a branching candidate whenever its pseudocost history is con-
sidered unreliable, i.e., whenever it has not been updated often enough.
Achterberg et al. [AKM05, Ach07b] suggest to use a threshold value of 8
updates, before considering a variable reliable, with a dynamic adjustment
of this threshold which depends on the number of simplex iterations needed
to solve the strong branching LPs. If those are cheap, the algorithm allows
for more strong branching calls before switching to pseudocosts.
For constraint satisfaction problems, where no objective function is avail-

able, one may better estimate the impact of a branching by taking the number
of implied reductions of other variable domains into account [LA97]. In anal-
ogy to the pseudocosts, we call the estimated numbers of implied reductions
the inference values of a variable.
In pure SAT solvers, learning short, valid conflict clauses from the analysis

of infeasible subproblems is one of the key ingredients [MSS99]. The vari-
able state independent decaying sum (VSIDS) [MMZ+01] branching strategy,
which is a common rule in SAT solving, prefers variables that have been used
to create recent conflict clauses. The idea to use the average lengths of the
conflict clauses in which a variable appears, for branching in MIP was sug-
gested by Kılınç Karzan et al. [KKNS09]. We call these the conflict lengths
of a variable.
Hybrid Branching was originally introduced by Achterberg [Ach07b] and

with some modifications published in [AB09]. It combines pseudocosts, in-
ference values, VSIDS and conflict lengths into a single variable selection
criterion which additionally includes a score based on the number of sub-
problems that could be pruned due to branching on this variable (the cutoff
values). Therefore, Hybrid Branching first normalizes all the five individ-
ual values by mapping them into the interval [0, 1). Afterwards, it takes a
weighted sum of them, putting a high weight on the pseudocosts, a medium
weight on the conflict values and lengths, and a low weight on the inference
and cutoff values. To the best of our knowledge, most MIP solvers currently
employ such a branching rule or other variants of Reliability Branching as
default branching rule.
For hard MIP problems, a few extensions of strong branching have been
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proposed. Glankwamdee and Linderoth [GL06] studied the impact of per-
forming a two-level strong branching on pairs of variables, and showed that
this often helps to save nodes but is performance-neutral time-wise when
compared to Full Strong Branching. Gilpin and Sandholm [GS11] suggested
a variant of strong branching, called Entropy Branching, in which they con-
sider the sum of (logarithms of) the fractionalities in the strong branching
subproblems to compute a branching score, rather than the change in the LP
objective. This brings us to the topic of criteria for variable-based branching
that are different from the objective gain.
The Active Constraint method of Patel and Chinneck [PC07] is based

on the impact of variables on those linear constraints which are fulfilled
with equality by the current LP solution. The computational experiments
of [PC07] concentrated on minimizing the computational effort needed to
find a first feasible solution; hence, this branching rule should also be con-
sidered in the context of diving heuristics, see Chapter 2.3. It is similar to
Vectorlength Diving [Ber06, Ber08], which uses the impact of a branching
decision on the activity of all linear constraints (not only the active ones).
From seven tested variants, the most successful ones in [PC07] were “Scheme
A”, which simply counts the number of active constraints, and “Scheme B”,
which totals up the inverse of the coefficient sums of all active constraints in
which a variable appears.
Pryor and Chinneck [PC11] study algorithms that make a joint selection

of the branching variable and its branching direction (i.e., the child selec-
tion), extending methods of Pesant and Quimper [PQ08] (see also [PQZ12])
for constraint programming. The central idea is to branch into a direction
where a constraint is very likely to become unsatisfiable, thereby either being
able to prune the resulting subtree quickly or triggering a huge amount of
propagations. Pryor and Chinneck further suggest a child selection strategy
that chooses the next node by the “most violating votes”, i.e., in our notation,
the sum of locks of active constraints into the direction of infeasibility. The
default child selection rule in SCIP combines the inference values (see above)
of a variable with the direction in which the LP values evolved since the root
node (see [Mar99]). In a comparison to the methods from [PC07], it turns out
that branching on active constraints is superior when there are only inequal-
ities in the MIP formulation; when equations are present, Probability-Based
Branching performs better. Again, the used measure is the time needed to
find a first feasible solution, which can be taken as a motivation to re-consider
the suggested methods in the context of diving heuristics.
Kılınç Karzan et al. [KKNS09] introduced a branching scheme that is

guided by the information gained from collecting valid conflict clauses. They
divide the branch-and-bound search in two phases, conducting a single restart
(see, e.g., [Ach07b] for restarts in MIP) after a certain number of nodes have
been fathomed. To obtain minimum cardinality conflict constraints from
pruned nodes, an auxiliary MIP is (partially) solved, as opposed to applying
a greedy heuristic approach that has been suggested in [Ach07a]. After the
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restart, the branching criterion is to select variables that appear in short con-
flict constraints to enforce an early pruning of nodes. The idea of performing
a partial search to gain information for the main branch-and-bound search
is similar to Rapid Learning, see Chapter 9 and [BFS10]; the idea of us-
ing the length of conflict clauses for variable selection has been incorporated
into Hybrid Branching, see above. In [KKNS09], improvements for medium
hard42 MBPs are reported. We performed a similar experiment by setting
the SCIP parameters “conflict/restartnum” to 200 and “conflict/restartfac”
to a large value. In a first shot, this yielded a neutral impact on the overall
performance, indicating that with some additional implementation and tun-
ing efforts, this one-time restarting mechanism might also prove beneficial
for SCIP.
Multiple restarts are applied for Backdoor Branching, which has been sug-

gested by Fischetti and Monaci [FM11]. The concept of backdoors comes
from artificial intelligence [WGS03] for solving SAT problems and refers to,
loosely speaking, a subset of the discrete variables which, once fixed to any
combination of values, enforces feasibility or infeasibility for the remaining
problem. In MIP context, this means that it is sufficient to branch on vari-
ables in a backdoor43, the integrality of the other discrete variables (or the
infeasibility of the relaxation) will be achieved implicitly, e.g., by propaga-
tion or because all optimal corner solutions of the remaining LP relaxation
will be integral. Dilkina et al. [DGM+09] have shown that many Miplib
instances have small backdoors (which are, however, hard to detect). Back-
door Branching aims at finding a good approximation of a backdoor. After
each restart, the approximated backdoor is computed by solving a set cover-
ing problem. Branching is exclusively performed on backdoor variables until
all of them are fixed. The idea of solving set covering models for finding
branching decisions that lead to structurally easier subproblems is related to
Undercover Branching for MINLP [BG13], cf. Chapter 8.

10.2.2. Branching on general disjunctions

All methods described so far considered branching on variables, i.e., branch-
ing on the simple disjunction xj ≤ bx̄jc

∨
xj ≥ dx̄je for some variable xj

with j ∈ F . Clearly, branching can also be performed on more general
disjunctions. An early application of branching on general disjunctions has
been presented by Ryan and Foster for solving scheduling problems [RF81].
Their Constraint Branching enforces a sum of binary decision variables to
be either zero or greater equal one. Another example is branching on spe-
cial ordered sets (SOSs) of variables, for which one SOS constraint gets split
into two SOSs of half the length [BT70]. The variable-based branching in
42Here: instances for which Cplex 11.1 needs more than one minute but less than two

hours to prove optimality.
43The backdoor definition used in [FM11] is called a strong backdoor to optimality

in [DGM+09].
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Figure 10.1.: An integer program for which branching on the general dis-
junction x2 − x1 ≥ 1∨x2 − x1 ≤ 0 is preferable to variable-
based branching.

Lenstra’s algorithm for integer programming in finite dimensions [LJ83] that
takes place after performing a basis transformation of Rn can be interpreted
as branching on general disjunctions w.r.t. the Cartesian basis. An overview
on recent developments for branching on constraints can be found in the PhD
thesis of Mahajan [Mah09].
A typical result when branching on general disjunctions in MIP, as we will

see below, is that the generated branching trees are smaller on average, but
the performance deteriorates or is neutral w.r.t. running time. One major
reason for this computational overhead is that branching on variables de-
creases the size of the LP relaxation for the subproblems by (at least) one
column per branching, whereas branching on general disjunctions potentially
increases the LP’s size by one row. Particularly, this means that the di-
mension of the LP basis increases, therefore the basis matrix will have to be
refactorized, causing additional computational overhead.
Most MIP literature for branching on general disjunctions considers so-

called split disjunctions [CKS90]:∑
i∈I

πixi ≤ π0
∨∑

i∈I
πixi ≥ π0 + 1 (10.1)

with πi ∈ Z for all i ∈ I∪{0}. This methodology is synonymously referred to
as branching on hyperplanes and branching on constraints. For an illustration
see Figure 10.1. The core question for using general disjunctions to solve
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MIPs is how to identify “good” disjunctions – and to find a suitable notion
of “good”.
Owen and Mehrotra [OM01] provide a disjunctive branch-and-bound proce-

dure and prove that their algorithm is finite, if all variables have finite bounds
and the size of the coefficients in the used disjunctions is bounded, i.e., there
is an M ∈ Z>0 such that in every branching step it holds that |πi| ≤ M
for all i. Their algorithm determines the branching disjunction via a neigh-
borhood search heuristic (compare Chapter 6) that aims at maximizing the
child nodes’ objective gains which are computed in a strong branching fash-
ion. Therefore, they restrict the search to coefficients πi ∈ {−1, 0, 1}. The
disjunction shown in Figure 10.1 falls into this category.
Karamanov and Cornuéjols [KC11] introduce a different heuristic algo-

rithm for selecting a branching disjunction. They consider the set of disjunc-
tions which correspond to Gomory mixed integer cuts (GMICs) [Gom60].
Therefore, they use that GMICs can be viewed as intersection cuts [Bal71]
which are derived from split disjunctions of type (10.1). They filter the
GMICs to only keep the ten deepest cuts, and apply a strong-branching-like44
procedure on the corresponding (at most) ten candidate disjunctions. In ex-
tensive computational experiments, the authors observe that their branching
rule produces smaller search trees on solved instances and a smaller opti-
mality gap on unsolved instance, with comparable running time when tested
against standard variable-based rules. An extension of [KC11] is proposed
by Cornuéjols et al. [CLN11] who not only consider GMICs on tableau rows,
but also on linear combinations of the tableau rows.
Mahajan and Ralphs [MR09] put the question of finding a good branch-

ing decision to the extreme. In their paper, they formulate the problems
of finding a disjunction (10.1) that maximizes the objective gain (here: the
minimum of the LP optima of the two child nodes) or minimizes the width
of the LP-polyhedron in direction π as a bilinear program or a mixed integer
program, respectively. The disjunction shown in Figure 10.1 is optimal w.r.t.
both criteria. The same team of authors proved that the problems of find-
ing a general disjunction with maximal objective gain or minimal width are
NP-hard [MR10], even when the integer variables are all binary and several
restrictions on the disjunction (10.1) are assumed. In particular, they prove
that NP-hardness still holds when demanding that all coefficients πi be in
{−1, 0, 1}, as Owen and Mehrotra did. Note that finding a variable disjunc-
tion that maximizes the objective gain can be achieved in polynomial time
by solving at most 2 · |F| LPs; this is what Full Strong Branching does.
Combining ideas from [OM01] and [PC07], Mahmoud and Chinneck [MC13]

choose a constraint that is active for the current LP optimum, and construct
a general disjunction with coefficients in {−1, 0, 1} that is as perpendicular
or as parallel as possible to the chosen active constraint. They showed that a

44That means, they tentatively add the candidate disjunctions to the LP, solve it and use
the dual bound change as a score to choose a branching dichotomy.
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combined branching strategy of branching on variables and constraints leads
to a reduction in the time to find a first feasible solution (and to better
solution qualities) on hard models.
Interdiction Branching for binary programs by Lodi et al. [LRRS11] is at

the borderline of variable-based and constraint-based branching. For a suit-
able subset {i1, . . . , in′} =: B′ ⊆ B, of the variables, it generates a branching
disjunction

xi1 = 1
∨
xi2 = 1

∨
· · ·
∨
xin′ = 1

∨∑
i∈B′

xi = 0. (10.2)

This is a (n′+1)-ary branching, of which in n′ children a variable is fixed and
only for one child n variables are fixed. A version of Interdiction Branching
that heuristically determines B′ to consist of variables that lead to improving
solutions could be successfully applied in [LRRS11] to solve knapsack and
stable set instances. The idea of Interdiction Branching is closely connected
to Orbital Branching [OLRS11] and Constraint Orbital Branching [OLRS08]
which are general branching frameworks for highly symmetric MIP problems.
Here, all variables from one orbit are considered to create a disjunction as
in (10.2).
Finally, Local Branching by Fischetti and Lodi [FL03] was originally pub-

lished as a strategy to interleave variable-based branching with branching on
general {−1, 0, 1}-disjunctions. These disjunctions measure the distance to
the incumbent solution. Nowadays, Local Branching is mainly used as a large
neighborhood search heuristic that explores the smaller of the two subtrees,
cf. Chapter 6.
Although branching on general disjunctions has been very successfully ap-

plied to solve some special cases of MIP45, it is not employed by default
by SCIP or Cplex [Ach] for MIP solving. Since version 7.0, Xpress has
used branching on split disjunctions for problems that feature general integer
variables [Per11].

A note on branching and heuristics

All the described procedures make branching decisions by heuristic criteria;
the impact on the tree size is never clear a priori. The main reason for
this is that for NP-complete problems, finding a branching that leads to a
minimal search tree is at least as hard as solving the underlying problem
(compare [Lib00]) itself, potentially even harder. In a recent study, Le Bodic
and Nemhauser show how the default branching rules of several state-of-the-
art MIP solvers can be tricked into producing humongous search trees for a
class of MIP problems where small search trees are easy to construct when
knowing the problem structure at hand [LBN14].
45Notably, hard market split problems have been solved by an algorithm that uses lattice

basis reductions to determine good branching directions [ABH+00]
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The relation between branching rules and heuristics, however, goes further
than just branching being a heuristic process. We saw several interconnec-
tions between branching and primal heuristics on the last few pages. The
branching rule of Owen and Mehrotra employs a local search heuristic to
greedily add variables to the branching disjunction. Local Branching [FL03]
has been originally designed as a branching rule and is merely used as primal
heuristic nowadays. The other way around, the notion of minimal covers of
MINLPs has been introduced in a primal heuristic context [BG14], but can
be used for efficient branching as well [BG13]. The publications of Chinneck
et al. [MC13, PC07, PC11] that focus on branching rules for finding a first
feasible solution can equally well be considered as contributions to diving
heuristics.
We conclude that there is an intersection, or rather a transition, between

the topics of primal heuristics and branching rules.

10.3. A cloud of solutions
All branching strategies described in the previous section are naturally de-
signed to deal with only one optimal fractional solution. History-based rules
use the statistics collected in the process to compute the score of a variable
starting from the current fractional solution. Even with strong branching,
the list of branching candidates is defined according to the current fractional
solution x̄.
However, LP relaxations of MIP instances are well-known for often being

massively degenerate [BFZ10, EMDS11]; multiple equivalent optimal solu-
tions are the rule rather than the exception. Thus branching rules that
consider only one optimal solution risk taking arbitrary branching decisions,
thereby contributing to performance variability, see [KAA+11]. In the fol-
lowing two sections we discuss the extension of some branching strategies to
exploit the knowledge of multiple optimal solutions of the current LP relax-
ations.
In order to extend standard branching strategies to deal with multiple LP

optima at the same time, we need to solve two problems:

1. How to generate efficiently multiple optimal solutions of the current LP
relaxation?

2. How to make use of the additional information provided by these solu-
tions?

The first problem can be effectively solved by restricting the search to the
optimal face of the LP relaxation polyhedron. On this face, an auxiliary ob-
jective function can be used to move to different bases. From a computational
point of view, fixing to the optimal face can be easily and safely implemented
by fixing all variables whose reduced costs are non-zero, using the reduced
costs associated to the starting optimal basis. As far as the choice of the
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Figure 10.2.: An IP with a primal (over-determined corner solutions) and
dual (multiple optimal solutions) degenerate LP relaxation.

second level objective function(s) is concerned, different strategies might be
used. One option is to try to minimize and maximize each variable which
is not yet fixed: this is what optimality-based bound tightening techniques
do (see, e.g., [ZG99, CL10]), with the additional constraint of staying on
the optimal face. Another option is to use a feasibility pump [FGL05] like
objective function (see also Chapter 5, in which the current LP point is
rounded and a Hamming distance function is generated to move to a differ-
ent point (more details will be given in the next section): this is related to
the PumpReduce procedure that Cplex performs to achieve more integral
LP optima [Ach10, Ach11]. Finally, a random objective function might be
used.
Suppose now that we have constructed, in one way or another, a cloud S =
{x̄1, . . . , x̄k} of alternative optimal solutions to the current LP relaxation. We
assume that the initial fractional solution x̄ ∈ S. Given S, we can define our
initial set of branching candidates F(S) as

F(S) = {j ∈ I | ∃x̄i ∈ S : x̄ij 6∈ Z},

i.e., F(S) contains all the variables that are fractional in at least one solution
of the cloud. For each variable in F(S) it is then possible to calculate its
cloud interval Ij = [lj ,uj ], where:

lj = min{x̄ij | x̄i ∈ S}

uj = max{x̄ij | x̄i ∈ S}

Given the cloud interval for each branching candidate, we partition the set
F(S) into three subsets, depending on the relative intersection between each
interval Ij and the branching interval Bj = [bx̄jc, dx̄je]. In particular, we
define:

F2 := {j ∈ F(S) | bx̄jc < lj ∧ uj < dx̄je}
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z = cTx

bx̄jc x̄j dx̄je

∆↓

∆↑

lj uj

Figure 10.3.: Graphical representation of pseudocosts update, with and
without using cloud intervals.

F0 := {j ∈ F(S) | lj 6 bx̄jc ∧ dx̄je 6 uj}

F1 := F(S) \ (F2 ∪ F0)

In particular for binary variables, F2 contains exactly those variables which
are fractional for all x̄i ∈ S, or differently spoken: F(S) is the union (taken
over S) of all branching candidates, F2 is the intersection. If S contained
all vertices of the optimal face, then F2 would be exactly the set of variables
that are guaranteed to improve the dual bound in both child nodes. The
hope is that also with a limited set of sample points in S, the set F2 will still
be a good approximation to that set.
A variable being contained in the set F0 is a certificate that branching on it

will not improve the dual bound on either side since alternative optima exist
which respect the bounds after branching. For the same reasoning, variables
in F1 are those for which the objective function will stay constant for one
child, but hopefully not for the other.
The details about how branching rules can be extended to deal with this

additional information, namely the three-way partition of the branching can-
didates (F2,F1,F0) and the set of cloud intervals Ij , of course depends on
the particular strategy. For example, a rule based on strong branching can
safely skip variables in F0, thereby saving some LP solves. More details on
how to extend a Full Strong Branching policy to the cloud will be given
in Section 10.5. In the following section, we will describe how Pseudocost
Branching can be modified to exploit cloud information.

10.4. Pseudocost Branching with a cloud

Pseudocost Branching consists mainly of two operations: (i) updating the
pseudocosts after an actual branching has been performed and the LP re-
laxations of the child nodes have been solved and (ii) computing the score
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z = cTx

bx̄jc x̄j dx̄je

∆−
j

∆+
j

lj uj

∆̃−
j ∆̃+

j

Figure 10.4.: Graphical representation of pseudocosts deployment: esti-
mating the objective gain with and without using cloud in-
tervals.

of a variable using the current pseudocosts when deciding for a branching
candidate. When updating the pseudocosts, the objective gains ς+

j and ς−j
per unit change in variable xj are computed, that is:

ς+
j = ∆↑

dx̄je − x̄j
and ς−j = ∆↓

x̄j − bx̄jc
(10.3)

where ∆↑ and ∆↓ are the differences between the optimal LP objectives of
the corresponding child nodes and the current LP value.
These gains are then used to update the current pseudocosts Ψ+

j and Ψ−j
which are the averages of the objective gains (per unit step length) that have
been observed for that particular variable so far. The thin, light blue line in
Figure 10.3 illustrates the operation. These estimation formulas are based on
the assumption that the objective increases linearly in both directions (hence
the resulting triangle). This, however, may be a too crude approximation of
the real shape of the projection on the split domain of xj . In the case of dual
degeneracy, there might be many optimal LP solutions with different values
for xj . Which of these values x̄j takes is more or less arbitrary, but crucial
for the current – and by that also for future – branching decisions.
By using the interval Ij , we replace this approximation with another model

which is intended to be more precise (thick, dark blue line in Figure 10.3).
The corresponding way to compute gains is then:

ς̃+
j = ∆↑

dx̄je − uj
and ς̃−j = ∆↓

lj − bx̄jc
(10.4)

Given a fixed LP relaxation, the values for ς+ and ς− may vary by chance
when alternative LP solutions were used for their computation. The values
ς̃+ and ς̃− will be constant, when the set of all corners of the optimal face is
used as a cloud.
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As far as the computation of the score sj is concerned, the standard for-
mulas to predict the objective gains when branching on variable xj are

∆+
j = Ψ+

j (dx̄je − x̄j) and ∆−j = Ψ−j (x̄j − bx̄jc) (10.5)

Again, the underlying linear model may give a too optimistic estimate on the
dual bound improvements. We suggest to incorporate the interval Ij into the
estimation, aiming for a more accurate prediction:

∆̃+
j = Ψ+

j (dx̄je − lj) and ∆̃−j = Ψ−j (uj − bx̄jc) (10.6)

A graphical representation is depicted in Figure 10.4. The thin, light blue
lines indicate which values ∆− and ∆+ would be computed with the stan-
dard model, the thick, dark blue lines show the values for the interval-based
scheme. More generally, the following observation holds:

Lemma 10.1. Let x̄ be an optimal solution of the LP relaxation at a given
branch-and-bound node and bx̄jc 6 lj 6 x̄j 6 uj 6 dx̄je. Then

1. for fixed ∆↑ and ∆↓, it holds that ς̃+
j ≥ ς

+
j and ς̃−j ≥ ς

−
j , respectively;

2. for fixed Ψ+
j and Ψ−j , it holds that ∆̃+

j 6 ∆+
j and ∆̃−j 6 ∆−j , respec-

tively.

Proof. Follows directly from Equations (10.3)–(10.6).

Thus, under the same preconditions, the standard pseudocosts will be an
underestimation of the pseudocosts based on the cloud intervals, whereas the
objective gain, on which the branching decision is made, will be an overesti-
mation. Of course these quantities interact directly which each other: as soon
as one of it gets altered, this will have an impact on all upcoming branching
decisions and pseudocost computations. The effects of continuous over- and
underestimation are likely to amplify each other. The hope is that Cloud
Branching helps to make better, more reliable predictions and thereby leads
to better branching decisions.

10.5. Full strong branching with a cloud
In the present section we detail the extension of a full strong branching
strategy to the cloud. The first problem is again how to generate a cloud
of optimal LP solutions S. Following preliminary computational results, we
opted for a feasibility pump like objective function, minimizing the distance
to the nearest integral point. More precisely, given a fractional solution x̄,
we define the objective function coefficient cj of variable xj as

cj =


1 if 0 < x̄j − bx̄jc < 0.5
−1 if 0.5 6 x̄j − bx̄jc < 1
0 otherwise
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where x̄j − bx̄jc is the fractional part of x̄j . Using the primal simplex, we
re-solve the LP (fixed to the optimal face) with this new objective function.
We update the interval bound vectors lj and uj , and iterate, using the new
optimum as x̄. If, at a given iteration, the update did not yield a new integral
interval bound, we stop.
As far as the three-way partition (F2,F1,F0) is concerned, we perform Full

Strong Branching on all variables in the set F2. If we even find a variable
in this set with a strictly improved dual bound in both child nodes, we stop
after F2 and pick the best variable within this set, completely ignoring sets
F1 and F0. In state-of-the-art solvers such as Cplex or SCIP the score of a
variable is computed as the product of the objective gains in both directions
(maybe using a minimum value of some epsilon close to zero for each factor).
By this, the score of all variables in F1∩F0 will be (nearly) zero and therefore
none of them will have maximum score.
Note that in this case cloud information is used essentially to filter out

variables and solve a smaller number of LPs. If no variable with strictly
improving bounds on both sides is found, different strategies can be devised,
depending on how we deal with the remaining variables. One option is to
proceed with performing strong branching on the variables in set F1, but
solving only one LP per variable (because by definition we already know that
in one direction the dual bound change is zero). Note that variables in F1
are not necessarily a subset of the fractional variables in x̄: as such, while we
may still have some speedup because we only solve one LP per variable, the
number of variables may indeed be higher than what standard Full Strong
Branching would have done. If we can find at least one variable in F2 ∩ F1
with a strictly improved dual bound in one direction, then we can stop and
ignore set F0 for the same reason as before. If this is not the case, then
we know that for all variables in F(S) no improvement can be obtained in
any child node as far as the dual bound is concerned, and so the branching
variable should be chosen with some other criterion.
Another, less time-consuming, option is to always ignore variables in F1

and stick to the variables in F2. Apart from the obvious computational
savings, this choice can be justified by the following argument: if there is a
variable in F2 with a strictly improved dual bound in both children, we will
not consider F1 ∩ F0 anyway. If there is none, this proves that the global
dual bound will not improve independent of the branching decision: at least
one of the two children will have the same dual bound as the current node.
Therefore, we take the current set of points S as evidence that variables in
F2 are less likely to become integral than variables in F1, and so should be
given precedence as branching candidates.
Note that using additional points to filter out strong branching candidates

is similar in spirit to a strategy called Nonchimerical Branching proposed
in [FM12], where the optimal solutions of the strong branching LPs (which
might have a different objective function value) were used for this purpose.
The two strategies have complementary strengths: Nonchimerical Branching
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does not need to solve any additional LP w.r.t. strong branching, but needs
the strong branching LPs to be solved to optimality, because of the usage of
the dual simplex. Cloud Branching on the other hand needs additional LPs,
but these are in principle simpler (we are fixed to the optimal face), need
not be solved to optimality (the primal simplex is used), and do not impose
any requirements to the solution of the final strong branching LPs. As such,
the two techniques can be easily combined together and might synergize.
Moreover, Cloud Branching can be used independent of strong branching, as
argued in Section 10.4.

10.6. Computational experiments

For our computational experiments, we used SCIP 3.0.0.1 [Ach09] compiled
with SoPlex 1.7.0 [Wun96] as LP solver. The results were obtained on a
cluster of 64bit Intel Xeon X5672 CPUs at 3.20GHz with 12MB cache and
48GB main memory, running an openSuse 12.1 with a gcc 4.6.2 compiler.
Hyperthreading and Turboboost were disabled. We ran only one job per
node to reduce random noise in the measured running time that might be
caused by delays if multiple processes share common resources, in particular
the memory bus.
We used two test sets of general, publicly available MIP instances: the

cor@l test set [Cor10], which mainly contains instances that users worldwide
submitted to the neos server [CMM98] and the mmm test set which contains
all instances from Miplib3.0 [BCMS98], Miplib2003 [AKM06], and Mip-
lib2010 [KAA+11]. We compare the performance of SCIP when using full
strong branching versus a Cloud Branching version of full strong branching
as described in the previous section. In particular, we compare to the Cloud
Branching variant that only considers variables in F2 as possible branching
candidates. Since we want to explicitly measure the impact of using the
cloud for variable selection, we did not exploit the alternative LP optima
by any other means, e.g., for cutting plane generation, primal heuristics,
reduced cost domain propagation, etc. Results by Achterberg [Ach10, Ach11]
indicate that this would be likely to give further improvements on the overall
performance. Moreover, we used the default implementation of full strong
branching in SCIP, which does not employ the methods suggested in [FM12]
(yet). We used a time limit of one hour per instance. All other parameters
were left at their default values.
For the mmm test set both, SCIP with Cloud Branching and with Full

Strong Branching, solved the same number of instances; for the cor@l test
set, one more instance was solved within the time limit when using Cloud
Branching. Tables B.20 and B.21 in the appendix show results for all in-
stances which the two variants could solve within the time limit, excluding
those which were directly solved at the root node (hence no branching was
performed). This leaves 68 instances for mmm and 104 instances for cor@l.



10.6. Computational experiments 165

Table 10.1.: comparison of Cloud Branching and Full Strong Branching on
mmm and cor@l instances, averages of success rate, cloud
points, saved LPs per node, and rate of saved LPs; shifted
geometric means of branch-and-bound nodes and running time
in seconds

cloud statistics cloud branch strong branch
Test set %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

MMM 12.2 2.19 74.34 21.7 661 68.2 691 72.0
COR@L 40.8 2.71 70.97 51.8 569 118.3 593 157.3

Column %Succ shows the ratio of nodes on which Cloud Branching was run
successfully, hence at least one additional cloud point was used. Consider-
ing those nodes, columns Pts and LPs depict of how many points the cloud
consisted on average and how many strong branching LPs were saved on av-
erage per node, i.e., how many integral interval bounds could be found. The
Column %Sav shows how many percent of all strong branching LPs could be
saved for that instance. When the success rate is zero, these three columns
show a dash. For both branching variants, Nodes and Time (s) give the
number of branch-and-bound nodes and the computation time (in seconds)
needed to prove optimality.
Table 10.1 shows aggregated results. It gives averages over the correspond-

ing numbers (the success rates, the used points, the saved LPs per node and
the percentage of overall saved LPs) from Tables B.20 and B.21. Shifted
geometric means are shown for the number of branch-and-bound nodes and
the computation times.
The results for the mmm test set show a slight improvement of 6% w.r.t.

mean running time and 5% w.r.t. the mean number of nodes when using
Cloud Branching. For cor@l, the mean number of nodes again is slightly
larger, about 4%, when using Full Strong Branching instead of Cloud Branch-
ing. The result when comparing computation times is much more explicit:
the shifted geometric means differ by about 33%. As can be seen in Ta-
ble 10.1, the success rate of Cloud Branching is much better on the cor@l
test set than it is on mmm; and even further, on the successful instances, the
average ratio of saved LPs is much larger. Taking these observations together
explains why the improvement is much more significant for the cor@l test
set.
MIP solvers are known to be prone for an effect called performance vari-

ability, see also Section 11.1. Loosely speaking, the term performance vari-
ability comprises unexpected changes in performance which are triggered by
seemingly performance-neutral changes in the environment or the input for-
mat. Besides others, performance variability is caused by imperfect tie break-
ing [KAA+11]. This results in small numerical differences caused by the use
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of floating point arithmetic which may lead to different decisions being taken
during the solution process. A branch-and-bound search often amplifies these
effects, which can be similarly observed for all major MIP (and also other
optimization) softwares. As a consequence, small changes in performance
might in fact be random noise rather than a real improvement or deteriora-
tion. This can, e.g., be seen for instance cap6000 from mmm: Although Cloud
Branching was never successful, the number of branch-and-bound nodes al-
ters.46. Then again, improvements brought by single components of a MIP
solver typically lie in the range of 5% to 10%, see, e.g., [Ach07b]. In addi-
tion, even if MIP solvers did not exhibit performance variability, we would
have the issue of assessing whether the measured difference in performance
is statistically significant, a problem common to all empirical studies.
We performed two additional experiments to validate our computational

results. First, we ran identical tests on four more copies of the test sets,
with perturbed models that were generated by permuting columns and rows
of the original problem formulation. This has been introduced in [KAA+11]
as a good variability generator that affects all types of problems and all
components of a typical MIP solver. Another benefit of this experiment is
that it counters overtuning since the evaluation testbed is no longer identical
to the development test bed.
As can be expected, the results differ in detail from the default permutation

run. For mmm, the improvements w.r.t. computation time were 3%, 4%, 4%
and 7%, and w.r.t. branch-and-bound nodes −3%, 0%, 1% and 2%. On
cor@l, the improvements w.r.t. time were 25%, 29%, 32%, and 42% and
w.r.t. branch-and-bound nodes 3%, 5%, 8%, 14%. We conclude that Cloud
Branching was faster in all five times two experiments (including the original
ones) and also consistently reduced the number of branch-and-bound nodes
on the cor@l test set. For mmm, it can be argued that the changes are
performance neutral w.r.t. the number of branch-and-bound nodes.
As far as the statistical significance of these differences is concerned, we

performed randomized tests [Coh95] on the detailed results. Randomized
tests are standard non-parametric statistics that do not make any assump-
tions on the underlying population distributions. According to these tests,
the performance difference, both w.r.t. time and nodes, measured on the mmm
is not statistically significant. As far as cor@l is concerned, the difference
in branch-and-bound nodes is again not significant, while the difference in
running times is. Note that on heterogeneous test sets such as mmm and
cor@l, it is rather difficult to pass statistical significance tests when testing
single MIP solver components, because the improvements are almost always
in the single digit range and standard test sets are relatively small. In other
words, one method might indeed be better than the other, but not by enough
to pass the statistical test. We also applied these randomized tests to the
46This can be explained by the intermediate cloud LPs being solved – after this, the original

LP basis gets installed again and a resolve without simplex iterations is performed.
However, solution values, reduced costs etc. might be slightly different than before.
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other four copies of the test sets, with consistent results.
Having a closer look at Tables B.20 and B.21, it can be seen that the success

rate of Cloud Branching is negligible, i.e., close to zero, for a much higher
ratio of the mmm test set than for the cor@l test set. This is also reflected
by the much smaller average success rate shown in Table 10.1. This partially
explains why the differences on cor@l are much more significant than on
mmm: there are simply more instances on which degenerate LP solutions
are detected in the PumpReduce step of our algorithm. A reason for this
might be that Miplib instances contain more industry-based models with
real, perturbed data whereas cor@l has more combinatorial models which
often contain symmetries and are prone for degeneracy.
Our interpretation of the given results therefore is that Cloud Branching

does not hurt a test set where only few degeneracy is detected but is clearly
superior (w.r.t. computing time) on a test set which contains many highly
degenerated problems.

10.7. Conclusion

In this chapter, we introduced branching strategies for mixed integer pro-
grams that exploit the knowledge of a set of alternative optimal LP solutions.
We discussed extensions of Full Strong Branching and Pseudocost Branch-
ing that incorporate this idea. Our computational experiments showed that
a version of Full Strong Branching that uses cloud intervals is about 30%
faster than default Full Strong Branching on a standard test set with high
dual degeneracy. Even the mean number of branch-and-bound nodes could be
reduced, though not significantly. We conclude that the presented implemen-
tation of Cloud Branching acts as an efficient filtering algorithm for strong
branching. Since its first presentation at CPAIOR2013, the idea of Cloud
Branching has already been implemented and tested within two commercial
MIP solvers [Jen13, Per], namely FICO Xpress and Sulum.
This chapter comprises the most recent work from this thesis. The pre-

sented results are very encouraging for further research on Cloud Branching.
From the implementation point of view, it could be further exploited that
the cloud LPs are solved by the primal simplex algorithm, hence also inter-
mediate solutions will be feasible and could be used as cloud points. Also,
procedures like optimality-based bound tightening (see, e.g., [ZG99, CL10])
on general integer variables might produce alternative optimal solutions that
could be used as cloud points. A natural next step would be to implement
the described modifications on Pseudocost Branching and a development of
hybrid strategies such as Reliability Branching that make use of alternative
optimal relaxation solutions.
In this chapter, we used multiple optima from a single relaxation as cloud

set. In particular in the context of MINLP, employing optima from mul-
tiple, alternative relaxations seems promising. Whereas for MIP using an
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LP relaxation is the “gold standard”, MINLP solvers might be based on LP
relaxations (like SCIP), on NLP relaxations (like Lindo API), or on QP
relaxations (see [MLK12]). Cloud Branching offers a way to combine infor-
mation from optimal solutions of these three (or more) relaxations, aiming
at branching decisions that are beneficial for all considered relaxations.
Finally, two other improvements of strong branching were suggested re-

cently: Nonchimerical Branching by Fischetti and Monaci [FM12] and a work
of Gamrath [Gam14, Gam13] on using domain propagation in strong branch-
ing. It will be interesting to see how these ideas combine and whether it will
even be possible to make Full Strong Branching competitive to state-of-the-
art hybrid branching rules w.r.t. mean running time.



11. Computational results

The leitmotiv of this thesis are heuristic procedures. This second-to-last
chapter deals with a topic that is intrinsically heuristic: benchmarking.
Whenever we conduct empirical studies, we make heuristic decisions before-
hand:

. we choose a test set with a limited number of instances,

. we choose a few settings from a big parameter space,

. we choose thresholds, limits (time, memory) and numerical tolerances,

. we choose a way of summarizing our observations, usually by providing
some aggregated statistics,

and we aim at making all these choices representative so as to draw general
conclusions from the results.
The present chapter constitutes the main computational study of this the-

sis. We investigate in which respect primal heuristics have an impact on the
performance of a MIP and MINLP solver. Therefore, we present computa-
tional results on multiple test sets, which we analyze with respect to multiple
performance measures and doublecheck the results by statistical tests and
control runs on permuted instances.
This chapter is organized as follows. In Section 11.1, we describe how we

addressed the above four points of choosing test sets, settings, limits, and
performance measures. In Section 11.2, we present computational results
for three heterogeneous, academic benchmarks sets of MIPs, MIQCPs, and
MINLPs. In Section 11.3, we present computational results for three ho-
mogeneous, industry-related test sets of MIPs, MIQCPs, and MINLPs. In
Section 11.4, we re-consider the results of the two previous sections, now
grouping the test instances by their computational complexity. A summary
of our findings is given in Section 11.5.

11.1. Test sets and experimental setup
We chose six different test sets, two of them consisting of MIP instances,
two of them of MIQCPs, and two of MINLPs. Three of the test sets are
well-established academic benchmark sets: For MIP, this is the mmm test
set, which comprises all instances from the three latest Miplibs: Mip-
lib3.0 [BCMS98], Miplib2003 [AKM06], and the benchmark set of Mip-
lib2010 [KAA+11]. This test set has also been used in Chapters 4, 7, and 10

169
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of this thesis. For MIQCP, we use the GloMIQO [Glo] test set, see also
Chapter 8. For MINLP, we chose the MinlpLib [BDM03], which has also
been used in Chapters 7 and 8. Miplib and MinlpLib are long-standing
standard benchmark sets for MIP and MINLP, respectively, and probably
the most widely used test sets to compare performance of algorithms for the
respective problem classes. The GloMIQO test set has been recently in-
troduced [MF13] and represents a compilation of publicly available convex
and nonconvex MIQCP instances. It is the largest general benchmark set for
MIQCP that we are aware of.
Heterogeneous benchmark sets, such as the mentioned ones, are an impor-

tant tool to evaluate the average performance of algorithms on a diverse set
of problems and to draw conclusions about the general qualities of the tested
methods. Naturally, such tests tell you little about the performance on ho-
mogeneous test sets consisting of instances that all arise from one particular
model. This is, however, the standard application for a practitioner who is
faced with one single optimization problem, that she or he wants to solve
for a set of different input data, e.g., varying per day. Just as researchers
and software vendors want to benchmark their code on general test sets such
as the ones mentioned above, a practitioner wants to evaluate optimization
software for a particular set of problems.
On this account, we decided to perform computational experiments on

three more test sets with industrial background. As opposed to the previously
described academic benchmark sets, those are very homogeneous, containing
one single type of instances per test set.

Industry-related test sets

During his time at Zuse Institute Berlin, the author of this thesis has been
an associated member of three research projects that are settled at the in-
terface of industry and academia. The Siemens/ZIB Cooperation47 is a long
term collaboration that addresses the development of general solver soft-
ware for LP, MIP, and lately also MINLP, with a particular focus on ap-
plications that arise in the department “Corporate Technology” of Siemens.
“Advanced Solver Technology for SCM”48 is a joint project of ZIB, the Uni-
versity of Erlangen-Nürnberg and the SAP Germany AG & Co. KG which in-
vestigates methods to solve large-scale, numerically challenging supply chain
management problems. Finally, Matheon project B20 “Optimization of Gas

47http://www.zib.de/en/projects/current-projects/project-details/article/
siemens.html

48http://www.zib.de/en/optimization/mip/projects/projectdetails/article/neue-
technologien-zur-loesung-von-scm-problemen.html

http://www.zib.de/en/projects/current-projects/project-details/article/siemens.html
http://www.zib.de/en/projects/current-projects/project-details/article/siemens.html
http://www.zib.de/en/optimization/mip/projects/projectdetails/article/neue-technologien-zur-loesung-von-scm-problemen.html
http://www.zib.de/en/optimization/mip/projects/projectdetails/article/neue-technologien-zur-loesung-von-scm-problemen.html
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Transport”49 is part of the ForNe research cluster50 (Forschungskooperation
Netzoptimierung, German for: research cooperation network optimization).
ForNe is a joint project of five German universities, two research institutes,
and the Open Grid Europe GmbH (OGE), Germany’s biggest gas transport
system operator; it deals with the complex task of planning and operating
nation-wide gas networks. OGE was formerly known as e.on Gastransport.
There is a one-to-one coverage of the three problem classes (MIP, MIQCP,

and MINLP) by the three test sets that we compiled from the applications
of our three industry cooperation projects. The SAP test set consists of 40
MIPs that come from real-world supply chain management instances. Those
instances have been provided by our industry partner and have been used
before in [GKM+13] to evaluate the effectiveness of presolving techniques in
mixed integer programming.
For MIQCP, we compiled the Siemens test set which contains 27 instances

that originate from an internal Siemens project on “power management for
smart buildings”. The goal of the underlying optimization problem is to gen-
erate a best possible schedule for the operation of large office buildings, given
forecasts for the base load, the power generation of the building’s facilities,
the temporal distribution of electric vehicles to be charged, and the pric-
ing scheme for electricity procurement. The nonlinearity is introduced by
a representation of the active charging power through nonconvex quadratic
constraints. More precisely, these equations model the reactive power which
emerges from loading operations that do not use the full capacity of the
involved inverters.
For MINLP, we use the ForNe test set of 430 instances that model a nom-

ination validation problem for two different networks of gas pipelines, under
many different scenarios of the networks’ load. For details, see [KBE+14,
PFl+12]. In contrast to the other five test sets, ForNe consists of feasi-
bility problems, not of optimization problems. About 28% of the instances
are infeasible. The model formulation uses indicator constraints and non-
convex absolute power constraints. An indicator constraint is given by a
binary variable y and an inequality αTx 6 β with α ∈ Rn and β ∈ R. It
states that y = 1 → αTx 6 β. For the implementation in SCIP and a
computational study that solves maximum feasible subsystem problems by
models that include indicator constraints, see [Pfe08]. An absolute power
constraint51 is, loosely speaking, a power function whose symmetry is inter-
changed: xi|xi|ν−1 = γxj with ν ≥ 2 and γ ∈ R>0. For example if ν = 2 (the
relevant case for the gas transport optimization problems) and γ = 1, the

49http://www.zib.de/en/optimization/mip/projects-long/matheon-b20-
optimization-of-gas-transport/article/matheon-b20-optimierung-von-
gastransport.html

50http://www.zib.de/en/projects/current-projects/project-details/article/
forne.html

51Absolute power constraints are also referred to as signed power constraints or signpower
constraints since they can be equivalently formulated as γxj = sgn(xi)xνi .

http://www.zib.de/en/optimization/mip/projects-long/matheon-b20-optimization-of-gas-transport/article/matheon-b20-optimierung-von-gastransport.html
http://www.zib.de/en/optimization/mip/projects-long/matheon-b20-optimization-of-gas-transport/article/matheon-b20-optimierung-von-gastransport.html
http://www.zib.de/en/optimization/mip/projects-long/matheon-b20-optimization-of-gas-transport/article/matheon-b20-optimierung-von-gastransport.html
http://www.zib.de/en/projects/current-projects/project-details/article/forne.html
http://www.zib.de/en/projects/current-projects/project-details/article/forne.html
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graph of xj = xi|xi| looks like −x2
i for xi ≤ 0 and like +x2

i for xi ≥ 0, i.e., it
is an “odd quadratic function”. In the considered models, those constraints
are used to approximate the differential equations which describe the laws
of physics for the pressure loss of gas along the pipes. See Vigerske [Vig12]
for details on the implementation of absolute power constraints in SCIP.
See Arnold et al. [ABH+14] for an overview on solving MINLPs from energy
optimization applications with SCIP.

Computational environment

From all test sets, we excluded instances for which SCIP 3.0.2 failed or pro-
duced inconsistent results when running with different settings. Further, we
removed instances from the MinlpLib which contain nonlinear expressions
that cannot be handled by SCIP, i.e., trigonometric and error functions. Al-
together, the six test sets contain 1071 instances. Running the two proposed
settings on each of the instances took 761 CPU hours (≈ one month) in to-
tal, plus five months for runs on permuted instances (see below) plus many
more weeks for additional experiments, e.g., to determine optimal solutions
or good bounds for the industrial test sets.
In [AW13], Achterberg and Wunderling emphasized the size of a test set

as a central factor for the conclusiveness of experimental results in computa-
tional mixed integer programming, using diverse test sets of around 100 to
more than 3000 instances in their article.52 With sizes between 167 and 430
instances, our test sets would be located rather at the lower end of this scale.
However, even the smallest of these test sets is still about double the size of
the Miplib 2010 benchmark set, which has turned out to be the default test
set to compare the performance of MIP solvers [Mit]. To partly overcome
this issue, we conducted experiments on permuted versions of all instances,
see the paragraph on performance variability below.
These final experiments compare the performance of SCIP when run-

ning with and without primal heuristics for each of the six test sets. We
SCIP version 3.0.2, compiled with SoPlex 1.7.1 [Wun96, Sop] as LP solver,
Ipopt 3.11 [WB06, Ipo] as NLP solver, and CppAD 20120101.3 [Cpp] as
expression interpreter for evaluating general nonlinear constraints. Thus, we
exclusively used academic software which is available in source code.
The results were obtained on a cluster of 64bit Intel Xeon X5672 CPUs at

3.20GHz with 12MB cache and 48GB main memory, running an openSuse
12.3 with a gcc 4.7.2 compiler. Turboboost was disabled. In all experi-
ments, we ran only one job per node to reduce fluctuations in the measured
running times that might be caused by interference between jobs that share
resources, in particular the memory bus. Actually, except for the results from
Section 6.6, all experiments in this thesis have been carried out on the same
cluster.
52The majority of these instances is not publicly available; they come from an internal

IBM Cplex model library.
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Figure 11.1.: Performance variability: Solution times for 100 permutations
of two instances from Miplib 2010 [KAA+11]

For the computational experiments in this chapter, we used a time limit
of one hour and a memory limit of 30GB. The optimality gap threshold was
set to 0.0 (as for all other experiments in this thesis), which actually is the
default of SCIP. Commercial solvers often use a small positive value, e.g.,
0.01% for Cplex, as an optimality gap threshold for declaring an instance
to be solved. For most applications, this is a reasonable approach, but it
might be inappropriate in other situations. In the mentioned supply chain
management project that the author participated in, such a threshold was
pointed out as undesirable by the industry partner. This was due to one
of the main problems with using a non-zero optimality gap threshold: the
results are not invariant under adding an offset to the objective function.

Performance variability

In two additional experiments, we analyzed the impact of performance vari-
ability on our results. The term performance variability has been introduced
by Danna [Dan08] to denote variations in performance measures for the same
problem that are caused by seemingly performance-neutral changes in the en-
vironment or the input format. Note that this is different from changes in
the model formulation, which also may affect performance drastically, even
if the changes seem to be minor [AKT08]. Loosely speaking, performance
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variability comprises unexpected changes in performance.53
To address the impact of performance variability, we re-ran the experiments

on five more copies of the test sets, using perturbed models. Those were
generated by randomly permuting variables and constraints of the original
problem formulation, using a different random seed for each of the five copies.
This method has been introduced in [KAA+11] as a good variability generator
that affects all types of problems and all components of an MINLP solver such
as SCIP.
The effect that permuting variables and constraints of an instance can

have is depicted in Figures 11.1(a) and 11.1(b). These figures were orig-
inally published as part of the author’s contribution to the Miplib 2010
paper [KAA+11]. They show the distribution of performance over 100 per-
mutations of two instances from our MIP test set. Each of the yellow dots
depicts the performance of one permuted instance when being solved with
SCIP 2.0.1.3. They are sorted by non-decreasing solution time. The blue dot
corresponds to the performance of the original formulation. Instance pg5_34,
see Figure 11.1(a), shows a behavior that is often observed: the different solu-
tion times are nearly uniformly distributed around the median value, and the
original formulation is “somewhere in the middle”. Some instances, however,
are much more sensitive towards the effects of performance variability, e.g.,
enlight13, which is a pure feasibility problem. The distribution of solution
times for this instances can be seen in Figure 11.1(b). We observe a heavily
random behavior: the best ten permutations need less than three minutes,
but nearly twenty percent of the permuted instances need more than ten
hours.

Statistical tests

As argued above, small changes in the starting conditions might have a big
impact on the performance of MINLP solvers. As a consequence, if we observe
an improvement or deterioration in the average running times of just a few
percent, this might be the result of the performance altering “at random”
rather than the impact of different preconditions (e.g., solver settings) that
we wanted to evaluate. Enlarging the test set by adding permuted instances
is one way to address this situation. Using statistical tests to analyze the
consistency of the results is another approach. Both are not mutual exclusive
and we will use them in combination.
The purpose of statistical tests is to give an indication of how safe it is

to draw a certain conclusion from observations on a limited set of samples.
Therefore, they estimate the likelihood that a random draw of observations
would have given a similar result.
The common practice of statistical tests is to formulate a null-hypothesis,

53That performance differences resulting from changing, e.g., the operating system, are
indeed irritating for users might be anecdotally illustrated by the fact that this is fre-
quently raised as a question or even reported as a bug via the SCIP mailing list.
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e.g. “SCIP with setting A performs worse than SCIP with setting B”, or
“SCIP performs equal with either setting”. The null-hypothesis typically is
the opposite of the “desired” result. Hence, the task is to show that the
null-hypothesis is very unlikely to hold. A p-value is computed from the
observations (i.e. the computational results). The p-value is an estimate of
the probability that the null-hypothesis holds. More precisely, the p-value
gives the probability that drawing results at random would give a result
that is similarly or even more biased in favor of the alternative of the null-
hypothesis. Hence, the smaller the p-value, the better (given that the null-
hypothesis states the opposite of the result that we want to test). Note that
for small samples sizes (where “small” typically is between 10 and 20), test
statistics are compared against critical values from reference tables, instead
of computing a p-value.
As an example assume the null-hypothesis to be “SCIP’s performance de-

teriorates when using primal heuristics”. If this null-hypothesis gets rejected
with a p-value of, say, p = 0.01, this means that SCIP most likely benefits
from using primal heuristics. According to the statistical test (and the input
data), there is a 1% chance that a random draw of observations would have
given a result that is at least as much in favor of one setting (here: using
primal heuristics) as the computational results that we used as input for the
statistical test.
For nominal data, e.g., whether an instance has been solved to optimality

or not, we use a McNemar test [McN47]. For rational data, e.g., the run-
ning time to solve an instance, we use a variant of the Wilcoxon signed rank
test [Wil45]. Note that many statistical tests assume that the observed data
follows a certain distribution, e.g., a normal distribution. We do not believe
that this is a valid assumption when considering typical performance mea-
sures for MINLP solvers, e.g., the overall running time. The two tests that
we use do not make any assumptions on the distribution of the data.
The McNemar test is typically applied to 2×2 contingency tables. In our

example, the row and column data would be “Did SCIP solve the instance
within the time limit without using primal heuristics (yes/no)?” and “Did
SCIP solve the instance within the time limit with using primal heuristics
(yes/no)?”. The important information are the two numbers on the counter-
diagonal, i.e., the number of instances solved with heuristics but not without,
and the number of instances solved without heuristics, but not with. When
we denote those by b and c, the McNemar test statistic is χ2 = (b−c)2

b+c .
The corresponding null hypothesis would be “Both settings lead to an equal
number of instances being solved”. Under the assumption that χ2 follows a
chi-squared distribution [Hel76], one can compute the probability of the null
hypothesis being rejected.
The classical Wilcoxon signed rank test sorts observations by the absolute

value of their difference, then assigns ranks from 1 to the number of observa-
tions, splits them in two groups depending on whether their actual difference
is positive or negative, and finally takes the sums of the rank values of both
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groups. Loosely speaking, the more different those two sums are, the more
likely it is that the one with the larger sum outperforms the one with the
smaller sum.
The variant of the Wilcoxon signed rank test that we use takes ratios rather

than differences to rank the sums. This corresponds to using geometric means
instead of arithmetic means: the important bit of information is the factor
by which running times, number of nodes, and so forth change.
As an example, let us assume that we want to analyze the running time

to proven optimality. Then, the observations are the running times of all
instances which SCIP solved within the time limit in both cases, with and
without primal heuristics. All instances for which the running times differ
by less than one percent are omitted.
The null-hypothesis is “SCIP with primal heuristics is worse than SCIP

without primal heuristics.” We rank the instances by the absolute ratio of
their running times max( tw.heur

two.heur
, two.heur
tw.heur

). Here, tw.heur and two.heur are the
running times with and without heuristics, respectively. Thus, the instance
with the smallest absolute ratio has rank one, the instance with the largest
absolute ratio the rank N , with N being the number of instances. In case
of identical absolute ratios, all tied instances get assigned the average of the
ranks they span.
Afterwards, the instances are split into two sets. One comprises the in-

stances for which SCIP without primal heuristics was faster, the other one
those for which SCIP with primal heuristics was faster. Let the sums of the
ranks of all instances in both sets be Ww.heur and Wwo.heur. The Wilcoxon
test statistic then reads

z =
min(Ww.heur,Wwo.heur)− N(N+1)

4√
N(N+1)(2N+1)

24

.

and follows (approximately) a normal distribution. That is, z is a standard
score from which the p-value can be determined.

11.2. Computational results for academic test sets
As a first test, we ran SCIP 3.0.2 with and without primal heuristics on the
three academic benchmark sets, to evaluate the impact of primal heuristics
on very heterogeneous model libraries.
The results for MIP can be seen in Tables B.22 and B.23 in the appendix,

those for MIQCP in Tables B.24 and B.25, those for MINLP in Tables B.26
and B.27; aggregated results can be found in Table 11.1.

Reading the tables

Each table presents the names of the instances, Nodes, the number of branch-
and-bound nodes needed to solve the instance to optimality, and three differ-
ent running times (in seconds): First, the time needed to find the first feasible
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Table 11.1.: Impact of primal heuristics (academic benchmarks)
all all feas all opt

feas opt obj theur P(tmax)
tmax

time1 sols nodes time

mmm (167 instances) (149 instances) (116 instances)

default 160 121 24 11.0% 8.9% 9.3 32.2 2 348 78.9
no heur 149 116 3 – 17.2% 35.3 5.7 3 538 90.9

GloMIQO (167 instances) (137 instances) (118 instances)

default 156 118 25 10.2% 9.0% 3.4 11.2 559 9.8
no heur 138 119 3 – 19.7% 7.8 4.1 689 10.4

MinlpLib (240 instances) (196 instances) (160 instances)

default 218 162 47 11.6% 15.5% 1.9 8.7 780 8.9
no heur 196 162 0 – 23.5% 6.3 3.8 1 005 9.1

solution and Total, the running time needed to solve the instance to proven
optimality. Obviously, it holds that the times given in Column First are less
then or equal to those in Column Total. When the time limit of one hour
was hit without solving the instance, this is indicated by the word “limit” in
Column Total. In this case, Nodes shows how many branch-and-bound nodes
were processed within the hour. The Tables in the appendix further depict
two pieces of information about the primal bound. Column Prim Int gives
the average primal gap P(tmax)/tmax over one hour, with tmax= 3600 seconds
and P (·) being the primal integral function from Chapter 3. The Column LP
Sols states the number of primal solutions that have been found as integral
optima of an LP relaxation of some branch-and-bound node.
The three tables which correspond to test runs with activated primal

heuristics, namely Tables B.22, B.24, and B.26, further show three statis-
tics which are specific to primal heuristics. Column Sols gives the number of
solutions that have been found by some heuristic (as opposed to the number
of LP Sols, which come from the tree). Column Time depicts the sum of the
overall running times of all heuristics, Column # shows how many different
primal heuristics were called for the particular instance.
Table 11.1 summarizes the results from Tables B.22–B.27. Each line of it

represents one combination of a test set and a setting. Columns feas and
opt state for how many instances a feasible solution has been found and how
many instances have been solved to proven optimality within the time limit,
respectively. Column obj depicts for how many instances a setting produced
a primal solution that was at least 10% better than for the respective other
setting. Column theur shows which percentage of running time has been
spent for primal heuristics in shifted geometric mean. Column P(tmax)

tmax
gives

the average primal gap, as defined by the primal integral54. Two statistics are
given for the set of instances for which both settings found a feasible solution
54Note that the average primal integral is a multiple of the average primal gap.
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Figure 11.2.: Course of the primal gap when running SCIP with and with-
out primal heuristics on mmm test set

(shown in the double-column all feas): time1, the mean running time for
finding a first feasible solution and sols, the mean number of primal solutions
per instance that were found with a certain setting. Finally, for all instances
which have been solved to optimality by either setting (all opt), we give the
shifted geometric means of the number of branch-and-bound nodes and the
overall running time to proven optimality. For the computation of the shifted
geometric mean, we used a shift of 100 for the number of branch-and-bound
nodes, 10 for all times, and 1 for the number of solutions and the heuristic
time ratio theur.
Figures 11.2, 11.3, and 11.4 show the evolution of the primal gap as a

function over time. The red dashed line corresponds to the average primal
gap function, when running SCIP in default mode, with primal heuristics
activated. The red shaded area corresponds to the average primal integral
of this setting. Accordingly, the blue dotted line and the blue shaded (plus
the red shaded) area correspond to the average primal gap function and the
average primal integral when running SCIP without heuristics.

Evaluation of the results

From Table 11.1, we see that for all three academic benchmark sets, the
majority of the performance indicators speak in favor of primal heuristics.
Let us first consider the three measures that simply “count” instances:

feas, opt, and obj. When using primal heuristics, there are more instances
for which a feasible solution could be found within the time limit, 160:149
for MIP, 156:138 for MIQCP, 218:196 for MINLP. The number of instances
solved to proven optimality, however, is hardly affected: it increases by five
for the mmm test set, decreases by one for GloMIQO and stays constant for
MinlpLib. Nevertheless, the quality of the incumbent solution at the time
limit clearly benefits from the use of primal heuristics. Summing up over all
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Figure 11.3.: Course of the primal gap when running SCIP with and with-
out primal heuristics on GloMIQO test set
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Figure 11.4.: Course of the primal gap when running SCIP with and with-
out primal heuristics on MinlpLib test set
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three test sets, there are 96 cases for which the incumbent’s objective value
is better when using heuristics and only six for which it deteriorates. These
four measures emphasize that primal heuristics mainly have an impact on
the primal side of the problem.
In our results, the number of instances that can be solved within the time

limit hardly depends on primal heuristics; but for those instances which can-
not be solved, primal heuristics very often lead to better solutions at ter-
mination. This can be seen as an indicator that applying primal heuristics
is particularly worthwhile for hard instances which are not expected to be
solved to proven optimality within a reasonable amount of time – which is a
typical situation for real-world applications.
Besides the primal bound at termination, the time to find a first solution

and the primal integral are the two performance measures with the largest
differences. When disabling primal heuristics, the time to prove feasibility
increases to 380% (MIP), 229% (MIQCP), and 331% (MINLP) of the values
for a run with enabled heuristics. The average primal integral amounts to
193%, 218%, and 151% of the default values when switching off heuristics.
For all three test sets it holds that the average primal gap drops quickly in
the very beginning, flattening out and staying nearly constant after a few
minutes, see Figures 11.2, 11.3, and 11.4. Further, the lines corresponding to
the setting with heuristics are below the lines corresponding to the setting
without heuristics for the whole time period, with relative distances that do
not change much over time. This indicates that the results for the primal
integral are rather independent of the chosen time limit.
Figures 11.5, 11.6, and 11.7 visualize the impact of primal heuristics on

the number of nodes needed to find a first feasible solution. The charts show
one bar for each instance and each of the two settings. The height of a bar
indicates after how many percent of the nodes the first feasible solution was
found. Red and blue bars show the performance without and with primal
heuristics, respectively. For each setting, the instances have been sorted by
the measured percentage in non-decreasing order. Therefore, a read and a
blue bar at the same position do not necessarily correspond to the same
instance.
For all three test sets, we observe the blue line of “with heuristics” bars

clearly lies right of the red “without heuristics” bars. Having a closer look at
the blue bars, we observe an “`-shape”: for most of the instances, the first
solution is either found very early (mostly at the root node) or not until the
very end. Note here, that the set of instances for which the ratio is 100%
compiles many different cases: pure feasibility instances, infeasible instances,
instances which get solved at the root, and instances for which no solution is
found before the time limit.
Not surprisingly, much more solutions are found when using primal heuris-

tics, see Column sols of Table 11.1. Note that some heuristics, e.g., the
rounding heuristics from Chapter 4 might produced solutions that are worse
than the current incumbent – whereas for a run without heuristics, every
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solution will be incumbent at the time when it is found. The mmm test set
features the largest mean numbers of solution for both settings and at the
same time the largest ratio between them: 33.2 solutions per instance with
heuristics versus 5.7 without, nearly a factor of six. The mean percentage
of running time that is spent in primal heuristics, see Column theur of Ta-
ble 11.1, is surprisingly similar for all problem classes: 11.0% for MIP, 10.2%
for MIQCP up to 11.6% for MINLP.
Despite of this significant overhead, the mean total running time, probably

the most noticed performance measure, improved in all cases. As argued in
Chapter 3, the improvements could be expected to be much less than for the
primal integral or the running time to a first feasible solution. They ranged
from 2% for the MINLP test set via 6% for MIQCP to 15% for our MIP
test set, which is consistent to previous results, see in particular Chapter 3.
The savings in the number of branch-and-bound nodes were much bigger:

50% for the mmm test set and around 25% for the two nonlinear bench-
mark sets. Since branch-and-bound nodes are the prime cause of a solver’s
memory consumption, this is an important observation for parallel MIP and
MINLP solving. Koch et al. conjecture in [KRS12] that for future exa-scale
supercomputers “memory may become more of a bottleneck resource” since
“the memory per core will rather decrease.” Smaller tree sizes further lead
to a reduction of the message passing overhead of parallel MIP solvers with
distributed memory [SAB+12, SAB+13]. In this light, savings of 25% to
50% of branch-and-bound nodes constitute a significant improvement, even
if they are accompanied only be a small reduction in CPU time.
In this section, we compared two settings of SCIP, default and without pri-

mal heuristics, with respect to seven different performance measures: number
of instances for which a feasible solution is found, number of instances for
which optimality is proven, the primal integral, time to find the first solu-
tion, number of overall solutions, number of branch-and-bound nodes, time
to proven optimality. For the first two, we presented the results in abso-
lute numbers, for the third one, we gave an average, for the others we used
shifted geometric means. Figure 11.8 visualizes the results from Table 11.1
by presenting the relative difference of the two settings w.r.t. these seven
performance measures. We computed the relative difference in such a way
that a positive value always corresponds to an improvement:

. For measures for which larger numbers are better (feas, opt, sols), we
took the value of the default setting minus the value of the setting
without heuristics and divided the difference by the value of the setting
without heuristics.

. For measures for which smaller numbers are better (P(tmax)/tmax, time1,
time, nodes), we took the value of the setting without heuristics minus
the value of the default setting and divided the difference by the value
of the default setting.
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Figure 11.8.: Bar chart illustrating the relative difference between SCIP
running with and without primal heuristics w.r.t. seven per-
formance measures. Scaled such that positive values corre-
spond to improvements by using heuristics.

Figure 11.8 uses a logarithmic scale. Thus, we omitted relative differences
below one percent from the presentation. For the same reason, the only
degradation (−0.8% instances solved to optimality for the MIQCP test set) is
not shown in the diagram. Figure 11.8 illustrates that, on all three academic
test sets and for six out of seven performance measures, primal heuristics
improve the performance by 2% to 462%.

Statistics of primal heuristics

As can be seen in Table B.22 in the appendix, the instance ex9 is the only
instance in the mmm test set for which only one heuristic got called: the trivial
heuristic finds the optimal solution, whose optimality gets proven by the root
LP relaxation. For all other instances, at least five primal heuristics, for the
majority (139 of 167) of instances more than ten, are applied. The peak is
achieved by four instances, bell3a, bell5, momentum2, and rocII-4-11, for
which SCIP tries 19 different primal heuristics. There is no direct connection
between the computational complexity and these numbers: bell5 solves in
less than a second, momentum2 hits the time limit. For the two nonlinear test
sets, up to 23 heuristics were called. Similarly to the MIP case, more than
ten different heuristics were invoked for the majority of instances (138/167 and
192/240).
For the mmm test set, the percentage of time spent in primal heuristics

ranges from 0.2% for ex9 to 64.4% for disctom; the median is 11.4%, hence
very similar to the shifted geometric mean of 11.0%. Again, this does not
depend on the computational complexity of the instance: of the two instances
with the largest amount of time devoted to heuristics, one (liu) hits the time
limit, the other (disctom) solves in 4.5 seconds; among the ten instances
with least time spent in heuristics, four solve within less than a minute, four
others time out. In the nonlinear case, the whole bandwidth of running time
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percentage is covered: For nuclear14, SCIP spends 0.1% of its running time
in heuristics, for nuclear49b, it is 99.6%; both instances hit the time limit.
For the GloMIQO test set, the median is 12.0%, hence similar to the shifted
geometric mean. For the MinlpLib, the median is 14.9%, thus, a bit larger
than the shifted geometric mean from Table 11.1. This can be explained
by the larger number of trivial instances55 in the MinlpLib as compared to
mmm or GloMIQO.

Results for permuted instances

We performed an additional experiment to analyze the impact of performance
variability on our results. Therefore, we considered five copies of every in-
stance, each with a different permutation of the variables and constraints.
The results are summarized in Table 11.2.

Table 11.2.: Impact of primal heuristics (academic benchmarks, permuted)
all all feas all opt

feas opt obj theur P(tmax)
tmax

time1 sols nodes time

mmm (835 instances) (741 instances) (555 instances)

default 798 598 125 10.8% 10.5% 9.3 34.3 2 189 71.9
no heur 746 565 25 – 17.3% 36.2 5.7 3 216 80.0

GloMIQO (827 instances) (679 instances) (583 instances)

default 764 591 98 10.5% 10.2% 2.9 11.7 523 10.2
no heur 686 588 11 – 20.1% 7.4 4.0 623 9.8

MinlpLib (1182 instances) (967 instances) (790 instances)

default 1096 816 232 11.7% 14.2% 1.8 8.4 807 9.1
no heur 982 804 5 – 23.2% 5.7 3.8 949 8.7

In this experiment, we found that there is a general tendency towards
the default setting being slightly worse on the permuted instances than on
the original ones, compare Table 11.2 against Table 11.1. The difference in
time to optimality on the mmm test set, e.g., is only 12% instead of 15%.
On the one hand, this might be due to an overtuning effect on the original
instance formulations. On the other hand, algorithms that seek to detect
certain structures in a problem formulation, such as the Shift-and-Propagate
heuristic from Chapter 4 or Undercover from Chapter 8, tend to generally
perform worse on randomly permuted instances.
Nevertheless, the tendency and also the magnitudes of the measures and

their differences are the same in most cases. Thus, the effects of performance
variability seem to vanish in the average. There is one major exception: For
5527 instances of the MinlpLib solve in less than 0.05 seconds and are therefore listed

with 0.0 seconds running time in Table B.26. For those instances, the heuristics’ total
running times often are below the measure tolerance of 0.005 seconds.
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the GloMIQO and the MinlpLib test set, the time to optimality increases
by 2% and 3% when using primal heuristics on permuted instances, whereas
it decreased by 2% and 6% on the original instances, respectively. As we will
see below, the improvements on the original test set fails a standard statistical
test and should hence not be considered reliable. This is confirmed by the
fact that on permuted instances this improvement disappears. The number
of instances that could be solved to proven optimality, however, increases
slightly when using primal heuristics on the permuted instances, where it
decreased by one on the original GloMIQO instances and did not change
on the original MinlpLib instances.
If for each instance, one could automatically choose the permutation which

gives the best performance (w.r.t. overall running time) by some kind of
oracle, this would improve the mean running time by about 10% for mmm and
GloMIQO. This can be exploited in the ramp-up phase of massively parallel
MIP and MINLP solvers, as we showed in [SAB+12, SAB+13]. Speeding up
MIP search by exploiting performance variability is also the main driver of
recent papers by Carvajal et al. [CAN+14], Fischetti and Monaci [FM14] and
Fischetti et al. [FLM+13].

Statistical tests

We further performed statistical tests to analyze the significance of the pre-
sented results. As we saw in the previous part, even improvements of up to
6% on a test set of more than a hundred instances can be questionable.
First, we applied a McNemar test to the three performance criteria from

Table 11.1 which count instances: feas, opt, and obj. As null hypotheses we
assume that SCIP with and without primal heuristics is equally likely to
find a feasible solution, to prove optimality and to terminate with a superior
primal bound, respectively.
For all three test sets, the null hypotheses concerning feas and obj get

rejected with very small p-values, indicating a large statistical significance
and hence a very high probability that the chances to find a feasible solution
and to terminate with a better primal bound are affected by primal heuristics.
Precisely speaking the assumption that primal heuristics do not affect the
number of instances for which feasibility is proven, gets rejected with p-
values 0.000 911, 0.000 022 09, and 0.000 002 73 for the mmm, the GloMIQO,
and the MinlpLib test set, respectively. The p-values for the assumption
that primal heuristics do not affect the solution quality were 0.000 054 06,
0.000 032 16, and less than 0.000 01.56 Thus, all of the mentioned p-values
were orders of magnitude smaller than 0.05 which is a conventional criterion
to consider a result to be statistically significant.
The third assumption about primal heuristics not affecting the chance

to solve an instance to proven optimality, however, gets only rejected with
56We used the statistic calculator of http://www.socscistatistics.com/pvalues/

chidistribution.aspx, which uses 0.000 01 as a lower precision bound.

http://www.socscistatistics.com/pvalues/chidistribution.aspx
http://www.socscistatistics.com/pvalues/chidistribution.aspx
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statistical significance for the mmm test set, with a p-value of 0.025 347. For
GloMIQO and MinlpLib, the p-values are 0.3173 and 0.6171, and thus do
not indicate a significance of the result. We conclude that primal heuristics
have a clear impact on finding solutions at all and on finding high-quality
solutions, but not on proving optimality.

Finally, we performed a variant of the Wilcoxon signed rank test to analyze
the statistical significance of the results for the running times for finding
a first feasible solution, for the primal integral, and for the running time
and the number of branch-and-bound nodes required to prove optimality.
For a Wilcoxon signed rank test, the instances of a test set are ordered
and ranked by their differences w.r.t. a certain performance measure. In
analogy to using (shifted) geometric means instead of averages, we ranked
the results not by the absolute differences but by the relative factors of the
corresponding performance measure, compare also Chapter 7.5. Further,
we excluded instances that showed no or hardly any performance difference
(less than 1%). As null hypotheses, we assume that primal heuristics have
no impact on the running time to the first feasible solution, on the overall
running time, on the number of branch-and-bound nodes and on the value
of the primal integral, respectively.

For the mmm test set, the null hypothesis that primal heuristics do not alter
the running time to optimality gets clearly rejected with a p-value of 0.000 48.
For the GloMIQO test set and the MinlpLib, however, the Wilcoxon signed
rank test does not indicate a significant performance improvement on the
overall running time; the p-values are 0.418 005 and 0.423 479, respectively.
This is not too surprising, given that the running time improvement on the
original instances was much larger for mmm (15%) than for the other two
test sets.

The Wilcoxon test leaves hardly any doubt in the significance of using
heuristics for the time needed to find a first feasible solution, for the number
of branch-and-bound nodes, and for the primal integral. The null hypotheses
get rejected with p-values of less than 0.000 01 for all three criteria for each
of the three academic test sets. We conclude that primal heuristics are ex-
tremely relevant for the time to find a first solution, but not so much for the
time to prove optimality. This finding aligns well with the above observation
that there is a very significant difference for the question whether SCIP can
find a feasible solution but not for whether it can prove optimality within
the time limit. Further, the significance level of the primal integral was in
between the one for time to the first solution and the one for time to opti-
mality for all test sets which is in line with the findings of Chapter 3 that
the latter two are extrema, whereas the primal integral balances time and
quality of solutions.
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Further findings

In the course of preparing our final experiments, we performed some addi-
tional test runs with larger time limits and different settings. During those,
we could find a feasible solution with objective function value −1.150 151 360
for the instance nuclear10b, for which, to the best of our knowledge, no
primal bound has been reported in the literature before. The nuclear in-
stances are a notoriously hard to solve group of MINLP models that arise
from an application in which reloading patterns for the fuel rods of nuclear
power plants should be designed [QvGH+99]. Three out of four instances
that are listed on the MinlpLib webpage [Min] as “without an integer so-
lution” are from this group. Our solution for nuclear10b was found by the
rens heuristic that has been introduced in Chapter 7 of this thesis.

11.3. Computational results for industrial test sets

As the second main experiment, we ran SCIP 3.0.2 with and without primal
heuristics on the three test sets of real-world instances, coming from projects
with industry partners, to evaluate the impact of primal heuristics on very
homogeneous sets of practically relevant models.

Table 11.3.: Impact of primal heuristics (real-world instances)
all all feas all opt

feas opt obj theur P(tmax)
tmax

time1 sols nodes time

SAP (40 instances) (17 instances) (16 instances)

default 36 16 19 13.1% 22.2% 3.9 4.7 137 4.4
no heur 17 16 0 – 57.6% 4.7 2.0 259 5.6

Siemens (27 instances) (0 instances) (0 instances)

default 19 0 19 7.4% 37.1% – – – –
no heur 0 0 0 – 100.0% – – – –

ForNe (430 instances) (198 instances) (293 instances)

default 221 315 23 6.8% 25.8% 3.0 1.0 84 3.2
no heur 198 293 0 – 36.0% 30.7 1.0 1 684 18.7

We present results for MIP, MIQCP, and MINLP, modeling problems
arising in supply chain management, power management for smart build-
ings, and nomination validation for gas networks, respectively. Our findings
for the SAP MIP instances are shown in Tables B.28 and B.29 in the ap-
pendix, those for the Siemens MIQCPs in Tables B.30 and B.31, those for
the MINLPs from the ForNe project in Tables B.32 and B.33; aggregated
results can be found in Table 11.3.
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Reading the tables

As in the previous section, each table lists the instances, the number of
branch-and-bound Nodes, the time to find a First solution, the Total running
time, the average primal gap (Prim Int), and the number of relaxation solu-
tions (LP Sols). A timeout is indicated by the term “limit” in Column Total.
For Tables B.28, B.30, and B.32, Columns Sols and Time give the number of
heuristic solutions and the ratio of the heuristics’ running time to the total
running time, respectively.
Table 11.3 summarizes and averages the results from Tables B.28–B.33.

Columns feas and opt show the number of instances for which feasibility and
optimality could be proven, respectively, obj depicts the number of instances
with a better primal bound, theur the percentage of running time spent for
primal heuristics, P(tmax)

tmax
the average primal gap. For the instances proved

feasible by both SCIP versions, time1 depicts the mean running time for
proving feasibility, and sols gives the mean number of solutions. For the
instances solved to optimality by both versions, the number of branch-and-
bound nodes and the overall running time are presented. Figures 11.9, 11.10,
and 11.11 show the evolution of the average primal gap over time; the red
dashed line corresponds to the default runs with primal heuristics, the blue
dotted line to the runs with deactivated heuristics.

Evaluation of the results

Results from homogeneous test sets tend to be more extreme than the ones
on heterogeneous sets, as we will see in the following. Further, it is our expe-
rience that for industry projects there often are no large test sets available,
but rather a “handful” of important instances – often enough only one single
MIP/MINLP model of “the problem” which needs to be solved. Thus, the
SAP and Siemens test sets of 40 and 27 instances are rather small compared
to the academic test sets from the previous section. Then again, the ForNe
collection is the largest single test set that we consider in this thesis. It is
common to all three test sets, that the emphasis lies on the primal bound.
The ForNe test set actually contains pure feasibility instances, without an
objective function.
Analogously to the academic experiments, the majority of the performance

indicators speak in favor of primal heuristics, see Table 11.3. The most
extreme difference can be observed for the Siemens test set, for which not
even one instance can be proven to be feasible within one hour when primal
heuristics are deactivated. As a consequence, the all feas and all opt subsets
are empty and therefore, many of the used performance indicators could not
be evaluated in a meaningful manner. The only real information we can gain
is that with primal heuristics, for 19 instances a feasible solution could be
found. Thus, most evaluations in the remainder of this part will only be
made for the other two test sets.
For the 19 instances of the Siemens instance for which a feasible solution
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has been found, we conducted an additional experiment in which we changed
the gap limit of SCIP to 1%. Of course, it is always a speculation what
percentage of gap might by considered acceptable or sufficient in practice for
models that cannot be solved to optimality within the desired time. The
additional experiment revealed that for all 19 instances, a solution with less
than 1% optimality gap could be found. This took 69.0 seconds and 2425
branch-and-bound nodes in shifted geometric mean.
For the SAP test set, we see from Table 11.3 that with primal heuristics,

there are more than twice as many instances (36 vs. 17) for which a feasi-
ble solution could be found; the number of instances solved to optimality,
however, is identical. When disabling primal heuristics, we observe a deteri-
oration in the mean running time to optimality of 27% (5.6 seconds vs. 4.4).
This value is larger than for any of the academic test sets and astonishingly,
even larger than the improvement in the time to find a first feasible solution
on the SAP test set, which is 20% (4.7 seconds vs. 3.9). For the number of
branch-and-bound nodes and the average primal integral, we see factors of
1.9 and 2.6, respectively. These are again larger than for any of the academic
test sets. Some of these results, however, should be taken with a grain of
salt, as we will see from the control runs on permuted instances.
To analyze the results for the ForNe test set, it is important to note

that none of the instances has an objective function, and some are infeasible.
Thus, this is the only test set, for which the number of instances solved to
proven optimality, see Column opt, is greater than the number of instances
for which a feasible solution could be found, see Column feas. The latter set of
instances is a proper subset of the former one, since finding a feasible solution
is equivalent to solving the instance. The set of instances solved to optimality,
however, additionally contains those instances for which infeasibility could be
proven within the given time limit. As corollaries, the all opt subset is larger
than the all feas set, the average number of solutions in the all feas set is
exactly 1.0 for both settings, and the Columns First and Total will always be
equal in Tables B.32 and B.33.
There are 23 (of 430) more instances for which the default setting with

primal heuristics found a feasible solution, but only 22 more which were solved
(since the setting without heuristics proved infeasibility for one instance for
which the default setting timed out). Looking at the mean time needed
to find a solution and to solve an instance (the second one also including
infeasible instances), we see some of the most extreme results of this thesis:
The SCIP version with heuristics is 10.2 and 5.7 times faster, respectively.
For the mean number of branch-and-bound nodes, the factor is nearly 20!
It remains to be said, however, that on the subset of infeasible instances,
SCIP with heuristics was a factor 1.2 slower and needed 12% more nodes.
Nevertheless, the benefit of heuristics on feasible instances is much larger
than their burden on infeasible instances.
From the plots of the primal integral for SAP and Siemens, see Fig-

ures 11.9 and 11.10, we see that the curve corresponding to the setting with-
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Figure 11.9.: Course of the primal gap when running SCIP with and with-
out primal heuristics on SAP test set
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Figure 11.10.: Course of the primal gap when running SCIP with and with-
out primal heuristics on Siemens test set
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Figure 11.11.: Course of the primal gap when running SCIP with and with-
out primal heuristics on ForNe test set

out heuristics stalls quickly at a constant level, whereas the curve correspond-
ing to the setting with heuristics slowly decreases over time, especially for
the SAP test set. For the ForNe test set, see Figure 11.11, it is rather the
other way around: the setting with heuristics stalls after about one minute
(at a low level, though) and the setting without heuristics catches up over
time. Thus, for the default setting, a solution is either found immediately or
not within the time limit. This observation, together with the lessons learned
about performance variability, motivates an approach of running many copies
of a solver with different permutation seeds for a short time rather than run-
ning one copy on the original formulation for a long time. In particular for
models for which any solution will be optimal, this is a promising strategy,
see below the results for permuted instances of the ForNe test set.
Generally, the instances from the industrial test sets were harder than

those from the benchmark sets. This can be argued from the facts that a
lower percentage of instances could be solved to proven optimality within the
time limit and that the average primal integral is larger. We also observed
that the magnitudes of the improvements caused by using primal heuristics
were larger than for the academic benchmark sets. We see this as a further
indicator that primal heuristics are more helpful the harder the problems are,
consider in particular the performance on the Siemens test set.
In this section, we compared two settings of SCIP, default and without pri-

mal heuristics, with respect to seven different performance measures: number
of instances for which a feasible solution is found, number of instances for
which optimality is proven, the primal integral, time to find the first solu-
tion, number of overall solutions, number of branch-and-bound nodes, time
to proven optimality. Figure 11.12 visualizes the results from Table 11.3 by
presenting the relative difference of the two settings w.r.t. these seven per-
formance measures. We computed the relative difference in such a way that
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Figure 11.12.: Bar chart illustrating the relative difference between SCIP
running with and without primal heuristics w.r.t. seven per-
formance measures. Scaled such that positive values corre-
spond to improvements by using heuristics.

a positive value always corresponds to an improvement, see Section 11.2.
Figure 11.12 uses a logarithmic scale, relative differences below one percent

are omitted from the presentation. Further, we excluded the results for the
Siemens test set, since most of the values for the setting without heuristics
are zero and hence a relative comparison is not meaningful. Figure 11.12
illustrates that for the other two industrial test sets, six out of seven perfor-
mance measures show improvements by 7.5% to 1900% when using primal
heuristics.

Statistics of primal heuristics

The Siemens test set was the most homogeneous w.r.t. number of primal
heuristics being called; for all of the instances this number was between 17
and 21, see Table B.30. For the ForNe test set, there were 40 very easy
instances that were solved in presolving and for which only one heuristic was
called. For all other instances, at least seven heuristics and at most 19 were
called. All numbers between 7 and 19 occured several times, 18 and 19 being
the most common ones, see Table B.32. This corresponds to the full portfolio
of primal heuristics without improvement heuristics – recall that the ForNe
test set consists of pure feasibility problems. For the SAP test set, the primal
heuristics statistics were rather diverse, too: there were a couple of instances
for which only two heuristics were called, some for which 19 were called, see
Table B.28.
The Siemens test set is by many means the most homogeneous test set

that we considered in this thesis. Interestingly, the amount of time spent in
primal heuristics ranges from 2.4% to 24.1%, hence there is a factor of ten
involved. This occurs despite the facts that all instances time out, hence the
base value of 3600 seconds is constant and that the number of called heuris-
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tics is very similar, see the previous paragraph. Also, the larger percentages
are not achieved by one single outlier, but by the sum of many single heuris-
tics. For instance pmbrp-096-05-09-l, which achieves the maximum value of
24.1% time spent in primal heuristics, this is caused by five diving heuristics
which take between 100 and 200 seconds each, being called between 300 and
600 times each. For the instance pmbrp-108-10-12-l, which achieves the
minimum value of 2.4% time spent in primal heuristics, each diving heuristic
takes less than one second in total, each being called around 170 times. There
were two important aspects contributing to this difference. Firstly, the div-
ing depth for pmbrp-108-10-12-l is only six nodes on average, whereas for
pmbrp-096-05-09-l it is nearly 100. Secondly, for pmbrp-096-05-09-l one
iteration of the simplex algorithm takes about three times longer as compared
to pmbrp-108-10-12-l. Both instances needed around six simplex iterations
on average to re-optimize a diving LP.
The SAP MIPs are very diverse w.r.t. their size, the time it takes to solve

and consequently also w.r.t. the percentage of time that is spent in primal
heuristics. For all instances from the snp-004* group primal heuristics take
less than ten percent, for two of them actually only 0.2%. The maximum is
achieved by snp-003 with 98.9%. Here, the reason is that rens consumes
almost all the time for solving its sub-MIP. For the ForNe test set, every
instance that times out takes less than 2% of running time for primal heuris-
tics. The other instances mainly solve within a few seconds, the bandwidth
of time spent in heuristics ranges from 0.6% to 79.5%, wherefrom two thirds
of the instances consumed between 5 and 25% of the total in heuristics.

Results for permuted instances

As in the previous section, we performed an additional experiment to analyze
the effect of performance variability, considering test sets that contain five
permuted copies of each instance. The results are summarized in Table 11.4.

Table 11.4.: Impact of primal heuristics (real-world instances, permuted)
all all feas all opt

feas opt obj theur P(tmax)
tmax

time1 sols nodes time

SAP (200 instances) (85 instances) (80 instances)

default 180 80 95 11.7% 24.6% 4.3 5.0 118 4.6
no heur 85 80 0 – 58.8% 6.3 2.8 282 7.7

Siemens (135 instances) (0 instances) (0 instances)

default 102 0 102 5.7% 35.0% – – – –
no heur 0 0 0 – 100.0% – – – –

ForNe (2150 instances) (966 instances) (1401 instances)

default 1088 1524 119 6.3% 27.5% 2.7 1.0 76 3.1
no heur 981 1417 13 – 37.6% 36.7 1.0 2 099 22.1
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For the Siemens and the ForNe test set, the results on permuted instances
were very similar to the results on the original formulations. The success rate
on Siemens was a bit higher: there were 102 instances for which a feasible
solution could be found, compared to 19 on the original set. Consequently,
the average primal integral reduced slightly. Unlike for the original test set,
the ForNe set showed some (precisely: 13 out of 2150) cases for which the
settings without heuristics could find a feasible solution, but the setting with
heuristics could not. The difference between time and nodes needed to solve
the instances is even a bit more extreme than on the original test set. The
factors are 7.1 and 27, compared to 5.7 and 20, for time and branch-and-
bound nodes, respectively.

With a portfolio approach of running the setting with heuristics on six
permutations, one finds feasible solutions for 243 instead of 222 instances of
the ForNe test set. That the usage of permutations increases the number
of solved instances by about 10% is a desirable result in two senses. First,
it shows that running the solver on different permutations in parallel can be
beneficial. Such an approach has been implemented within the LaMaTTO++
framework [KBE+14, Lam] for solving MINLPs on networks [KBE+14]. Sec-
ond, that the improvement is “only” 10% shows that the cases for which
the performance of the solver is particularly bad on the original problem
formulation are relatively rare.

For the SAP test set, all numbers that count instances, namely feas, opt,
and obj, were simply the fivefold of the numbers in Table 11.3. The mean
time needed to prove optimality with the default setting is very similar on
the original and the permuted SAP test set. The mean time for the setting
without heuristics, however, is much worse on permuted instances: it is 7.7
seconds on the permuted test set, see Table 11.4, and 5.6 on the original, see
Table 11.3. This can be explained mainly by the small size of the original
set – there are 16 instances that got solved to optimality – which makes it
vulnerable to the impact of outliers. To see this, we need to compare all
six permutations, including the original, amongst each others. It turns out
that four of them behave rather similar, with mean run times of 6.9, 7.0, 7.6,
and 8.2 seconds. One of the permuted test sets is an outlier in the negative
direction with a mean running time of 9.3 seconds. The original set, however,
is an outlier in the positive direction with a mean running time of 5.6 seconds.

This is mainly due to one single instance, snp-004-02, which gets solved
in 38.5 seconds in the original formulation, whereas the permuted versions
take between 128.2 and 700.1 seconds. When removing this single instance,
the pairwise difference between the running times for the permuted test sets
is at most 15%, as compared to 40% with this instance. This experiment
demonstrates the added value of running tests on permuted test sets to reduce
the impact of outliers, in particular when the original test set is very small.
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Statistical tests

For SAP and Siemens, the Wilcoxon signed rank test and the McNemar tests
for the number of feasible instances and the better objective at the time limit
all confirmed statistical significance, i.e., the respective null-hypotheses that
primal heuristics would not have an impact on these performance measures all
got rejected with very small p-values. For the other three criteria, the number
of samples for which these differed (applying the exclusion rules explained in
Section 11.2) was too small.
For the ForNe test set, however, all six statistical tests passed, i.e., null-

hypotheses got rejected. Note that since these are pure feasibility problems,
many of the performance measures are equivalent or the only difference is
whether infeasible instances are included or not. For instance, the difference
of the number of instances with feasible solution is the same as for the num-
ber of instances with a better primal bound at termination and the primal
integral is a multiple of the time to first solution. Nevertheless, the results
for the ForNe test set are the most extreme ones speaking in favor of primal
heuristics, as mentioned above, and it comes at no surprise that the statistical
tests confirm the significance of these results.

Further findings

Again, we performed some additional test runs with larger time limits and
different settings to determine good bounds on the optimal objective value.
It turned out that with a ten hour time limit and with emphasis setting
for heuristics set to “aggressive”, SCIP could find a feasible solution for all
instances of the Siemens test set. Still, none of the instances could be solved
to proven optimality, but in all cases the final primal-dual gap was below
0.5%.
For the ForNe test set, we could decide the feasibility status for 417 of 431

instances in additional experiments with different settings, limits and SCIP
versions. Originally, the status was known only for 309 instances.

11.4. All instances grouped by complexity

In this section, we take a second glance at the results of the previous two
sections. So far, we have grouped our test instances by the problem class
they belong to and by the application they arise from. Now, we re-analyze
our results, grouping the test instances by the enumerative effort that they
take to solve. More precisely, we break up the union of our six test sets into
groups of easy, medium, hard and timeout instances.
We call an instance easy, when the worse of the two SCIP settings (with

and without primal heuristics) solves it to proven optimality in at most 100
branch-and-bound nodes. If it takes more than 100, but less than 10,000
nodes to solve it with the worse setting, we call the instance medium. In-
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stances that can be solved to optimality, but not with less than 10,000 nodes,
are called hard. Finally, we classify instances as timeout when SCIP times
out with at least one setting.
This is in the spirit of a recent computational study by Achterberg and

Wunderling [AW13], who subdivided their test set into “brackets” which
are defined by the time Cplex needs to solve them to proven optimality.
Note that they defined the brackets such that they are proper subsets of
each other, whereas by our definition, the groups of easy, medium, hard and
timeout instances are pairwise disjoint.

Table 11.5.: Impact of primal heuristics (all instances, grouped by the num-
ber of branch-and-bound nodes of the worse setting).

all all feas all opt

feas opt obj theur P(tmax)
tmax

time1 sols nodes time

all (983 instances) (630 instances) (639 instances)
default 732 669 144 9.2% 17.8% 4.3 4.3 322 9.4
no heur 631 642 6 – 30.1% 24.2 2.3 1 739 21.6

easy (195 instances) (136 instances) (195 instances)
default 136 195 0 7.1% 0.2% 0.8 3.1 9 1.6
no heur 136 195 0 – 0.3% 5.1 1.5 13 1.6

medium (264 instances) (232 instances) (264 instances)
default 232 264 0 19.3% 1.7% 3.2 3.5 197 7.0
no heur 232 264 0 – 2.1% 8.5 2.2 828 9.6

hard (180 instances) (175 instances) (180 instances)
default 175 180 0 13.5% 1.1% 5.1 9.1 7 554 57.2
no heur 175 180 0 – 6.5% 54.4 4.4 96 135 195.4

timeout (344 instances) (87 instances) (0 instances)
default 189 30 144 4.6% 47.2% 3.7 2.1 – –
no heur 88 3 6 – 77.9% 10.4 0.8 – –

Table 11.5 shows how various performance measures differ by the complex-
ity of the test instances. For a description of the table columns, please see
the explanation of Table 11.1 on page 177. Figure 11.13 visualizes the results
from Table 11.5 by presenting the relative difference of the two settings w.r.t.
seven performance measures.
For some performance measures, the difference between both settings is

similar among all groups, e.g. the number of found solutions raised by around
100% when using primal heuristics. For others measures, the importance
of employing primal heuristics clearly rises with the “hardness” of the in-
stances. Where for easy instances, running SCIP without primal heuristics
leads to increases of only 5% in running time and 31% in the number of
branch-and-bound nodes, for medium instances these are 38% and 318%,
respectively. For hard instances, abstaining from primal heuristics causes a
241% deterioration in running time and an increase of 1173% in the number
of branch-and-bound nodes needed to solve the instance to proven optimality.
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Figure 11.13.: Bar chart illustrating the relative difference between SCIP
running with and without primal heuristics w.r.t. seven per-
formance measures. Scaled such that positive values corre-
spond to improvements by using heuristics. Grouped into
easy, medium, hard, and timeout instances by the number
of branch-and-bound nodes

Long story short: Primal heuristics hardly affect instances that are easy to
solve anyway, but they are crucial for hard instances.
Among the 314 instances which timed out with at least one setting, there

were 189 instances for which primal heuristics could find at least one feasible
solution, without heuristics there were only 88. For nearly one half of the
instances, 144 times, the primal bound at termination was at least 10% better
when using primal heuristics. Only six times, the setting without heuristics
led to a better primal bound. There were 30 which could be solved when
using primal heuristics, but not without. Only three times it was the other
way around. We conclude that for instances that are too hard to be solved
within a given time limit, employing primal heuristics is very likely to be
beneficial.

11.5. Conclusion

In the introduction of this chapter, we pointed out that computational re-
sults always depend on heuristic decisions by the researcher who conducts
them. Concerning the choice of parameter settings, we opted for simplic-
ity and broke our experiments down to one crucial question: “Are primal
heuristics beneficial for MIP and MINLP solvers and if yes, in which re-
spect?” Concerning the choice of instances, we opted for comprehensiveness
and analyzed results for six different test sets, accompanied by results on
permuted instances, and a final evaluation on the instances grouped by their
computational complexity.
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These experiments led to some distinct conclusions. We saw that primal
heuristics give rise to considerable improvements in various measures, namely
the number of found solutions, the time to find a first solution, the quality
of the primal bound at termination, the primal integral (see Chapter 3), and
the number of branch-and-bound nodes required to prove optimality. These
results were consistent over all test sets that we considered, on the original
formulations as well as on permuted formulations. Except for pure feasibility
problems, they did not affect the number of instances solved to optimality.
The mean time to optimality improved significantly for two industry-related
test sets and the academic MIP benchmark set. We further observed that
primal heuristics are especially beneficial for hard instances and problems
that cannot be solved within a given time limit. For instances that need
more than 10,000 branch-and-bound nodes to be solved to optimality, the
mean running time of SCIP reduced by a factor of more than three when
using heuristics.
In a nutshell, the presented results give a strong indication that the par-

ticular value of primal heuristics lies in obtaining high quality solutions fast.
The more difficult the problem, the more important is the deployment of
heuristics.



12. Conclusion

A direct conclusion of the preceding eleven chapters is that heuristic algo-
rithms are ever-present in global solvers for MINLP. In this thesis, we pre-
sented diverse new contributions, all of them of heuristic nature, to computa-
tional MIP and MINLP. We evaluated the impact of the suggested methods
on the performance of the global solver SCIP, of which the author has been
a main developer for the past seven years.
In an attempt to break down 199 pages to a single paragraph, we summa-

rize the main findings of this thesis as follows:

. Primal heuristics are an essential component of nowadays MIP and
MINLP solvers; their benefit, however, becomes apparent only on a
second glance: rather than speeding up overall computational time by
a tremendous amount, they support a quick convergence of primal and
dual bounds (see in particular Chapters 3 and 11). This feature is of
major importance for most practitioners that use MI(NL)P solvers.

. The harder a problem is, the more important are primal heuristics.
On hard and unsolved instances, primal heuristics showed the largest
improvements in our computational study, see Chapter 11.4.

. Primal heuristics are most successful when they follow a “fast fail”
strategy; it is crucial to rapidly identify situations with low chances of
success and bail out quickly.

. Large neighborhood search is not only beneficial for improvement strate-
gies; we introduced two successful LNS-based start heuristics in Chap-
ters 7 and 8.

The implementations of all methods described in Chapters 3, 4, and 6 to 10
are part of the SCIP standard distribution and can thereby be accessed in
source code. The majority of them are nowadays employed by default in
SCIP.
In [BR07], Bixby and Rothberg stretched the importance of academic

research on MIP solution technology for the commercial development of
MIP software and its application in industry. They note that the pro-
gression of MIP towards a general, powerful technology was “enabled by
methods and theory that have been available in the academic literature”
and that for long time simply “these techniques had not made it into com-
mercial MIP software, despite their effectiveness”. In this light, it is an

199
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honor to see that some of the methods described in this thesis have al-
ready been re-implemented within several MIP and MINLP software pack-
ages [BDV14, Jen13, Ach, Per, Bon, Cbc], commercial and non-commercial.
We strongly believe that computational MINLP is about to experience a

rise comparable to that of computational MIP over the last twenty years.
In this course, heuristic algorithms can be expected to play a key role when
black-box solvers shall be enabled to solve large-scale MINLP instances of
practical relevance. The increasing number of publications on primal heuris-
tics for MINLP over the last five years indicates that the journey has already
begun.

Figure 12.1.: Solutions can sometimes be found at surprising places.
(Originator of image: Michaela Keinert, Berlin)
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A. Notation

number sets

Z set of integer numbers
Z>0 set of nonnegative integer numbers
Q set of rational numbers
R set of real numbers
R>0 set of nonnegative real numbers
ej unit vector, j-th component is 1, all others 0
En identity matrix, 1’s on the diagonal, all others 0

runtime complexity

P class of problems that are solvable in polynomial time
NP class of problems that are verifiable in polynomial time

problem definition: index sets

M set of constraint indices: M = {1, . . . ,m}
N set of variable indices: N = {1, . . . ,n}
I (index) set of integer variables: I ⊆ N
B (index) set of binary variables: B ⊆ I
R (index) set of continuous variables: R = N \ I

problem definition: vectors, matrices, functions

P MINLP problem
P̄ relaxation of P
P̃ a subproblem of P
x n-dimensional vector of variables
c objective function vector, c ∈ Rn
l lower bound vector, l ∈ (R ∪ {−∞})n, lj 6 xj for all j ∈ N
u upper bound vector, u ∈ (R ∪ {+∞})n, xj 6 uj for all j ∈ N
l(P̃ ) lower bound vector of a subproblem
u(P̃ ) upper bound vector of a subproblem
Dj domain interval of the j-th variable
A coefficient matrix of an MIP or LP
b right hand side vector of an inequality or equation system, b ∈ Rm
g constraint function system of a MINLP, gi : Rn → R for all i ∈M
A constraint matrix of a MIP, A ∈ Rm×n
Ai· i-th row of the constraint matrix
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Q coefficient matrix of a quadratic constraint
d constant offset of a constraint
f nonlinear objective function

solution values and vectors

x̄ solution to a relaxation
x̃ vector that fulfills the integrality requirements
x? optimal solution
c? optimal objective value
c dual bound on the optimal objective value
c primal bound on the optimal objective value
R(x̄) set of roundings of x̄: {x ∈ Rn | xj ∈ {bx̄jc, dx̄je} for all j ∈ I}

branching and global information

κj number of constraints that can be violated by shifting variable j up
κj number of constraints that can be violated by shifting var. j down
s branching score
Ψ pseudocosts
ς predicted objective gain
∆ actual objective gain

sets

F set of fractional variables
K set of unfixed variables
L set of lower bounds in a conflict constraint
U set of upper bounds in a conflict constraint
C cover of an MINLP
S cloud: set of alternative relaxation solutions
T a testset for a MIP

global optimization

C2 set of twice continuously differentiable functions
J Jacobian of a function; vector of its first order partial derivatives
H Hessian of a function; matrix of its second order partial derivatives
L Lagrangian (function) of an optimization problem

means and gaps

φ geometric mean
ψ arithmetic mean
γp primal gap
γd dual gap
γpd primal-dual gap
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Table B.2.: Shift-and-Propagate: results of the root experiment for all
three settings in terms of heuristic/root solving time and ob-
jective value for all 163 instances.

SandP RandI Both
Problem Name cT x̃ t (s) cT x̃ t (s) cT x̃ t (s)
10teams – 0.00/0.18 – 0.00/0.32 – 0.02/0.33
30n20b8 – 0.02/9.60 – 0.01/9.59 – 0.04/9.55
a1c1s1 – 0.02/0.27 – 0.02/0.28 – 0.03/0.29
acc-tight5 – 0.00/2.14 – 0.01/2.00 – 0.01/2.15
aflow30a 4606.0 0.01/0.19 – 0.00/0.09 4606.0 0.03/0.21
aflow40b 8300.0 0.03/0.81 – 0.00/0.78 8300.0 0.07/0.84
air03 6.2e+05 0.04/5.08 – 0.02/5.05 6.2e+05 0.06/5.32
air04 – 0.02/3.63 – 0.00/3.51 – 0.05/3.55
air05 – 0.04/1.22 – 0.00/1.11 – 0.04/1.20
app1-2 – 9.70/24.08 -23 0.07/13.82 – 9.86/24.23
arki001 – 0.01/0.38 – 0.00/0.39 – 0.01/0.38
atlanta-ip – 0.10/18.18 – 0.06/18.06 – 0.15/18.27
beasleyC3 – 0.00/0.07 951.0 0.05/0.19 951.0 0.05/0.17
bell3a – 0.00/0.01 9.2e+05 0.00/0.00 9.2e+05 0.01/0.02
bell5 – 0.00/0.01 – 0.00/0.03 – 0.00/0.03
bab5 – 2.05/18.84 – 0.03/16.92 – 2.13/19.19
biella1 9.5e+07 1.23/5.70 – 0.00/4.50 9.5e+07 1.86/6.30
bienst2 – 0.01/0.02 – 0.00/0.01 – 0.01/0.05
binkar10_1 11244.2 0.02/0.13 – 0.00/0.12 11244.2 0.01/0.13
blend2 – 0.01/0.04 – 0.00/0.04 – 0.01/0.04
bley_xl1 515.0 0.05/351.94 – 0.00/310.20 275.0 0.05/311.14
bnatt350 – 0.01/0.75 – 0.00/0.74 – 0.02/0.75
cap6000 -87646.0 0.06/0.73 -2.5e+06 0.16/0.83 -2.5e+06 0.20/0.98
core2536-691 – 1.56/13.46 795.0 0.09/12.15 795.0 1.65/13.68
cov1075 56 0.01/0.30 26 0.00/0.31 26 0.02/0.31
csched010 – 0.01/0.27 – 0.00/0.27 – 0.01/0.27
dano3mip – 0.53/22.28 – 0.03/21.43 – 0.55/22.10
danoint – 0.01/0.60 – 0.00/0.51 – 0.01/0.60
dcmulti – 0.01/0.03 – 0.01/0.04 – 0.01/0.03
dfn-gwin-UUM – 0.01/0.03 2.3e+05 0.00/0.03 2.3e+05 0.00/0.03
disctom – 0.05/1.81 – 0.01/1.57 – 0.06/1.75
ds 1308.2 0.51/21.53 – 0.08/21.30 1308.2 1.10/22.18
dsbmip – 0.16/0.42 – 0.01/0.37 – 0.35/0.59
egout 667.1 0.00/0.01 625.3 0.00/0.01 625.3 0.00/0.00
eil33-2 1321.7 0.03/0.50 – 0.01/0.46 1321.7 0.09/0.55
eilB101 2427.3 0.02/0.41 – 0.00/0.41 2427.3 0.04/0.43
enigma – 0.00/0.01 – 0.00/0.01 – 0.00/0.01
enlight13 – 0.00/0.02 – 0.00/0.02 – 0.01/0.02
fast0507 1.2e+05 0.48/13.71 240.0 0.57/13.87 257.0 0.94/14.22
fiber – 0.01/0.04 – 0.00/0.04 – 0.02/0.04
fixnet6 – 0.01/0.04 4536.0 0.02/0.05 4536.0 0.03/0.07
flugpl – 0.00/0.01 – 0.00/0.00 – 0.00/0.01
gen 1.1e+05 0.01/0.06 – 0.00/0.05 1.1e+05 0.02/0.07
gesa2-o – 0.00/0.05 – 0.00/0.10 – 0.02/0.12
gesa2 4.7e+07 0.02/0.16 1.9e+08 0.01/0.13 4.6e+07 0.05/0.18
gesa3 5.9e+07 0.02/0.14 1.9e+08 0.00/0.12 5.9e+07 0.02/0.14
gesa3_o – 0.02/0.11 – 0.00/0.09 – 0.02/0.10
glass4 – 0.01/0.04 – 0.00/0.04 – 0.01/0.04
gmu-35-40 -5e+04 0.01/0.22 -1.5e+06 0.00/0.21 -1.5e+06 0.01/0.20
gt2 – 0.00/0.01 – 0.00/0.01 – 0.00/0.01
harp2 -5.2e+07 0.01/0.18 – 0.01/0.18 -5.6e+07 0.06/0.24
iis-100-0-cov 46 0.02/0.57 35 0.01/0.49 36 0.02/0.57
iis-bupa-cov 98 0.01/1.13 48 0.01/1.30 47 0.03/1.30
iis-pima-cov 92 0.05/1.26 44 0.03/1.50 42 0.05/1.39
khb05250 1.6e+08 0.01/0.03 1.3e+08 0.00/0.01 1.3e+08 0.01/0.03

continued on next page
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Table B.2 continued
SandP RandI Both

Problem Name cT x̃ t (s) cT x̃ t (s) cT x̃ t (s)

lectsched-4-obj – 0.02/1.13 – 0.01/1.29 – 0.02/1.14
liu 6450.0 0.04/0.10 – 0.00/0.05 6450.0 0.05/0.12
l152lav – 0.02/0.15 – 0.00/0.15 – 0.02/0.17
lseu – 0.00/0.01 – 0.00/0.01 – 0.00/0.01
m100n500k4r1 0 0.01/0.03 -18 0.00/0.03 -18 0.02/0.04
macrophage 1409.0 0.03/0.13 609.0 0.02/0.13 458.0 0.03/0.15
manna81 0 0.04/0.26 -13162.0 0.07/0.19 -13162.0 0.11/0.31
map18 0 0.19/7.88 0 0.17/7.11 0 0.30/8.00
map20 0 0.19/7.37 0 0.18/6.51 0 0.32/7.62
markshare1 7286.0 0.00/0.01 125.0 0.00/0.01 125.0 0.00/0.01
markshare2 10512.0 0.00/0.00 161.0 0.00/0.00 161.0 0.00/0.01
mas74 1.5e+05 0.01/0.02 – 0.00/0.01 1.5e+05 0.02/0.02
mas76 1.5e+05 0.01/0.02 – 0.00/0.01 1.5e+05 0.01/0.01
mcsched 4.8e+05 0.06/0.79 – 0.01/0.80 4.8e+05 0.08/0.81
mik-250-1-100-1 0 0.01/0.04 0 0.01/0.02 0 0.01/0.04
mine-166-5 0 0.03/1.66 -7.3e+06 0.02/1.79 -7.3e+06 0.03/1.75
mine-90-10 0 0.04/1.14 -1.6e+07 0.02/1.13 -1.6e+07 0.03/1.24
misc03 – 0.00/0.04 – 0.00/0.04 – 0.00/0.05
misc06 13951.9 0.02/0.13 – 0.00/0.13 13951.9 0.03/0.13
misc07 – 0.00/0.09 – 0.00/0.11 – 0.01/0.11
mitre 1.6e+05 0.03/4.94 – 0.00/5.03 1.4e+05 0.04/4.97
mkc 0 0.21/0.49 0 0.11/0.40 0 0.25/0.53
mod008 1452.0 0.00/0.01 308.0 0.00/0.02 308.0 0.01/0.02
mod010 – 0.02/0.12 – 0.01/0.20 – 0.02/0.21
mod011 0 0.05/0.50 -4.3e+07 0.04/0.48 -4.3e+07 0.07/0.53
modglob 3.6e+07 0.00/0.02 2.1e+07 0.00/0.01 2.1e+07 0.00/0.02
momentum1 3.6e+05 0.11/5.42 – 0.02/5.47 3.6e+05 0.12/5.47
momentum2 – 0.13/11.70 – 0.01/11.43 – 0.13/11.07
momentum3 – 1.82/387.71 – 0.05/375.27 – 1.76/379.42
msc98-ip – 0.07/6.41 – 0.01/6.35 – 0.08/6.24
mspp16 – 40.01/758.94 – 0.83/737.06 – 40.85/764.70
mzzv11 0 0.13/41.75 0 0.02/41.60 0 0.15/41.85
mzzv42z 0 0.19/9.44 0 0.10/9.39 0 0.24/9.42
n3div36 2.5e+06 0.67/3.96 1.8e+05 0.38/3.70 1.6e+05 1.09/4.40
n3seq24 9.7e+07 8.09/46.82 – 0.22/40.31 1.6e+05 8.96/48.01
n4-3 – 0.06/0.34 14275.0 0.00/0.06 14275.0 0.06/0.19
neos-1109824 – 0.02/0.86 – 0.00/0.86 – 0.01/0.98
neos-1337307 – 0.03/2.50 – 0.00/2.49 – 0.04/2.48
neos-1396125 – 0.01/1.39 – 0.00/1.47 – 0.01/1.34
neos13 -28 0.95/3.15 – 0.03/2.31 -28 0.99/3.17
neos-1601936 – 0.08/4.98 – 0.00/5.05 – 0.08/4.85
neos18 19 0.01/0.16 57 0.01/0.26 19 0.03/0.26
neos-476283 – 21.91/84.89 – 0.02/63.30 – 21.51/84.03
neos-686190 – 0.09/0.33 – 0.01/0.26 – 0.08/0.33
neos-849702 – 0.01/1.10 – 0.01/1.16 – 0.02/1.15
neos-916792 – 0.17/0.87 – 0.00/0.80 – 0.17/0.92
neos-934278 4.7e+05 0.40/19.17 3.4e+10 0.04/18.93 4.7e+05 0.47/19.32
net12 – 0.04/3.94 – 0.02/3.96 – 0.05/4.05
netdiversion 4.9e+06 22.09/675.36 – 0.13/648.13 4.9e+06 28.70/674.29
newdano – 0.01/0.03 – 0.00/0.02 – 0.00/0.04
noswot -5 0.00/0.01 – 0.00/0.01 -6 0.00/0.02
ns1208400 – 0.07/2.30 – 0.00/2.33 – 0.06/2.23
ns1688347 – 0.02/5.13 – 0.01/5.23 – 0.02/5.27
ns1758913 – 1.36/131.32 – 0.04/130.64 – 1.47/134.89
ns1830653 – 0.01/0.66 – 0.00/0.58 – 0.02/0.82
nsrand-ipx 1.3e+06 0.05/1.50 – 0.01/1.27 70720.0 0.09/1.42
nw04 29430.0 0.26/11.70 – 0.08/11.61 29430.0 0.93/12.37
opm2-z7-s2 0 0.23/13.68 -3685.0 0.14/13.61 -3685.0 0.33/13.88
opt1217 0 0.00/0.02 – 0.00/0.03 0 0.01/0.04

continued on next page
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Table B.2 continued
SandP RandI Both

Problem Name cT x̃ t (s) cT x̃ t (s) cT x̃ t (s)

p0033 – 0.00/0.01 – 0.00/0.00 – 0.00/0.01
p0201 12855.0 0.00/0.06 – 0.00/0.06 11295.0 0.02/0.06
p0282 9.1e+05 0.01/0.03 2.7e+05 0.00/0.02 2.7e+05 0.00/0.03
p0548 – 0.01/0.04 – 0.00/0.04 – 0.02/0.05
p2756 6595.0 0.05/0.34 – 0.01/0.29 5e+03 0.07/0.34
pg5_34 0 0.02/0.17 0 0.01/0.16 0 0.02/0.19
pigeon-10 0 0.01/0.05 0 0.01/0.04 0 0.01/0.05
pk1 731.0 0.00/0.01 – 0.00/0.01 731.0 0.00/0.01
pp08a – 0.01/0.01 14600.0 0.00/0.01 14600.0 0.00/0.01
pp08aCUTS – 0.00/0.02 16630.4 0.00/0.01 16630.4 0.02/0.02
protfold – 0.02/1.44 – 0.00/1.49 – 0.03/1.43
pw-myciel4 22 0.01/1.02 – 0.00/1.07 22 0.01/0.98
qiu – 0.00/0.10 1805.2 0.00/0.10 1805.2 0.01/0.11
qnet1 2.2e+05 0.01/0.24 – 0.01/0.24 26659.3 0.04/0.26
qnet1_o 78355.2 0.02/0.06 28462.1 0.01/0.05 17842.7 0.01/0.06
rail507 – 8.25/20.69 216.0 0.43/13.02 216.0 8.98/21.27
ran16x16 6e+03 0.01/0.02 4333.0 0.01/0.02 4333.0 0.03/0.04
reblock67 0 0.02/0.91 -2.6e+06 0.01/0.84 -2.6e+06 0.03/0.85
rd-rplusc-21 – 1.49/58.94 – 0.00/57.58 – 1.47/58.81
rentacar – 0.58/1.13 – 0.02/1.16 – 0.39/0.96
rgn 445.0 0.01/0.02 – 0.00/0.00 445.0 0.01/0.02
rmatr100-p10 817.0 0.07/2.52 – 0.01/2.59 817.0 0.08/2.50
rmatr100-p5 1414.0 0.14/4.17 – 0.01/4.16 1414.0 0.15/4.23
rmine6 0 0.05/1.54 -90 0.01/1.35 -90 0.07/1.53
rocII-4-11 – 0.02/6.18 – 0.01/6.17 – 0.04/6.15
rococoC10-001000 2.1e+05 0.03/0.31 27042.0 0.03/0.33 24044.0 0.05/0.34
roll3000 – 0.03/0.61 – 0.01/0.62 – 0.04/0.60
rout 2375.2 0.01/0.09 2375.2 0.00/0.08 2375.2 0.01/0.09
satellites1-25 97 0.10/39.36 – 0.00/37.12 97 0.12/39.79
set1ch 1e+05 0.01/0.03 1.1e+05 0.02/0.04 1e+05 0.02/0.05
seymour 1269.0 0.03/1.19 496.0 0.03/1.04 500.0 0.06/1.18
sp97ar 2.6e+10 0.18/5.67 – 0.05/5.57 9.7e+08 0.39/5.66
sp98ic 1.1e+10 0.19/3.80 5.4e+08 0.22/3.94 8.3e+08 0.42/3.93
sp98ir 5.2e+08 0.03/1.19 – 0.00/1.18 3.1e+08 0.04/1.38
stein27 23 0.00/0.01 19 0.00/0.00 19 0.01/0.01
stein45 38 0.01/0.02 33 0.00/0.01 32 0.00/0.02
stp3d – 0.81/2215.49 – 0.21/2206.18 – 1.19/2239.59
swath 713.2 0.06/0.24 – 0.02/0.20 713.2 0.33/0.52
t1717 – 0.08/6.82 – 0.06/6.86 – 0.14/6.77
tanglegram1 33625.0 0.25/2.27 7798.0 0.72/2.76 5406.0 0.85/2.79
tanglegram2 4172.0 0.05/0.36 2122.0 0.15/0.38 535.0 0.16/0.49
timtab1 – 0.00/0.03 – 0.00/0.02 – 0.00/0.02
timtab2 – 0.00/0.06 – 0.00/0.05 – 0.01/0.05
tr12-30 – 0.02/0.12 – 0.00/0.10 – 0.02/0.12
triptim1 – 0.17/111.54 – 0.03/112.41 – 0.21/132.15
unitcal_7 – 0.10/17.19 – 0.03/17.86 – 0.14/17.25
vpm1 23 0.00/0.00 24 0.01/0.02 23 0.01/0.01
vpm2 – 0.00/0.03 – 0.00/0.03 – 0.00/0.02
vpphard – 0.27/11.66 – 0.05/11.54 – 0.34/11.67
zib54-UUE – 0.02/0.21 1.8e+07 0.00/0.21 1.8e+07 0.02/0.21
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Table B.4.: Impact of LNS heuristic on root node performance for MIQCP
instances

no LNS aux. MIP sub-MINLP
Instance Primal Bound Time Primal Bound Time Primal Bound Time

108bar – 2.6 – 2.8 – 3.0
10bar2 – 0.1 – 0.2 – 0.1
200bar – 4.5 – 7.0 – 25.7
25bar – 0.2 – 0.4 – 0.3
classical_200_0 -0.01 2.2 -0.01 4.7 -0.05 6.9
classical_200_1 – 2.5 – 3.2 – 2.5
classical_20_0 – 0.1 – 0.1 – 0.1
classical_20_1 – 0.1 – 0.1 – 0.1
classical_50_0 – 0.4 -0.07 1.0 – 0.6
classical_50_1 – 0.4 – 0.3 -0.09 1.6
clay0203m – 0.1 – 0.1 – 0.1
clay0205m – 0.1 – 0.1 – 0.1
clay0303m – 0.1 – 0.1 31302.87 0.1
clay0305m – 0.1 – 0.1 – 0.1
du-opt5 195.55 0.1 195.55 0.1 195.55 0.1
du-opt 1314.42 0.1 1314.42 0.1 1314.42 0.1
ex1263 35.30 0.1 32.30 0.3 21.30 0.4
ex1264 24.60 0.1 24.60 0.1 9.30 0.2
ex1265 20.30 0.1 18.30 0.1 11.60 0.2
ex1266 27.30 0.1 22.30 0.2 22.30 0.4
fac3 38335620.70 0.2 38335620.70 0.2 38335620.70 0.2
feedtray2 – 0.1 – 0.1 – 0.1
iair04 – 55.0 66475.31 100.5 65707.73 126.4
iair05 – 45.3 28249.89 52.5 27665.26 57.2
ibc1 5.17 6.0 3.54 20.1 3.54 23.6
ibell3a 897678.56 0.1 878785.03 0.1 879009.26 0.1
ibienst1 53.03 1.7 53.03 2.0 53.03 1.9
icap6000 -2446601.00 2.5 -2447103.00 3.2 -2448165.00 7.6
icvxqp1 4604249.00 26.9 1674226.00 28.1 3811872.00 30.8
ieilD76 1008.64 22.2 892.69 39.9 888.69 42.1
ilaser0 – 1.0 – 1.0 – 1.0
imas284 102638.21 0.4 93699.30 1.4 92194.04 1.7
imisc07 – 0.7 – 0.6 – 0.6
imod011 0.00 19.2 0.00 19.7 0.00 18.8
inug08 7213.00 10.5 7213.00 10.6 7213.00 10.3
iportfolio 0.00 53.8 0.00 71.5 0.00 70.9
iqap10 492.62 116.5 492.62 134.4 403.06 251.2
iqiu 864.10 1.7 864.10 1.5 -29.49 2.8
iran13x13 3956.10 1.5 3386.36 3.2 3373.67 3.7
iran8x32 5849.29 1.1 5483.62 3.0 5442.58 3.4
isqp0 – 0.1 – 0.2 – 0.2
isqp1 – 0.8 – 0.7 – 0.7
isqp – 0.1 – 0.1 – 0.1
itointqor 0.00 0.1 0.00 0.1 0.00 0.1
ivalues 0.00 0.7 0.00 1.3 0.00 0.8
meanvarx 16.06 0.1 16.06 0.1 14.52 0.1
netmod_dol1 -0.00 2.2 -0.14 8.3 -0.49 12.5
netmod_dol2 -0.00 4.4 -0.20 8.0 -0.51 12.7
netmod_kar1 -0.00 0.2 -0.00 0.3 -0.14 0.6
netmod_kar2 -0.00 0.4 -0.00 0.4 -0.14 0.6
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Table B.4 continued

no LNS aux. MIP sub-MINLP
Instance Primal Bound Time Primal Bound Time Primal Bound Time

nous1 – 0.1 – 0.1 – 0.1
nous2 – 0.1 – 0.1 – 0.1
nuclear14a – 2.4 – 3.7 – 4.2
nuclear14b – 2.9 – 3.0 – 68.6
nuclear14 – 0.1 – 0.2 – 0.1
nuclearva – 0.1 – 0.1 – 0.1
nvs19 0.00 0.1 -208.20 0.1 -208.20 0.1
nvs23 0.00 0.1 0.00 0.1 0.00 0.1
product2 – 0.3 – 0.4 – 0.5
product – 0.8 – 1.1 – 1.2
robust_100_0 – 1.3 – 1.5 -0.09 8.6
robust_100_1 – 1.1 – 1.4 – 2.3
robust_200_0 – 3.2 – 4.3 -0.14 26.2
robust_20_0 – 0.1 – 0.1 -0.08 0.5
robust_50_0 – 0.6 – 0.4 -0.09 1.1
robust_50_1 – 0.7 – 0.6 -0.09 7.3
sep1 – 0.1 -510.08 0.1 -510.08 0.1
shortfall_100_0 -1.00 1.3 -1.07 2.7 -1.07 2.8
shortfall_100_1 -1.00 1.2 -1.09 3.5 -1.06 3.0
shortfall_200_0 -1.00 3.2 -1.06 7.2 -1.06 10.0
shortfall_20_0 -1.00 0.1 -1.09 0.1 -1.09 0.1
shortfall_50_0 -1.00 0.6 -1.08 1.9 -1.08 2.4
shortfall_50_1 -1.00 0.3 -1.08 1.1 -1.09 2.2
SLay05H 110249.88 0.4 39218.64 0.4 22664.68 1.4
SLay05M 110272.14 0.1 46038.93 0.1 25589.68 0.2
SLay07M 265752.24 0.1 108756.71 0.2 65668.81 1.7
SLay10H 577942.50 3.7 577942.50 3.1 382507.50 10.6
SLay10M 705952.50 0.2 387120.35 0.4 156495.23 2.9
space25a – 0.3 – 0.3 – 0.3
space25 – 0.5 – 0.5 – 0.5
spectra2 306.33 1.2 306.33 1.1 31.98 1.0
tln12 – 0.2 – 0.2 – 0.2
tln5 24.00 0.1 15.10 0.1 12.50 0.2
tln6 24.70 0.1 16.30 0.2 16.30 0.2
tln7 26.70 0.1 20.40 0.2 16.40 0.3
tloss – 0.1 – 0.1 – 0.1
tltr 48.07 0.1 48.07 0.2 48.07 0.2
uflquad-15-60 1440.87 4.2 1440.87 3.8 1440.87 3.8
uflquad-20-50 1254.25 22.0 1254.25 22.1 1254.25 22.3
uflquad-30-100 2952.74 6.9 1734.79 40.9 1734.79 50.4
uflquad-40-80 2111.07 1.8 996.31 159.5 973.16 538.3
util – 0.1 – 0.1 1000.70 0.1
waste 1056.36 0.2 688.24 0.4 688.24 0.7
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Table B.5.: Impact of LNS heuristic on overall solving process for MIQCP
instances

nolns lp cip
Instance Nodes Time Nodes Time Nodes Time

108bar 85 133 timeout 64 110 timeout 64 110 timeout
10bar2 1 778 2.4 908 2.8 904 2.8
25bar 33 520 102.0 17 561 59.8 17 517 59.7
200bar 10 728 timeout 941 timeout 941 timeout
classical_200_0 84 895 timeout 83 922 timeout 84 780 timeout
classical_200_1 102 737 timeout 99 478 timeout 99 904 timeout
classical_20_0 74 0.4 71 1.0 72 0.8
classical_20_1 452 1.0 414 0.9 416 1.1
classical_50_0 119 275 357.9 119 917 391.5 118 453 369.6
classical_50_1 24 991 66.8 24 991 77.1 14 857 44.4
clay0203m 36 0.1 36 0.1 36 0.1
clay0205m 9 205 2.9 12 500 6.3 9 422 3.5
clay0303m 67 0.1 67 0.1 71 0.2
clay0305m 9 528 3.2 9 109 6.0 8 178 3.5
du-opt5 2 196 266 timeout 2 180 074 timeout 2 180 164 timeout
du-opt 2 039 144 timeout 2 034 078 timeout 2 017 499 timeout
ex1263 716 0.7 405 0.6 415 0.8
ex1264 111 0.1 111 0.2 122 0.2
ex1265 112 0.2 390 0.5 101 0.3
ex1266 84 0.3 219 0.4 219 0.8
fac3 121 419 timeout 120 915 timeout 120 748 timeout
feedtray2 26 0.4 26 0.3 26 0.3
iair04 197 127.6 23 163.8 31 195.3
iair05 87 106.2 49 98.2 50 108.1
ibc1 239 22.6 168 42.8 168 45.4
ibell3a 41 020 14.1 1 0.1 1 0.1
ibienst1 24 391 71.4 24 377 74.9 24 432 75.6
icap6000 3 920 8.1 2 613 6.8 1 437 8.6
icvxqp1 7 619 timeout 7 383 timeout 8 839 timeout
ieilD76 6 44.2 4 42.0 3 43.2
ilaser0 107 300 timeout 107 948 timeout 107 629 timeout
imas284 16 908 9.8 16 358 16.9 16 024 13.8
imisc07 33 979 29.8 33 179 38.7 35 006 41.2
imod011 1 18.8 1 19.6 1 18.8
inug08 1 10.5 1 10.5 1 10.5
iportfolio 59 021 timeout 52 504 timeout 51 071 timeout
iqap10 11 227.7 7 221.3 4 339.1
iqiu 12 600 73.5 13 258 80.9 11 812 84.5
iran13x13 43 494 45.8 34 019 47.6 33 938 45.3
iran8x32 13 064 21.4 12 567 26.6 11 082 22.2
isqp0 68 763 timeout 68 520 timeout 68 740 timeout
isqp1 26 228 timeout 26 163 timeout 26 354 timeout
isqp 58 315 timeout 58 439 timeout 58 531 timeout
itointqor – – – – – –
ivalues 138 886 timeout 141 110 timeout 140 415 timeout
meanvarx 118 0.2 118 0.3 144 0.4
netmod_dol1 41 422 timeout 38 181 timeout 40 258 timeout
netmod_dol2 139 39.7 138 44.8 75 46.8
netmod_kar1 221 3.3 221 3.5 274 3.9
netmod_kar2 221 3.5 221 3.4 274 3.8
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Table B.5 continued

nolns lp cip
Instance Nodes Time Nodes Time Nodes Time

nous1 2 480 666 timeout 2 282 507 timeout 2 179 770 timeout
nous2 3 507 2.5 2 401 2.1 2 401 2.0
nuclear14a 9 096 timeout 22 728 timeout 20 588 timeout
nuclear14b 21 176 timeout 21 029 timeout 14 253 timeout
nuclear14 1 410 156 timeout 1 419 852 timeout 1 402 513 timeout
nuclearva 4 152 523 timeout 4 151 128 timeout 4 111 046 timeout
nvs19 9 251 6.5 9 751 7.7 9 742 8.0
nvs23 165 393 139.6 156 175 136.1 156 175 136.1
product2 2 326 759 timeout 2 333 174 timeout 2 339 046 timeout
product 135 445 205.2 104 486 189.1 104 486 189.8
robust_100_0 44 014 607.9 44 014 664.1 38 983 607.1
robust_100_1 22 126 306.6 26 568 423.0 24 232 396.1
robust_200_0 60 145 timeout 56 147 timeout 60 670 timeout
robust_20_0 18 0.2 16 0.4 8 0.6
robust_50_0 61 1.0 59 1.1 12 1.4
robust_50_1 65 1.0 65 4.2 62 9.0
sep1 34 0.1 19 0.1 19 0.1
shortfall_100_0 345 564 timeout 298 497 timeout 310 145 timeout
shortfall_100_1 100 790 898.7 127 195 1256.2 110 472 1075.8
shortfall_200_0 67 319 timeout 67 601 timeout 68 137 timeout
shortfall_20_0 50 0.3 32 0.5 32 0.6
shortfall_50_0 133 538 506.9 116 971 526.3 83 573 340.0
shortfall_50_1 4 435 15.7 2 305 11.4 3 883 19.1
SLay05H 363 2.0 384 7.4 61 1.7
SLay05M 378 1.1 195 0.9 117 0.9
SLay07M 946 3.5 1 007 9.0 653 6.8
SLay10H 224 840 timeout 217 178 timeout 207 060 timeout
SLay10M 154 448 1013.0 127 022 859.7 41 750 344.1
space25a 184 707 timeout 53 678 timeout 53 678 timeout
space25 27 357 timeout 21 694 timeout 21 694 timeout
spectra2 10 525 timeout 9 633 timeout 13 073 timeout
tln12 967 545 timeout 851 244 timeout 835 407 timeout
tln5 41 913 26.9 27 572 19.8 21 763 16.3
tln6 5 741 445 timeout 5 508 841 timeout 5 914 657 timeout
tln7 3 016 385 timeout 3 066 726 timeout 2 761 957 timeout
tloss 68 0.1 46 0.1 34 0.1
tltr 3 0.1 3 0.2 3 0.2
uflquad-15-60 793 1457.5 793 1458.2 793 1463.2
uflquad-20-50 101 timeout 101 timeout 101 timeout
uflquad-30-100 77 timeout 43 timeout 43 timeout
uflquad-40-80 258 timeout 68 timeout 69 timeout
util 465 0.1 465 0.2 412 0.2
waste 1 756 578 timeout 1 608 003 timeout 1 740 261 timeout
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Table B.6.: rens: computing optimal roundings for mmm instances, after
cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

10teams 86.9 92.6 0.8 0.0 0 – –
30n20b8 97.3 98.1 42.0 0.0 0 – –
a1c1s1 18.8 7.9 6.6 limit 404552 13209.1836 271570
acc-tight5 58.8 78.1 6.0 0.7 0 – –
aflow30a 78.9 80.4 4.4 3.6 3777 1158? 357
aflow40b 91.8 92.6 13.1 43.1 67215 1179 19497
air04 96.0 99.6 7.0 0.0 0 – –
air05 96.1 98.9 2.4 0.0 0 – –
app1-2 96.1 48.5 52.8 115.7 598 – –
arki001 85.7 68.5 1.5 0.2 1 – –
ash608gpia-3col 28.0 53.5 22.1 0.0 0 – –
atlanta-ip 88.6 97.0 59.8 2.6 27 98.0096 22
bab5 97.2 99.4 56.3 0.1 0 – –
beasleyC3 63.7 73.4 3.5 1.5 779 789 428
bell3a 96.2 90.2 0.0 0.0 1 878430.316? 1
bell5 72.3 77.5 0.1 0.0 0 – –
biella1 90.5 92.0 5.6 limit 1439186 3278480.58 904043
bienst2 0.0 0.0 1.1 1634.4 459071 54.6? 49778
binkar10_1 48.8 48.7 0.9 270.9 407041 6746.64 89429
blend2 90.6 90.8 0.3 0.1 35 7.599? 22
bley_xl1 27.5 64.2 226.5 3.9 18 190? 18
bnatt350 50.4 66.3 4.2 0.0 0 – –
cap6000 99.9 100.0 1.8 0.0 1 -2443599 1
core2536-691 94.6 94.8 11.5 3289.1 544659 695 10446
cov1075 25.0 25.0 0.9 35.0 10410 20? 506
csched010 88.7 84.3 2.9 1.0 38 – –
dano3mip 67.4 64.6 30.6 limit 14384 762.75 2737
danoint 5.4 0.6 1.2 450.3 109479 65.6667? 5463
dcmulti 29.7 21.9 0.7 0.4 180 188186.5 68
dfn-gwin-UUM 38.9 13.4 0.5 819.3 307149 39920 4343
disctom 97.5 99.5 2.1 0.0 0 – –
ds 99.0 99.4 105.5 0.6 0 – –
dsbmip 84.5 21.5 0.8 0.2 34 -305.1982? 34
egout 85.7 85.7 0.0 0.0 1 568.1007? 1
eil33-2 98.5 99.7 6.3 0.0 0 – –
eilB101 88.9 99.0 13.5 0.1 0 – –
enigma 83.0 92.0 0.0 0.0 0 – –
enlight13 66.6 96.2 0.2 0.0 0 – –
enlight14 68.4 95.9 0.3 0.0 0 – –
fast0507 99.5 99.5 14.3 14.4 10302 177 4218
fiber 91.9 95.0 0.9 0.1 78 411151.82 48
fixnet6 88.6 82.3 1.1 0.4 32 3997 26
flugpl 11.1 35.7 0.0 0.0 0 – –
gesa2 88.0 82.4 1.1 0.0 5 25780031.4? 3
gesa2-o 92.9 88.9 1.0 0.0 5 25780031.4? 3
gesa3 78.6 82.0 1.3 0.0 36 27991430.1 33
gesa3_o 85.0 85.6 1.2 0.0 19 27991430.1 17
glass4 70.8 74.4 0.3 1.6 2622 2.2666856e+09 2491
gmu-35-40 93.5 93.7 0.5 0.1 61 -2399398.21 57
gt2 90.8 100.0 0.0 0.0 1 21166? 1
harp2 91.1 98.3 0.8 0.0 0 – –
iis-100-0-cov 0.0 0.0 2.6 1700.5 120842 29? 30
iis-bupa-cov 57.8 57.8 8.8 3819.8 537082 36? 1634
iis-pima-cov 82.3 82.3 17.9 54.6 12823 33? 4545
khb05250 66.7 32.6 0.3 0.1 7 106940226? 4
l152lav 97.2 99.4 0.1 0.0 0 – –
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Table B.6 continued
% Vars Fixed RENS

Instance Int All TimeS TimeR NodesR Solution Found At

lectsched-4-obj 28.7 31.0 6.8 0.0 0 – –
liu 49.0 46.2 10.8 limit 6040599 3418 4613091
lseu 74.4 77.9 0.1 0.1 22 1148 18
m100n500k4r1 73.2 73.2 0.4 0.8 848 -22 180
macrophage 43.5 45.8 2.3 0.0 0 – –
map18 63.6 76.6 48.8 128.7 2896 -847? 711
map20 63.6 75.7 38.9 104.5 2408 -922? 888
markshare1 76.0 76.0 0.0 0.0 107 142 59
markshare2 78.3 78.3 0.1 0.0 101 131 94
mas74 91.3 90.7 0.2 0.4 90 14343.468 67
mas76 91.9 91.3 0.2 0.3 42 40560.0541 35
mcsched 15.9 18.4 3.0 limit 1721772 213768 54512
mik-250-1-100-1 62.4 62.2 0.2 0.2 172 -66729? 172
mine-90-10 20.6 27.8 4.2 limit 2667271 -784302338? 2445697
misc03 78.3 99.3 0.2 0.0 0 – –
misc06 90.2 38.4 0.2 0.1 19 12850.8607? 17
misc07 82.8 94.0 0.3 0.0 0 – –
mitre 99.6 100.0 4.8 0.0 1 115155? 1
mkc 92.6 93.5 2.9 0.3 389 -539.866 160
mod008 94.4 94.4 0.7 0.1 19 309 4
mod010 98.6 100.0 0.3 0.0 0 – –
mod011 53.1 12.6 7.2 64.1 387 -54219145.9 129
modglob 60.2 56.8 0.2 1.3 5795 20799458.8 4360
momentum1 76.7 73.0 11.8 0.2 0 – –
momentum2 74.8 76.5 50.9 0.7 0 – –
momentum3 78.4 77.1 1034.8 0.5 0 – –
msc98-ip 82.0 85.5 145.8 0.1 0 – –
mspp16 99.0 99.1 1202.2 13.1 0 – –
mzzv11 83.4 82.9 74.8 0.0 0 – –
mzzv42z 86.5 86.1 75.4 0.1 0 – –
n3div36 99.9 99.9 6.7 0.1 1 151600 1
n3seq24 99.6 99.7 82.8 63.1 24054 68000 3536
n4-3 56.9 10.0 2.8 limit 415575 9010 112840
neos-1109824 94.5 97.0 3.2 0.0 0 – –
neos-1337307 45.1 45.2 4.7 limit 767115 -202133 4868
neos-1396125 45.0 48.0 3.5 11.4 2026 3000.0553? 1867
neos-1601936 80.8 77.1 7.9 limit 252812 – –
neos-476283 99.0 93.0 147.4 3.0 130 406.8123 71
neos-686190 96.0 98.3 1.3 0.0 0 – –
neos-849702 70.8 80.0 1.6 0.1 0 – –
neos-916792 87.1 89.3 13.1 0.1 0 – –
neos-934278 76.8 75.1 49.9 limit 105271 1332 9576
neos13 78.6 78.1 26.8 limit 75103 -65.6552 51090
neos18 70.8 78.1 0.9 0.0 0 – –
net12 41.8 56.3 31.7 0.1 0 – –
netdiversion 96.1 99.9 301.9 1.1 0 – –
newdano 0.0 0.0 2.9 limit 1160686 66.5 774340
noswot 47.4 64.2 0.1 0.0 0 – –
ns1208400 78.2 82.5 6.2 0.1 0 – –
ns1688347 99.4 99.9 20.1 0.0 0 – –
ns1758913 91.4 92.1 5385.0 6.4 5 -457.7183 5
ns1766074 77.8 87.0 0.1 0.0 1 – –
ns1830653 57.8 72.8 4.6 0.1 0 – –
nsrand-ipx 98.3 98.4 19.7 569.0 2061551 55360 31084
nw04 100.0 100.0 14.1 0.4 0 – –
opm2-z7-s2 9.9 10.1 10.9 limit 52398 -10271 50719
opt1217 95.2 96.9 0.3 0.0 1 -16? 1
p0201 63.1 92.8 0.4 0.0 1 7805 1
p0282 71.5 72.5 0.3 0.1 1 258411? 1
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Table B.6 continued
% Vars Fixed RENS

Instance Int All TimeS TimeR NodesR Solution Found At

p0548 96.6 100.0 0.2 0.0 1 8763 1
p2756 98.9 99.6 1.1 0.0 1 3152 1
pg5_34 97.0 46.0 3.8 1.5 7 -14287.7021 4
pigeon-10 44.6 77.2 1.3 7.7 27538 – –
pk1 72.7 46.5 0.0 0.2 460 29 376
pp08a 46.9 33.8 0.3 0.6 319 7360 148
pp08aCUTS 48.4 32.1 0.2 0.6 434 7370 405
protfold 65.8 88.4 3.8 0.2 0 – –
pw-myciel4 58.4 60.4 7.6 0.0 0 – –
qiu 25.0 25.0 0.2 47.6 23791 -132.8731? 1149
qnet1 92.0 95.1 0.9 0.0 1 21237.6552 1
qnet1_o 91.7 95.0 1.1 0.1 261 22600.83 168
rail507 99.5 99.5 14.8 41.2 23871 178 230
ran16x16 71.1 71.5 1.1 138.7 464014 3846 4332
rd-rplusc-21 55.5 66.0 57.7 4.3 415 – –
reblock67 17.6 26.6 3.7 limit 5552244 -34629815.5 700261
rentacar 75.0 7.6 1.2 0.6 9 30356761? 6
rgn 96.0 54.9 0.2 0.0 1 82.2? 1
rmatr100-p10 49.0 49.2 2.8 16.5 686 424 322
rmatr100-p5 63.0 63.6 4.1 13.0 258 976? 118
rmine6 65.5 67.0 8.2 5266.1 4687190 -457.1727 811719
rocII-4-11 81.6 88.4 18.4 0.0 0 – –
rococoC10-001000 82.1 85.8 2.7 33.5 42970 12067 4679
roll3000 65.2 78.3 2.7 0.4 94 14193 12
rout 83.2 93.7 0.6 0.0 0 – –
satellites1-25 89.2 99.4 68.2 0.0 0 – –
set1ch 96.2 90.2 0.7 0.0 3 54537.75? 2
seymour 52.7 55.5 15.1 limit 1067621 427 917345
sp98ic 99.3 99.3 4.8 12.2 37885 469766019 12687
sp98ir 93.9 96.0 3.2 0.0 0 – –
stein27 11.1 11.1 0.0 0.3 1202 18? 50
stein45 17.8 17.8 0.2 0.9 3597 30? 313
swath 99.2 98.3 3.4 0.0 0 – –
t1717 99.2 99.4 27.3 0.4 0 – –
tanglegram1 99.1 99.1 14.4 0.2 0 – –
tanglegram2 96.4 96.7 1.3 0.0 0 – –
timtab1 14.4 15.9 0.8 8.3 16082 827609 4701
timtab2 12.6 14.7 1.7 2.4 151 – –
tr12-30 73.6 50.7 1.5 408.3 909211 131438 17370
triptim1 87.0 99.5 127.3 0.2 0 – –
unitcal_7 81.6 59.7 63.9 2.8 1 – –
vpm2 55.4 50.8 0.4 0.4 336 13.75? 301
vpphard 97.6 98.1 28.4 0.6 0 – –
zib54-UUE 17.5 21.5 2.6 limit 1126102 10334015.8? 392023
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Table B.7.: rens: computing optimal roundings for mmm instances, before
cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

10teams 90.1 92.5 0.4 0.0 0 – –
30n20b8 98.1 98.8 2.2 0.0 0 – –
a1c1s1 15.6 10.4 3.6 limit 2174731 – –
acc-tight5 56.8 84.4 2.0 0.1 0 – –
aflow30a 92.6 97.9 0.2 0.0 0 – –
aflow40b 97.2 98.0 1.0 0.0 0 – –
air04 96.1 98.2 6.2 0.0 0 – –
air05 96.4 98.7 1.8 0.0 0 – –
app1-2 96.7 48.9 14.9 60.3 492 -23 492
arki001 84.9 72.6 0.5 0.0 0 – –
ash608gpia-3col 33.4 67.3 3.3 0.0 0 – –
atlanta-ip 88.9 97.3 30.2 1.8 196 99.0098 195
bab5 98.8 99.1 29.0 0.1 0 – –
beasleyC3 82.4 100.0 0.1 0.0 1 945 1
bell3a 84.6 80.4 0.0 0.0 13 878651.068 12
bell5 70.2 87.5 0.0 0.0 1 9082700.02 1
biella1 90.5 92.0 5.2 limit 1251065 3253217.92 682395
bienst2 0.0 0.0 0.3 1133.6 514667 54.6? 248177
binkar10_1 77.6 77.6 0.1 1.1 2688 6796.71 1565
blend2 97.4 99.3 0.0 0.0 0 – –
bley_xl1 47.4 82.2 171.8 0.4 11 210 11
bnatt350 58.9 59.4 1.3 0.0 0 – –
cap6000 100.0 100.0 0.6 0.0 1 -2442801 1
core2536-691 94.6 94.8 11.2 5427.0 951274 695 30373
cov1075 0.0 0.0 0.6 limit 1622177 20? 184
csched010 94.2 91.6 0.3 0.0 1 – –
dano3mip 77.5 74.4 22.1 limit 25874 761.9286 118
danoint 7.1 0.8 0.6 152.0 50018 65.6667? 40513
dcmulti 35.1 41.4 0.1 9.4 40800 188182? 12687
dfn-gwin-UUM 50.0 4.8 0.1 54.1 108721 41040 20493
disctom 97.5 99.5 1.8 0.0 0 – –
ds 99.2 99.5 27.0 0.5 0 – –
dsbmip 74.1 20.6 0.5 0.2 7 – –
egout 71.4 100.0 0.0 0.0 1 625.3192 1
eil33-2 99.3 99.9 3.6 0.0 0 – –
eilB101 96.8 97.8 1.6 0.0 0 – –
enigma 88.0 99.0 0.0 0.0 0 – –
enlight13 99.1 99.1 0.0 0.0 0 – –
enlight14 99.2 99.2 0.0 0.0 0 – –
fast0507 99.5 99.5 13.2 15.6 12207 177 5197
fiber 96.2 100.0 0.0 0.0 0 – –
fixnet6 96.8 90.6 0.0 0.0 3 4435 3
flugpl 11.1 21.4 0.0 0.0 0 – –
gesa2 89.7 91.6 0.2 0.0 5 26038337.6 5
gesa2-o 89.9 96.0 0.2 0.0 6 26038337.6 5
gesa3 81.5 88.1 0.2 0.0 29 27991430.1 24
gesa3_o 84.6 90.6 0.2 0.0 29 27991430.1 24
glass4 75.8 83.9 0.1 0.1 49 – –
gmu-35-40 98.3 98.6 0.3 0.0 0 – –
gt2 91.3 96.5 0.0 0.0 0 – –
harp2 97.8 99.3 0.1 0.0 0 – –
iis-100-0-cov 0.0 0.0 0.6 2902.6 186105 29? 47
iis-bupa-cov 55.1 55.1 1.3 6150.5 745491 36? 1989
iis-pima-cov 82.1 82.1 1.8 50.7 11558 33? 1363
khb05250 20.8 4.3 0.0 1.6 3364 106940226? 87
l152lav 97.2 99.9 0.2 0.0 0 – –
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Table B.7 continued
% Vars Fixed RENS

Instance Int All TimeS TimeR NodesR Solution Found At

lectsched-4-obj 78.2 78.8 1.5 0.0 0 – –
liu 51.4 48.4 36.3 limit 8755631 4762 2865
lseu 90.7 100.0 0.0 0.0 0 – –
m100n500k4r1 80.0 80.0 -0.0 0.5 650 -21 102
macrophage 70.0 70.5 0.1 0.0 0 – –
map18 58.5 71.5 33.3 3299.9 61952 -847? 52
map20 66.1 80.4 27.0 404.2 17845 -922? 617
markshare1 88.0 92.0 0.0 0.0 1 204 1
markshare2 88.3 88.3 0.0 0.0 3 131 2
mas74 91.9 91.3 0.0 0.0 58 14372.8713 20
mas76 92.6 92.0 0.0 0.0 21 40560.0541 12
mcsched 15.8 18.2 0.9 limit 1966420 214792 1088285
mik-250-1-100-1 60.0 59.8 0.1 0.0 32 0 31
mine-90-10 20.6 27.8 3.8 limit 2556662 -782117611 1315502
misc03 87.0 97.1 0.1 0.0 0 – –
misc06 92.9 39.0 0.1 0.1 43 12854.0023 33
misc07 91.4 98.3 0.2 0.0 0 – –
mitre 99.6 100.0 4.5 0.0 1 116745 1
mkc 97.6 99.1 1.1 0.0 1 -284.55 1
mod008 98.4 100.0 0.0 0.0 1 308 1
mod010 98.4 99.8 0.4 0.0 0 – –
mod011 83.3 21.2 0.6 1.6 153 -53656254.1 50
modglob 69.4 76.6 0.1 0.0 174 20784597.9 174
momentum1 80.3 78.6 5.1 155.3 76443 109169.397 19330
momentum2 78.9 83.1 26.2 0.3 0 – –
momentum3 77.3 78.4 497.4 0.6 0 – –
msc98-ip 86.8 89.4 6.6 0.1 0 – –
mspp16 99.9 100.0 1001.5 13.0 0 – –
mzzv11 86.4 85.7 51.5 0.0 0 – –
mzzv42z 88.2 87.8 51.9 0.0 0 – –
n3div36 99.9 99.9 2.0 0.1 3 149800 2
n3seq24 99.8 99.9 23.0 1.5 0 – –
n4-3 74.1 31.8 0.1 359.6 215073 9395 12131
neos-1109824 96.8 99.9 1.1 0.0 0 – –
neos-1337307 50.0 50.1 2.4 742.6 154344 -202143 12623
neos-1396125 47.3 53.1 1.1 2.2 510 3000.0556? 489
neos-1601936 83.7 77.2 6.5 0.0 0 – –
neos-476283 99.0 93.0 141.6 2.7 121 406.8123 74
neos-686190 96.9 99.0 0.2 0.0 0 – –
neos-849702 74.5 80.9 1.2 0.0 0 – –
neos-916792 87.1 89.3 1.1 0.1 0 – –
neos-934278 79.5 78.0 18.6 limit 215616 346 201165
neos13 78.2 77.7 12.2 39.6 267 -66.8793 267
neos18 71.4 71.7 0.3 0.0 0 – –
net12 60.4 79.8 7.9 0.1 0 – –
netdiversion 96.5 100.0 199.6 1.0 0 – –
newdano 3.6 0.4 0.4 1900.2 1332691 66.8333 800380
noswot 50.5 47.5 0.0 0.0 0 – –
ns1208400 84.1 87.6 2.3 0.0 0 – –
ns1688347 65.8 77.8 8.0 0.1 0 – –
ns1758913 97.4 98.7 1437.2 1.3 41 -862.2649 37
ns1766074 77.8 86.0 0.0 0.0 7 – –
ns1830653 57.8 50.3 1.2 0.0 0 – –
nsrand-ipx 99.0 99.2 1.1 0.2 1381 61760 109
nw04 100.0 100.0 10.4 0.4 0 – –
opm2-z7-s2 9.9 10.1 7.6 limit 52408 -10271 50719
opt1217 96.2 98.8 0.1 0.0 13 -16? 13
p0201 78.5 98.5 0.1 0.0 0 – –
p0282 96.0 100.0 0.0 0.0 1 320465 1
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Table B.7 continued
% Vars Fixed RENS

Instance Int All TimeS TimeR NodesR Solution Found At

p0548 91.7 97.8 0.1 0.0 0 – –
p2756 95.6 98.8 0.3 0.0 0 – –
pg5_34 12.0 0.5 28.3 limit 5836732 -14232.4589 1862706
pigeon-10 69.5 99.3 0.1 0.0 0 – –
pk1 72.7 46.5 0.0 0.1 402 29 247
pp08a 17.2 9.4 125.6 limit 33411470 7360 395800
pp08aCUTS 28.1 16.5 0.1 134.2 557900 7350? 29979
protfold 72.2 90.0 2.0 0.1 0 – –
pw-myciel4 46.0 56.9 1.0 0.0 0 – –
qiu 25.0 25.0 0.2 47.5 23791 -132.8731? 1149
qnet1 96.3 99.3 0.2 0.0 1 21396.52 1
qnet1_o 99.2 100.0 0.1 0.0 1 28462.14 1
rail507 99.5 99.5 13.7 100.5 66744 178 341
ran16x16 92.2 100.0 0.0 0.0 1 4333 1
rd-rplusc-21 77.9 78.8 46.0 0.2 0 – –
reblock67 17.6 26.6 3.1 limit 6367150 -34629815.5 540746
rentacar 70.8 8.4 0.8 0.6 15 30356761? 13
rgn 85.0 48.6 0.1 0.0 109 82.2? 9
rmatr100-p10 49.0 49.2 2.6 16.4 686 424 322
rmatr100-p5 63.0 63.6 3.9 13.0 258 976? 118
rmine6 64.7 66.9 2.3 2730.2 2638869 -457.1727 1416590
rocII-4-11 85.9 89.6 14.3 0.0 0 – –
rococoC10-001000 93.4 100.0 0.3 0.0 1 23730 1
roll3000 67.5 72.3 1.1 0.0 0 – –
rout 88.9 93.9 0.2 0.0 0 – –
satellites1-25 90.2 98.8 35.6 0.0 0 – –
set1ch 45.1 44.6 1077.1 limit 41287842 – –
seymour 48.3 48.9 3.4 limit 700335 428 607424
sp98ic 99.3 99.3 2.1 19.2 70178 469766019 478
sp98ir 94.3 97.1 2.3 0.0 0 – –
stein27 22.2 22.2 0.1 0.0 224 18? 18
stein45 22.2 22.2 0.0 0.4 1507 30? 510
swath 99.3 98.7 2.6 0.0 0 – –
t1717 99.2 99.4 7.4 0.4 0 – –
tanglegram1 99.2 99.2 2.0 0.2 0 – –
tanglegram2 96.9 97.1 0.3 0.0 0 – –
timtab1 36.3 51.7 0.1 0.0 1 – –
timtab2 22.8 42.8 0.0 0.1 1 – –
tr12-30 7.4 6.2 70.5 limit 11643684 – –
triptim1 87.1 99.7 103.8 0.2 0 – –
unitcal_7 80.1 48.3 29.3 0.1 0 – –
vpm2 63.9 77.3 0.0 0.0 14 15.25 12
vpphard 97.8 98.0 17.1 0.2 0 – –
zib54-UUE 26.3 25.4 3.4 limit 1588278 10334015.8? 64873
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Table B.8.: rens: computing optimal roundings for MIQCP instances, us-
ing LP solution, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

10bar2 77.3 76.0 0.2 0.0 14 2691.7039 13
25bar 83.9 49.2 0.1 0.1 20 – –
classical_200_0 92.0 59.8 1.6 1.7 31 -0.0848 26
classical_200_1 90.5 59.0 1.5 6.3 313 -0.097 195
classical_20_0 60.0 25.0 0.1 0.1 15 -0.0686 11
classical_20_1 55.0 23.3 0.0 0.3 40 -0.0698 16
classical_50_0 72.0 42.7 0.4 0.9 116 -0.0818 99
classical_50_1 82.0 49.3 0.2 0.6 69 -0.0737 6
clay0203m 20.0 14.8 0.1 0.0 55 41573.0147? 10
clay0205m 35.6 32.0 0.1 0.4 341 8672.5 184
clay0303m 21.1 22.6 0.1 0.1 61 41573.0276 53
clay0305m 29.4 25.9 0.2 0.5 724 8488.3117 716
du-opt5 54.5 5.3 0.1 0.2 29 – –
du-opt 30.8 0.0 0.1 1.8 335 – –
ex1263 69.0 69.2 0.2 0.0 1 28.3 1
ex1266 81.7 97.6 0.2 0.0 1 21.3 1
fac3 0.0 0.0 0.1 0.1 25 31982309.8? 13
feedtray2 41.7 29.7 24.4 limit 2358782 – –
ibell3a 88.3 85.2 0.1 0.0 1 878785.031? 1
icvxqp1 99.7 100.0 454.9 0.6 1 914601 1
ilaser0 0.0 5.7 1.2 limit 237295 – –
imod011 71.1 23.4 233.9 6341.0 345627 362636789 333111
iportfolio 80.1 64.5 4.3 283.9 26983 – –
isqp 62.0 2.4 3.9 limit 97291 – –
itointqor 86.0 94.1 0.0 0.0 1 53624064.4 1
ivalues 68.8 40.9 0.8 0.0 1 9026.4463 1
meanvarx 83.3 66.7 0.0 0.0 5 14.3692? 4
netmod_dol1 16.7 16.7 1.3 4622.7 82905 -0.5562 99
netmod_dol2 47.4 36.1 1.9 774.4 24560 -0.545 3448
netmod_kar1 0.0 0.0 0.3 1.9 327 -0.4198? 8
netmod_kar2 0.0 0.0 0.3 1.8 327 -0.4198? 8
nous1 0.0 0.0 290.7 limit 6203637 – –
nous2 0.0 0.0 393.2 limit 5777698 – –
nuclear14a 83.5 63.6 16.7 limit 94439 – –
nuclear14b 92.7 71.7 2.0 3.7 111 – –
nvs19 0.0 0.0 0.0 0.0 9 -1098.4? 9
nvs23 0.0 0.0 0.1 0.0 1 -1124.2 1
product2 81.2 26.9 162.5 limit 5890550 – –
product 67.4 50.4 0.7 389.8 650612 -2130.6323 255299
robust_100_0 88.1 41.9 1.1 0.7 23 -0.0888 12
robust_100_1 86.1 41.2 0.9 1.6 123 -0.0525 63
robust_200_0 89.6 43.8 2.0 1.9 121 -0.0944 20
robust_20_0 85.7 32.5 0.1 0.0 5 -0.0759 2
robust_50_0 82.4 37.4 0.5 0.3 38 -0.0671 16
robust_50_1 82.4 37.4 0.5 0.4 50 -0.0714 34
shortfall_100_0 76.2 35.9 0.9 0.9 45 -1.0737 36
shortfall_100_1 83.2 39.4 1.1 0.8 33 -1.0657 32
shortfall_200_0 88.6 43.2 2.5 3.0 45 -1.0803 45
shortfall_20_0 71.4 25.0 0.0 0.1 11 -1.0811 10
shortfall_50_0 72.5 31.9 0.4 0.7 27 -1.0799 21
shortfall_50_1 78.4 34.8 0.3 0.5 21 -1.0806 18
SLay05H 67.5 60.6 0.3 0.3 33 24809.6753 31
SLay05M 55.0 43.7 0.1 0.1 33 33732.8607 9
SLay07M 71.4 48.9 0.1 0.4 63 73105.8847 33
SLay10H 41.1 38.2 19.6 limit 754162 131656.989 105106
SLay10M 68.3 51.9 0.4 1.9 415 185502.124 392
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Table B.8 continued
% Vars Fixed RENS

Instance Int All TimeS TimeR NodesR Solution Found At

space25a 96.7 82.5 0.2 0.0 5 – –
space25 94.6 80.1 0.4 0.7 8407 – –
spectra2 80.0 70.6 0.4 0.1 26 13.9783? 14
tln12 48.2 52.2 0.2 0.0 0 – –
tln5 74.3 77.1 0.0 0.0 0 – –
tln6 64.6 68.8 0.1 0.0 0 – –
tln7 42.9 49.2 0.1 0.0 0 – –
tloss 69.6 82.6 0.0 0.0 0 – –
tltr 25.5 39.3 0.1 0.0 0 – –
uflquad-15-60 0.0 0.0 2.8 2679.7 1052 1063.1929? 237
uflquad-20-50 0.0 0.0 25.1 limit 128 474.9019 64
uflquad-40-80 97.5 85.1 1.7 limit 2 – –
util 91.7 46.9 0.0 0.0 10 1000.9676 10
waste 97.5 91.5 0.4 0.1 426 692.7824 291
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Table B.9.: rens: computing optimal roundings for MIQCP instances, us-
ing NLP solution, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

10bar2 0.0 0.0 0.2 5.1 2678 1960.4104 2571
25bar 23.0 12.5 0.2 5.2 1199 400.3246 1192
classical_200_0 0.0 0.0 21.5 limit 157452 -0.1042 19694
classical_200_1 0.0 0.0 24.2 limit 184429 -0.1092 67634
classical_20_0 0.0 0.0 0.1 1.0 1354 -0.0823? 834
classical_20_1 0.0 0.0 -0.0 2.4 1835 -0.0757? 1747
classical_50_0 0.0 0.0 0.4 784.7 199803 -0.0907? 133471
classical_50_1 0.0 0.0 0.2 61.8 20511 -0.0948? 17026
clay0203m 0.0 0.0 0.1 0.1 110 41573.0265? 95
clay0205m 0.0 0.0 0.2 3.0 10442 8092.5? 1759
clay0303m 0.0 0.0 0.1 0.2 167 26669.0752 156
clay0305m 0.0 0.0 0.2 6.1 17597 8092.5? 1579
du-opt5 45.5 5.3 0.1 0.1 25 – –
du-opt 0.0 0.0 0.1 34.0 6827 – –
ex1263 45.1 52.7 0.3 0.2 70 20.3 49
ex1266 65.9 69.6 0.2 0.1 40 16.3? 40
fac3 8.3 1.5 1.0 0.0 23 31982309.8? 13
feedtray2 0.0 0.0 0.1 247.5 96287 0? 96287
ibell3a 60.0 82.8 0.1 0.0 1 879009.262 1
icvxqp1 97.6 98.1 580.3 0.6 1 375878 1
ilaser0 0.0 7.7 1.0 0.0 0 – –
imod011 – – 1346.6 – – – –
iportfolio 0.0 0.0 6.9 limit 276015 – –
isqp 0.0 0.0 331.7 limit 800472 – –
itointqor 0.0 0.0 60.4 limit 31848641 -1145.95 30734174
ivalues 51.5 6.4 0.7 45.2 262102 -1.1657? 20497
meanvarx 58.3 56.7 0.1 0.0 5 14.3692? 4
netmod_dol1 0.0 0.0 13.8 limit 70283 -0.56? 197
netmod_dol2 24.4 24.1 4.7 12.3 365 -0.5208 216
netmod_kar1 0.0 0.0 0.4 1.9 327 -0.4198? 8
netmod_kar2 0.0 0.0 0.2 1.9 327 -0.4198? 8
nous1 0.0 0.0 295.1 limit 6189939 – –
nous2 0.0 0.0 401.9 limit 5775976 – –
nuclear14a 0.0 0.0 18.4 limit 98876 – –
nuclear14b 0.0 0.0 39.2 limit 122109 – –
nvs19 0.0 0.0 0.0 0.1 53 -1098.2 52
nvs23 0.0 0.0 0.0 0.2 75 -1124.8 73
product2 9.4 11.5 226.2 limit 5344387 – –
product 67.4 41.6 159.1 limit 3714246 – –
robust_100_0 0.0 0.0 36.0 limit 643608 -0.0964 432103
robust_100_1 0.0 0.0 28.5 limit 749339 -0.0716 500948
robust_200_0 0.0 0.0 20.3 limit 194374 -0.1359 57193
robust_20_0 0.0 0.0 0.1 0.1 11 -0.0798? 6
robust_50_0 0.0 0.0 0.6 1.2 270 -0.0861? 156
robust_50_1 0.0 0.0 0.3 12.3 3064 -0.0857? 754
shortfall_100_0 0.0 0.0 51.8 limit 418270 -1.1023 57765
shortfall_100_1 0.0 0.0 60.5 limit 459850 -1.094 168978
shortfall_200_0 0.0 0.0 32.9 limit 130390 -1.1096 10874
shortfall_20_0 0.0 0.0 0.1 0.6 624 -1.0905? 157
shortfall_50_0 0.0 0.0 74.0 limit 1248837 -1.095 930028
shortfall_50_1 0.0 0.0 0.5 1975.5 520190 -1.1018? 427638
SLay05H 0.0 0.0 0.2 7.0 3094 22664.678? 1400
SLay05M 0.0 0.0 0.1 1.7 878 22664.6781? 536
SLay07M 0.0 0.0 0.0 59.6 29886 64748.8243? 9877
SLay10H 0.0 0.0 18.5 limit 468624 130031.675 129100
SLay10M 0.0 0.0 16.4 limit 834497 129771.879 740342



274 Appendix B. Tables

Table B.9 continued
% Vars Fixed RENS

Instance Int All TimeS TimeR NodesR Solution Found At

space25a 41.7 32.5 0.3 limit 6254 – –
space25 41.7 34.4 0.5 limit 894 – –
spectra2 80.0 70.6 0.5 0.1 26 13.9783? 14
tln12 2.4 0.0 0.5 0.0 0 – –
tln5 22.9 40.0 0.1 0.0 0 – –
tln6 18.8 35.4 0.1 0.0 0 – –
tln7 19.0 31.7 0.1 0.0 0 – –
tloss 69.6 82.6 0.1 0.0 0 – –
tltr 27.7 73.2 0.1 0.0 0 – –
uflquad-15-60 0.0 0.0 2.9 2701.2 1052 1063.1929? 237
uflquad-20-50 0.0 0.0 25.1 limit 128 474.9019 64
uflquad-40-80 0.0 0.0 3.0 limit 1083 – –
util 0.0 0.0 0.0 0.1 455 999.5788? 224
waste 86.3 75.1 401.5 limit 13736796 – –
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Table B.10.: rens: computing optimal roundings for MINLP instances, us-
ing LP solution, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

beuster 76.5 40.2 118.1 7049.7 15735321 – –
cecil_13 25.0 19.4 18.5 7010.4 6032779 -115599.148 6497
chp_partload 35.7 2.8 4.5 7158.7 13536 – –
contvar 89.7 13.6 2.6 limit 89028 – –
csched1 95.0 78.7 0.1 0.0 45 -29775.9885 45
csched2a 60.0 38.5 76.1 7059.7 5436390 -94800.4303 2043936
eg_all_s 28.6 53.0 589.3 6598.6 80557 – –
eg_disc2_s 0.0 13.4 286.4 6970.9 22 – –
eg_disc_s 50.0 36.6 316.1 6886.8 858 – –
eg_int_s 0.0 14.3 501.2 6723.7 5 – –
eniplac 30.4 26.2 0.1 0.1 151 -132117.083? 37
enpro48 80.4 77.3 0.1 15.5 111594 241150.752 111594
enpro48pb 79.3 71.4 0.0 1.1 4634 264032.12 4634
enpro56 67.1 56.0 0.2 17.7 147897 279702.866 147897
enpro56pb 65.7 53.6 0.1 5.4 41063 279704.1 41063
ex1233 20.0 7.2 1.6 limit 189292 – –
ex1244 40.0 36.7 0.2 0.0 28 84035.1235 23
ex1252a 77.8 57.8 0.0 0.0 0 – –
ex1252 71.4 55.4 0.1 1.2 5342 – –
feedtray 42.9 1.2 68.9 7115.3 874824 – –
fo7_2 19.0 9.8 0.1 3.3 14805 17.7493? 627
fo7_ar2_1 24.4 12.3 0.1 291.9 2381312 26.9425 2381312
fo7_ar25_1 36.6 18.5 0.1 0.4 755 25.6421 326
fo7_ar3_1 43.9 22.2 0.0 0.5 976 25.6421 316
fo7_ar4_1 29.3 14.8 0.1 2.3 9622 24.3794 4178
fo7_ar5_1 34.1 17.3 0.0 0.9 2147 19.6229 566
fo7 16.7 8.5 0.0 120.9 558800 30.6572 382347
fo8_ar2_1 36.4 20.8 0.2 2.1 6262 41.8507 3493
fo8_ar25_1 16.4 8.9 0.2 108.1 453566 28.0452? 84041
fo8_ar3_1 38.2 20.8 0.1 2.9 8133 – –
fo8_ar4_1 30.9 16.8 0.1 146.9 975930 32.5005 968495
fo8_ar5_1 30.9 16.8 0.2 6.1 21065 24.4077 3434
fo8 21.4 11.8 0.2 592.2 2279417 37.2612 216937
fo9_ar2_1 23.9 13.8 0.1 1.7 5290 45.8141 3577
fo9_ar25_1 35.2 20.3 0.2 15.5 46324 32.6795 23480
fo9_ar3_1 22.5 13.0 0.1 598.5 1658625 37.5937 8325
fo9_ar4_1 25.4 14.6 0.2 879.3 2599259 37.1576 29588
fo9_ar5_1 28.2 16.3 0.2 65.9 196069 26.9217 134598
fo9 19.4 11.3 34.7 7053.4 20841677 34.6228 6480181
fuzzy 71.8 42.6 86.8 7126.7 4547053 – –
gasnet 50.0 23.6 0.1 limit 3063 – –
ghg_1veh 0.0 0.0 386.4 7108.6 6426635 – –
ghg_2veh 18.8 7.6 109.5 7130.6 1936310 – –
ghg_3veh 51.4 21.3 37.6 7163.3 1587865 – –
hda 28.6 18.0 6.6 limit 588838 – –
m6 3.3 1.6 0.0 2.2 11390 82.2569? 3883
m7_ar2_1 13.3 5.9 0.1 1.5 10467 195.035 9794
m7_ar25_1 18.8 8.6 0.1 0.2 443 143.585? 204
m7_ar3_1 34.2 17.1 0.1 0.5 772 152.5792 330
m7_ar4_1 34.1 17.7 0.2 0.3 730 130.46 287
m7_ar5_1 26.8 13.9 0.1 1.0 4354 148.6199 1740
m7 33.3 17.5 0.1 0.1 341 126.4312 196
mbtd – – limit – – – –
no7_ar2_1 36.6 17.2 0.2 0.8 1772 150.7814 740
no7_ar25_1 26.8 12.6 0.0 2.7 9032 107.8663 7186
no7_ar3_1 26.8 12.6 0.2 1.2 3223 119.3432 2131
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Table B.10 continued
% Vars Fixed RENS

Instance Int All TimeS TimeR NodesR Solution Found At

no7_ar4_1 43.9 20.7 0.0 1.1 3492 117.8947 2278
no7_ar5_1 24.4 11.5 0.1 28.6 104622 100.8113 10082
nvs09 60.0 55.0 534.1 6969.9 77479321 -11.1518 15924294
nvs20 20.0 6.1 0.0 1.2 1948 230.9221? 1580
o7_2 31.0 14.4 0.1 8.6 33559 129.4105 2060
o7_ar2_1 31.7 14.6 0.2 2.8 10741 140.4119? 188
o7_ar25_1 36.6 16.9 0.1 29.0 182612 143.1372 182612
o7_ar3_1 26.8 12.4 0.1 10.9 34069 – –
o7_ar4_1 26.8 12.4 0.1 7.2 27844 143.8912 24195
o7_ar5_1 46.3 21.3 0.1 31.0 213317 135.7148 213317
o7 19.0 8.9 0.1 428.8 1812739 139.4551 207218
o8_ar4_1 32.7 15.4 0.2 28.0 65139 – –
o9_ar4_1 39.4 20.4 0.1 119.5 311859 – –
oil2 50.0 0.5 1.6 limit 1205253 – –
oil 57.9 8.3 24.3 7177.6 165976 – –
parallel 20.0 14.7 8.1 7184.6 899801 924.225 834864
pump 77.8 57.8 0.0 0.0 0 – –
risk2b 66.7 5.6 0.2 0.0 11 -55.8761? 9
spring 91.7 67.9 0.0 0.0 0 – –
st_e32 88.9 29.7 0.1 0.0 3 – –
stockcycle 86.8 91.3 0.8 0.0 51 334280.188 46
super1 83.9 10.0 1.2 0.0 0 – –
super2 71.0 8.4 1.1 0.0 0 – –
super3 67.6 8.6 1.2 0.0 0 – –
super3t 35.1 6.2 8.8 7157.6 76873 – –
synheat 20.0 8.0 17.7 limit 3475310 – –
synthes1 0.0 0.0 0.0 0.0 5 6.0098? 4
synthes2 50.0 36.4 0.0 0.0 6 73.0353? 6
synthes3 42.9 29.4 0.1 0.0 11 68.0097? 10
tls12 93.7 81.0 1.7 0.0 0 – –
tls4 55.3 53.2 0.2 0.2 417 11.5 338
tls5 64.1 64.0 0.5 0.4 2073 12.5 2043
tls6 86.1 83.1 0.3 0.0 0 – –
tls7 90.7 64.9 0.5 0.0 0 – –
water3 67.9 35.3 0.1 292.7 972217 907.0153 779595
waterful2 92.9 76.4 0.2 4.8 14332 944.0185 13167
watersbp 25.0 19.8 0.3 695.4 2039425 925.5489 1871298
watersym1 71.4 57.1 0.1 13.6 53787 914.5702 48361
watersym2 83.3 55.6 0.1 10.8 28608 1056.1449 25709
waterx 78.6 24.0 0.1 limit 91 – –
detf1 81.5 1.2 1579.0 5733.5 367 – –
gear2 70.8 57.6 0.0 0.0 20 0? 13
gear3 50.0 11.1 0.0 0.0 2 0.0164 2
gear4 50.0 22.2 0.0 0.0 4 495720.675 4
gear 50.0 11.1 0.0 0.0 2 0.0164 2
johnall 98.9 9.0 63.2 13.0 18 -224.7302? 16
saa_2 81.5 1.2 1579.0 5733.3 367 – –
water4 65.1 48.3 0.8 5.5 12624 926.9473 10394
waterz 75.4 58.0 0.2 0.1 63 – –
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Table B.11.: rens: computing optimal roundings for MINLP instances, us-
ing NLP solution, after cuts

% Vars Fixed RENS
Instance Int All TimeS Time Nodes Solution Found At

beuster – – 0.1 – – – –
cecil_13 37.5 30.8 1.2 775.6 1225350 -115630.852 720438
chp_partload 21.4 1.5 17.6 7146.9 9859 – –
contvar – – 1.9 – – – –
csched1 26.7 20.0 0.1 6864.6 51911752 -30639.353? 510093
csched2a 60.0 52.2 3.6 limit 58208 – –
eg_all_s 85.7 83.1 682.2 6529.9 1220160 – –
eg_disc2_s – – 798.3 – – – –
eg_disc_s – – 546.0 – – – –
eg_int_s – – 1011.3 – – – –
eniplac 47.8 42.6 0.2 0.0 28 -130450.77 22
enpro48 82.6 73.4 0.1 3.5 28731 198547.396 28731
enpro48pb 82.6 73.4 0.2 2.3 17748 198547.384 17748
enpro56 68.6 56.8 0.2 8.0 75178 271493.619 75178
enpro56pb 68.6 56.8 0.1 4.7 41949 271496.644 41949
ex1233 0.0 0.0 436.5 7042.5 8215104 – –
ex1244 0.0 0.0 0.2 0.4 562 82042.2724? 307
ex1252a 0.0 60.0 4.0 0.0 0 – –
ex1252 28.6 33.9 1.6 1.4 317 131123.771 292
feedtray 14.3 0.4 25.3 limit 406512 – –
fo7_2 0.0 0.0 0.1 135.9 704358 17.7493? 2293
fo7_ar2_1 0.0 0.0 0.2 46.8 247054 24.8398? 19889
fo7_ar25_1 0.0 0.0 0.1 24.6 115558 23.0936? 105003
fo7_ar3_1 0.0 0.0 0.1 136.1 668929 22.5175? 17122
fo7_ar4_1 0.0 0.0 0.1 155.0 733240 20.7298? 350369
fo7_ar5_1 0.0 0.0 0.1 151.7 767719 17.7493? 68937
fo7 0.0 0.0 0.1 497.1 2372596 20.7298? 240205
fo8_ar2_1 0.0 0.0 0.2 934.6 3788852 30.3406? 1263812
fo8_ar25_1 0.0 0.0 0.2 1106.3 4787074 28.0452? 1555470
fo8_ar3_1 0.0 0.0 0.2 231.3 898814 23.9101? 126001
fo8_ar4_1 0.0 0.0 0.2 234.6 969121 22.3819? 214458
fo8_ar5_1 0.0 0.0 0.1 1432.4 5813287 22.3819? 1898654
fo8 0.0 0.0 6.5 7001.8 26796040 22.3819? 316351
fo9_ar2_1 0.0 0.0 12.1 7024.9 22193275 32.625? 1452885
fo9_ar25_1 0.0 0.0 24.3 7023.6 22803832 32.25 20506093
fo9_ar3_1 0.0 0.0 0.2 1052.7 3352680 24.8155? 336767
fo9_ar4_1 0.0 0.0 16.7 7033.6 28964871 23.4643? 1012573
fo9_ar5_1 0.0 0.0 13.7 7024.4 20112356 23.4643? 1774865
fo9 0.0 0.0 30.3 7040.1 22676841 26.4643 15213281
fuzzy 16.4 6.3 7.8 0.0 3 – –
gasnet 90.0 39.9 6.3 limit 191339 – –
ghg_1veh 0.0 0.0 382.9 7085.1 6381143 – –
ghg_2veh 0.0 0.0 56.0 7146.3 1083873 – –
ghg_3veh 17.1 21.3 33.2 7164.7 1775681 – –
hda 14.3 7.1 32.8 7149.4 1682642 – –
m6 0.0 0.0 0.1 4.1 24562 82.2569? 6680
m7_ar2_1 0.0 0.0 0.2 2.1 10276 190.235? 3930
m7_ar25_1 0.0 0.0 0.2 1.1 3726 143.585? 138
m7_ar3_1 0.0 0.0 0.0 6.3 28008 143.585? 1817
m7_ar4_1 0.0 0.0 0.1 9.3 44016 106.7569? 15850
m7_ar5_1 0.0 0.0 0.0 32.8 173785 106.46? 53909
m7 0.0 0.0 0.1 8.2 48013 106.7569? 20018
mbtd – – limit – – – –
no7_ar2_1 0.0 0.0 0.2 219.9 1033148 107.8153? 325747
no7_ar25_1 0.0 0.0 0.1 379.1 1545736 107.8153? 548721
no7_ar3_1 0.0 0.0 0.1 506.6 1988914 107.8153? 118955
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Table B.11 continued
% Vars Fixed RENS

Instance Int All TimeS TimeR NodesR Solution Found At

no7_ar4_1 0.0 0.0 0.1 2571.1 13791699 98.5184? 9316640
no7_ar5_1 0.0 0.0 0.2 3548.9 14641250 90.6227? 2261480
nvs09 – – 0.2 – – – –
nvs20 0.0 0.0 0.0 1.2 1668 230.9221? 1585
o7_2 0.0 0.0 42.7 7032.6 26786207 116.9459? 19601790
o7_ar2_1 0.0 0.0 0.2 403.4 1959250 140.4119? 360093
o7_ar25_1 0.0 0.0 0.2 1184.8 4608236 140.7327 293836
o7_ar3_1 0.0 0.0 0.2 2486.6 9747119 137.9318? 3672646
o7_ar4_1 0.0 0.0 4.4 7040.1 26611055 131.6531? 3627436
o7_ar5_1 0.0 0.0 0.9 6992.7 30028960 116.9458? 3480829
o7 0.0 0.0 27.8 7014.7 26516141 131.6531? 544651
o8_ar4_1 0.0 0.0 23.1 7088.4 18402307 245.4744 8887518
o9_ar4_1 0.0 0.0 46.7 7025.3 19840728 250.1082 9730833
oil2 0.0 0.0 35.8 7133.9 1001767 – –
oil 0.0 0.1 33.7 7149.0 119377 – –
parallel 20.0 14.7 14.4 limit 900521 924.225 834864
pump 33.3 40.0 0.9 5.7 146 131123.769 143
risk2b 0.0 0.0 0.1 0.1 53 -55.8761? 25
spring 0.0 0.0 0.1 0.0 44 0.9876 34
st_e32 83.3 40.6 0.1 0.0 1 – –
stockcycle 24.3 21.8 2.6 7159.6 6417875 128864.597 3237213
super1 16.1 1.1 13.5 0.0 1 – –
super2 16.1 1.2 10.8 0.0 1 – –
super3 21.6 2.7 16.6 0.0 1 – –
super3t 0.0 0.0 7.4 7196.9 48370 – –
synheat 0.0 0.0 3.6 limit 512341 – –
synthes1 0.0 0.0 0.0 0.0 5 6.0098? 4
synthes2 0.0 0.0 0.0 0.0 16 73.0353? 12
synthes3 0.0 0.0 0.0 11.4 172409 68.0098? 172409
tls12 29.6 67.2 45.9 7125.8 8583097 – –
tls4 27.1 28.2 0.3 14.0 85190 11.5 4135
tls5 34.4 36.4 0.4 136.8 663149 12.1 49484
tls6 45.5 50.7 0.3 275.6 1106419 – –
tls7 72.4 78.5 0.5 0.3 965 – –
water3 3.6 6.3 51.4 6929.7 20651925 908.5771 11154642
waterful2 64.3 58.0 233.9 6956.7 21237400 1727.7383 12114
watersbp 3.6 6.3 139.1 6965.6 21701297 926.9473 1393039
watersym1 42.9 38.0 41.6 6934.4 24032000 945.8494 823376
watersym2 50.0 41.2 0.6 1649.9 5395774 955.728 1697926
waterx 0.0 0.0 7.4 6967.9 983262 – –
detf1 41.0 0.6 1599.0 5649.0 608 – –
gear2 0.0 0.0 0.0 0.2 896 -0? 896
gear3 0.0 0.0 0.0 0.0 5 0? 4
gear4 0.0 0.0 0.0 0.0 5 333.1514 4
gear 0.0 0.0 0.0 0.0 5 0? 4
johnall 0.0 0.0 63.6 8.2 1 -224.7302? 1
saa_2 41.0 0.6 1601.4 5649.3 608 – –
water4 64.3 54.6 0.7 0.8 2430 1008.4471 1819
waterz 65.1 44.4 0.6 36.6 98729 2600.6081 98389
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Table B.12.: rens: analyzing rounding heuristics for mmm instances

Instance RENS ZI Round Rounding Simple Rounding

10teams – – – –
30n20b8 – – – –
a1c1s1 13209.184 – – –
acc-tight5 – – – –
aflow30a 1158 – – –
aflow40b 1179 – – –
air04 – – – –
air05 – – – –
app1-2 – – – –
arki001 – – – –
ash608gpia-3col – – – –
atlanta-ip 98.009586 – – –
beasleyC3 789 1690 1730 1730
bab5 – – – –
bell3a 878430.32 880414.28 – –
bell5 – – – –
biella1 3278480.6 – – –
bienst2 54.6 – – –
binkar10_1 6746.64 – – –
blend2 7.598985 – – –
bley_xl1 190 – – –
bnatt350 – – – –
cap6000 -2443599 -2443599 -2441736 -2441736
core2536-691 695 1103 1651 –
cov1075 20 43 90 90
csched010 – – – –
dano3mip 762.75 – – –
danoint 65.666667 – – –
dcmulti 188186.5 – – –
dfn-gwin-UUM 39920 199352 209984 209984
disctom – – – –
ds – – – –
dsbmip -305.19817 – – –
egout 568.1007 597.46403 597.46403 597.46403
eil33-2 – – – –
eilB101 – – – –
enigma – – – –
enlight13 – – – –
enlight14 – – – –
fast0507 177 315 540 540
fiber 411151.82 – – –
fixnet6 3997 10723.928 10723.928 10723.928
flugpl – – – –
gesa2-o 25780031 – – –
gesa2 25780031 – – –
gesa3 27991430 – – –
gesa3_o 27991430 – – –
glass4 2.2666856e+09 – – –
gmu-35-40 -2399398.2 – – –
gt2 21166 21166 – –
harp2 – – – –
iis-100-0-cov 29 55 100 100
iis-bupa-cov 36 71 144 144
iis-pima-cov 33 66 130 130
khb05250 1.0694023e+08 1.1688827e+08 1.1688827e+08 1.1688827e+08
l152lav – – – –
lectsched-4-obj – – – –
liu 3418 – – –
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Table B.12 continued
Instance RENS ZI Round Rounding Simple Rounding

lseu 1148 – – –
m100n500k4r1 -22 -9 0 0
macrophage – – – –
map18 -847 – – –
map20 -922 – – –
markshare1 142 584 2108 2108
markshare2 131 531 2288 2288
mas74 14343.468 – – –
mas76 40560.054 – – –
mcsched 213768 – – –
mik-250-1-100-1 -66729 -66409 -66409 -66409
mine-90-10 -7.8430234e+08 – – –
misc03 – – – –
misc06 12850.861 12920.927 12920.927 12920.927
misc07 – – – –
mitre 115155 – – –
mkc -539.866 – – –
mod008 309 452 1212 1212
mod010 – – – –
mod011 -54219146 – – –
modglob 20799459 21051934 21051934 21051934
momentum1 – – – –
momentum2 – – – –
momentum3 – – – –
msc98-ip – – – –
mspp16 – – – –
mzzv11 – – – –
mzzv42z – – – –
n3div36 151600 230600 562600 –
n3seq24 68000 – – –
n4-3 9010 20686.357 23686.357 23686.357
neos-1109824 – – – –
neos-1337307 -202133 – – –
neos-1396125 3000.0553 – – –
neos13 -65.655161 – – –
neos-1601936 – – – –
neos18 – – – –
neos-476283 406.81233 – – –
neos-686190 – – – –
neos-849702 – – – –
neos-916792 – – – –
neos-934278 1332 – – –
net12 – – – –
netdiversion – – – –
newdano 66.5 – – –
noswot – – – –
ns1208400 – – – –
ns1688347 – – – –
ns1758913 -457.71835 – – –
ns1766074 – – – –
ns1830653 – – – –
nsrand-ipx 55360 – 114560 –
nw04 – – – –
opm2-z7-s2 -10271 -3937 – –
opt1217 -16 – – –
p0201 7805 – – –
p0282 258411 400676 373318 –
p0548 8763 – – –
p2756 3152 – – –
pg5_34 -14287.702 – – –
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Table B.12 continued
Instance RENS ZI Round Rounding Simple Rounding

pigeon-10 – – – –
pk1 29 – – –
pp08a 7360 12657.971 12657.971 12657.971
pp08aCUTS 7370 13128.015 13128.015 13128.015
protfold – – – –
pw-myciel4 – – – –
qiu -132.87314 1805.1771 1805.1771 1805.1771
qnet1 21237.655 – – –
qnet1_o 22600.83 – 45561.556 –
rail507 178 319 550 –
ran16x16 3846 10305.599 10305.599 10305.599
reblock67 -34629816 – – –
rd-rplusc-21 – – – –
rentacar 30356761 – – –
rgn 82.199998 – – –
rmatr100-p10 424 – – –
rmatr100-p5 976 – – –
rmine6 -457.17275 -435.70014 – –
rocII-4-11 – – – –
rococoC10-001000 12067 – 87872 –
roll3000 14193 – – –
rout – – – –
satellites1-25 – – – –
set1ch 54537.75 59480.277 59480.277 59480.277
seymour 427 590 757 757
sp98ic 4.6976602e+08 6.9404931e+08 1.3685495e+09 –
sp98ir – – – –
stein27 18 20 27 27
stein45 30 37 45 45
swath – – – –
t1717 – – – –
tanglegram1 – – – –
tanglegram2 – – – –
timtab1 827609 – – –
timtab2 – – – –
tr12-30 131438 – – –
triptim1 – – – –
unitcal_7 – – – –
vpm2 13.75 – – –
vpphard – – – –
zib54-UUE 10334016 19016948 19016948 19016948
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Table B.13.: Impact of rens on overall solving process for mmm instances

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

10teams 2 766 33.8 2 766 33.8 2 766 33.8
30n20b8 >13 609 limit >13 098 limit >13 480 limit
a1c1s1 >444 580 limit >445 106 limit >355 340 limit
acc-tight5 2 414 388.9 2 414 389.5 2 414 389.5
aflow30a 3 617 20.8 1 931 13.2 1 931 13.3
aflow40b 366 800 3221.7 230 705 1087.1 230 705 1085.1
air04 272 77.8 272 77.5 272 77.8
air05 478 45.8 478 44.5 478 44.5
app1-2 76 1139.8 76 1300.6 76 1302.4
arki001 2 703 497 4529.0 2 703 497 4527.6 2 703 497 4526.7
ash608gpia-3col 10 69.7 10 70.0 10 69.9
atlanta-ip >8 841 limit >8 520 limit >8 520 limit
beasleyC3 >1 897 819 limit >1 890 444 limit >1 767 779 limit
bab5 >21 663 limit >21 663 limit >21 636 limit
bell3a 47 240 13.2 46 910 11.2 46 910 11.1
bell5 1 069 0.6 1 069 0.7 1 069 0.5
biella1 10 546 2284.0 2 607 939.9 2 607 953.5
bienst2 73 759 394.5 73 759 396.7 82 826 454.9
binkar10_1 105 531 158.8 105 531 159.3 129 286 204.9
blend2 2 135 1.9 164 0.7 164 0.9
bley_xl1 18 372.2 1 214.1 1 206.8
bnatt350 7 866 972.6 7 866 970.9 7 866 972.6
cap6000 3 005 2.5 3 005 2.6 3 005 2.8
core2536-691 204 383.3 281 652.9 281 653.5
cov1075 >1 719 951 limit >1 721 430 limit >1 697 293 limit
csched010 940 018 6394.7 940 018 6395.9 940 018 6397.6
dano3mip >2 838 limit >3 064 limit >2 384 limit
danoint 1 063 562 5251.8 1 063 562 5237.1 1 063 562 5256.0
dcmulti 130 1.8 130 1.8 130 1.7
dfn-gwin-UUM 77 613 148.8 77 613 146.7 77 613 148.1
disctom 1 3.5 1 3.6 1 3.5
ds >465 limit >460 limit >460 limit
dsbmip 1 0.7 1 0.6 1 0.6
egout 1 0.5 1 0.5 1 0.5
eil33-2 10 571 98.0 10 571 99.3 10 571 99.7
eilB101 9 239 773.3 9 239 777.1 9 239 776.3
enigma 1 289 0.6 1 289 0.6 1 289 0.7
enlight13 1 099 066 655.3 1 099 066 658.3 1 099 066 658.8
enlight14 156 998 108.9 156 998 108.3 156 998 108.1
fast0507 1 477 1474.5 2 774 3501.8 2 774 3509.4
fiber 78 1.9 32 1.3 32 1.2
fixnet6 54 1.8 14 1.8 14 1.9
flugpl 121 0.5 121 0.5 121 0.5
gesa2-o 55 1.8 4 1.5 4 1.5
gesa2 42 1.7 7 1.4 7 1.3
gesa3 147 2.3 16 1.7 16 1.6
gesa3_o 119 3.1 12 2.1 12 2.0
glass4 >10 167 913 limit 1 795 478 1454.2 1 795 478 1459.6
gmu-35-40 >5 151 788 limit >11 990 260 limit >13 431 923 limit
gt2 1 0.5 1 0.5 1 0.5
harp2 360 980 301.6 360 980 301.2 364 890 308.2
iis-100-0-cov 106 874 1706.4 106 874 1705.5 106 389 1828.4
iis-bupa-cov 183 185 6723.2 189 467 6655.7 189 467 6690.3
iis-pima-cov 13 766 952.6 13 011 953.7 13 011 966.1
khb05250 11 0.5 11 0.5 11 0.5
l152lav 52 3.0 52 2.9 52 3.1
lectsched-4-obj 11 988 246.4 11 988 246.4 11 988 247.4
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Table B.13 continued
No RENS Root RENS Tree RENS

Instance Nodes Time Nodes Time Nodes Time

liu >1 835 353 limit >1 832 824 limit >1 965 400 limit
lseu 329 0.5 552 0.5 552 0.5
m100n500k4r1 5 272 016 4732.9 >8 222 511 limit >8 183 822 limit
macrophage >929 901 limit >925 398 limit >928 739 limit
map18 607 649.6 293 463.1 293 463.8
map20 1 180 496.4 353 549.0 353 548.5
markshare1 >75 355 137 limit >78 655 002 limit >78 886 991 limit
markshare2 >63 825 711 limit >62 613 242 limit >62 433 221 limit
mas74 2 955 765 500.1 2 955 765 499.8 2 955 765 502.1
mas76 243 004 43.5 281 857 42.2 281 857 42.3
mcsched 16 113 222.9 16 113 222.2 20 712 256.3
mik-250-1-100-1 1 920 723 373.9 1 021 375 205.6 1 021 375 206.1
mine-90-10 469 802 1753.4 359 569 1156.5 359 569 1157.1
misc03 131 1.1 131 1.2 131 1.1
misc06 18 0.5 6 0.5 6 0.5
misc07 38 363 20.5 38 363 20.5 38 363 20.9
mitre 1 4.5 1 4.6 1 4.7
mkc >3 288 146 limit >3 186 952 limit >3 223 059 limit
mod008 192 0.9 192 0.9 192 0.9
mod010 4 0.9 4 0.7 4 0.8
mod011 1 596 206.1 1 596 206.0 1 596 205.8
modglob 1 408 1.3 1 408 1.5 1 408 1.6
momentum1 >21 781 limit >21 733 limit >21 781 limit
momentum2 >63 180 limit >61 812 limit >62 495 limit
momentum3 >44 limit >43 limit >44 limit
msc98-ip >756 limit >756 limit >756 limit
mspp16 >750 limit >382 limit >736 limit
mzzv11 2 734 341.8 2 734 343.5 2 734 342.3
mzzv42z 1 557 364.5 1 557 364.2 1 557 365.0
n3div36 >200 784 limit >257 302 limit >264 668 limit
n3seq24 >2 290 limit >2 094 limit >2 114 limit
n4-3 53 959 835.6 53 959 835.3 53 959 844.5
neos-1109824 24 162 185.9 24 162 185.4 24 162 186.1
neos-1337307 >415 472 limit >416 447 limit >413 169 limit
neos-1396125 54 219 3981.6 54 219 3981.4 54 219 3982.6
neos13 >28 166 limit >26 778 limit >25 527 limit
neos-1601936 >31 161 limit >30 882 limit >30 831 limit
neos18 9 133 41.4 9 133 41.4 9 133 41.5
neos-476283 466 326.9 609 323.2 609 327.1
neos-686190 9 894 114.1 9 894 114.7 9 894 114.3
neos-849702 137 579 1652.0 137 579 1651.7 137 579 1653.2
neos-916792 57 471 228.0 57 471 227.3 57 471 227.3
neos-934278 >2 951 limit >4 825 limit >4 708 limit
net12 3 838 2650.2 3 838 2647.9 3 838 2649.5
netdiversion >72 limit >72 limit >72 limit
newdano >1 570 960 limit >1 574 108 limit >1 138 936 limit
noswot 525 460 148.2 525 460 147.8 525 460 147.4
ns1208400 15 050 1960.2 15 050 1957.1 15 050 1956.6
ns1688347 17 807 1979.0 17 807 1978.5 17 807 1979.6
ns1758913 >23 limit >17 limit >5 limit
ns1766074 946 987 514.1 946 987 515.2 946 987 516.1
ns1830653 57 234 584.3 57 234 585.5 57 234 585.9
nsrand-ipx >1 097 182 limit >1 154 058 limit >1 158 945 limit
nw04 5 51.1 5 52.0 5 51.9
opm2-z7-s2 4 401 1154.7 4 401 1153.8 4 401 1154.5
opt1217 >16 012 029 limit >12 726 890 limit >12 478 488 limit
p0201 169 1.9 65 1.6 65 1.8
p0282 26 0.8 3 0.6 3 0.5
p0548 96 0.8 14 0.5 14 0.5
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Table B.13 continued
No RENS Root RENS Tree RENS

Instance Nodes Time Nodes Time Nodes Time

p2756 403 3.2 153 2.6 153 2.5
pg5_34 348 765 1717.1 318 742 1501.1 306 428 1374.3
pigeon-10 >7 056 792 limit >7 034 031 limit >6 972 773 limit
pk1 213 670 46.8 226 780 50.0 206 727 44.4
pp08a 590 1.5 590 1.5 670 1.7
pp08aCUTS 403 1.5 403 1.4 480 1.6
protfold >6 866 limit >6 865 limit >6 862 limit
pw-myciel4 647 355 5306.6 647 355 5310.9 647 355 5311.9
qiu 11 012 56.2 11 012 56.3 10 301 55.9
qnet1 7 2.4 7 2.5 7 2.3
qnet1_o 29 3.9 29 4.0 29 3.9
rail507 1 704 1494.8 1 472 1269.2 1 472 1268.4
ran16x16 348 556 196.6 331 635 195.2 331 635 195.3
reblock67 111 964 279.5 111 964 279.1 111 964 279.7
rd-rplusc-21 >58 623 limit >58 592 limit >58 592 limit
rentacar 14 3.0 14 3.0 14 3.1
rgn 62 0.5 62 0.5 62 0.5
rmatr100-p10 901 197.3 901 197.7 864 201.0
rmatr100-p5 420 668.8 385 553.4 385 553.4
rmine6 541 456 2814.6 727 632 4044.6 523 315 2760.6
rocII-4-11 40 353 544.4 40 353 545.6 40 353 545.7
rococoC10-001000 662 755 3313.2 488 147 2372.7 495 582 2404.2
roll3000 >1 390 052 limit >1 479 602 limit >1 482 101 limit
rout 29 656 39.7 29 656 39.9 19 937 33.3
satellites1-25 9 089 2148.3 9 089 2146.1 9 089 2148.0
set1ch 28 0.9 6 0.8 6 0.9
seymour >122 156 limit >130 095 limit >116 911 limit
sp98ic >135 751 limit >209 889 limit >208 547 limit
sp98ir 4 912 64.8 4 912 64.9 4 912 65.1
stein27 4 045 0.9 4 045 1.1 4 045 1.0
stein45 52 523 13.1 52 523 13.1 52 523 13.3
swath >1 448 548 limit >1 460 957 limit >1 433 029 limit
t1717 >734 limit >720 limit >734 limit
tanglegram1 27 867.6 27 866.3 27 860.5
tanglegram2 3 7.0 3 7.0 3 6.9
timtab1 925 706 412.1 925 706 413.2 925 706 414.5
timtab2 >8 939 001 limit >8 943 388 limit >8 926 669 limit
tr12-30 1 518 459 1986.3 1 685 757 2280.3 1 532 831 2052.5
triptim1 30 2002.7 30 1984.3 30 1993.2
unitcal_7 11 624 1173.8 10 569 1137.6 10 569 1138.7
vpm2 945 1.2 143 1.1 143 1.1
vpphard >5 521 limit >5 524 limit >5 525 limit
zib54-UUE 951 366 5701.2 951 366 5708.5 865 298 4910.0

sh. geom. mean 11 248 377.2 10 390 366.3 10 346 365.8
arithm. mean 1 446 078 2461.4 1 442 400 2427.0 1 443 404 2414.3
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Table B.14.: Impact of rens on overall solving process for MIQCP in-
stances

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

108bar >1 >7200.0 >1 >7200.0 >1 >7200.0
10bar2 369 2.3 653 2.8 653 2.9
25bar >7 936 >7200.0 >3 402 >7200.0 >3 402 >7200.0
classical_200_0 >100 675 >7200.0 >109 742 >7200.0 >109 204 >7200.0
classical_200_1 >152 012 >7200.0 >134 651 >7200.0 >131 226 >7200.0
classical_20_0 172 0.7 127 0.9 127 0.9
classical_20_1 866 1.7 897 1.9 897 2.1
classical_50_0 243 420 1068.1 1 260 971 5287.2 940 699 3782.0
classical_50_1 20 929 74.4 29 760 106.3 29 760 107.9
clay0203m 55 0.5 55 0.5 55 0.5
clay0205m 10 494 4.0 10 494 4.1 10 492 4.5
clay0303m 99 0.5 99 0.5 99 0.5
clay0305m 9 361 4.5 9 361 4.5 9 361 4.5
du-opt5 86 0.5 86 0.5 86 0.5
du-opt 322 0.7 322 0.7 322 0.8
ex1263 199 0.7 199 0.8 199 0.8
ex1266 37 0.7 255 1.1 255 1.1
fac3 6 0.5 6 0.5 6 0.5
feedtray2 1 0.5 1 0.5 1 0.5
ibell3a 44 048 12.9 42 066 13.8 42 066 13.8
icvxqp1 >1 897 >7200.0 >1 893 >7200.0 >1 903 >7200.0
ilaser0 169 3.2 169 3.0 169 3.2
imod011 1 319.2 1 319.4 1 319.4
iportfolio >21 555 >7200.0 >21 527 >7200.0 >21 279 >7200.0
isqp0 >1 479 285 >7200.0 >1 483 123 >7200.0 >1 481 383 >7200.0
isqp1 >1 362 277 >7200.0 >1 362 255 >7200.0 >1 360 580 >7200.0
isqp >1 706 210 >7200.0 >1 706 576 >7200.0 >1 706 619 >7200.0
ivalues >153 470 >7200.0 >153 572 >7200.0 >153 088 >7200.0
meanvarx 7 0.5 3 0.5 3 0.5
netmod_dol1 62 794 6077.4 62 794 6049.4 62 028 6115.3
netmod_dol2 192 49.6 192 49.7 150 47.8
netmod_kar1 288 5.9 288 5.9 288 5.8
netmod_kar2 288 6.0 288 5.9 288 5.9
nous1 >5 156 737 >7200.0 >5 154 877 >7200.0 >5 149 665 >7200.0
nous2 2 821 2.2 2 821 2.0 2 821 2.2
nuclear14a >36 917 >7200.0 >36 932 >7200.0 >53 127 >7200.0
nuclear14b >73 331 >7200.0 >73 976 >7200.0 >73 751 >7200.0
nvs19 105 0.5 105 0.5 105 0.5
nvs23 96 0.5 96 0.5 96 0.5
product2 >6 014 234 >7200.0 >6 225 476 >7200.0 >5 740 865 >7200.0
product 5 562 11.7 7 747 15.7 7 853 15.9
robust_100_0 86 362 1307.3 79 523 1234.3 79 523 1245.8
robust_100_1 13 780 207.9 16 517 235.9 16 517 239.9
robust_200_0 >139 784 >7200.0 >74 872 >7200.0 >73 339 >7200.0
robust_20_0 8 0.5 8 0.5 8 0.5
robust_50_0 91 1.4 91 1.8 91 1.8
robust_50_1 228 3.0 200 2.8 200 2.8
shortfall_100_0 >495 750 >7200.0 >497 757 >7200.0 >503 010 >7200.0
shortfall_100_1 356 687 3926.5 311 239 3382.3 226 505 2414.0
shortfall_200_0 >104 110 >7200.0 >103 692 >7200.0 >103 523 >7200.0
shortfall_20_0 102 0.8 120 0.9 120 0.8
shortfall_50_0 343 829 1738.6 695 205 3628.8 690 262 3615.6
shortfall_50_1 9 259 43.2 11 106 46.0 11 106 47.4
SLay05H 254 2.1 75 1.6 75 1.6
SLay05M 79 0.6 150 1.0 150 1.0
SLay07M 1 930 6.9 377 3.0 377 3.1
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Table B.14 continued
No RENS Root RENS Tree RENS

Instance Nodes Time Nodes Time Nodes Time

SLay10H >532 368 >7200.0 >532 759 >7200.0 >498 710 >7200.0
SLay10M 229 809 1828.4 28 848 233.2 28 856 241.4
space25a >21 026 >7200.0 >21 026 >7200.0 >21 026 >7200.0
space25 >8 751 >7200.0 >8 751 >7200.0 >8 751 >7200.0
spectra2 33 0.7 23 0.7 23 0.8
tln12 >2 590 652 >7200.0 >2 587 580 >7200.0 >2 589 049 >7200.0
tln5 44 527 26.2 44 527 26.1 44 527 26.3
tln6 >12 370 474 >7200.0 >12 372 692 >7200.0 >12 367 087 >7200.0
tln7 >9 474 819 >7200.0 >9 482 513 >7200.0 >9 493 095 >7200.0
tloss 60 0.5 60 0.5 60 0.5
tltr 24 0.5 24 0.5 24 0.5
uflquad-15-60 904 2857.7 904 2862.1 827 2491.9
uflquad-20-50 >201 >7200.0 >201 >7200.0 >34 >7200.0
uflquad-40-80 >105 >7200.0 >105 >7200.0 >39 >7200.0
util 371 0.5 375 0.5 375 0.5
waste >4 005 594 >7200.0 >3 983 731 >7200.0 >3 964 173 >7200.0

arithm. mean 659 740 2872.3 677 123 2927.0 664 117 2888.6
sh. geom. mean 6 457 229.9 6 361 232.0 6 193 229.9
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Table B.15.: Impact of rens on overall solving process for MINLP instances

No RENS Root RENS Tree RENS
Instance Nodes Time Nodes Time Nodes Time

beuster >243 >7200.0 >243 >7200.0 >243 >7200.0
cecil_13 >2 557 284 >7200.0 >2 553 413 >7200.0 >2 568 736 >7200.0
contvar >10 024 >7200.0 >10 024 >7200.0 >10 024 >7200.0
csched1 44 649 17.2 44 649 17.5 44 649 17.6
csched2a >26 250 >7200.0 >26 250 >7200.0 >26 250 >7200.0
detf1 >331 >7200.0 >330 >7200.0 >331 >7200.0
eg_all_s >446 >7200.0 >440 >7200.0 >440 >7200.0
eg_disc2_s >83 >7200.0 >83 >7200.0 >48 >7200.0
eg_disc_s >136 >7200.0 >136 >7200.0 >34 >7200.0
eg_int_s >5 >7200.0 >5 >7200.0 >5 >7200.0
eniplac 172 0.7 172 0.6 98 0.6
enpro48 84 0.8 54 982 11.9 12 571 4.3
enpro48pb 249 160 42.9 36 0.9 36 0.8
enpro56pb 4 048 1.8 85 265 17.6 85 265 17.6
ex1233 >11 127 294 >7200.0 >11 141 457 >7200.0 >11 144 945 >7200.0
ex1244 492 1.0 492 1.1 504 1.4
ex1252 >88 >7200.0 >88 >7200.0 >88 >7200.0
ex1252a >204 >7200.0 >204 >7200.0 >204 >7200.0
feedtray >640 421 >7200.0 >638 931 >7200.0 >639 220 >7200.0
fo7 163 542 68.1 163 542 67.8 163 542 68.6
fo7_2 45 627 22.2 45 627 22.2 48 697 23.8
fo7_ar25_1 43 715 16.9 43 715 17.3 49 960 19.5
fo7_ar2_1 39 986 17.3 39 986 17.3 39 986 17.6
fo7_ar3_1 47 741 17.9 47 741 17.9 50 563 19.5
fo7_ar4_1 58 884 28.5 58 884 28.2 58 884 29.2
fo7_ar5_1 20 509 9.1 20 509 9.0 20 509 9.1
fo8 538 828 277.3 538 828 277.3 538 828 279.3
fo8_ar25_1 337 708 141.8 337 708 141.4 149 658 59.9
fo8_ar2_1 643 114 168.7 643 114 168.6 192 277 75.0
fo8_ar3_1 75 943 43.8 75 943 43.8 75 943 44.6
fo8_ar4_1 >46 231 801 >7200.0 >46 093 488 >7200.0 86 646 43.3
fo8_ar5_1 55 953 27.9 55 953 28.4 55 953 29.2
fo9 2 155 434 1140.4 2 155 434 1143.8 10 127 873 2879.5
fo9_ar25_1 4 702 715 1731.2 4 702 715 1733.8 4 881 081 1843.4
fo9_ar2_1 2 615 019 1089.9 2 615 019 1092.5 2 615 019 1092.2
fo9_ar3_1 532 025 284.5 532 025 284.9 331 077 172.6
fo9_ar4_1 284 985 133.1 284 985 134.6 284 985 133.7
fo9_ar5_1 729 300 405.2 729 300 408.4 729 300 409.3
fuzzy >2 161 178 >7200.0 >2 156 389 >7200.0 408 344 1883.2
gasnet >1 382 >7200.0 >1 382 >7200.0 >1 382 >7200.0
gear 2 828 2.0 2 828 2.0 2 828 2.0
gear2 591 0.5 506 0.5 506 0.5
gear3 2 828 2.2 2 828 2.1 2 828 2.0
gear4 105 0.5 105 0.5 105 0.5
ghg_1veh >18 013 454 >7200.0 >18 137 988 >7200.0 >18 188 182 >7200.0
ghg_2veh >737 048 >7200.0 >87 992 >7200.0 >853 625 >7200.0
ghg_3veh >420 745 >7200.0 >420 693 >7200.0 >211 106 >7200.0
hda >848 500 >7200.0 >847 241 >7200.0 >824 623 >7200.0
johnall 1 64.0 1 72.3 1 63.8
m6 955 1.1 955 1.0 955 1.2
m7 14 053 6.5 14 053 6.4 14 053 6.6
m7_ar25_1 2 848 2.0 2 848 2.1 2 055 1.4
m7_ar2_1 22 707 5.7 22 707 5.6 22 707 5.8
m7_ar3_1 9 390 4.6 9 390 4.5 9 390 4.6
m7_ar4_1 2 134 1.8 2 134 1.8 2 134 2.1
m7_ar5_1 25 814 6.8 25 814 6.9 25 814 7.2
no7_ar25_1 107 048 51.4 107 048 50.7 87 297 42.4
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Table B.15 continued
No RENS Root RENS Tree RENS

Instance Nodes Time Nodes Time Nodes Time

no7_ar2_1 27 667 14.9 27 667 14.8 27 667 14.9
no7_ar3_1 423 874 187.2 423 874 185.8 423 874 186.9
no7_ar4_1 228 710 108.6 228 710 108.3 252 173 120.5
no7_ar5_1 103 053 52.5 103 053 52.2 103 053 52.0
nvs09 >4 697 821 >7200.0 >6 241 826 >7200.0 >6 342 072 >7200.0
nvs20 355 0.8 355 0.8 355 1.0
o7 4 566 673 2343.0 4 566 673 2345.9 4 566 673 2357.2
o7_2 1 730 061 756.5 1 730 061 754.7 1 708 453 755.9
o7_ar25_1 489 625 241.3 489 625 239.7 489 625 244.1
o7_ar2_1 176 585 88.0 176 585 86.2 151 581 69.9
o7_ar3_1 1 230 419 616.6 1 230 419 616.7 1 230 419 618.9
o7_ar4_1 1 854 132 991.8 1 854 132 994.0 1 854 132 994.5
o7_ar5_1 795 136 371.7 795 136 372.3 613 092 282.3
o8_ar4_1 11 782 816 6666.4 11 782 816 6688.3 12 722 339 6984.3
o9_ar4_1 >12 507 230 >7200.0 >12 514 424 >7200.0 >12 415 746 >7200.0
oil >589 974 >7200.0 >589 231 >7200.0 >589 208 >7200.0
oil2 >1 027 176 >7200.0 >1 028 096 >7200.0 >1 024 608 >7200.0
parallel 735 814 2599.6 735 814 2592.5 735 814 2591.3
pump >47 >7200.0 >47 >7200.0 >47 >7200.0
risk2b 2 0.6 2 0.6 2 0.6
saa_2 >331 >7200.0 >331 >7200.0 >331 >7200.0
spring 90 0.5 90 0.5 90 0.5
st_e32 12 153 13.6 12 153 13.7 12 153 13.6
stockcycle 32 340 222.0 32 340 222.2 32 340 223.2
super1 >88 353 >7200.0 >88 400 >7200.0 >88 430 >7200.0
super2 >90 554 >7200.0 >89 681 >7200.0 >90 164 >7200.0
super3 >102 297 >7200.0 >100 310 >7200.0 >102 024 >7200.0
super3t >71 449 >7200.0 >71 272 >7200.0 >68 820 >7200.0
synheat >68 710 >7200.0 >68 710 >7200.0 >68 710 >7200.0
synthes1 4 0.5 4 0.5 4 0.5
synthes2 5 0.5 4 0.5 4 0.5
synthes3 >56 469 781 >7200.0 >54 499 711 >7200.0 >57 219 056 >7200.0
tls12 >622 812 >7200.0 >629 179 >7200.0 >628 973 >7200.0
tls4 9 520 11.7 12 723 13.4 12 723 13.5
tls5 >3 950 998 >7200.0 >3 941 413 >7200.0 >3 943 467 >7200.0
tls6 >2 741 985 >7200.0 >2 729 799 >7200.0 >2 732 632 >7200.0
tls7 >1 805 765 >7200.0 >1 797 325 >7200.0 >1 804 162 >7200.0
water3 >6 706 261 >7200.0 >6 698 169 >7200.0 >6 578 939 >7200.0
water4 1 692 444 1860.5 1 692 444 1863.9 1 642 038 1816.3
waterful2 >4 169 416 >7200.0 >4 164 237 >7200.0 >4 148 024 >7200.0
watersbp >4 032 620 >7200.0 >4 032 620 >7200.0 >155 142 >7200.0
watersym1 >6 705 227 >7200.0 >6 453 837 >7200.0 >6 730 378 >7200.0
watersym2 >8 127 217 >7200.0 >8 123 253 >7200.0 >8 059 966 >7200.0
waterx >1 425 >7200.0 >1 425 >7200.0 >1 425 >7200.0
waterz >1 094 883 >7200.0 >1 094 883 >7200.0 >1 094 883 >7200.0

arithm. mean 2 338 903 3274.5 2 324 208 3274.7 1 925 902 3168.7
sh. geom. mean 58 758 466.5 58 406 467.1 51 066 431.3
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Table B.17.: Comparison of overall performance of SCIP 2.1.1 with and
without Undercover on MIQCP test set. Columns nodes and
time show the number of branch-and-bound nodes and the
running time needed to solve an instance to proven optimality,
respectively. Column pb root depicts the primal bound after
the root node.

SCIP + UC SCIP − UC

nodes time [s] pb root nodes time [s] pb root

CLay0203M 48 0.1 41572.98 48 0.2 41572.98
CLay0204M 661 0.7 9199.995 721 0.7 9199.995
CLay0205M 10 690 4.2 81611.33 9 655 3.9 81611.33
CLay0303M 87 0.1 – 87 0.1 –
CLay0304M 316 0.6 78552.09 298 0.6 78552.09
CLay0305M 9 205 3.9 70332.47 8 969 4.1 70332.47
SLay04H 31 0.6 14395.62 31 0.3 9975.662
SLay04M 71 0.6 11676.06 132 0.8 12544.86
SLay05H 288 2.5 24998.52 286 2.3 24998.52
SLay05M 24 0.6 25589.95 56 0.7 27119.52
SLay06H 992 5.1 135525.5 1 670 8.6 135525.5
SLay06M 266 1.4 41921.2 618 2.0 42920.4
SLay07H 5 406 66.9 266528.1 5 895 71.9 266528.1
SLay07M 730 3.8 71077.43 1 430 9.6 99366.75
SLay08H 4 769 61.2 370075 32 232 310.3 370075
SLay08M 1 079 5.8 102746.5 1 493 7.0 102746.5
SLay09H 6 971 107.8 152428 31 680 383.1 152428
SLay09M 3 561 24.8 136774.1 1 453 22.4 135783.8
SLay10H >212 055 >3600.0 577942.5 144 350 2144.1 577942.5
SLay10M 27 922 181.9 144233.4 170 975 1034.2 144233.4
LeeCrudeOil1_05 25 1.0 – 13 0.8 –
LeeCrudeOil1_06 14 1.3 – 27 1.5 –
LeeCrudeOil1_07 29 1.5 – 29 1.4 –
LeeCrudeOil1_08 40 4.3 – 39 4.3 –
LeeCrudeOil1_09 62 3.9 – 108 4.4 –
LeeCrudeOil1_10 141 7.4 – 179 8.6 –
LeeCrudeOil2_05 32 2.1 – 80 2.1 –
LeeCrudeOil2_06 21 3.5 -101.1746 46 3.3 -101.1746
LeeCrudeOil2_07 397 6.5 – 384 6.2 –
LeeCrudeOil2_08 261 7.3 -101.1738 371 8.0 -101.1738
LeeCrudeOil2_09 713 17.5 – 517 16.5 –
LeeCrudeOil2_10 672 20.5 – 682 30.0 –
LeeCrudeOil3_05 2 141 7.3 – 6 821 18.3 –
LeeCrudeOil3_06 14 851 53.1 – 21 515 65.0 –
LeeCrudeOil3_07 20 341 77.2 – 28 851 95.2 –
LeeCrudeOil3_08 52 781 259.0 – 32 411 160.6 –
LeeCrudeOil3_09 48 118 289.9 – 51 121 270.9 –
LeeCrudeOil3_10 41 941 308.5 – 37 141 264.0 –
LeeCrudeOil4_05 106 2.5 – 23 3.3 –
LeeCrudeOil4_06 20 3.5 -132.5307 16 4.5 -132.5307
LeeCrudeOil4_07 118 5.7 -132.16 21 5.8 -132.16
LeeCrudeOil4_08 67 8.8 -132.4783 212 15.0 -132.4783
LeeCrudeOil4_09 43 15.5 -131.9602 28 11.9 -131.9602
LeeCrudeOil4_10 419 20.8 – 157 21.9 –
LiCrudeOil_ex01 >1 318 676 >3600.0 – >1 178 319 >3600.0 –
LiCrudeOil_ex02 >1 096 681 >3600.0 64752230 >1 074 998 >3600.0 64752230
LiCrudeOil_ex03 >285 396 >3600.0 – >307 358 >3600.0 –
LiCrudeOil_ex05 >375 180 >3600.0 – >408 032 >3600.0 –
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Table B.17 continued
SCIP + UC SCIP − UC

nodes time [s] pb root nodes time [s] pb root

LiCrudeOil_ex06 19 790 313.8 – 60 296 805.1 –
LiCrudeOil_ex11 >269 067 >3600.0 – >271 844 >3600.0 –
LiCrudeOil_ex21 >232 969 >3600.0 – >242 431 >3600.0 –
alan 6 0.1 2.924996 6 0.1 2.924996
du-opt5 80 0.5 13.60875 58 0.4 15.62177
du-opt 238 0.7 7.246512 162 0.6 4.904643
elf 293 0.3 0.328 293 0.4 0.328
ex1223a 1 0.1 4.579582 1 0.0 4.579582
ex1263a 229 0.2 29.3 126 0.2 29.6
ex1263 596 0.7 30.1 194 0.4 –
ex1264a 176 0.2 10.3 128 0.1 11.1
ex1264 86 0.2 11.1 179 0.2 –
ex1265a 72 0.1 14.3 70 0.1 15.1
ex1265 69 0.3 11.3 186 0.4 –
ex1266a 1 0.0 16.3 397 0.5 –
ex1266 1 0.1 16.3 209 0.6 –
ex4 11 0.7 -8.064135 11 0.8 -8.064136
fac3 8 0.2 31995140 12 0.1 32039520
feedtray2 1 0.1 0 1 0.1 0
fuel 3 0.1 10286.14 5 0.1 11925
gbd 1 0.0 2.2 1 0.0 2.2
meanvarx 4 0.1 14.36921 4 0.1 14.36921
netmod_dol1 >42 355 >3600.0 -0.3740157 >40 552 >3600.0 -0.372303
netmod_dol2 793 71.7 0 80 33.4 0
netmod_kar1 315 4.5 -0.3717949 279 3.7 0
netmod_kar2 315 4.5 -0.3717949 279 3.7 0
nous1 >2 196 718 >3600.0 – >2 174 442 >3600.0 –
nous2 3 311 2.9 1.384316 4 764 3.4 1.384316
nuclear104 >62 874 >3600.0 – >66 256 >3600.0 –
nuclear10a >49 >3600.0 – >43 >3600.0 –
nuclear10b >1 >3600.0 – >1 >3600.0 –
nuclear14a >62 466 >3600.0 -1.111458 >57 760 >3600.0 -1.100766
nuclear14b >47 549 >3600.0 -1.097686 >47 568 >3600.0 -1.097686
nuclear14 >1 473 004 >3600.0 – >1 471 465 >3600.0 –
nuclear24a >62 343 >3600.0 -1.111458 >57 760 >3600.0 -1.100766
nuclear24b >47 556 >3600.0 -1.097686 >47 482 >3600.0 -1.097686
nuclear24 >1 474 515 >3600.0 – >1 463 971 >3600.0 –
nuclear25a >55 186 >3600.0 -1.057131 >49 835 >3600.0 -1.057131
nuclear25b >33 525 >3600.0 – >35 924 >3600.0 –
nuclear25 >1 380 060 >3600.0 – >1 374 983 >3600.0 –
nuclear49a >5 883 >3600.0 – >6 729 >3600.0 –
nuclear49b >2 920 >3600.0 – >3 032 >3600.0 –
nuclear49 >379 308 >3600.0 – >378 649 >3600.0 –
nuclearva >2 988 726 >3600.0 – >2 978 098 >3600.0 –
nuclearvb >3 004 258 >3600.0 – >3 005 785 >3600.0 –
nuclearvc >2 983 650 >3600.0 – >3 002 087 >3600.0 –
nuclearvd >2 719 871 >3600.0 – >2 715 102 >3600.0 –
nuclearve >2 735 734 >3600.0 – >2 732 253 >3600.0 –
nuclearvf >2 740 055 >3600.0 – >2 743 820 >3600.0 –
nvs03 1 0.0 16 1 0.0 16
nvs10 1 0.0 -310.8 1 0.0 -310.8
nvs11 3 0.0 -431 3 0.0 -431
nvs12 6 0.1 -481.2 5 0.0 -481.2
nvs13 12 0.1 -580.4 9 0.1 -580.4
nvs14 1 0.0 -40358.15 1 0.0 -40358.15
nvs15 4 0.1 1 5 0.0 1
nvs17 51 0.1 -1098.6 45 0.1 -1098.6
nvs18 23 0.1 -777 20 0.1 -777
nvs19 89 0.2 -1097.8 84 0.2 -1097.8
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Table B.17 continued
SCIP + UC SCIP − UC

nodes time [s] pb root nodes time [s] pb root

nvs23 106 0.3 -1124.2 103 0.3 -1122.2
nvs24 104 0.3 -1028.8 103 0.3 -1028.8
prob02 1 0.0 112235 1 0.0 112235
prob03 1 0.0 10 1 0.0 10
product2 >3 258 756 >3600.0 -2099.124 >3 311 596 >3600.0 -2102.377
product 7 317 21.1 -2094.688 7 989 23.3 -2094.688
iplac_reformulated 282 0.7 – 282 0.8 –
fo7_2_reformulated 57 203 33.5 – 62 818 35.6 –
fo7_reformulated 185 976 108.2 – 210 033 125.2 –
fo8_reformulated 364 808 230.3 – 426 135 250.6 –
fo9_reformulated 1 689 569 1130.6 – 2 775 675 1831.0 –
m3_reformulated 14 0.2 37.8 21 0.1 46.30631
m6_reformulated 8 958 4.1 – 1 601 1.5 –
m7_reformulated 4 635 3.6 – 5 988 4.2 –
o7_2_reformulated 1 461 823 773.7 – 1 501 419 790.7 –
o7_reformulated 3 647 967 2124.1 – 3 838 657 2191.2 –
sep1 37 0.3 -510.081 47 0.2 -470.1301
space25a >339 329 >3600.0 – >188 127 >3600.0 –
space25 >6 611 >3600.0 – >70 227 >3600.0 –
space960 >3 760 >3600.0 17130000 >3 479 >3600.0 17130000
spectra2 19 0.8 13.9783 23 0.6 13.9783
st_e13 1 0.0 0 1 0.0 0
st_e27 1 0.0 2 1 0.0 2
st_e31 1 647 1.0 -2.000001 2 038 1.0 –
st_miqp1 1 0.0 281 1 0.0 281
st_miqp2 1 0.0 2 1 0.0 2
st_miqp3 1 0.0 -6 1 0.0 -6
st_miqp4 1 0.1 -4574 1 0.0 -4574
st_miqp5 1 0.1 -333.8889 1 0.0 -333.8889
st_test1 1 0.0 0 1 0.0 0
st_test2 1 0.0 -9.25 1 0.0 -9.25
st_test3 1 0.0 -7 1 0.0 -7
st_test4 1 0.0 -7 1 0.0 -7
st_test5 1 0.0 -110 1 0.0 -110
st_test6 1 0.0 471 1 0.0 471
st_test8 1 0.0 -29605 1 0.0 -29605
st_testgr1 48 0.1 -12.79955 20 0.1 -12.79955
st_testgr3 28 0.1 -20.5795 23 0.1 -20.5795
st_testph4 1 0.0 -80.5 1 0.0 -80.5
tln12 >1 549 104 >3600.0 – >1 481 337 >3600.0 –
tln2 1 0.0 5.3 1 0.0 5.3
tln4 2 658 1.5 11.1 2 784 1.5 12.4
tln5 171 037 105.1 15.1 104 002 63.1 15.5
tln6 >5 322 038 >3600.0 32.3 >5 432 291 >3600.0 –
tln7 >3 010 846 >3600.0 30.3 >3 179 741 >3600.0 –
tloss 1 0.0 16.3 145 0.2 –
tltr 38 0.2 61.13333 94 0.2 83.475
util 7 0.3 999.6906 213 0.4 1005.268
waste >2 080 248 >3600.0 621.8648 >2 068 008 >3600.0 692.9838
Sarawak_Scenario16 >706 322 >3600.0 -31868.1 >668 385 >3600.0 -31868.1
Sarawak_Scenario1 502 1.1 -32435.4 541 1.4 -31115.54
Sarawak_Scenario81 >152 074 >3600.0 -31865.36 >153 286 >3600.0 -31865.36
lee1 2 828 2.2 – 21 451 19.3 –
lee2 37 584 44.8 – 31 580 36.9 –
meyer04 >3 106 891 >3600.0 – >3 047 664 >3600.0 –
meyer10 >1 391 651 >3600.0 – >1 338 247 >3600.0 –
meyer15 >183 963 >3600.0 – >358 139 >3600.0 –
ahmetovic1_pw4 42 842 36.1 – 63 195 58.2 –
ahmetovic2_pw4 >684 192 >3600.0 – >640 108 >3600.0 –



300 Appendix B. Tables

Table B.17 continued
SCIP + UC SCIP − UC

nodes time [s] pb root nodes time [s] pb root

karuppiah1 1 941 1.8 139.3251 1 031 1.1 139.3251
karuppiah2_pw4 >4 650 797 >3600.0 381396.6 >4 299 998 >3600.0 381396.6
karuppiah3_pw4 34 191 23.0 1753698 61 191 33.9 1753698
karuppiah4_pw4 >1 198 193 >3600.0 1430067 >1 110 591 >3600.0 1430067
ruiz_concbased_pw4 8 511 8.3 414748.3 27 271 22.7 414748.3
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Table B.18.: Rapid Learning results for pure BPs and IPs from Miplib 3,
Miplib 2003 and Benchmark test set of Miplib 2010

SCIP def SCIP RL Rapid Learning
Nodes Time Nodes Time RL Time Ngds Bds Sol

10teams 512 18.1 725 16.6 1.28 412 –
acc-tight5 562 121.2 790 123.5 2.14 2200 –
air03 1 1.6 1 1.6 0.12 – –
air04 113 55.7 43 48.9 4.47 1277 11
air05 190 35.7 320 46.1 4.60 1608 5
cap6000 3568 2.7 3100 3.3 0.87 270 –
cov1075 1635419 limit 1623039 limit 0.14 – –
eil33-2 10315 73.5 11608 77.0 0.50 – – X
eilB101 20077 452.0 26896 511.1 0.46 – –
enigma 1697 0.7 45 0.3 0.05 34 –
fiber 18 1.6 13 1.4 0.17 102 –
harp2 12977499 4632.7 9652824 2915.6 0.16 201 –
iis-100-0-cov 101535 1640.2 106329 1768.7 0.11 – –
iis-bupa-cov 192310 limit 190939 limit 0.21 – –
iis-pima-cov 7213 665.3 8408 732.0 0.26 – –
l152lav 64 3.7 90 4.1 0.81 229 –
lseu 454 0.6 270 0.5 0.06 205 –
m100n500k4r1 7977796 limit 7729744 6826.4 0.04 – –
macrophage 1634984 limit 1569262 limit 0.09 – –
markshare1 80628220 limit 65900646 limit 0.06 187 – X
markshare2 71284947 limit 68006924 limit 0.05 – –
mcsched 21927 267.7 19173 250.5 0.24 – –
mine-166-5 2596 42.6 2448 39.7 0.28 – –
mine-90-10 243075 1182.3 157461 662.0 0.59 5 4 X
misc03 118 1.2 71 1.3 0.08 255 –
misc07 30874 18.3 21375 13.2 0.10 221 –
mitre 1 5.3 1 5.5 0.10 – –
mod008 43 0.7 43 0.9 0.15 – –
mod010 12 0.9 4 1.5 0.84 288 3
neos-1109824 16175 120.7 23022 151.1 0.10 – –
neos18 11569 52.5 9468 45.5 0.09 – –
neos-849702 83053 1039.0 68072 1172.5 1.56 1636 –
ns1208400 1786 278.5 5903 803.5 3.68 956 –
ns1688347 4264 514.6 7047 467.6 0.29 780 –
nsrand-ipx 1823524 limit 1412341 limit 1.09 240 –
p0033 1 0.0 1 0.1 0.04 162 – X
p0201 267 1.9 111 1.9 0.08 187 – X
p0282 3 0.6 3 0.8 0.10 – –
p0548 5 0.3 5 0.5 0.13 435 – X
p2756 21 1.1 75 1.4 0.10 – 81
protfold 9297 limit 6300 limit 1.69 6727 – X
reblock67 87898 213.9 114722 282.7 0.37 – –
rmine6 1075113 3223.1 592670 2058.5 0.22 – –
rococoC10-001000 1131839 limit 623971 3448.6 0.41 1370 –
seymour 136912 limit 135458 limit 0.20 – – X
stein27 3895 1.1 3683 1.1 0.04 – –
stein45 51942 13.3 48696 12.9 0.05 – –
tanglegram2 3 7.9 3 8.1 0.19 – –
30n20b8 490 841.6 7 113.5 0.65 332 –
blend2 204 0.8 199 0.6 0.03 – –
bley_xl1 1 251.7 1 249.8 0.74 2372 – X
bnatt350 5432 503.1 3912 416.6 0.49 741 –
csched010 562056 4016.4 950890 6157.4 0.34 47 –
enlight13 2253556 935.7 6504809 3026.9 0.20 64 –
enlight14 1471317 715.5 14565494 limit 0.21 67 –
flugpl 278 0.1 275 0.1 0.02 – – X

continued on next page
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Table B.18 continued
SCIP def SCIP RL Rapid Learning

Nodes Time Nodes Time RL Time Ngds Bds Sol

gt2 1 0.1 1 0.1 0.05 199 – X
lectsched-4-obj 43645 516.9 22197 291.5 0.07 – –
manna81 1 0.7 1 0.9 0.19 – –
mzzv11 4618 297.0 1230 264.6 1.14 – –
mzzv42z 1232 140.2 532 179.6 4.17 – –
neos-1337307 379474 limit 416302 limit 3.82 – 35
neos-1601936 26834 limit 28011 limit 2.13 691 –
neos-686190 8144 100.7 7822 105.7 1.04 114 –
neos-934278 4603 limit 3110 limit 19.71 6 –
ns1830653 42280 545.5 53081 758.7 3.58 1736 5 X
opt1217 1 0.7 1 0.8 0.08 1 –
pw-myciel4 422214 3515.3 428238 3342.3 0.89 301 –
qnet1 43 4.9 31 4.3 0.28 308 –
qnet1_o 9 2.5 39 5.3 0.16 188 12
sp98ir 5613 88.0 6224 96.1 0.80 908 –
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Table B.19.: Rapid Learning results for pure BPs and IPs from Infeasible
and Primal test set of Miplib 2010

SCIP def SCIP RL Rapid Learning
Nodes Time Nodes Time RL Time Ngds Bds Sol

acc-tight4 1011 249.4 626 112.1 2.77 1090 –
acc-tight5 562 121.1 790 123.0 2.13 2200 –
acc-tight6 4761 489.2 228 52.3 2.26 2020 –
bnatt350 5432 501.0 3912 416.6 0.48 741 –
m100n500k4r1 7952424 limit 7729744 6820.0 0.05 – –
neos-1440225 12987 332.7 6353 125.2 1.32 871 –
neos-738098 2053 limit 1231 limit 10.86 397 –
neos-849702 83053 1038.8 68072 1169.4 1.56 1636 –
neos-957389 10 12.4 22 21.2 8.12 335 8
neos-785912 471 83.7 610 65.0 0.38 369 –
neos788725 76260 211.9 74750 255.2 0.29 537 –
neos-820146 5052473 limit 5497291 limit 0.15 275 –
neos-820157 3044990 limit 2864395 limit 0.48 166 –
neos858960 1458652 1483.2 1570385 1561.4 0.03 – –
neos-859770 1 101.6 1 115.2 12.91 679 –
ns1686196 1767 39.6 7 20.1 0.47 985 13
ns1745726 8 52.0 261 68.4 0.56 1133 22
ns1769397 4430 251.4 328 69.0 0.27 852 12
p2m2p1m1p0n100 161700567 limit 162771381 limit 0.02 – –
lectsched-2 1554 73.2 691 65.0 1.11 354 2
neos-1224597 132 31.3 140 36.9 2.20 1560 35
neos-555424 1384431 limit 977383 limit 4.95 187 7
neos6 2105 262.9 2996 359.8 27.27 725 –
neos-932816 27633 limit 32340 limit 2.74 – –
neos-933638 192 456.7 320 647.3 19.41 – –
neos-933966 18525 6298.8 1767 1659.1 2.01 – –
neos-935627 2625 limit 3374 limit 3.06 – –
neos-935769 4113 5657.5 931 1590.8 3.87 – –
neos-937511 27 760.6 39 1043.5 7.33 – –
enlight14 1471317 712.4 14519009 limit 0.20 67 –
enlight16 620942 441.6 1438781 841.0 0.20 58 –
enlight9 281704 106.9 172864 62.2 0.05 47 –
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Table B.20.: comparison of Cloud Branching and Full Strong Branching on
mmm instances

cloud statistics SCIP cloud branch SCIP strong branch
instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

10teams 64.3 2.7 50.3 79.3 129 105.3 348 488.1
aflow30a 0.0 – – – 166 19.6 182 21.7
air04 91.3 2.0 9.1 32.3 55 2087.9 57 2074.6
air05 46.8 2.0 3.0 3.4 166 1597.0 153 1541.6
ash608gpia-3col 100.0 4.3 2240.1 86.7 5 1072.1 9 2406.8
bell3a 0.0 – – – 26 588 6.6 26 590 6.3
bell5 0.2 2.0 2.0 0.6 851 0.7 865 0.7
bienst2 25.5 2.4 6.6 34.1 21 729 1586.4 21 210 1707.6
binkar10_1 4.4 2.0 4.8 3.3 45 080 1715.7 48 835 1744.9
blend2 9.3 2.0 2.0 5.4 108 0.8 110 0.7
cap6000 0.0 – – – 1 601 3.3 1 545 3.1
dcmulti 0.0 – – – 120 2.3 120 2.5
dfn-gwin-UUM 0.0 – – – 5 897 435.1 5 918 431.6
eil33-2 0.0 – – – 484 739.8 480 734.2
enigma 5.2 2.0 9.2 14.6 27 0.5 249 0.6
fiber 0.0 – – – 16 1.1 16 1.3
fixnet6 0.0 – – – 9 2.3 9 2.2
flugpl 0.0 – – – 134 0.5 134 0.5
gesa2-o 0.0 – – – 5 1.4 5 1.5
gesa2 0.0 – – – 3 1.0 3 1.0
gesa3 0.0 – – – 11 1.4 15 1.5
gesa3_o 0.0 – – – 9 1.5 9 1.7
khb05250 0.0 – – – 4 0.5 4 0.5
l152lav 3.9 2.0 6.7 3.5 53 4.7 65 7.1
lseu 15.4 2.1 3.4 12.7 364 0.7 382 0.5
map18 0.0 – – – 103 1454.7 101 1701.6
map20 0.0 – – – 87 1129.0 91 1384.7
mas74 0.0 – – – 574 769 1389.5 574 769 1321.8
mas76 0.0 – – – 81 106 123.7 84 280 123.0
mik-250-1-100-1 0.0 – – – 290 018 1681.4 290 038 1628.3
mine-166-5 0.0 – – – 2 001 142.6 1 994 155.6
misc03 11.7 2.3 10.4 25.4 68 1.4 65 1.5
misc06 5.9 2.0 4.0 6.7 13 0.8 13 0.6
misc07 13.2 2.1 7.1 23.5 2 300 62.9 2 365 57.9
mod008 0.0 – – – 104 0.8 111 0.8
mod010 0.0 – – – 10 1.0 10 1.1
mod011 0.0 – – – 321 989.9 321 1069.9
modglob 0.0 – – – 299 2.9 299 2.8
neos-1109824 51.9 2.3 26.0 68.4 1 246 473.0 1 023 390.9
neos-1396125 69.4 2.2 8.3 55.1 2 714 2355.7 2 976 2653.2
neos-476283 0.0 – – – 445 887.5 323 680.2
neos-686190 3.7 2.0 9.7 4.8 1 451 540.6 2 085 774.5
noswot 86.9 2.4 16.5 74.2 337 012 957.6 210 056 869.0
ns1766074 0.0 2.1 5.5 0.1 241 641 492.3 241 801 470.2
nw04 0.0 – – – 5 54.8 5 46.4
p0033 0.0 – – – 5 0.5 5 0.5
p0201 47.0 2.3 23.2 64.6 52 2.6 51 3.0
p0282 0.0 – – – 3 0.5 3 0.5
p0548 0.0 – – – 5 0.5 5 0.5
p2756 2.6 2.0 4.0 2.5 82 1.9 146 2.0
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Table B.20 continued

cloud statistics SCIP cloud branch SCIP strong branch
instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

pk1 0.1 2.8 16.4 0.6 76 569 257.8 77 616 233.1
pp08a 0.0 – – – 300 3.7 251 3.0
pp08aCUTS 0.2 2.0 2.0 0.1 213 3.2 284 4.2
qiu 10.3 2.1 10.3 17.9 14 858 1515.7 16 290 1895.5
qnet1 17.6 2.0 6.0 4.4 5 3.8 5 3.4
qnet1_o 20.0 2.0 3.8 2.8 22 9.2 22 10.3
ran16x16 4.4 2.0 2.3 2.6 28 684 1184.3 27 051 964.4
reblock67 0.0 – – – 28 052 1528.8 33 290 1773.3
rentacar 27.3 2.0 3.3 22.2 13 3.4 14 3.5
rmatr100-p10 0.1 2.0 2.0 0.0 163 952.8 164 950.2
rmatr100-p5 0.0 – – – 33 1327.1 33 1321.6
rout 32.6 2.2 11.8 46.0 1 561 79.3 1 712 85.8
set1ch 0.0 – – – 16 0.9 17 1.0
sp98ir 2.1 2.0 3.5 1.3 609 404.1 876 507.4
stein27 29.1 2.3 6.2 22.9 787 2.2 775 2.0
stein45 20.7 2.1 5.8 11.2 7 909 73.8 8 446 77.3
tanglegram2 0.0 – – – 2 27.3 2 34.3
vpm2 9.4 2.0 2.2 3.4 46 1.3 48 1.3
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Table B.21.: comparison of Cloud Branching and Full Strong Branching on
cor@l instances

cloud statistics cloud branching full strong branching
instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

22433 0.0 – – – 4 1.1 4 1.2
23588 0.2 2.0 14.0 0.3 148 6.0 174 6.3
aligninq 1.8 2.0 9.0 1.1 24 20.6 32 23.1
bc1 0.0 – – – 604 132.6 616 124.0
bc 0.0 – – – 1 985 2437.7 1 985 2323.3
bienst1 31.7 2.2 6.0 39.0 2 712 151.1 2 737 172.1
bienst2 25.5 2.4 6.6 34.1 21 729 1587.7 21 210 1703.3
binkar10_1 4.4 2.0 4.8 3.3 45 080 1714.4 48 835 1744.8
dano3_3 0.0 – – – 9 235.5 9 153.3
dano3_4 0.0 – – – 4 176.7 4 177.4
haprp 0.0 – – – 20 289 1696.4 19 844 1629.9
neos-1053591 94.5 2.3 8.7 70.0 1 794 19.2 46 259 367.4
neos-1109824 51.9 2.3 26.0 68.4 1 246 482.7 1 023 390.7
neos-1120495 38.7 2.2 19.4 49.7 102 18.7 75 17.6
neos-1122047 100.0 3.5 42.0 96.6 3 80.6 2 34.1
neos-1200887 86.2 2.5 13.8 63.5 981 234.4 1 465 381.7
neos-1211578 74.9 2.4 10.9 74.6 49 619 315.6 32 225 323.5
neos-1224597 98.6 6.7 631.1 95.0 70 406.8 80 864.5
neos-1228986 74.8 2.4 11.7 70.2 42 072 358.7 39 690 400.6
neos-1281048 91.8 5.8 133.8 88.1 59 49.8 80 170.7
neos-1337489 74.9 2.4 10.9 74.6 49 619 312.0 32 225 320.5
neos-1367061 0.0 – – – 16 1601.4 16 1683.2
neos-1396125 69.4 2.2 8.3 55.1 2 714 2359.8 2 976 2659.6
neos-1413153 81.8 2.9 292.5 88.6 192 219.9 462 2546.4
neos-1415183 90.9 2.6 252.4 85.7 19 6.6 56 43.6
neos-1420205 82.5 2.1 8.0 33.5 10 674 46.8 7 840 45.5
neos-1437164 74.7 2.2 11.0 47.1 80 1.8 47 1.9
neos-1440225 92.3 4.7 381.7 96.6 6 11.0 134 1387.4
neos-1440447 88.7 2.8 18.4 80.6 7 676 207.5 22 496 747.9
neos-1441553 78.0 2.3 26.0 58.1 133 16.2 215 86.7
neos-1445743 0.0 – – – 2 101.1 2 64.4
neos-1445755 5.0 2.0 4.0 16.7 3 75.0 3 57.6
neos-1445765 1.6 2.0 2.0 0.3 5 374.9 5 236.2
neos-1460265 99.8 4.0 216.2 80.2 6 997 1354.8 1 125 540.5
neos-1480121 23.0 2.0 3.5 25.0 1 288 3.3 1 961 4.0
neos-1489999 0.0 – – – 21 28.6 21 32.0
neos-476283 0.0 – – – 445 885.7 323 687.4
neos-480878 24.2 2.0 3.2 7.3 2 803 230.9 3 517 279.0
neos-494568 94.2 3.0 181.7 76.8 291 398.2 285 1082.3
neos-501474 48.2 2.0 4.0 46.9 158 1.3 104 0.7
neos-504674 50.5 2.0 5.9 16.6 1 256 399.7 1 230 426.9
neos-504815 35.6 2.1 6.1 16.5 510 75.4 502 83.3
neos-506422 16.2 2.1 3.7 20.9 1 451 540.7 959 337.3
neos-512201 48.7 2.0 6.0 15.5 665 175.7 436 149.2
neos-522351 0.0 – – – 3 1.1 3 1.0
neos-525149 55.3 3.0 88.7 45.8 46 17.9 187 193.4
neos-530627 0.0 – – – 2 0.5 2 0.5
neos-538867 72.8 3.0 21.4 76.2 6 697 318.1 4 358 208.9
neos-538916 77.5 3.2 23.9 77.4 4 642 371.5 3 496 294.6
neos-544324 99.9 2.0 15.2 92.3 7 301.4 7 149.9
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Table B.21 continued

cloud statistics cloud branching full strong branching
instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

neos-547911 90.0 2.1 10.8 85.1 30 244.3 30 184.5
neos-555694 71.3 2.6 98.6 69.9 65 36.5 177 301.7
neos-555771 92.7 2.4 107.7 80.2 32 17.8 70 72.4
neos-570431 71.0 2.0 8.1 59.4 60 290.2 76 314.7
neos-584851 47.0 2.1 20.0 60.3 56 778.1 38 840.5
neos-585192 0.0 – – – 333 40.1 345 40.6
neos-585467 1.2 2.0 12.0 1.4 125 10.6 133 10.7
neos-593853 0.0 – – – 10 157 52.4 12 204 56.0
neos-595905 0.0 – – – 418 25.2 473 29.5
neos-595925 0.0 – – – 1 166 51.6 1 189 51.8
neos-598183 0.0 – – – 488 6.8 486 7.1
neos-611838 0.0 – – – 193 89.5 193 94.0
neos-612125 0.0 – – – 92 47.1 92 50.3
neos-612143 0.0 – – – 130 55.1 128 59.7
neos-612162 0.0 – – – 122 74.6 126 80.3
neos-631694 93.9 2.9 56.8 49.5 94 57.3 101 93.6
neos-686190 3.7 2.0 9.7 4.8 1 451 537.9 2 085 776.4
neos-709469 12.5 2.3 22.4 58.6 1 608 3.5 28 1.6
neos-717614 0.0 – – – 1 059 65.9 1 061 65.3
neos-775946 95.4 2.8 93.4 81.3 234 140.6 413 343.6
neos-785899 93.0 2.8 94.2 77.7 179 130.7 266 247.6
neos-785914 83.8 3.4 135.0 92.0 109 123.4 20 296.6
neos-801834 0.0 – – – 11 841.5 11 817.6
neos-803219 0.1 2.0 2.0 0.0 4 131 72.8 4 231 70.9
neos-803220 0.0 – – – 18 713 179.3 17 175 166.5
neos-806323 28.1 2.0 2.7 11.0 3 258 137.6 3 645 142.6
neos-807639 4.1 2.0 2.6 3.1 1 130 18.6 1 120 17.2
neos-807705 20.3 2.0 2.2 6.3 2 373 88.3 2 241 80.0
neos-808072 72.1 2.3 32.3 51.7 43 379.0 90 1905.3
neos-810326 34.9 2.0 4.0 6.2 267 2394.3 266 2431.7
neos-820879 45.1 2.0 3.8 9.6 127 281.1 114 210.3
neos-825075 84.6 3.9 60.0 80.5 18 3.0 49 7.8
neos-839859 0.1 2.0 12.0 0.1 1 084 773.1 1 628 938.6
neos-862348 35.8 2.1 19.8 21.9 99 33.9 70 38.4
neos-863472 32.8 2.2 15.6 63.2 88 330 2330.9 68 169 2264.0
neos-880324 62.8 2.4 22.2 78.7 62 1.8 15 1.0
neos-892255 100.0 2.5 278.6 97.3 8 720.1 5 1590.8
neos-906865 0.0 – – – 7 079 462.4 7 065 453.8
neos-912015 93.2 5.1 130.8 94.2 791 473.3 209 322.1
neos-916173 0.0 – – – 1 497 390.2 1 478 392.0
neos-933550 83.3 8.4 638.8 96.6 5 10.1 25 58.2
neos-933815 47.7 2.0 5.7 32.3 61 797 801.5 55 797 661.4
neos-934531 99.3 3.4 89.8 96.1 27 293.0 51 1432.9
neos-941698 97.7 6.1 357.2 95.8 19 14.2 44 70.5
neos-942323 99.7 4.0 187.8 97.7 189 64.0 2 205 1240.4
neos-955215 68.4 2.1 9.1 53.0 7 574 61.3 6 593 52.9
neos-957270 83.1 2.8 159.9 89.0 14 471.3 17 228.4
nsa 0.0 – – – 258 2.8 258 3.0
nug08 0.0 – – – 3 24.9 3 23.2
prod1 0.0 2.0 8.0 0.0 4 053 33.8 3 820 31.4
prod2 0.0 – – – 25 200 361.6 25 227 354.0
qap10 33.3 2.0 2.0 40.0 2 177.3 2 157.3
sp98ir 2.1 2.0 3.5 1.3 609 403.5 876 503.2
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Table B.21 continued

cloud statistics cloud branching full strong branching
instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

Test3 0.0 – – – 10 8.0 10 8.0
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Table B.22.: Performance of SCIP 3.0.2, default mode, on the mmm test
set

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

10teams 312 379 15.0 15.3 0.417 2 0 0.9 12
30n20b8 62 171 198.6 405.8 8.195 0 5 44.6 17
a1c1s1 1 197 593 0.3 limit 0.985 12 343 812.7 18
acc-tight5 3 103 3 103 459.9 459.9 12.774 1 0 64.7 14
aflow30a 1 2 531 0.2 11.5 0.101 0 3 1.3 18
aflow40b 1 339 338 0.9 1591.0 0.777 2 32 104.4 18
air03 1 1 4.9 5.5 0.148 1 1 0.1 5
air04 80 169 72.7 79.2 2.022 2 2 13.1 15
air05 1 201 1.6 38.2 0.057 4 1 0.7 9
app1-2 17 68 731.3 1079.9 20.306 0 1 245.1 11
arki001 35 1 675 205 4.1 limit 0.115 0 58 889.1 18
ash608gpia-3col – 7 – 68.1 – 0 0 23.0 9
atlanta-ip 10 4 741 305.2 limit 12.951 20 10 485.8 18
beasleyC3 1 484 730 0.1 limit 3.622 0 1340 1114.9 18
bell3a 1 26 833 0.0 6.2 0.000 0 275 1.3 19
bell5 1 1 273 0.0 0.8 0.000 1 291 0.2 19
bab5 6 15 549 119.2 limit 4.138 0 27 846.7 17
biella1 1 3 530 1.1 869.9 1.065 13 13 203.5 18
bienst2 1 81 122 1.9 396.6 0.191 1 16 39.0 16
binkar10_1 15 106 945 2.3 150.1 0.069 4 103 19.5 17
blend2 1 153 0.3 0.7 0.008 0 1 0.2 18
bley_xl1 1 49 383.2 496.3 11.451 0 4 5.1 11
bnatt350 9 951 9 951 813.8 813.8 22.606 1 0 66.8 15
cap6000 1 3 296 0.8 2.8 0.022 0 542 0.5 17
core2536-691 1 191 13.5 418.4 0.494 0 138 181.7 17
cov1075 0 592 669 0.0 limit 0.059 0 767 835.3 14
csched010 1 270 521 037 38.4 limit 1.856 0 13 109.4 18
dano3mip 1 769 1.6 limit 8.349 0 2 2047.7 17
danoint 164 624 716 11.9 limit 0.411 1 11 259.1 16
dcmulti 15 161 1.4 2.1 0.039 13 2 0.1 10
dfn-gwin-UUM 1 54 610 0.0 120.0 0.121 0 742 12.5 17
disctom 1 1 4.5 4.5 0.124 0 1 2.9 5
ds 1 301 4.4 limit 81.533 0 6 1391.6 16
dsbmip 1 1 0.6 0.6 0.017 0 1 0.2 6
egout 1 1 0.0 0.0 0.000 0 17 0.0 6
eil33-2 1 14 777 0.4 124.8 0.397 14 110 12.6 16
eilB101 1 12 401 0.1 774.4 2.449 19 384 23.8 16
enigma 992 992 0.7 0.7 0.018 1 0 0.1 14
enlight13 401 453 410 142 227.2 233.1 6.306 1 0 18.1 16
enlight14 – 1 329 508 – 810.2 – 0 0 39.6 14
ex9 1 1 12.5 12.5 0.347 0 1 0.0 1
fast0507 0 1 476 0.3 1546.0 0.431 1 436 369.0 17
fiber 1 15 0.0 1.4 0.007 0 14 0.1 10
fixnet6 1 11 0.1 2.3 0.006 0 52 0.2 9
flugpl 1 202 0.0 0.1 0.000 1 1 0.0 16
gen 1 1 0.1 0.1 0.003 0 6 0.0 6
gesa2-o 1 1 0.5 1.3 0.015 1 4 0.2 10
gesa2 1 3 0.1 1.2 0.027 0 5 0.1 8
gesa3 1 7 0.1 1.8 0.007 1 7 0.2 8
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Table B.22 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

gesa3_o 1 5 0.1 1.8 0.017 1 5 0.1 10
glass4 1 1 189 795 1.3 1246.4 7.802 1 31 107.2 18
gmu-35-40 0 6 992 427 0.0 limit 0.046 0 65 741.3 18
gt2 1 1 0.0 0.1 0.001 0 4 0.0 6
iis-100-0-cov 0 107 156 0.0 1907.1 0.046 1 437 274.9 16
iis-bupa-cov 0 76 792 0.0 limit 0.447 2 501 852.2 16
iis-pima-cov 0 7 787 0.0 774.4 0.285 0 459 183.7 16
khb05250 1 5 0.0 0.5 0.001 0 19 0.1 9
lectsched-4-obj 1 3 855 4.2 85.4 1.864 3 24 23.5 17
liu 1 986 455 0.1 limit 14.720 0 188 2121.8 17
l152lav 5 77 0.9 3.6 0.026 7 1 0.4 16
lseu 1 493 0.0 0.5 0.002 1 38 0.2 17
m100n500k4r1 0 3 985 310 0.0 limit 4.015 1 667 69.1 17
macrophage 0 420 169 0.0 limit 3.225 0 372 1363.2 16
manna81 0 1 0.0 0.8 0.003 1 8 0.1 5
map18 1 321 2.9 455.4 1.204 0 4 152.3 16
map20 1 259 2.9 345.2 0.981 0 3 95.4 16
markshare1 1 42 741 304 0.0 limit 89.081 2 1032 227.8 15
markshare2 1 38 929 335 0.0 limit 93.502 4 1067 231.5 16
mas74 1 3 941 218 0.0 721.8 0.019 1 8 61.6 18
mas76 1 340 598 0.0 51.7 0.002 0 9 7.2 18
mcsched 1 16 878 0.1 211.5 0.032 16 33 9.6 17
mik-250-1-100-1 0 1 328 923 0.0 283.6 0.006 0 473 17.7 17
mine-166-5 0 833 0.0 39.2 0.855 8 24 1.1 15
mine-90-10 0 120 339 0.0 788.5 0.862 4 74 49.2 15
misc03 5 71 0.4 1.1 0.012 3 4 0.1 11
misc06 1 5 0.1 0.7 0.003 0 28 0.2 10
misc07 5 33 069 0.7 19.2 0.021 3 26 1.1 18
mitre 1 1 4.8 5.2 0.136 0 7 0.2 8
mkc 0 1 510 467 0.0 limit 1.199 0 784 626.9 18
mod008 0 334 0.0 0.9 0.000 0 292 0.0 16
mod010 3 4 0.8 0.9 0.022 1 0 0.3 8
mod011 0 1 079 0.0 153.4 0.944 5 38 26.5 17
modglob 1 536 0.0 1.1 0.000 0 289 0.5 15
momentum1 1 17 125 29.6 limit 6.345 0 2 788.7 18
momentum2 5 770 25 142 1680.2 limit 51.791 7 4 878.3 19
momentum3 1 8 319.3 limit 64.190 0 1 291.7 11
msc98-ip – 1 670 – limit 100.000 0 0 558.2 15
mspp16 1 40 664.9 limit 18.825 0 58 109.8 13
mzzv11 0 2 304 0.1 259.4 3.396 9 16 40.1 16
mzzv42z 0 2 483 0.1 926.5 4.211 10 44 275.4 16
n3div36 1 109 303 3.0 limit 3.247 3 486 102.4 17
n3seq24 1 977 55.1 limit 19.787 0 20 1093.9 16
n4-3 1 54 219 0.2 777.4 0.287 2 698 88.8 18
neos-1109824 6 22 805 5.8 178.2 0.178 10 9 9.6 17
neos-1337307 19 152 561 65.7 limit 1.829 8 324 184.0 17
neos-1396125 1 742 42 001 121.9 1183.8 3.630 5 1 47.7 18
neos13 1 11 377 2.5 limit 9.873 3 190 657.1 18
neos-1601936 196 8 768 205.9 limit 63.620 6 6 863.4 17
neos18 1 9 141 0.2 38.1 0.135 4 15 2.9 17
neos-476283 1 468 66.1 281.4 1.867 0 9 84.4 18
neos-686190 67 4 216 14.9 65.6 0.495 4 5 4.4 17
neos-849702 76 493 76 493 1459.1 1459.1 40.528 1 0 56.2 14
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Table B.22 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

neos-916792 1 129 338 13.9 686.6 0.594 10 144 92.8 18
neos-934278 0 1 950 0.1 limit 10.859 0 14 1524.9 17
net12 9 4 287 90.9 2505.5 5.276 0 4 211.5 18
netdiversion – 64 – limit 100.000 0 0 1721.3 12
newdano 1 491 739 2.7 limit 0.979 8 9 224.3 16
noswot 1 309 903 0.0 79.9 0.002 0 270 4.4 17
ns1208400 3 354 3 354 741.8 741.8 20.604 1 0 74.4 14
ns1688347 723 24 226 110.4 1731.6 5.562 1 3 96.7 17
ns1758913 1 41 127.9 limit 68.913 0 3 346.0 14
ns1766074 – 952 281 – 610.4 – 0 0 2.8 15
ns1830653 1 046 43 657 61.7 513.7 2.411 4 2 59.4 17
nsrand-ipx 1 718 286 1.4 limit 3.004 0 231 213.9 17
nw04 3 5 27.6 36.9 0.770 2 0 10.7 8
opm2-z7-s2 0 4 260 0.1 810.6 2.436 0 708 107.9 16
opt1217 1 1 0.0 0.9 0.002 0 5 0.0 7
p0033 1 1 0.0 0.0 0.000 0 7 0.0 7
p0201 1 53 0.6 1.4 0.017 6 5 0.1 11
p0282 0 5 0.0 0.4 0.000 0 16 0.0 8
p0548 1 3 0.2 0.3 0.006 1 3 0.1 9
p2756 1 118 0.3 2.0 0.011 5 65 0.2 13
pg5_34 0 323 375 0.0 1465.8 0.053 1 377 283.1 17
pigeon-10 0 3 260 012 0.0 limit 0.128 0 2 83.0 16
pk1 1 326 083 0.0 65.4 0.065 0 13 9.5 18
pp08a 1 531 0.0 1.5 0.006 3 255 0.2 17
pp08aCUTS 1 189 0.0 1.5 0.008 1 214 0.4 13
protfold – 7 055 – limit 100.000 0 0 309.8 14
pw-myciel4 65 419 688 31.4 limit 1.022 0 3 100.1 17
qiu 1 12 989 0.1 82.7 0.806 5 776 7.9 18
qnet1 1 9 0.2 3.4 0.014 0 12 0.2 9
qnet1_o 1 1 0.0 1.6 0.004 1 5 0.1 9
rail507 1 1 981 3.2 1886.9 0.643 0 264 419.1 18
ran16x16 1 449 274 0.0 377.2 0.038 1 1163 15.9 18
reblock67 0 113 330 0.0 282.4 0.317 18 39 15.2 15
rd-rplusc-21 142 18 628 871.1 limit 25.676 17 5 91.2 18
rentacar 5 12 2.7 3.2 0.076 2 1 0.4 9
rgn 1 1 0.0 0.2 0.005 1 1 0.0 5
rmatr100-p10 1 847 1.0 157.4 0.109 1 24 39.6 18
rmatr100-p5 1 369 1.1 304.9 0.462 0 9 75.0 18
rmine6 0 461 820 0.0 1694.9 0.084 2 163 144.4 15
rocII-4-11 17 24 116 29.7 336.2 2.904 6 16 36.1 19
rococoC10-001000 1 623 365 0.3 limit 0.479 0 160 59.5 18
roll3000 1 525 721 4.8 1883.0 0.329 7 136 160.9 18
rout 1 16 770 0.1 26.3 0.066 2 53 5.8 17
satellites1-25 1 17 788 43.6 2569.3 34.833 1 1 199.5 18
set1ch 1 11 0.0 0.8 0.006 1 84 0.1 11
seymour 0 53 827 0.0 limit 0.883 0 1134 1116.9 16
sp97ar 1 2 232 2.8 limit 9.077 0 15 417.2 17
sp98ic 1 62 947 3.2 limit 2.369 0 149 568.1 17
sp98ir 1 6 541 2.1 90.0 0.170 2 145 7.0 17
stein27 0 4 311 0.0 1.1 0.000 0 296 0.1 15
stein45 0 51 700 0.0 13.8 0.005 2 486 1.5 15
stp3d – 1 – limit 100.000 0 0 1715.4 5
swath 1 590 024 0.4 limit 6.819 11 53 154.2 18
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Table B.22 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

t1717 48 1 289 288.3 limit 15.729 0 1 808.1 16
tanglegram1 0 37 0.2 991.1 4.813 0 10 190.5 13
tanglegram2 0 3 0.0 6.7 0.108 1 14 0.3 7
timtab1 132 1 132 378 2.0 520.6 0.134 26 54 16.7 17
timtab2 1 452 3 939 088 9.8 limit 5.662 43 75 545.5 17
tr12-30 1 927 683 0.5 1268.2 0.027 4 261 114.0 18
triptim1 1 11 402.9 787.0 11.214 0 3 398.2 11
unitcal_7 1 13 548 112.7 1104.9 3.140 0 23 164.2 18
vpm1 1 1 0.0 0.1 0.000 1 15 0.0 6
vpm2 1 617 0.0 1.2 0.004 0 16 0.3 18
vpphard 51 6 249 271.2 limit 68.915 0 18 1764.6 18
zib54-UUE 1 258 612 0.2 2090.9 0.330 0 878 132.6 17
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Table B.23.: Performance of SCIP 3.0.2, primal heuristics deactivated, on
the mmm test set

Nodes Time

Name First Total First Total Prim Int LP Sols

10teams 83 250 12.3 14.3 0.345 3
30n20b8 2 103 2 776 889.5 988.6 25.423 4
a1c1s1 36 807 406 213 692.8 limit 21.183 21
acc-tight5 1 214 1 214 118.2 118.2 3.278 1
aflow30a 271 5 588 12.0 24.9 0.361 8
aflow40b 552 263 699 67.9 2148.5 7.419 7
air03 1 1 5.7 5.7 0.158 1
air04 38 207 44.9 59.6 1.254 11
air05 14 434 20.1 39.7 0.583 6
app1-2 – 120 – limit 100.000 0
arki001 111 067 1 943 418 444.9 limit 12.363 34
ash608gpia-3col – 35 – 78.9 – 0
atlanta-ip 544 7 081 665.0 limit 23.138 30
beasleyC3 – 618 376 – limit 100.000 0
bell3a 157 39 427 0.1 10.5 0.003 6
bell5 117 1 649 0.1 0.6 0.003 4
bab5 1 491 10 326 364.1 limit 13.634 1
biella1 16 807 21 775 2436.5 3177.9 67.745 80
bienst2 497 107 039 13.8 424.1 0.545 8
binkar10_1 922 100 370 5.9 121.8 0.170 9
blend2 2 728 3 990 1.5 1.9 0.044 8
bley_xl1 12 21 472.6 474.9 13.140 2
bnatt350 10 300 10 300 764.9 764.9 21.248 1
cap6000 100 340 1 328 821 152.4 3133.9 5.187 222
core2536-691 205 837 292.7 461.4 8.146 2
cov1075 119 731 859 10.6 limit 0.472 2
csched010 2 502 510 836 46.5 limit 3.202 4
dano3mip – 2 661 – limit 100.000 0
danoint 946 672 684 17.2 limit 0.597 4
dcmulti 44 146 2.1 2.2 0.058 13
dfn-gwin-UUM 28 75 493 3.1 146.2 0.195 7
disctom – 223 311 – limit 100.000 0
ds – 707 – limit 100.000 0
dsbmip 40 78 2.2 2.5 0.061 5
egout 1 1 0.0 0.0 0.000 1
eil33-2 3 14 069 6.0 110.5 0.368 15
eilB101 14 22 086 39.5 1179.7 2.989 18
enigma 135 135 0.3 0.3 0.008 1
enlight13 2 256 046 7 708 119 974.0 limit 27.056 1
enlight14 – 7 289 960 – limit – 0
ex9 1 1 12.3 12.3 0.342 1
fast0507 39 2 929 227.3 2392.4 6.602 2
fiber 13 199 1.2 2.7 0.039 6
fixnet6 76 109 2.1 2.2 0.058 6
flugpl 161 239 0.0 0.1 0.000 2
gen 1 1 0.1 0.1 0.003 1
gesa2-o 46 67 1.5 1.6 0.042 3
gesa2 23 46 1.4 1.5 0.039 2
gesa3 99 142 3.4 3.5 0.094 3
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Table B.23 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

gesa3_o 123 191 4.8 5.1 0.133 3
glass4 609 4 565 048 2.8 limit 34.863 35
gmu-35-40 3 961 8 736 110 3.8 limit 0.213 7
gt2 29 29 0.1 0.1 0.003 1
iis-100-0-cov 42 92 002 26.4 1517.2 0.737 5
iis-bupa-cov 47 106 606 36.3 limit 1.078 6
iis-pima-cov 32 13 852 54.8 828.3 1.930 5
khb05250 6 7 0.4 0.4 0.011 1
lectsched-4-obj 42 516 72 640 238.8 419.8 9.932 6
liu – 3 276 403 – limit 100.000 0
l152lav 5 65 0.9 3.5 0.026 9
lseu 12 362 0.1 0.3 0.004 4
m100n500k4r1 14 4 134 202 2.1 limit 4.064 4
macrophage 561 474 484 24.0 limit 23.715 2
manna81 1 1 0.8 0.8 0.022 1
map18 417 1 000 288.5 448.6 8.011 4
map20 174 638 196.4 323.6 5.468 3
markshare1 30 48 534 921 0.1 limit 84.127 17
markshare2 33 42 076 149 0.1 limit 94.236 15
mas74 253 3 773 964 0.5 605.8 0.114 5
mas76 339 355 132 0.4 49.4 0.020 6
mcsched 99 30 212 16.4 399.2 0.470 17
mik-250-1-100-1 1 983 4 307 977 1.1 1286.5 0.310 8
mine-166-5 66 1 727 31.0 41.7 0.912 23
mine-90-10 3 084 183 159 44.5 1027.9 1.314 26
misc03 5 100 0.3 1.1 0.009 3
misc06 34 41 0.4 0.4 0.011 2
misc07 6 13 713 0.6 9.5 0.019 7
mitre 1 1 5.0 5.0 0.139 1
mkc 2 339 1 311 979 30.5 limit 5.745 2
mod008 9 730 0.8 1.3 0.024 13
mod010 6 13 0.7 0.9 0.019 4
mod011 13 1 300 28.8 162.2 0.939 11
modglob 145 1 572 0.9 1.4 0.025 7
momentum1 12 091 21 220 2728.4 limit 77.644 5
momentum2 4 994 35 746 876.3 limit 30.948 12
momentum3 – 39 – limit 100.000 0
msc98-ip – 1 845 – limit 100.000 0
mspp16 15 131 896.6 limit 26.021 6
mzzv11 90 3 274 112.0 275.6 3.140 10
mzzv42z 565 3 780 187.3 540.4 5.438 76
n3div36 11 111 410 16.0 limit 2.658 17
n3seq24 – 672 – limit 100.000 0
n4-3 1 403 47 524 52.8 636.4 1.483 11
neos-1109824 10 16 146 5.8 123.1 0.187 12
neos-1337307 72 147 409 66.3 limit 1.848 6
neos-1396125 2 403 49 625 104.2 1044.4 2.937 4
neos13 6 24 526 53.9 limit 16.224 73
neos-1601936 178 12 764 128.1 limit 53.992 7
neos18 699 9 145 14.8 35.3 0.413 5
neos-476283 392 1 041 220.6 259.2 6.139 7
neos-686190 278 10 536 23.4 109.9 0.927 11
neos-849702 194 360 194 360 2962.1 2962.1 82.278 1



317

Table B.23 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

neos-916792 8 984 400 907 47.6 2058.8 2.043 21
neos-934278 218 7 877 241.6 limit 21.051 11
net12 523 5 954 486.1 3316.0 18.694 2
netdiversion – 464 – limit 100.000 0
newdano 2 206 549 025 53.3 limit 3.139 9
noswot 235 625 806 0.9 166.8 0.038 6
ns1208400 946 1 308 253.8 281.5 7.056 1
ns1688347 809 15 969 128.4 839.0 7.388 5
ns1758913 – 90 – limit 100.000 0
ns1766074 – 935 480 – 631.5 – 0
ns1830653 1 359 92 479 46.8 991.3 4.502 11
nsrand-ipx 647 564 683 25.1 limit 22.919 4
nw04 3 5 16.4 24.1 0.458 2
opm2-z7-s2 361 12 055 181.9 1028.1 7.488 10
opt1217 179 343 2.6 2.9 0.074 3
p0033 1 1 0.0 0.0 0.000 1
p0201 13 160 0.7 1.4 0.022 8
p0282 60 62 0.9 0.9 0.025 1
p0548 115 173 1.0 1.1 0.028 7
p2756 51 212 2.1 3.5 0.060 8
pg5_34 3 022 423 012 28.6 1897.8 0.860 7
pigeon-10 33 3 896 820 4.2 limit 0.117 1
pk1 447 284 512 0.7 48.8 0.152 4
pp08a 274 1 086 1.2 1.6 0.035 5
pp08aCUTS 388 741 1.2 1.4 0.033 2
protfold – 7 337 – limit 100.000 0
pw-myciel4 911 502 642 58.8 limit 1.767 3
qiu 304 11 787 17.8 69.6 0.503 4
qnet1 59 81 8.3 8.4 0.231 2
qnet1_o 62 79 6.8 7.0 0.189 4
rail507 225 3 108 453.0 2094.5 12.776 2
ran16x16 813 322 110 6.4 244.6 0.246 13
reblock67 1 343 206 815 25.1 437.7 0.721 16
rd-rplusc-21 11 097 16 247 2671.8 limit 75.793 3
rentacar 9 16 2.8 3.1 0.079 3
rgn 1 1 0.2 0.2 0.006 1
rmatr100-p10 223 876 65.2 124.1 1.814 3
rmatr100-p5 466 746 231.9 312.9 6.555 6
rmine6 411 663 629 29.7 2725.3 0.959 12
rocII-4-11 561 18 242 38.6 245.6 2.674 14
rococoC10-001000 22 316 689 401 121.0 limit 28.489 30
roll3000 1 340 652 257 29.4 2020.0 1.139 20
rout 330 32 932 5.3 42.3 0.179 7
satellites1-25 29 12 258 245.0 3531.0 22.167 8
set1ch 7 13 0.8 0.8 0.022 2
seymour 272 21 594 71.3 limit 7.243 1
sp97ar – 8 176 – limit 100.000 0
sp98ic 409 71 150 70.7 limit 7.388 4
sp98ir 131 5 478 22.8 72.0 0.663 9
stein27 61 4 232 0.4 1.0 0.011 2
stein45 184 48 990 2.0 11.9 0.056 4
stp3d – 7 – limit 100.000 0
swath 171 635 342 10.5 limit 8.666 11
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Table B.23 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

t1717 – 1 403 – limit 100.000 0
tanglegram1 19 47 705.8 891.0 19.755 4
tanglegram2 2 3 5.6 6.6 0.156 1
timtab1 12 177 998 093 8.6 423.1 0.330 17
timtab2 285 363 4 924 187 264.5 limit 9.811 34
tr12-30 14 253 1 195 588 29.8 1461.9 0.841 14
triptim1 179 179 812.5 812.5 22.570 1
unitcal_7 8 953 36 329 754.4 1832.4 20.954 208
vpm1 1 1 0.1 0.1 0.002 1
vpm2 133 1 461 0.9 1.4 0.026 7
vpphard 11 997 15 221 3019.5 limit 98.477 1
zib54-UUE 1 663 274 338 39.5 2077.8 1.126 8



319

Table B.24.: Performance of SCIP 3.0.2, default mode, on the GloMIQO
test set

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

CLay0203M 13 32 0.1 0.1 0.003 3 1 0.1 13
CLay0204M 1 724 0.0 0.9 0.001 3 3 0.7 19
CLay0205M 1 7 555 0.1 3.4 0.007 4 6 1.3 19
CLay0303M 1 42 0.2 0.3 0.006 1 2 0.1 11
CLay0304M 8 582 0.1 0.9 0.004 10 5 0.5 20
CLay0305M 1 11 360 0.2 4.7 0.016 8 9 1.5 19
SLay04H 1 82 0.0 0.8 0.010 0 145 0.2 16
SLay04M 1 89 0.0 0.5 0.006 1 117 0.2 19
SLay05H 1 330 0.0 2.1 0.012 5 51 0.4 21
SLay05M 1 66 0.0 1.0 0.014 1 26 0.8 18
SLay06H 1 1 483 0.1 5.8 0.055 2 959 1.4 22
SLay06M 1 100 0.0 1.2 0.023 0 100 0.9 16
SLay07H 1 7 176 0.1 27.9 0.046 1 101 6.6 22
SLay07M 1 1 237 0.0 4.8 0.025 4 58 2.5 23
SLay08H 1 8 382 0.1 48.3 0.110 8 103 10.3 22
SLay08M 1 2 546 0.0 7.9 0.036 2 58 3.6 23
SLay09H 1 24 892 0.1 152.6 0.298 0 579 21.7 22
SLay09M 1 2 845 0.0 13.8 0.057 1 84 5.2 23
SLay10H 1 571 883 0.2 limit 0.812 0 315 198.6 22
SLay10M 1 415 668 0.0 1268.3 0.547 2 443 108.0 23
LeeCrudeOil1_05 6 31 0.7 1.2 0.020 4 1 0.3 11
LeeCrudeOil1_06 8 65 1.4 2.5 0.039 4 1 0.4 14
LeeCrudeOil1_07 24 123 1.8 3.7 0.050 9 0 1.2 12
LeeCrudeOil1_08 33 82 4.9 6.9 0.137 3 1 0.9 11
LeeCrudeOil1_09 17 109 3.0 9.3 0.084 3 0 2.1 13
LeeCrudeOil1_10 45 316 7.4 10.8 0.206 2 1 0.9 12
LeeCrudeOil2_05 15 82 2.6 3.9 0.075 0 3 0.7 11
LeeCrudeOil2_06 1 15 0.7 4.6 0.019 1 1 0.6 11
LeeCrudeOil2_07 11 79 6.3 9.1 0.176 2 0 0.5 11
LeeCrudeOil2_08 7 569 7.5 40.7 0.227 4 1 24.7 13
LeeCrudeOil2_09 84 424 15.6 35.7 0.436 2 2 15.6 12
LeeCrudeOil2_10 51 664 18.0 66.6 0.507 2 2 38.8 14
LeeCrudeOil3_05 18 88 933 4.8 117.5 0.137 7 11 20.7 18
LeeCrudeOil3_06 9 2 311 716 7.2 limit 0.218 11 21 139.1 18
LeeCrudeOil3_07 9 1 939 051 10.6 limit 0.332 7 24 169.1 20
LeeCrudeOil3_08 9 1 560 154 12.4 limit 0.398 19 20 205.0 20
LeeCrudeOil3_09 195 1 316 503 74.4 limit 2.116 19 7 173.6 20
LeeCrudeOil3_10 211 956 094 102.7 limit 2.867 20 4 140.6 20
LeeCrudeOil4_05 1 29 0.6 5.2 0.017 2 1 0.4 10
LeeCrudeOil4_06 1 11 0.9 4.8 0.025 0 2 0.5 10
LeeCrudeOil4_07 1 46 1.2 12.5 0.034 1 3 0.8 10
LeeCrudeOil4_08 15 16 19.0 20.6 0.531 0 1 0.7 10
LeeCrudeOil4_09 25 37 19.6 25.6 0.544 0 1 0.8 10
LeeCrudeOil4_10 27 360 28.8 48.7 0.800 1 1 2.8 14
LiCrudeOil_ex01 2 500 1 439 899 7.0 limit 0.592 0 1 95.3 20
LiCrudeOil_ex02 942 2 075 507 9.3 limit 0.336 5 13 372.8 20
LiCrudeOil_ex03 25 840 501 727 231.5 limit 8.396 0 1 172.4 19
LiCrudeOil_ex05 936 508 492 19.1 limit 3.434 0 1 286.3 20
LiCrudeOil_ex06 867 62 063 34.4 527.0 1.127 2 1 16.7 21
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Table B.24 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

LiCrudeOil_ex11 1 336 397 389 51.4 limit 2.442 0 2 223.9 19
LiCrudeOil_ex21 860 263 488 52.2 limit 5.076 0 1 196.4 20
alan 1 3 0.0 0.1 0.000 1 3 0.0 11
du-opt5 1 66 0.1 0.6 0.006 0 150 0.3 21
du-opt 1 267 0.1 0.7 0.008 0 210 0.3 20
elf 1 406 0.0 0.7 0.011 1 15 0.5 21
ex1223a 0 1 0.0 0.0 0.000 0 5 0.0 8
ex1263a 1 308 0.0 0.4 0.001 5 9 0.3 18
ex1263 9 620 0.2 0.8 0.008 4 18 0.2 20
ex1264a 1 63 0.0 0.1 0.000 1 4 0.0 13
ex1264 13 97 0.1 0.2 0.003 6 0 0.0 10
ex1265a 1 105 0.0 0.1 0.001 2 4 0.0 10
ex1265 3 74 0.1 0.3 0.003 7 1 0.1 11
ex1266a 56 166 0.2 0.4 0.006 2 5 0.1 18
ex1266 1 23 0.2 0.8 0.009 1 1 0.0 9
fac3 1 15 0.0 0.2 0.000 0 20 0.2 11
feedtray2 1 1 0.2 0.2 0.004 0 1 0.1 4
fuel 1 3 0.0 0.1 0.000 0 3 0.1 11
gbd 0 1 0.0 0.0 0.000 1 3 0.0 1
meanvarx 1 1 0.0 0.3 0.000 1 5 0.2 12
netmod_dol1 1 52 207 0.3 2014.3 0.669 5 162 95.1 21
netmod_dol2 1 281 0.3 59.1 0.694 0 7 18.8 14
netmod_kar1 1 271 0.1 3.3 0.025 4 4 0.1 16
netmod_kar2 1 271 0.0 3.2 0.025 4 4 0.1 16
nous1 3 480 2 115 742 4.8 limit 0.134 0 127 22.9 12
nous2 1 2 787 0.4 2.5 0.029 5 1 0.7 11
nuclear10a – 48 – limit – 0 0 606.1 18
nuclear10b 1 62 1889.4 limit 53.089 0 1 1869.1 21
nuclear14a 1 10 945 511.3 limit 15.269 0 1 840.4 21
nuclear14b 1 15 156 106.3 limit 7.488 0 1 204.0 21
nuclear14 1 1 128 610 0.6 limit 0.616 0 1 84.3 11
nuclear24a 1 10 965 510.4 limit 15.209 0 1 840.5 21
nuclear24b 1 15 226 104.9 limit 7.462 0 1 202.2 21
nuclear24 1 1 127 617 0.6 limit 0.616 0 1 84.6 11
nuclear25a – 8 852 – limit 100.000 0 0 395.5 17
nuclear25b 20 12 547 329.0 limit 9.139 0 1 1018.4 21
nuclear25 16 1 338 236 0.9 limit 1.139 0 1 2.8 4
nuclear49a – 1 582 – limit 100.000 0 0 426.8 17
nuclear49b 1 769 758.3 limit 21.056 0 1 992.7 21
nuclearva – 4 584 696 – limit 100.000 0 0 6.3 4
nuclearvb – 4 648 061 – limit 100.000 0 0 7.6 4
nuclearvc – 4 675 160 – limit 100.000 0 0 6.8 4
nuclearvd – 4 108 627 – limit 100.000 0 0 6.6 4
nuclearve – 4 115 026 – limit 100.000 0 0 7.2 4
nuclearvf – 4 097 672 – limit 100.000 0 0 6.3 4
nvs03 1 1 0.0 0.0 0.000 1 3 0.0 6
nvs10 0 1 0.0 0.0 0.000 0 7 0.0 6
nvs11 0 3 0.0 0.0 0.000 1 9 0.0 9
nvs12 0 5 0.0 0.0 0.000 1 12 0.0 8
nvs13 0 8 0.0 0.1 0.000 1 20 0.0 8
nvs14 1 1 0.0 0.0 0.000 1 0 0.0 6
nvs15 0 7 0.0 0.0 0.000 0 11 0.0 10
nvs17 0 47 0.0 0.1 0.001 0 30 0.1 17
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Table B.24 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

nvs18 0 23 0.0 0.1 0.000 0 22 0.1 15
nvs19 0 84 0.0 0.2 0.003 0 17 0.1 17
nvs23 0 110 0.0 0.4 0.003 0 19 0.2 17
nvs24 0 122 0.0 0.5 0.003 1 21 0.2 17
prob02 1 1 0.0 0.1 0.001 0 5 0.1 6
prob03 0 1 0.0 0.0 0.000 0 4 0.0 5
product2 1 2 502 388 1.1 limit 0.031 0 184 226.4 22
product 1 360 17 567 12.4 40.0 0.345 2 5 9.7 22
eniplac_reformulated 19 121 0.3 0.8 0.009 0 7 0.4 18
fo7_2_reformulated 161 56 712 0.8 25.2 0.022 2 1 3.9 19
fo7_reformulated 540 186 185 1.9 77.1 0.068 1 3 7.7 19
fo8_reformulated 326 484 270 1.4 191.2 0.328 3 6 17.3 19
fo9_reformulated 286 2 194 028 2.0 842.5 0.692 10 8 44.8 20
m3_reformulated 1 19 0.1 0.1 0.003 2 2 0.1 11
m6_reformulated 47 6 278 0.4 3.2 0.018 2 7 1.4 19
m7_reformulated 1 6 574 0.6 5.2 0.052 5 8 2.3 20
o7_2_reformulated 136 1 630 739 1.1 740.0 0.133 6 5 48.7 20
o7_reformulated 12 790 3 224 610 12.3 1517.0 0.444 5 1 80.3 19
sep1 1 23 0.1 0.4 0.003 0 1 0.4 10
space25a – 11 840 – limit 100.000 0 0 9.3 19
space25 192 540 253 865 472.1 limit 46.919 0 1 4.3 20
space960 1 4 277 58.5 limit 53.354 0 1 1621.6 20
spectra2 1 23 0.1 0.8 0.006 0 61 0.4 14
st_e13 1 1 0.0 0.0 0.000 1 2 0.0 4
st_e27 0 1 0.0 0.0 0.000 0 3 0.0 8
st_e31 1 1 815 0.2 1.2 0.010 3 3 0.8 19
st_miqp1 0 1 0.0 0.0 0.000 0 3 0.0 1
st_miqp2 1 1 0.0 0.0 0.000 0 6 0.0 7
st_miqp3 0 1 0.0 0.0 0.000 0 6 0.0 3
st_miqp4 0 1 0.0 0.0 0.000 0 5 0.0 8
st_miqp5 0 1 0.0 0.0 0.000 0 3 0.0 5
st_test1 0 0 0.0 0.0 0.000 0 2 0.0 1
st_test2 0 1 0.0 0.0 0.000 0 3 0.0 1
st_test3 0 1 0.0 0.0 0.000 0 3 0.0 1
st_test4 1 1 0.0 0.0 0.000 0 3 0.0 7
st_test5 1 1 0.0 0.0 0.000 0 1 0.0 1
st_test6 1 1 0.0 0.0 0.000 0 1 0.0 1
st_test8 1 1 0.0 0.0 0.000 0 4 0.0 7
st_testgr1 0 41 0.0 0.1 0.000 2 28 0.0 18
st_testgr3 0 13 0.0 0.0 0.000 1 14 0.0 10
st_testph4 0 1 0.0 0.0 0.000 1 5 0.0 6
tln12 1 175 1 219 631 11.3 limit 2.150 2 221 435.4 19
tln2 1 1 0.0 0.0 0.000 0 5 0.0 6
tln4 1 4 374 0.0 1.8 0.001 0 5 0.5 18
tln5 1 133 870 0.0 73.7 0.005 0 164 5.2 18
tln6 1 6 192 081 0.1 limit 0.011 0 599 526.4 18
tln7 1 4 410 158 0.0 limit 0.755 2 491 597.0 18
tloss 28 120 0.1 0.2 0.003 1 2 0.0 15
tltr 1 8 0.0 0.2 0.000 1 2 0.0 10
util 1 112 0.0 0.4 0.000 5 7 0.3 15
waste 1 878 569 0.1 limit 4.316 0 55 573.1 22
Sarawak_Scenario16 1 772 542 0.1 limit 0.567 0 123 368.7 21
Sarawak_Scenario81 1 201 802 0.9 limit 0.153 0 36 229.1 19
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Table B.24 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

lee1 9 4 752 0.5 4.5 0.017 3 10 1.5 21
lee2 43 116 61 438 98.6 206.7 3.449 1 9 19.2 21
meyer04 – 330 672 – limit 100.000 0 0 27.2 19
meyer10 59 450 225 772 288.0 limit 49.023 0 1 47.0 21
meyer15 12 370 262 683 56.7 limit 56.489 0 4 152.8 22
ahmetovic1_pw4 95 31 459 1.1 28.1 0.126 1 6 4.1 22
ahmetovic2_pw4 41 170 1 045 427 142.6 limit 5.937 0 17 233.7 22
karuppiah1 2 000 2 895 354 1.7 1170.9 0.047 9 2 14.2 4
karuppiah2_pw4 1 5 319 123 0.8 limit 0.042 0 155 50.6 19
karuppiah3_pw4 4 270 4 620 934 4.7 limit 0.131 0 35 44.1 13
karuppiah4_pw4 1 1 583 631 0.5 limit 0.057 0 36 91.5 14
ruiz_concbased_pw4 1 39 437 0.2 21.7 0.015 3 35 4.9 19
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Table B.25.: Performance of SCIP 3.0.2, primal heuristics deactivated, on
the GloMIQO test set

Nodes Time

Name First Total First Total Prim Int LP Sols

CLay0203M 13 32 0.1 0.1 0.002 3
CLay0204M 9 1 032 0.1 0.4 0.003 7
CLay0205M 11 9 608 0.1 2.5 0.007 15
CLay0303M 8 83 0.1 0.1 0.003 2
CLay0304M 8 305 0.1 0.3 0.003 10
CLay0305M 10 13 407 0.2 3.6 0.007 15
SLay04H 31 97 0.6 0.8 0.019 3
SLay04M 6 134 0.1 0.3 0.004 4
SLay05H 49 222 0.8 1.3 0.027 6
SLay05M 29 105 0.2 0.5 0.008 4
SLay06H 330 1 669 2.3 6.4 0.080 15
SLay06M 51 277 0.4 0.9 0.013 4
SLay07H 251 1 259 2.8 6.5 0.099 7
SLay07M 134 314 0.7 1.3 0.021 7
SLay08H 858 8 665 8.4 43.1 0.331 15
SLay08M 131 2 797 1.0 6.7 0.041 10
SLay09H 2 271 36 424 23.6 239.8 1.584 10
SLay09M 273 32 039 1.7 94.2 0.469 10
SLay10H 6 054 466 126 66.7 limit 7.127 6
SLay10M 444 836 132 2.7 2217.9 0.998 14
LeeCrudeOil1_05 14 29 1.1 1.1 0.031 4
LeeCrudeOil1_06 14 36 1.4 1.9 0.039 2
LeeCrudeOil1_07 72 98 3.1 3.2 0.086 4
LeeCrudeOil1_08 13 93 2.7 5.8 0.075 3
LeeCrudeOil1_09 20 150 5.4 7.6 0.150 5
LeeCrudeOil1_10 105 191 8.4 9.2 0.233 3
LeeCrudeOil2_05 13 87 2.0 3.6 0.056 2
LeeCrudeOil2_06 30 51 4.0 4.7 0.111 2
LeeCrudeOil2_07 9 253 6.4 9.8 0.186 8
LeeCrudeOil2_08 4 899 6.0 21.8 0.185 5
LeeCrudeOil2_09 189 627 13.9 19.1 0.397 5
LeeCrudeOil2_10 33 1 004 12.5 35.0 0.378 4
LeeCrudeOil3_05 53 85 909 3.8 94.6 0.107 20
LeeCrudeOil3_06 141 2 451 810 11.0 limit 0.306 21
LeeCrudeOil3_07 78 1 920 787 16.7 limit 0.467 19
LeeCrudeOil3_08 213 1 515 461 22.7 limit 0.643 18
LeeCrudeOil3_09 924 1 338 928 47.1 limit 1.321 17
LeeCrudeOil3_10 285 1 064 429 39.1 limit 1.144 19
LeeCrudeOil4_05 68 168 6.6 7.2 0.183 8
LeeCrudeOil4_06 22 81 4.8 5.0 0.133 6
LeeCrudeOil4_07 16 113 6.9 9.4 0.192 11
LeeCrudeOil4_08 35 141 17.9 20.4 0.497 6
LeeCrudeOil4_09 91 125 17.7 18.0 0.492 5
LeeCrudeOil4_10 65 290 27.6 39.2 0.767 8
LiCrudeOil_ex01 9 143 1 479 073 17.5 limit 0.785 1
LiCrudeOil_ex02 1 875 2 118 477 7.7 limit 0.309 19
LiCrudeOil_ex03 43 139 469 077 346.2 limit 10.191 1
LiCrudeOil_ex05 524 209 524 209 3600.0 limit 100.000 0
LiCrudeOil_ex06 9 486 33 712 127.9 308.8 3.571 2
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Table B.25 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

LiCrudeOil_ex11 56 727 439 765 560.2 limit 15.771 1
LiCrudeOil_ex21 110 468 330 326 1312.3 limit 36.854 1
alan 3 7 0.0 0.0 0.000 3
du-opt5 6 61 0.1 0.2 0.005 5
du-opt 94 312 0.3 0.6 0.009 5
elf 113 1 070 0.1 0.7 0.014 5
ex1223a 3 4 0.0 0.0 0.000 2
ex1263a 10 190 0.0 0.1 0.001 8
ex1263 5 615 0.2 0.8 0.009 17
ex1264a 17 67 0.0 0.0 0.000 3
ex1264 9 340 0.1 0.3 0.004 12
ex1265a 10 112 0.0 0.1 0.000 4
ex1265 3 350 0.0 0.5 0.002 9
ex1266a 43 51 0.1 0.1 0.003 3
ex1266 8 167 0.4 1.0 0.018 5
fac3 4 15 0.1 0.1 0.003 5
feedtray2 170 181 1.1 1.2 0.032 3
fuel 3 5 0.0 0.0 0.000 3
gbd 1 1 0.0 0.0 0.000 1
meanvarx 4 5 0.0 0.0 0.000 1
netmod_dol1 10 53 332 13.6 2040.0 0.382 2
netmod_dol2 15 285 15.8 37.1 0.460 15
netmod_kar1 11 283 0.8 3.1 0.024 10
netmod_kar2 11 283 0.9 3.2 0.027 10
nous1 86 802 1 829 516 102.0 2628.6 10.773 10
nous2 1 952 5 865 1.9 4.5 0.058 14
nuclear10a – 37 – limit – 0
nuclear10b – 147 – limit 100.000 0
nuclear14a – 10 674 – limit 100.000 0
nuclear14b – 25 515 – limit 100.000 0
nuclear14 – 195 840 – limit 100.000 0
nuclear24a – 10 671 – limit 100.000 0
nuclear24b – 25 505 – limit 100.000 0
nuclear24 – 195 613 – limit 100.000 0
nuclear25a – 10 061 – limit 100.000 0
nuclear25b – 14 292 – limit 100.000 0
nuclear25 – 196 328 – limit 100.000 0
nuclear49a – 1 332 – limit 100.000 0
nuclear49b – 1 336 – limit 100.000 0
nuclearva – 4 418 515 – limit 100.000 0
nuclearvb – 4 500 948 – limit 100.000 0
nuclearvc – 4 512 700 – limit 100.000 0
nuclearvd – 4 000 320 – limit 100.000 0
nuclearve – 3 955 061 – limit 100.000 0
nuclearvf – 3 977 076 – limit 100.000 0
nvs03 1 1 0.0 0.0 0.000 1
nvs10 1 1 0.0 0.0 0.000 1
nvs11 4 9 0.0 0.0 0.000 2
nvs12 5 13 0.0 0.0 0.000 2
nvs13 6 19 0.0 0.0 0.000 2
nvs14 1 1 0.0 0.0 0.000 1
nvs15 3 8 0.0 0.0 0.000 2
nvs17 63 89 0.1 0.1 0.003 3
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Table B.25 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

nvs18 40 52 0.1 0.1 0.001 3
nvs19 44 131 0.1 0.2 0.003 3
nvs23 94 170 0.2 0.3 0.006 3
nvs24 34 151 0.1 0.3 0.003 3
prob02 1 1 0.0 0.0 0.000 1
prob03 1 1 0.0 0.0 0.000 1
product2 – 1 748 631 – limit 100.000 0
product 9 674 26 241 24.7 43.6 0.686 6
eniplac_reformulated 67 159 0.3 0.5 0.008 5
fo7_2_reformulated 3 014 88 497 2.3 29.1 0.067 2
fo7_reformulated 13 058 248 200 7.9 81.2 0.251 6
fo8_reformulated 66 528 606 546 49.6 247.3 1.383 6
fo9_reformulated 46 424 10 544 024 39.0 3387.7 2.132 15
m3_reformulated 10 19 0.0 0.0 0.000 2
m6_reformulated 910 3 028 0.8 1.6 0.029 7
m7_reformulated 9 645 51 141 5.8 19.3 0.178 3
o7_2_reformulated 11 314 1 807 330 7.7 798.2 0.280 7
o7_reformulated 96 221 2 096 520 56.5 896.6 1.743 11
sep1 27 35 0.0 0.0 0.000 2
space25a – 15 849 – limit 100.000 0
space25 – 104 511 – limit 100.000 0
space960 – 6 435 – limit 100.000 0
spectra2 42 68 0.8 0.8 0.022 2
st_e13 2 3 0.0 0.0 0.000 2
st_e27 1 1 0.0 0.0 0.000 1
st_e31 501 1 093 0.2 0.7 0.007 11
st_miqp1 1 1 0.0 0.0 0.000 1
st_miqp2 1 1 0.0 0.0 0.000 1
st_miqp3 2 3 0.0 0.0 0.000 2
st_miqp4 1 1 0.0 0.0 0.000 1
st_miqp5 1 1 0.0 0.0 0.000 1
st_test1 1 1 0.0 0.0 0.000 1
st_test2 1 1 0.0 0.0 0.000 1
st_test3 1 1 0.0 0.0 0.000 1
st_test4 1 1 0.0 0.0 0.000 1
st_test5 1 1 0.0 0.0 0.000 1
st_test6 1 1 0.0 0.0 0.000 1
st_test8 1 1 0.0 0.0 0.000 1
st_testgr1 15 56 0.0 0.0 0.000 4
st_testgr3 3 9 0.0 0.0 0.000 1
st_testph4 1 1 0.0 0.0 0.000 1
tln12 295 778 501 978 2146.6 limit 73.162 1
tln2 1 1 0.0 0.0 0.000 1
tln4 292 3 885 0.2 1.6 0.008 8
tln5 2 031 792 957 1.5 381.1 0.068 10
tln6 57 214 5 190 580 39.2 limit 1.692 10
tln7 111 692 2 805 464 129.5 limit 8.336 8
tloss 30 204 0.1 0.2 0.004 3
tltr 9 14 0.2 0.2 0.005 1
util 23 372 0.0 0.1 0.000 4
waste – 1 045 149 – limit 100.000 0
Sarawak_Scenario16 – 763 728 – limit 100.000 0
Sarawak_Scenario81 – 166 217 – limit 100.000 0
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Table B.25 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

lee1 322 8 982 0.5 7.3 0.030 4
lee2 89 113 122 342 334.9 638.0 9.942 8
meyer04 – 334 995 – limit 100.000 0
meyer10 240 212 253 684 3140.3 limit 95.479 1
meyer15 33 379 237 163 158.4 limit 32.742 1
ahmetovic1_pw4 4 104 34 536 3.1 26.6 0.118 5
ahmetovic2_pw4 81 310 1 047 302 251.9 limit 34.998 1
karuppiah1 4 343 4 360 592 2.6 1555.0 0.073 14
karuppiah2_pw4 27 657 4 059 914 24.4 limit 3.697 1
karuppiah3_pw4 – 3 443 288 – limit 100.000 0
karuppiah4_pw4 – 892 330 – limit 100.000 0
ruiz_concbased_pw4 7 639 92 571 5.2 65.2 0.232 17
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Table B.26.: Performance of SCIP 3.0.2, default mode, on the MinlpLib
test set

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

4stufen – 2 250 551 – limit 100.000 0 0 25.2 19
alan 1 3 0.0 0.1 0.000 1 3 0.0 11
batchdes 1 3 0.0 0.1 0.000 0 2 0.1 11
batch 1 5 0.0 0.2 0.000 0 1 0.1 12
beuster 6 440 2 053 783 10.5 limit 3.771 0 1 80.5 21
cecil_13 26 1 087 040 3.6 limit 0.143 0 12 913.5 21
chp_partload – 7 655 – limit 100.000 0 0 40.1 18
contvar – 20 726 – limit 100.000 0 0 11.9 12
csched1 1 1 392 0.1 1.8 0.003 5 4 0.9 20
csched2a 1 532 905 0.4 limit 22.862 0 1 66.0 22
csched2 2 133 399 2.2 limit 9.714 0 1 162.0 20
detf1 1 38 2289.2 limit 65.620 0 1 1829.2 21
du-opt 1 232 0.0 0.7 0.006 2 108 0.4 19
du-opt5 1 75 0.0 0.4 0.005 2 93 0.3 20
eg_all_s 0 81 0.1 limit 44.260 0 2 649.7 20
eg_disc2_s 1 1 3600.0 limit 100.000 0 1 3498.6 10
eg_disc_s 1 1 3600.0 limit 100.000 0 1 3520.0 10
eg_int_s 0 1 0.1 limit 99.994 0 1 3493.7 9
eniplac 2 45 0.1 0.5 0.003 0 6 0.2 15
enpro48 1 337 0.1 1.2 0.015 1 2 0.8 12
enpro48pb 1 33 0.1 1.5 0.023 0 3 1.2 13
enpro56 1 124 0.1 1.5 0.004 1 4 1.1 13
enpro56pb 1 85 0.1 1.3 0.004 0 3 0.9 12
ex1221 1 1 0.0 0.0 0.000 1 2 0.0 4
ex1222 1 1 0.0 0.0 0.000 0 3 0.0 1
ex1223a 0 1 0.0 0.0 0.000 0 4 0.0 7
ex1223b 0 4 0.0 0.1 0.001 1 9 0.1 10
ex1223 1 4 0.0 0.1 0.001 1 8 0.0 10
ex1224 1 6 0.1 0.1 0.003 1 3 0.1 11
ex1225 1 1 0.0 0.0 0.000 0 3 0.0 8
ex1226 0 0 0.0 0.0 0.000 0 3 0.0 7
ex1233 1 9 981 610 0.1 limit 0.134 0 307 179.6 21
ex1243 1 29 0.1 0.5 0.009 1 3 0.3 14
ex1244 1 392 0.1 1.2 0.005 2 5 0.7 21
ex1252a 1 1 095 0.0 6.6 0.023 4 3 0.8 20
ex1252 9 2 366 0.2 12.0 0.020 3 10 0.8 20
ex1263 1 398 0.1 0.8 0.005 9 5 0.4 18
ex1263a 1 308 0.0 0.4 0.001 5 9 0.3 18
ex1264 17 79 0.1 0.2 0.003 6 0 0.0 10
ex1264a 1 314 0.0 0.3 0.001 2 3 0.1 18
ex1265 3 132 0.1 0.3 0.004 8 0 0.0 10
ex1265a 1 105 0.0 0.1 0.001 2 4 0.0 10
ex1266 1 63 0.2 0.6 0.006 2 2 0.1 10
ex1266a 56 166 0.2 0.4 0.006 2 5 0.2 18
ex3 1 5 0.0 0.2 0.001 0 8 0.2 11
ex3pb 1 5 0.0 0.2 0.001 0 8 0.2 11
fac1 1 5 0.0 0.0 0.000 0 15 0.0 11
fac2 1 6 310 317 0.0 limit 0.007 25 108 20.6 20
fac3 1 5 0.0 0.2 0.001 1 4 0.1 11
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Table B.26 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

feedtray2 1 1 0.1 0.2 0.003 0 1 0.1 4
feedtray 1 226 155 0.5 limit 36.747 0 1 16.5 11
fo7_2 1 51 571 0.1 23.0 0.023 5 4 3.5 19
fo7_ar2_1 2 153 51 730 3.2 22.6 0.125 8 1 3.6 20
fo7_ar25_1 23 30 506 1.1 12.1 0.042 7 2 2.6 20
fo7_ar3_1 73 44 473 1.0 18.4 0.039 4 5 2.7 20
fo7_ar4_1 288 34 824 1.4 15.1 0.062 4 3 2.5 19
fo7_ar5_1 113 28 733 1.3 14.8 0.078 12 5 2.9 19
fo7 161 175 201 1.0 74.5 0.091 8 11 5.7 20
fo8_ar2_1 1 419 401 103 2.5 169.3 0.325 11 14 19.1 20
fo8_ar25_1 10 450 293 826 9.7 118.3 0.387 8 3 11.8 20
fo8_ar3_1 4 978 73 630 5.9 32.2 0.255 4 9 4.8 20
fo8_ar4_1 1 539 83 082 2.8 40.3 0.217 9 8 5.9 20
fo8_ar5_1 73 69 761 0.9 35.1 0.095 7 12 5.8 20
fo8 1 200 349 233 3.0 184.7 0.429 8 12 15.7 20
fo9_ar2_1 51 16 650 300 1.5 limit 0.230 11 6 75.8 20
fo9_ar25_1 20 186 5 170 431 20.5 2148.9 0.758 12 12 97.9 20
fo9_ar3_1 5 283 553 645 7.2 295.1 2.270 12 10 42.4 20
fo9_ar4_1 100 661 1 441 308 95.3 823.7 7.376 17 18 96.5 20
fo9_ar5_1 14 247 606 901 18.6 335.9 2.125 12 7 35.1 20
fo9 10 447 822 626 15.9 472.3 0.602 6 5 35.6 20
fuel 1 3 0.0 0.1 0.000 1 5 0.1 11
fuzzy – 839 611 – limit 100.000 0 0 35.7 19
gastrans 1 1 0.2 0.2 0.006 0 1 0.1 10
gbd 0 1 0.0 0.0 0.000 1 2 0.0 3
gear2 1 1 009 0.0 0.7 0.019 9 3 0.5 22
gear3 0 126 0.0 0.4 0.010 5 7 0.3 18
gear 0 126 0.0 0.3 0.007 5 7 0.3 18
ghg_1veh 1 9 981 674 0.1 limit 0.007 0 5 101.3 12
ghg_2veh 1 347 808 0.1 limit 0.010 0 153 125.8 20
ghg_3veh 9 160 641 0.8 limit 0.276 0 110 222.0 22
gkocis 0 0 0.0 0.0 0.000 0 10 0.0 11
hda 42 000 323 776 473.0 limit 17.407 0 2 28.5 21
hmittelman 1 1 0.0 0.0 0.000 1 1 0.0 2
johnall 1 1 8.9 77.8 0.247 0 2 5.5 8
lop97ic 1 122 232 7.7 limit 22.092 0 1 761.2 16
lop97icx 1 1 965 260 0.1 limit 3.517 7 10 780.8 17
m3 1 14 0.1 0.1 0.003 1 1 0.1 12
m6 29 797 0.2 1.6 0.023 3 7 1.1 19
m7_ar2_1 674 7 605 1.2 4.2 0.037 2 8 1.4 21
m7_ar25_1 4 2 221 0.1 1.5 0.008 0 2 0.7 19
m7_ar3_1 221 9 768 0.9 5.1 0.044 4 6 1.5 19
m7_ar4_1 2 863 0.1 1.8 0.022 2 6 1.0 19
m7_ar5_1 1 14 005 0.1 7.1 0.038 2 7 1.7 20
m7 125 5 043 0.4 4.0 0.038 5 6 1.7 19
mbtd 1 1 843.2 limit 58.488 0 1 455.5 7
meanvarx 1 1 0.0 0.2 0.000 1 4 0.1 12
meanvarxsc 1 1 0.0 0.2 0.002 1 5 0.2 12
netmod_dol1 1 35 247 0.3 limit 0.584 10 9 148.3 21
netmod_dol2 1 154 0.2 46.4 0.216 7 3 0.7 11
netmod_kar1 1 341 0.1 6.2 0.046 9 5 0.3 18
netmod_kar2 1 341 0.1 6.3 0.048 9 5 0.2 18
no7_ar2_1 1 952 33 387 3.1 17.9 0.086 4 1 2.6 20
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Table B.26 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

no7_ar25_1 40 73 107 1.2 40.5 0.052 5 6 4.7 20
no7_ar3_1 1 166 451 991 2.2 201.2 0.100 7 5 12.6 20
no7_ar4_1 315 159 212 1.1 80.7 0.106 12 3 8.0 19
no7_ar5_1 30 101 216 0.5 51.6 0.033 9 5 5.9 20
nous1 1 1 651 075 0.4 2019.1 0.064 2 2 15.0 11
nous2 1 4 240 0.3 3.6 0.043 6 2 1.0 11
nuclearva – 4 855 948 – limit 100.000 0 0 7.6 4
nuclearvb – 4 729 199 – limit 100.000 0 0 7.5 4
nuclearvc – 4 709 101 – limit 100.000 0 0 7.1 4
nuclearvd – 4 155 854 – limit 100.000 0 0 6.9 4
nuclearve – 4 144 354 – limit 100.000 0 0 6.6 4
nuclearvf – 4 180 928 – limit 100.000 0 0 6.6 4
nuclear25 16 1 357 317 0.7 limit 1.134 0 1 2.5 4
nuclear25a – 11 175 – limit 100.000 0 0 441.2 17
nuclear25b 1 13 627 75.0 limit 5.946 0 1 684.9 20
nuclear49a – 1 242 – limit 100.000 0 0 502.1 18
nuclear49b 1 1 3600.0 limit 100.000 0 1 3586.4 11
nuclear14 – 1 408 586 – limit 100.000 0 0 4.2 4
nuclear14a – 11 951 – limit 100.000 0 0 455.6 18
nuclear14b 1 39 096 281.4 limit 8.675 0 1 620.9 20
nuclear10a – 40 – limit – 0 0 680.8 18
nuclear10b 1 1 3600.0 limit 100.000 0 1 3425.0 11
nvs01 1 9 0.0 0.1 0.002 1 3 0.0 12
nvs02 1 1 0.0 0.0 0.000 1 0 0.0 6
nvs03 1 1 0.0 0.0 0.000 1 3 0.0 6
nvs04 1 3 0.0 0.0 0.000 1 6 0.0 12
nvs06 0 11 0.0 0.1 0.003 1 6 0.1 10
nvs07 0 1 0.0 0.0 0.000 0 5 0.0 7
nvs08 0 1 0.0 0.0 0.000 0 5 0.0 10
nvs09 0 2 440 089 0.0 770.2 0.003 0 4 11.2 15
nvs10 0 1 0.0 0.0 0.000 0 7 0.0 6
nvs11 0 3 0.0 0.0 0.000 1 9 0.0 9
nvs12 0 5 0.0 0.1 0.000 1 12 0.0 8
nvs13 0 8 0.0 0.1 0.000 1 20 0.0 8
nvs14 1 1 0.0 0.0 0.000 1 0 0.0 6
nvs15 0 7 0.0 0.0 0.000 0 11 0.0 10
nvs17 0 47 0.0 0.1 0.000 0 30 0.1 17
nvs18 0 23 0.0 0.1 0.000 0 22 0.1 15
nvs19 0 90 0.0 0.3 0.003 0 14 0.2 17
nvs20 1 105 0.0 0.5 0.003 2 4 0.4 13
nvs21 0 20 0.0 0.1 0.002 4 2 0.0 10
nvs23 0 122 0.0 0.4 0.001 1 23 0.2 17
nvs24 0 114 0.0 0.4 0.003 0 23 0.2 17
o7_2 127 1 582 170 0.8 758.8 0.149 8 7 44.1 20
o7_ar2_1 1 707 1 282 888 3.0 258.4 0.085 5 5 13.3 20
o7_ar25_1 136 555 882 1.0 268.1 0.062 16 5 16.6 21
o7_ar3_1 1 407 1 038 314 2.4 535.1 0.109 8 3 28.7 20
o7_ar4_1 2 244 1 855 541 3.4 1016.9 0.231 7 3 52.2 20
o7_ar5_1 390 632 962 1.4 301.1 0.093 6 4 18.2 20
o7 4 550 3 757 628 6.6 1936.7 0.277 7 8 100.8 20
o8_ar4_1 372 5 765 577 2.0 limit 1.525 5 18 220.4 20
o9_ar4_1 217 600 5 708 704 221.0 limit 7.660 2 2 244.6 21
oaer 0 1 0.0 0.0 0.000 1 5 0.0 8
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Table B.26 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

oil2 1 1 103 885 3.0 limit 0.089 0 5 164.3 22
oil 8 76 592 2.8 limit 1.239 0 7 322.6 23
ortez 1 34 0.2 0.5 0.007 0 4 0.3 12
parallel 1 428 168 0.1 limit 0.095 0 2309 99.7 16
pb302035 1 553 909 11.4 limit 24.653 0 12 1281.5 17
pb302055 1 549 602 12.7 limit 19.844 0 24 1207.3 17
pb302075 1 660 738 12.9 limit 11.346 0 1 1141.3 16
pb302095 1 599 357 9.2 limit 3.355 0 19 984.5 17
pb351535 1 663 503 7.3 limit 17.496 0 18 1362.6 17
pb351555 1 802 305 7.6 limit 12.494 0 2 1243.1 16
pb351575 1 677 619 10.4 limit 8.187 0 1 1216.1 16
pb351595 1 242 711 133 26.0 limit 10.720 1 3 1054.1 17
prob02 1 1 0.0 0.1 0.001 0 5 0.1 6
prob03 0 1 0.0 0.0 0.000 0 4 0.0 5
procsel 0 0 0.0 0.0 0.000 0 12 0.0 10
product2 1 2 524 774 0.9 limit 0.025 0 187 175.0 21
product 1 42 542 2.3 87.3 0.084 2 4 14.6 21
pump 1 1 003 0.0 4.7 0.013 4 3 0.8 20
qapw 1 428 574 1.7 limit 1.130 1 19 141.0 18
qap 1 1 900 639 1.1 limit 6.388 7 73 29.7 18
ravem 1 42 0.1 0.9 0.003 1 2 0.6 12
ravempb 1 41 0.1 0.9 0.004 1 2 0.6 12
risk2b 0 184 0.0 0.8 0.017 6 3 0.7 11
risk2bpb 1 8 0.1 0.2 0.003 2 2 0.1 11
saa_2 1 37 2299.7 limit 64.420 0 1 1837.6 21
sep1 1 19 0.1 0.3 0.003 0 1 0.3 10
space25 – 8 190 – limit 100.000 0 0 1.9 18
space25a 55 440 250 802 43.7 limit 15.741 0 4 5.4 21
space960 – 4 262 – limit 100.000 0 0 1397.7 18
spectra2 1 13 0.1 0.9 0.005 0 53 0.4 15
spring 22 83 0.2 0.5 0.007 1 1 0.4 17
st_e13 1 1 0.0 0.0 0.000 1 2 0.0 4
st_e14 1 4 0.0 0.1 0.001 1 8 0.0 10
st_e15 1 1 0.0 0.0 0.000 1 2 0.0 4
st_e27 0 0 0.0 0.0 0.000 0 2 0.0 2
st_e29 1 6 0.1 0.1 0.003 1 3 0.1 11
st_e31 1 1 752 0.3 1.3 0.013 3 4 0.8 17
st_e35 1 12 301 0.2 14.2 0.101 9 7 2.5 21
st_e36 1 790 0.0 1.0 0.011 1 1 0.6 16
st_e38 1 2 0.0 0.1 0.000 0 2 0.1 11
st_e40 1 29 0.0 0.1 0.000 1 1 0.1 12
st_miqp1 0 1 0.0 0.0 0.000 0 3 0.0 2
st_miqp2 1 1 0.0 0.0 0.000 1 4 0.0 6
st_miqp3 0 5 0.0 0.0 0.000 1 3 0.0 9
st_miqp4 0 1 0.0 0.0 0.000 0 5 0.0 7
st_miqp5 0 1 0.0 0.0 0.000 0 2 0.0 5
stockcycle 1 21 207 0.2 106.8 0.098 0 57 14.8 21
st_test1 0 0 0.0 0.0 0.000 0 2 0.0 1
st_test2 0 1 0.0 0.0 0.000 0 3 0.0 1
st_test3 0 1 0.0 0.0 0.000 0 3 0.0 2
st_test4 1 1 0.0 0.0 0.000 0 2 0.0 6
st_test5 1 1 0.0 0.0 0.000 0 1 0.0 2
st_test6 1 1 0.0 0.0 0.000 0 1 0.0 2
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Table B.26 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

st_test8 1 1 0.0 0.0 0.000 0 4 0.0 7
st_testgr1 0 29 0.0 0.0 0.000 0 24 0.0 14
st_testgr3 0 13 0.0 0.1 0.000 1 14 0.0 10
st_testph4 0 1 0.0 0.0 0.000 1 5 0.0 6
super1 – 61 664 – limit 100.000 0 0 8.9 19
super2 – 52 241 – limit 100.000 0 0 9.9 19
super3 – 53 440 – limit 100.000 0 0 9.2 19
super3t 4 840 32 686 288.9 limit 11.705 0 1 20.9 15
synheat 1 10 154 865 0.1 limit 0.033 0 156 103.4 22
synthes1 1 5 0.0 0.1 0.000 1 7 0.0 10
synthes2 1 5 0.0 0.1 0.000 0 35 0.1 12
synthes3 1 7 0.0 0.1 0.001 0 44 0.1 11
tln2 1 1 0.0 0.0 0.000 0 5 0.0 6
tln4 1 4 374 0.0 1.9 0.001 0 5 0.6 18
tln5 1 300 404 0.0 159.3 0.004 0 261 10.1 18
tln6 1 6 240 641 0.0 limit 0.010 0 617 528.3 18
tln7 1 4 393 651 0.0 limit 0.980 0 445 535.8 18
tln12 610 1 083 282 9.5 limit 1.750 5 228 448.0 20
tloss 28 120 0.1 0.2 0.003 1 2 0.0 15
tls2 1 17 0.0 0.1 0.000 1 2 0.0 12
tls4 1 23 438 1.0 40.6 0.068 1 7 3.6 20
tls5 22 968 199 462 150.6 limit 11.916 0 17 58.8 20
tls6 31 030 705 220 175.0 limit 6.089 0 1 284.2 18
tls7 11 722 548 491 89.9 limit 14.224 0 2 264.1 18
tls12 – 187 314 – limit 100.000 0 0 668.4 16
tltr 1 11 0.0 0.2 0.000 1 4 0.0 10
uselinear – 4 827 – limit 100.000 0 0 1.1 3
util 1 83 0.0 0.3 0.000 4 5 0.2 13
waste 1 1 616 106 0.1 limit 8.865 0 44 394.6 22
water4 1 1 881 133 0.1 limit 2.164 0 39 110.2 23
waterx 1 79 034 0.1 limit 0.962 0 3 38.1 20
waterz 235 2 188 446 2.4 limit 25.995 1 11 207.7 23
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Table B.27.: Performance of SCIP 3.0.2, primal heuristics deactivated, on
the MinlpLib test set

Nodes Time

Name First Total First Total Prim Int LP Sols

4stufen – 2 318 220 – limit 100.000 0
alan 3 7 0.0 0.0 0.000 3
batchdes 2 3 0.0 0.0 0.000 1
batch 14 15 0.1 0.1 0.002 1
beuster – 1 747 546 – limit 100.000 0
cecil_13 80 1 484 711 2.6 limit 0.132 7
chp_partload – 5 691 – limit 100.000 0
contvar – 34 301 – limit 100.000 0
csched1 130 3 043 0.2 1.8 0.006 15
csched2a 8 644 612 781 47.4 limit 29.873 1
csched2 15 675 84 590 324.5 limit 34.617 1
detf1 – 215 – limit 100.000 0
du-opt 82 294 0.2 0.4 0.006 5
du-opt5 6 74 0.1 0.2 0.003 5
eg_all_s – 1 189 – limit 100.000 0
eg_disc2_s – 49 – limit 100.000 0
eg_disc_s – 57 – limit 100.000 0
eg_int_s – 15 – limit 100.000 0
eniplac 59 86 0.3 0.3 0.008 3
enpro48 40 72 0.5 0.5 0.014 1
enpro48pb 12 84 0.3 0.5 0.009 5
enpro56 26 42 421 0.4 7.6 0.011 23
enpro56pb 26 19 220 246 0.4 3062.0 0.011 50
ex1221 1 1 0.0 0.0 0.000 1
ex1222 1 1 0.0 0.0 0.000 1
ex1223a 1 1 0.0 0.0 0.000 1
ex1223b 4 7 0.0 0.0 0.000 2
ex1223 5 8 0.0 0.0 0.000 2
ex1224 5 18 0.0 0.0 0.000 5
ex1225 1 1 0.0 0.0 0.000 1
ex1226 4 5 0.0 0.0 0.000 2
ex1233 624 610 4 958 499 728.6 limit 20.405 5
ex1243 94 128 0.3 0.4 0.009 4
ex1244 64 327 0.3 0.7 0.009 3
ex1252a 60 1 174 1.7 9.2 0.096 9
ex1252 189 1 765 1.2 8.3 0.043 4
ex1263 9 405 0.1 0.5 0.004 8
ex1263a 10 190 0.0 0.1 0.001 8
ex1264 11 227 0.1 0.3 0.004 7
ex1264a 17 67 0.0 0.1 0.000 3
ex1265 3 89 0.1 0.3 0.004 11
ex1265a 10 112 0.0 0.1 0.000 4
ex1266 7 48 0.3 0.6 0.012 4
ex1266a 43 51 0.1 0.1 0.003 3
ex3 4 5 0.0 0.0 0.000 2
ex3pb 4 5 0.0 0.0 0.000 2
fac1 2 5 0.0 0.0 0.000 1
fac2 7 304 4 355 150 4.3 limit 64.479 10
fac3 4 15 0.1 0.1 0.003 5
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Table B.27 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

feedtray2 107 107 0.8 0.8 0.022 1
feedtray – 370 461 – limit 100.000 0
fo7_2 2 849 54 732 2.3 21.4 0.077 5
fo7_ar2_1 4 455 31 187 2.6 10.7 0.073 10
fo7_ar25_1 2 314 59 410 1.8 21.0 0.051 4
fo7_ar3_1 2 675 44 047 2.1 15.9 0.063 8
fo7_ar4_1 7 983 50 953 5.5 21.6 0.204 5
fo7_ar5_1 3 654 31 100 3.0 14.1 0.109 9
fo7 15 978 175 693 12.3 75.5 0.367 4
fo8_ar2_1 17 542 258 337 11.7 96.7 0.375 21
fo8_ar25_1 44 677 287 709 27.5 112.2 0.814 9
fo8_ar3_1 33 318 74 333 21.6 37.2 0.653 14
fo8_ar4_1 6 901 97 706 5.1 40.3 0.274 13
fo8_ar5_1 4 107 157 882 3.5 70.7 0.280 19
fo8 16 644 506 947 13.3 225.5 0.546 10
fo9_ar2_1 12 204 3 239 857 9.7 1001.8 1.013 23
fo9_ar25_1 44 855 5 330 612 31.8 2198.2 1.211 16
fo9_ar3_1 12 012 110 290 9.7 50.0 0.407 5
fo9_ar4_1 178 618 770 081 130.2 419.6 5.516 11
fo9_ar5_1 86 049 1 131 071 69.5 578.7 3.656 18
fo9 146 907 1 705 027 161.4 989.7 4.500 4
fuel 3 5 0.0 0.0 0.000 3
fuzzy – 673 728 – limit 100.000 0
gastrans 2 2 0.1 0.1 0.003 1
gbd 1 1 0.0 0.0 0.000 1
gear2 8 1 032 0.0 0.3 0.008 8
gear3 5 429 0.0 0.1 0.003 10
gear 5 429 0.0 0.1 0.004 10
ghg_1veh 2 076 6 289 898 8.0 limit 0.232 5
ghg_2veh 16 040 372 904 145.3 limit 8.645 2
ghg_3veh – 148 918 – limit 100.000 0
gkocis 3 4 0.0 0.0 0.000 1
hda – 318 104 – limit 100.000 0
hmittelman 1 1 0.0 0.0 0.000 1
johnall 1 1 8.3 8.3 0.231 1
lop97ic 8 021 188 786 231.8 limit 26.645 1
lop97icx 2 013 2 489 190 4.9 limit 6.244 9
m3 10 19 0.0 0.0 0.000 2
m6 115 3 194 0.2 1.3 0.015 9
m7_ar2_1 1 857 17 266 1.4 4.6 0.046 79
m7_ar25_1 290 1 864 0.5 0.9 0.015 4
m7_ar3_1 2 723 12 896 1.9 4.3 0.058 9
m7_ar4_1 402 1 820 0.7 1.2 0.021 2
m7_ar5_1 2 560 11 493 1.8 4.7 0.059 11
m7 1 157 2 541 1.4 1.9 0.040 3
mbtd – 1 – limit 100.000 0
meanvarx 4 5 0.0 0.0 0.000 1
meanvarxsc 4 13 0.0 0.0 0.000 3
netmod_dol1 12 42 805 20.4 limit 0.614 9
netmod_dol2 14 164 16.3 48.0 0.461 7
netmod_kar1 10 268 1.1 5.3 0.036 4
netmod_kar2 10 268 1.2 5.5 0.039 4
no7_ar2_1 7 154 28 745 4.7 13.5 0.132 8
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Table B.27 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

no7_ar25_1 4 688 97 433 3.6 45.1 0.114 7
no7_ar3_1 10 013 387 495 6.5 163.2 0.214 11
no7_ar4_1 6 292 179 281 4.2 79.2 0.156 12
no7_ar5_1 1 618 141 108 1.4 61.6 0.052 10
nous1 1 001 555 2 202 610 1596.5 limit 51.450 1
nous2 2 066 4 556 2.1 3.3 0.060 4
nuclearva – 4 683 072 – limit 100.000 0
nuclearvb – 4 604 006 – limit 100.000 0
nuclearvc – 4 614 443 – limit 100.000 0
nuclearvd – 4 055 613 – limit 100.000 0
nuclearve – 4 078 232 – limit 100.000 0
nuclearvf – 4 063 210 – limit 100.000 0
nuclear25 – 196 827 – limit 100.000 0
nuclear25a – 10 595 – limit 100.000 0
nuclear25b – 10 579 – limit 100.000 0
nuclear49a – 847 – limit 100.000 0
nuclear49b – 3 184 – limit 100.000 0
nuclear14 – 1 356 147 – limit 100.000 0
nuclear14a – 11 851 – limit 100.000 0
nuclear14b – 47 680 – limit 100.000 0
nuclear10a – 43 – limit – 0
nuclear10b – 159 – limit 100.000 0
nvs01 11 16 0.0 0.0 0.000 2
nvs02 1 1 0.0 0.0 0.000 1
nvs03 1 1 0.0 0.0 0.000 1
nvs04 3 4 0.0 0.0 0.000 1
nvs06 8 31 0.0 0.0 0.000 4
nvs07 1 1 0.0 0.0 0.000 1
nvs08 6 9 0.0 0.0 0.000 3
nvs09 1 469 8 223 306 1.0 limit 90.651 19
nvs10 1 1 0.0 0.0 0.000 1
nvs11 4 9 0.0 0.0 0.000 2
nvs12 5 13 0.0 0.0 0.000 2
nvs13 6 19 0.0 0.0 0.000 2
nvs14 1 1 0.0 0.0 0.000 1
nvs15 3 8 0.0 0.0 0.000 2
nvs17 63 89 0.1 0.1 0.003 3
nvs18 40 52 0.1 0.1 0.002 3
nvs19 89 179 0.1 0.2 0.003 3
nvs20 67 563 0.3 1.0 0.025 23
nvs21 2 37 0.0 0.0 0.000 11
nvs23 67 187 0.2 0.3 0.006 3
nvs24 99 187 0.2 0.3 0.006 2
o7_2 8 648 1 114 243 6.5 472.2 0.228 6
o7_ar2_1 7 571 165 605 5.0 76.3 0.139 5
o7_ar25_1 1 634 3 461 386 1.7 690.0 0.070 11
o7_ar3_1 22 293 1 067 644 13.9 508.0 0.426 17
o7_ar4_1 24 721 1 743 528 15.9 861.4 0.485 10
o7_ar5_1 3 640 776 926 2.9 372.9 0.171 8
o7 62 487 2 927 954 39.7 1389.5 1.453 11
o8_ar4_1 8 906 6 243 285 7.9 limit 1.158 13
o9_ar4_1 1 232 869 5 543 561 1009.4 limit 28.186 4
oaer 2 3 0.0 0.0 0.000 2
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Table B.27 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

oil2 – 345 724 – limit 100.000 0
oil – 53 477 – limit 100.000 0
ortez 27 35 0.1 0.1 0.003 1
parallel 355 714 142 2.5 3197.2 3.471 18
pb302035 635 859 471 17.3 limit 30.730 1
pb302055 1 401 843 160 19.4 limit 35.036 1
pb302075 730 1 018 344 17.8 limit 36.603 1
pb302095 456 854 461 17.7 limit 17.278 5
pb351535 1 035 1 134 285 12.6 limit 29.991 1
pb351555 1 096 1 129 943 13.7 limit 25.055 1
pb351575 871 1 027 105 14.8 limit 26.156 1
pb351595 1 607 1 245 982 25.8 limit 35.689 1
prob02 1 1 0.0 0.0 0.000 1
prob03 1 1 0.0 0.0 0.000 1
procsel 2 2 0.0 0.0 0.000 1
product2 – 1 696 989 – limit 100.000 0
product 6 492 25 928 19.5 44.0 0.542 5
pump 60 1 172 1.6 11.7 0.108 8
qapw 15 519 167 3.8 limit 4.263 1
qap 15 2 011 229 1.4 limit 7.343 12
ravem 47 163 0.4 0.5 0.011 4
ravempb 46 234 0.4 0.5 0.011 5
risk2b 371 467 0.2 0.3 0.006 5
risk2bpb 2 11 0.1 0.2 0.004 3
saa_2 – 216 – limit 100.000 0
sep1 27 35 0.0 0.0 0.000 2
space25 – 3 773 – limit 100.000 0
space25a – 1 693 291 – limit 100.000 0
space960 – 6 471 – limit 100.000 0
spectra2 58 67 0.8 0.8 0.022 1
spring 43 135 0.0 0.1 0.001 5
st_e13 2 3 0.0 0.0 0.000 2
st_e14 5 8 0.0 0.0 0.000 2
st_e15 1 1 0.0 0.0 0.000 1
st_e27 1 1 0.0 0.0 0.000 1
st_e29 5 18 0.0 0.0 0.000 5
st_e31 501 1 113 0.2 0.7 0.007 12
st_e35 931 58 960 1.2 20.9 0.269 13
st_e36 634 708 0.4 0.4 0.011 3
st_e38 5 15 0.0 0.0 0.000 3
st_e40 17 22 0.1 0.1 0.001 1
st_miqp1 1 1 0.0 0.0 0.000 1
st_miqp2 2 5 0.0 0.0 0.000 3
st_miqp3 2 3 0.0 0.0 0.000 2
st_miqp4 1 1 0.0 0.0 0.000 1
st_miqp5 1 1 0.0 0.0 0.000 1
stockcycle 3 69 920 0.9 336.5 0.450 9
st_test1 1 1 0.0 0.0 0.000 1
st_test2 1 1 0.0 0.0 0.000 1
st_test3 1 1 0.0 0.0 0.000 1
st_test4 1 1 0.0 0.0 0.000 1
st_test5 1 1 0.0 0.0 0.000 1
st_test6 1 1 0.0 0.0 0.000 1
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Table B.27 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

st_test8 1 1 0.0 0.0 0.000 1
st_testgr1 15 55 0.0 0.0 0.000 6
st_testgr3 3 9 0.0 0.0 0.000 1
st_testph4 1 1 0.0 0.0 0.000 1
super1 – 53 346 – limit 100.000 0
super2 – 48 878 – limit 100.000 0
super3 – 62 434 – limit 100.000 0
super3t – 47 449 – limit 100.000 0
synheat – 9 337 359 – limit 100.000 0
synthes1 2 5 0.0 0.0 0.000 1
synthes2 3 6 0.0 0.0 0.000 2
synthes3 3 228 120 0.0 21.7 0.001 8
tln2 1 1 0.0 0.0 0.000 1
tln4 27 3 168 0.1 1.2 0.003 5
tln5 2 184 16 705 1.3 8.3 0.047 5
tln6 49 168 4 772 333 33.8 limit 0.964 3
tln7 58 955 2 580 740 67.2 limit 7.924 8
tln12 308 830 467 669 2411.8 limit 74.861 1
tloss 30 203 0.1 0.2 0.004 3
tls2 6 13 0.1 0.1 0.002 2
tls4 34 36 715 0.7 68.2 0.138 5
tls5 21 444 213 652 124.6 limit 14.787 15
tls6 181 878 899 371 854.3 limit 31.982 6
tls7 171 050 396 963 1494.9 limit 60.860 11
tls12 – 178 119 – limit 100.000 0
tltr 12 23 0.2 0.2 0.006 4
uselinear – 4 782 – limit 100.000 0
util 10 379 0.0 0.1 0.000 3
waste 1 424 559 1 846 960 2733.7 limit 80.407 1
water4 1 429 1 699 276 3.1 limit 7.393 8
waterx 5 887 111 551 26.9 limit 67.053 4
waterz 6 616 2 767 901 8.8 limit 23.673 4





339

Table B.28.: Performance of SCIP 3.0.2, default mode, on the SAP test
set

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

snp-001-01 1 2 594 433 0.3 limit 0.036 0 482 1027.6 18
snp-001-02 1 328 406 2.0 limit 0.968 0 35 1336.8 19
snp-001-03 1 750 167 2.0 limit 0.490 0 173 991.2 19
snp-001-04 1 112 089 5.0 limit 6.364 0 27 1555.6 19
snp-001-05 1 59 303 29.5 limit 36.108 0 2 1616.7 18
snp-001-06 1 16 942 26.6 limit 21.556 0 2 1834.7 18
snp-001-07 1 314 49.9 limit 58.254 0 2 3051.7 18
snp-001 1 17 153.5 limit 69.932 0 2 3192.0 17
snp-002-01 1 1 0.4 0.4 0.011 0 1 0.0 3
snp-002-02 1 1 0.7 0.7 0.019 0 1 0.0 3
snp-002-03 1 1 1.0 1.0 0.028 0 1 0.1 3
snp-002-04 1 1 1.6 1.6 0.044 0 1 0.1 3
snp-002-05 1 1 2.5 2.5 0.069 1 2 0.1 2
snp-002-06 1 1 3.2 3.2 0.089 1 2 0.1 2
snp-002 1 2 128 063 57.6 limit 35.032 0 1 644.3 18
snp-003-01 1 1 0.1 0.1 0.003 0 1 0.0 3
snp-003-02 1 1 0.1 0.1 0.003 0 1 0.0 3
snp-003-03 1 3 0.4 0.9 0.012 0 6 0.2 10
snp-003-04 1 154 632 1.4 limit 1.084 0 1938 2051.8 18
snp-003-05 1 6 906 2.0 limit 6.911 0 1412 3234.6 18
snp-003-06 1 6 277 2.4 limit 7.058 0 1141 3224.9 18
snp-003 1 1 7.8 limit 17.205 0 11 3560.3 9
snp-004-02 1 1 1.0 1.0 0.028 1 3 0.0 5
snp-004-04 – 410 – limit 100.000 0 0 6.6 2
snp-004-05 – 304 – limit 100.000 0 0 7.9 2
snp-004-06 – 107 – limit 100.000 0 0 45.9 2
snp-004 – 36 – limit 100.000 0 0 206.9 2
snp-005-01 1 1 0.7 0.7 0.018 1 1 0.0 2
snp-005-02 1 1 1.0 1.0 0.028 1 3 0.0 5
snp-005-03 1 1 2.7 2.7 0.075 0 3 0.1 5
snp-005-04 1 21 031 30.4 35.0 0.844 0 285 1.3 18
snp-005-05 1 410 757 80.9 172.8 2.247 0 197 20.4 18
snp-005-06 1 60 218.8 limit 8.116 0 11 728.2 15
snp-005 1 5 841.1 limit 59.639 0 1 221.1 6
snp-008-01 1 1 0.2 0.2 0.005 0 1 0.0 3
snp-008-02 1 12 708 743 8.3 limit 0.231 0 27 464.3 19
snp-008-03 1 61 958 9.3 limit 6.436 0 22 1843.1 19
snp-008-04 1 8 708 14.3 limit 34.809 0 11 2053.2 19
snp-008-05 1 222 275.4 limit 83.015 0 2 1772.5 18
snp-008 1 14 709.4 limit 32.642 0 2 2443.3 13
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Table B.29.: Performance of SCIP 3.0.2, primal heuristics deactivated, on
the SAP test set

Nodes Time

Name First Total First Total Prim Int LP Sols

snp-001-01 – 4 217 940 – limit 100.000 0
snp-001-02 – 485 305 – limit 100.000 0
snp-001-03 – 1 480 696 – limit 100.000 0
snp-001-04 – 323 207 – limit 100.000 0
snp-001-05 – 131 895 – limit 100.000 0
snp-001-06 – 76 765 – limit 100.000 0
snp-001-07 – 36 769 – limit 100.000 0
snp-001 – 12 944 – limit 100.000 0
snp-002-01 1 1 0.5 0.5 0.013 1
snp-002-02 1 1 0.8 0.8 0.022 1
snp-002-03 1 1 1.0 1.0 0.028 1
snp-002-04 1 1 1.7 1.7 0.046 1
snp-002-05 1 1 2.5 2.5 0.069 1
snp-002-06 1 1 3.0 3.0 0.083 1
snp-002 – 4 553 397 – limit 100.000 0
snp-003-01 1 1 0.1 0.1 0.001 1
snp-003-02 1 1 0.1 0.1 0.003 1
snp-003-03 5 6 0.5 0.5 0.014 2
snp-003-04 – 190 263 – limit 100.000 0
snp-003-05 – 172 938 – limit 100.000 0
snp-003-06 – 156 786 – limit 100.000 0
snp-003 – 75 923 – limit 100.000 0
snp-004-02 238 63 754 1.2 38.5 0.204 160
snp-004-04 – 421 – limit 100.000 0
snp-004-05 – 303 – limit 100.000 0
snp-004-06 – 109 – limit 100.000 0
snp-004 – 40 – limit 100.000 0
snp-005-01 1 1 0.6 0.6 0.016 1
snp-005-02 1 1 0.9 0.9 0.025 1
snp-005-03 1 1 2.6 2.6 0.072 1
snp-005-04 141 29 643 29.8 34.2 0.828 4
snp-005-05 304 337 775 80.8 141.4 2.244 6
snp-005-06 – 373 – limit 100.000 0
snp-005 – 5 – limit 100.000 0
snp-008-01 1 1 0.2 0.2 0.004 1
snp-008-02 175 806 23 647 174 33.2 limit 1.022 1
snp-008-03 – 183 539 – limit 100.000 0
snp-008-04 – 78 218 – limit 100.000 0
snp-008-05 – 213 – limit 100.000 0
snp-008 – 190 – limit 100.000 0
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Table B.30.: Performance of SCIP 3.0.2, default mode, on the Siemens
test set

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

pmbrp-096-05-09-l – 84 342 – limit 100.000 0 0 869.1 18
pmbrp-096-05-09-m 8 400 476 192 105.0 limit 2.962 0 2 278.1 20
pmbrp-096-05-12-l – 213 100 – limit 100.000 0 0 277.7 17
pmbrp-096-10-09-l 393 340 435 064 3210.7 limit 89.220 0 1 163.3 20
pmbrp-096-10-09-m 1 1 661 231 6.1 limit 0.176 0 9 159.8 21
pmbrp-096-10-12-l 105 390 584 453 634.7 limit 17.654 0 8 245.4 21
pmbrp-096-15-09-l 1 702 428 4.4 limit 0.124 0 6 165.8 21
pmbrp-096-15-09-m 1 2 015 375 4.1 limit 0.114 0 30 227.1 21
pmbrp-096-15-12-l 8 220 1 318 628 38.8 limit 1.078 0 24 212.8 21
pmbrp-108-05-09-l – 111 378 – limit 100.000 0 0 653.8 18
pmbrp-108-05-09-m – 573 858 – limit 100.000 0 0 115.1 18
pmbrp-108-05-12-l – 196 811 – limit 100.000 0 0 429.9 17
pmbrp-108-10-09-l 1 345 707 15.3 limit 0.662 0 2 454.8 20
pmbrp-108-10-09-m 1 1 734 937 6.3 limit 0.175 0 22 287.9 21
pmbrp-108-10-12-l – 692 650 – limit 100.000 0 0 85.4 18
pmbrp-108-15-09-l 56 540 770 193 302.1 limit 8.402 0 29 436.1 21
pmbrp-108-15-09-m 1 2 047 723 0.9 limit 0.025 0 14 154.7 21
pmbrp-108-15-12-l 2 740 1 165 656 23.2 limit 0.646 0 18 151.3 21
pmbrp-120-05-09-l – 107 506 – limit 100.000 0 0 765.6 18
pmbrp-120-05-09-m 81 360 417 851 664.7 limit 18.494 0 3 472.6 20
pmbrp-120-05-12-l 46 040 210 661 983.1 limit 27.329 0 2 309.6 20
pmbrp-120-10-09-l – 373 331 – limit 100.000 0 0 139.5 18
pmbrp-120-10-09-m 1 1 493 531 6.2 limit 0.172 0 38 509.9 21
pmbrp-120-10-12-l 1 748 211 12.1 limit 0.346 0 6 151.9 21
pmbrp-120-15-09-l 182 160 776 755 832.8 limit 23.145 0 21 446.1 21
pmbrp-120-15-09-m 1 1 993 395 4.6 limit 0.128 0 20 130.6 21
pmbrp-120-15-12-l 124 540 1 320 532 387.8 limit 10.779 0 15 193.5 21
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Table B.31.: Performance of SCIP 3.0.2, primal heuristics deactivated, on
the Siemens test set

Nodes Time

Name First Total First Total Prim Int LP Sols

pmbrp-096-05-09-l – 115 894 – limit 100.000 0
pmbrp-096-05-09-m – 552 846 – limit 100.000 0
pmbrp-096-05-12-l – 240 510 – limit 100.000 0
pmbrp-096-10-09-l – 460 843 – limit 100.000 0
pmbrp-096-10-09-m – 2 032 634 – limit 100.000 0
pmbrp-096-10-12-l – 603 419 – limit 100.000 0
pmbrp-096-15-09-l – 627 861 – limit 100.000 0
pmbrp-096-15-09-m – 2 419 960 – limit 100.000 0
pmbrp-096-15-12-l – 1 756 902 – limit 100.000 0
pmbrp-108-05-09-l – 131 710 – limit 100.000 0
pmbrp-108-05-09-m – 595 033 – limit 100.000 0
pmbrp-108-05-12-l – 241 393 – limit 100.000 0
pmbrp-108-10-09-l – 373 814 – limit 100.000 0
pmbrp-108-10-09-m – 1 932 528 – limit 100.000 0
pmbrp-108-10-12-l – 664 072 – limit 100.000 0
pmbrp-108-15-09-l – 836 530 – limit 100.000 0
pmbrp-108-15-09-m – 2 377 755 – limit 100.000 0
pmbrp-108-15-12-l – 1 305 856 – limit 100.000 0
pmbrp-120-05-09-l – 136 995 – limit 100.000 0
pmbrp-120-05-09-m – 538 485 – limit 100.000 0
pmbrp-120-05-12-l – 223 343 – limit 100.000 0
pmbrp-120-10-09-l – 383 073 – limit 100.000 0
pmbrp-120-10-09-m – 1 756 236 – limit 100.000 0
pmbrp-120-10-12-l – 876 834 – limit 100.000 0
pmbrp-120-15-09-l – 749 177 – limit 100.000 0
pmbrp-120-15-09-m – 2 308 997 – limit 100.000 0
pmbrp-120-15-12-l – 1 325 187 – limit 100.000 0
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Table B.32.: Performance of SCIP 3.0.2, default mode, on the ForNe test
set

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

hn-abnahme9-00000 217 217 5.2 5.2 0.143 0 1 2.3 12
hn-abnahme9-00001 70 70 3.4 3.4 0.093 0 1 1.3 11
hn-abnahme9-00002 1 1 2.1 2.1 0.058 0 1 0.2 10
hn-abnahme9-00003 189 189 3.7 3.7 0.102 0 1 1.6 11
hn-abnahme9-00004 1 360 1 360 12.8 12.9 0.356 0 1 2.7 14
hn-abnahme9-00005 208 208 5.5 5.5 0.153 0 1 1.7 12
hn-abnahme9-00006 6 6 2.4 2.4 0.067 0 1 0.9 12
hn-abnahme9-00007 17 17 2.2 2.2 0.060 0 1 0.4 10
hn-abnahme9-00008 1 1 1.1 1.1 0.030 0 1 0.2 11
hn-abnahme9-00009 680 680 6.6 6.6 0.183 0 1 2.8 12
hn-abnahme9-00010 6 000 6 000 31.6 31.6 0.878 0 1 6.0 17
hn-abnahme9-00011 7 032 7 032 30.9 30.9 0.858 1 0 2.3 14
hn-abnahme9-00012 15 15 3.5 3.5 0.097 0 1 0.5 12
hn-abnahme9-00013 44 44 2.3 2.3 0.063 0 1 0.5 11
hn-abnahme9-00014 12 12 2.0 2.0 0.054 0 1 0.4 12
hn-abnahme9-00015 – 122 – 4.4 – 0 0 0.6 14
hn-abnahme9-00016 42 42 3.9 3.9 0.108 0 1 1.1 12
hn-abnahme9-00017 66 66 3.9 3.9 0.108 0 1 1.5 17
hn-abnahme9-00018 2 020 2 020 10.4 10.4 0.289 0 1 1.9 14
hn-abnahme9-00019 37 37 2.9 2.9 0.080 0 1 0.5 13
hn-abnahme9-00021 33 33 2.8 2.8 0.077 0 1 0.6 11
hn-abnahme9-00022 2 020 2 020 15.5 15.5 0.431 0 1 1.9 12
hn-abnahme9-00023 18 18 2.5 2.5 0.069 0 1 0.5 10
hn-abnahme9-00024 1 1 0.7 0.7 0.019 0 1 0.3 8
hn-abnahme9-00025 22 22 2.1 2.1 0.058 0 1 0.4 11
hn-abnahme9-00026 1 1 2.4 2.4 0.065 0 1 0.5 9
hn-abnahme9-00027 1 1 2.4 2.4 0.067 0 1 0.5 10
hn-abnahme9-00028 2 160 2 160 14.1 14.1 0.392 0 1 1.7 15
hn-abnahme9-00029 2 020 2 020 17.4 17.4 0.483 0 1 1.6 13
hn-abnahme9-00030 19 19 2.5 2.5 0.069 0 1 0.6 13
hn-abnahme9-00031 43 43 2.5 2.5 0.069 0 1 0.8 12
hn-abnahme9-00032 10 10 2.0 2.0 0.056 0 1 0.6 12
hn-abnahme9-00033 2 020 2 020 12.9 12.9 0.358 0 1 1.7 13
hn-abnahme9-00034 634 634 8.0 8.0 0.222 0 1 1.4 15
hn-abnahme9-00035 34 34 2.7 2.7 0.075 0 1 0.5 11
hn-abnahme9-00036 8 8 1.8 1.8 0.049 0 1 0.3 11
hn-abnahme9-00037 21 595 21 595 88.0 88.1 2.447 1 0 5.2 19
hn-abnahme9-00038 82 82 4.9 4.9 0.136 0 1 1.3 11
hn-abnahme9-00039 359 359 8.1 8.1 0.225 1 0 4.0 15
hn-abnahme9-00040 32 32 2.2 2.3 0.061 0 1 0.6 12
hn-abnahme9-00041 32 32 2.2 2.2 0.061 0 1 0.6 12
hn-abnahme9-00042 18 18 2.2 2.2 0.061 0 1 0.9 11
hn-frei-corr-00000 366 366 3.1 3.1 0.086 0 1 0.4 13
hn-frei-corr-00001 14 14 1.8 1.8 0.049 0 1 0.2 9
hn-frei-corr-00002 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr-00003 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr-00004 20 20 1.8 1.8 0.050 0 1 0.2 10
hn-frei-corr-00005 1 1 0.3 0.3 0.008 0 1 0.2 7
hn-frei-corr-00006 – 33 – 2.0 – 0 0 0.2 12
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Table B.32 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

hn-frei-corr-00007 103 103 1.8 1.8 0.049 0 1 0.2 17
hn-frei-corr-00008 – 309 – 3.0 – 0 0 0.1 12
hn-frei-corr-00009 1 360 1 360 7.0 7.0 0.194 0 1 1.8 11
hn-frei-corr-00010 12 12 1.6 1.6 0.044 0 1 0.2 11
hn-frei-corr-00011 73 330 73 330 395.6 395.6 10.988 0 1 7.1 18
hn-frei-corr-00012 23 365 23 365 97.6 97.6 2.711 1 0 5.3 19
hn-frei-corr-00013 – 544 – 4.6 – 0 0 0.4 15
hn-frei-corr-00014 41 41 1.6 1.6 0.044 0 1 0.4 12
hn-frei-corr-00015 – 28 – 1.6 – 0 0 0.2 16
hn-frei-corr-00016 186 186 2.9 2.9 0.080 0 1 0.4 11
hn-frei-corr-00017 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr-00018 19 19 1.6 1.6 0.044 0 1 0.2 10
hn-frei-corr-00019 – 193 – 2.7 – 0 0 0.2 10
hn-frei-corr-00020 – 517 – 4.0 – 0 0 0.4 17
hn-frei-corr-00021 – 153 – 3.2 – 0 0 0.2 9
hn-frei-corr-00022 – 25 – 1.5 – 0 0 0.2 8
hn-frei-corr-00023 140 140 2.7 2.7 0.075 0 1 0.8 12
hn-frei-corr-00024 – 68 – 2.4 – 0 0 0.1 10
hn-frei-corr-00025 20 20 1.5 1.5 0.041 0 1 0.2 11
hn-frei-corr-00026 – 491 – 4.6 – 0 0 0.7 17
hn-frei-corr-00027 279 279 3.6 3.6 0.100 0 1 0.5 10
hn-frei-corr-00028 21 21 1.7 1.7 0.046 0 1 0.3 9
hn-frei-corr-00029 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr-00030 – 115 – 1.9 – 0 0 0.1 10
hn-frei-corr-00031 36 36 2.0 2.0 0.056 0 1 0.2 10
hn-frei-corr-00032 – 74 – 2.1 – 0 0 0.2 10
hn-frei-corr-00033 – 90 – 1.8 – 0 0 0.1 10
hn-frei-corr-00034 5 5 1.3 1.3 0.036 0 1 0.2 11
hn-frei-corr-00035 – 245 – 2.7 – 0 0 0.2 13
hn-frei-corr-00036 200 200 3.0 3.0 0.082 0 1 0.5 18
hn-frei-corr-00037 23 23 1.6 1.6 0.044 0 1 0.2 10
hn-frei-corr-00038 1 1 0.3 0.3 0.008 0 1 0.2 7
hn-frei-corr-00039 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr-00040 – 56 – 1.6 – 0 0 0.2 9
hn-frei-corr-00041 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr-00042 30 30 1.9 1.9 0.053 0 1 0.2 12
hn-frei-corr-00043 – 184 – 3.0 – 0 0 0.3 10
hn-frei-corr-00044 4 510 4 510 19.3 19.3 0.536 0 1 1.3 16
hn-frei-corr-00045 14 14 1.4 1.4 0.039 0 1 0.2 11
hn-frei-corr-00046 – 526 – 4.7 – 0 0 0.6 15
hn-frei-corr-00047 1 1 0.4 0.4 0.011 0 1 0.3 7
hn-frei-corr-00048 – 559 – 4.6 – 0 0 0.7 16
hn-frei-corr-00049 295 295 2.9 2.9 0.081 0 1 0.3 14
hn-frei-corr-00050 – 17 – 1.4 – 0 0 0.2 12
hn-frei-corr-00051 – 508 – 4.8 – 0 0 0.7 18
hn-frei-corr-00052 – 870 – 5.7 – 0 0 1.1 16
hn-frei-corr-00053 – 35 – 2.2 – 0 0 0.2 10
hn-frei-corr-00054 19 19 1.6 1.6 0.043 0 1 0.2 11
hn-frei-corr-00055 65 65 1.8 1.8 0.049 0 1 0.3 10
hn-frei-corr-00056 – 469 804 – 1621.9 – 0 0 16.6 18
hn-frei-corr-00057 – 645 – 4.1 – 0 0 0.2 14
hn-frei-corr-00058 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr-00059 – 329 – 2.8 – 0 0 0.3 10
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Table B.32 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

hn-frei-corr-00060 – 635 058 – 2631.0 – 0 0 19.3 18
hn-frei-corr-00061 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr-00062 – 57 – 1.6 – 0 0 0.1 10
hn-frei-corr-00063 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr-00064 – 27 – 1.5 – 0 0 0.1 10
hn-frei-corr-00065 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr-00066 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr-00067 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr-00068 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr-00069 – 8 – 1.6 – 0 0 0.1 9
hn-frei-corr-00070 – 41 – 1.7 – 0 0 0.1 8
hn-frei-corr-00071 – 6 673 – 33.9 – 0 0 2.4 18
hn-frei-corr-00072 24 24 0.9 0.9 0.025 0 1 0.2 10
hn-frei-corr-00073 – 817 – 4.5 – 0 0 0.4 16
hn-frei-corr-00074 28 28 1.6 1.6 0.044 0 1 0.2 9
hn-frei-corr-00075 66 66 1.6 1.6 0.044 0 1 0.2 13
hn-frei-corr-00076 – 97 – 2.3 – 0 0 0.2 11
hn-frei-corr-00077 32 32 1.1 1.1 0.030 0 1 0.1 10
hn-frei-corr-00078 – 264 210 – 978.4 – 0 0 8.8 18
hn-frei-corr-00079 – 153 – 2.1 – 0 0 0.2 11
hn-frei-corr-00080 – 218 – 3.0 – 0 0 0.3 10
hn-frei-corr-00081 67 67 2.2 2.3 0.061 0 1 0.2 10
hn-frei-corr-00082 – 49 – 1.3 – 0 0 0.2 8
hn-frei-corr-00083 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr-00084 151 151 2.8 2.8 0.078 0 1 0.2 17
hn-frei-corr-00085 172 172 2.6 2.6 0.072 0 1 0.3 12
hn-frei-corr-00086 – 781 – 5.3 – 0 0 0.7 19
hn-frei-corr-00087 – 191 – 2.5 – 0 0 0.3 16
hn-frei-corr-00088 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr-00089 16 16 1.9 1.9 0.053 0 1 0.2 12
hn-frei-corr-00090 – 86 – 2.2 – 0 0 0.2 8
hn-frei-corr-00091 – 165 – 2.5 – 0 0 0.2 11
hn-frei-corr-00092 – 979 – 6.4 – 0 0 0.3 11
hn-frei-corr-00093 – 71 – 2.0 – 0 0 0.2 10
hn-frei-corr-00094 82 82 2.2 2.2 0.061 0 1 0.3 15
hn-frei-corr-00095 49 49 1.7 1.7 0.047 0 1 0.3 10
hn-frei-corr-00096 – 133 – 2.6 – 0 0 0.2 17
hn-frei-corr-00097 22 22 1.2 1.2 0.033 0 1 0.1 12
hn-frei-corr-00098 1 1 0.9 0.9 0.024 0 1 0.2 11
hn-frei-corr-00099 22 22 1.7 1.7 0.047 0 1 0.2 12
hn-frei-corr95-00000 2 020 2 020 6.9 6.9 0.191 0 1 1.0 10
hn-frei-corr95-00001 21 21 2.1 2.1 0.058 0 1 0.3 10
hn-frei-corr95-00002 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr95-00003 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr95-00004 1 1 0.4 0.4 0.011 0 1 0.3 7
hn-frei-corr95-00005 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00006 44 44 1.4 1.4 0.038 0 1 0.2 10
hn-frei-corr95-00007 1 1 0.5 0.5 0.013 0 1 0.2 7
hn-frei-corr95-00008 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00009 11 11 1.3 1.3 0.035 0 1 0.2 11
hn-frei-corr95-00010 60 60 2.0 2.0 0.055 0 1 0.4 10
hn-frei-corr95-00011 22 22 1.9 1.9 0.051 0 1 0.2 10
hn-frei-corr95-00012 25 25 2.1 2.1 0.058 0 1 0.2 9
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Table B.32 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

hn-frei-corr95-00013 32 32 2.2 2.2 0.060 0 1 0.3 9
hn-frei-corr95-00014 83 83 2.1 2.1 0.058 0 1 0.4 10
hn-frei-corr95-00015 57 57 2.1 2.1 0.057 0 1 0.2 11
hn-frei-corr95-00016 6 6 1.7 1.7 0.047 0 1 0.3 12
hn-frei-corr95-00017 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr95-00018 16 16 1.3 1.3 0.036 0 1 0.2 14
hn-frei-corr95-00019 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00020 1 1 0.6 0.7 0.018 0 1 0.5 7
hn-frei-corr95-00021 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00022 65 65 2.0 2.0 0.056 0 1 0.5 17
hn-frei-corr95-00023 1 1 0.2 0.2 0.006 0 1 0.1 7
hn-frei-corr95-00024 1 1 0.2 0.2 0.006 0 1 0.1 7
hn-frei-corr95-00025 1 1 0.4 0.4 0.010 0 1 0.2 7
hn-frei-corr95-00026 79 79 2.5 2.5 0.068 0 1 0.5 9
hn-frei-corr95-00027 24 24 1.6 1.6 0.044 0 1 0.3 9
hn-frei-corr95-00028 68 68 2.0 2.0 0.056 0 1 0.2 10
hn-frei-corr95-00029 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr95-00030 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00031 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00032 1 1 0.5 0.5 0.013 0 1 0.3 7
hn-frei-corr95-00033 22 22 1.4 1.4 0.039 0 1 0.3 10
hn-frei-corr95-00034 7 7 1.5 1.5 0.041 0 1 0.3 11
hn-frei-corr95-00035 1 1 0.5 0.5 0.014 0 1 0.2 7
hn-frei-corr95-00036 18 18 1.7 1.7 0.047 0 1 0.3 12
hn-frei-corr95-00037 1 1 0.6 0.6 0.016 0 1 0.4 7
hn-frei-corr95-00038 1 1 0.3 0.3 0.008 0 1 0.2 7
hn-frei-corr95-00039 – 3 – 1.4 – 0 0 0.1 8
hn-frei-corr95-00040 – 37 – 1.3 – 0 0 0.2 8
hn-frei-corr95-00041 – 49 – 1.0 – 0 0 0.2 10
hn-frei-corr95-00042 21 21 1.3 1.4 0.036 0 1 0.1 10
hn-frei-corr95-00043 28 28 1.8 1.8 0.049 0 1 0.2 10
hn-frei-corr95-00044 45 45 2.2 2.2 0.061 0 1 0.3 11
hn-frei-corr95-00045 22 22 1.9 1.9 0.052 0 1 0.2 11
hn-frei-corr95-00046 14 14 1.9 1.9 0.053 0 1 0.4 11
hn-frei-corr95-00047 54 54 2.6 2.6 0.072 0 1 0.5 12
hn-frei-corr95-00048 24 24 2.2 2.2 0.061 0 1 0.4 11
hn-frei-corr95-00049 22 22 1.3 1.3 0.036 0 1 0.2 10
hn-frei-corr95-00050 1 1 0.2 0.2 0.006 0 1 0.1 7
hn-frei-corr95-00051 3 3 1.5 1.5 0.041 0 1 0.3 11
hn-frei-corr95-00052 19 19 1.7 1.7 0.047 0 1 0.4 9
hn-frei-corr95-00053 1 1 0.3 0.3 0.008 0 1 0.2 7
hn-frei-corr95-00054 22 22 2.0 2.0 0.055 0 1 0.3 10
hn-frei-corr95-00055 1 1 0.3 0.3 0.008 0 1 0.2 7
hn-frei-corr95-00056 9 9 1.6 1.6 0.044 0 1 0.2 11
hn-frei-corr95-00057 21 21 1.5 1.5 0.042 0 1 0.2 10
hn-frei-corr95-00058 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr95-00059 11 11 1.2 1.2 0.033 0 1 0.2 11
hn-frei-corr95-00060 12 12 1.3 1.4 0.036 0 1 0.2 9
hn-frei-corr95-00061 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr95-00062 24 24 2.2 2.2 0.061 0 1 0.3 11
hn-frei-corr95-00063 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr95-00064 39 39 1.8 1.8 0.050 0 1 0.2 10
hn-frei-corr95-00065 – 0 – 0.2 – 0 0 0.0 1
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Table B.32 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

hn-frei-corr95-00066 – 0 – 0.2 – 0 0 0.0 1
hn-frei-corr95-00067 – 1 – 0.8 – 0 0 0.2 10
hn-frei-corr95-00068 – 0 – 0.1 – 0 0 0.0 1
hn-frei-corr95-00069 – 39 – 1.5 – 0 0 0.1 8
hn-frei-corr95-00070 – 5 – 1.9 – 0 0 0.3 8
hn-frei-corr95-00071 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00072 43 43 1.7 1.7 0.047 0 1 0.2 9
hn-frei-corr95-00073 22 22 1.8 1.8 0.049 0 1 0.4 10
hn-frei-corr95-00074 23 23 1.7 1.7 0.046 0 1 0.2 10
hn-frei-corr95-00075 1 1 0.4 0.4 0.010 0 1 0.2 7
hn-frei-corr95-00076 36 36 2.0 2.0 0.056 0 1 0.2 12
hn-frei-corr95-00077 1 1 0.3 0.3 0.008 0 1 0.2 7
hn-frei-corr95-00078 21 21 1.7 1.7 0.047 0 1 0.3 10
hn-frei-corr95-00079 22 22 1.6 1.6 0.044 0 1 0.2 10
hn-frei-corr95-00080 1 1 0.4 0.4 0.010 0 1 0.2 7
hn-frei-corr95-00081 123 123 2.7 2.7 0.074 0 1 0.4 11
hn-frei-corr95-00082 – 15 – 1.8 – 0 0 0.2 8
hn-frei-corr95-00083 11 100 11 100 27.2 27.2 0.756 0 1 2.6 17
hn-frei-corr95-00084 1 1 0.3 0.3 0.008 0 1 0.1 7
hn-frei-corr95-00085 44 44 2.0 2.0 0.056 0 1 0.2 12
hn-frei-corr95-00086 13 13 1.5 1.5 0.041 0 1 0.3 11
hn-frei-corr95-00087 1 1 1.2 1.2 0.033 0 1 0.5 10
hn-frei-corr95-00088 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00089 5 5 1.0 1.0 0.027 0 1 0.1 11
hn-frei-corr95-00090 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00091 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00092 1 1 0.5 0.6 0.015 0 1 0.4 7
hn-frei-corr95-00093 1 1 0.4 0.4 0.011 0 1 0.2 7
hn-frei-corr95-00094 86 86 2.3 2.3 0.063 0 1 0.4 11
hn-frei-corr95-00095 5 5 1.1 1.1 0.030 0 1 0.2 11
hn-frei-corr95-00096 21 21 1.7 1.7 0.046 0 1 0.3 10
hn-frei-corr95-00097 21 21 1.5 1.5 0.042 0 1 0.2 9
hn-frei-corr95-00098 1 1 1.2 1.2 0.033 0 1 0.5 9
hn-frei-corr95-00099 1 1 0.3 0.3 0.008 0 1 0.1 7
hn-sn4-random-00000 19 19 3.9 3.9 0.108 0 1 0.8 10
hn-sn4-random-00001 1 1 1.8 1.8 0.050 0 1 0.7 9
hn-sn4-random-00002 21 21 3.6 3.6 0.099 0 1 0.6 9
hn-sn4-random-00003 27 27 3.0 3.1 0.085 0 1 0.5 11
hn-sn4-random-00004 – 111 – 5.8 – 0 0 0.5 8
hn-sn4-random-00005 – 0 – 0.3 – 0 0 0.0 1
hn-sn4-random-00006 24 24 3.6 3.6 0.100 0 1 0.9 9
hn-sn4-random-00007 22 22 2.9 2.9 0.081 0 1 0.3 10
hn-sn4-random-00008 6 6 2.2 2.2 0.061 0 1 0.6 11
hn-sn4-random-00009 22 22 3.2 3.2 0.088 0 1 0.8 10
hn-sn4-random-00010 22 22 2.9 2.9 0.080 0 1 0.5 9
hn-sn4-random-00011 21 21 2.5 2.5 0.069 0 1 0.7 9
hn-sn4-random-00012 18 18 2.5 2.5 0.069 0 1 0.5 11
hn-sn4-random-00013 26 26 3.0 3.0 0.083 0 1 0.8 12
hn-sn4-random-00014 34 34 3.7 3.7 0.103 0 1 0.7 11
hn-sn4-random-00015 20 20 2.6 2.6 0.072 0 1 0.5 9
hn-sn4-random-00016 53 53 3.3 3.3 0.092 0 1 0.6 11
hn-sn4-random-00017 5 5 2.1 2.1 0.058 0 1 0.4 11
hn-sn4-random-00018 – 0 – 0.3 – 0 0 0.0 1
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Table B.32 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

hn-sn4-random-00019 35 35 2.9 2.9 0.081 0 1 0.8 10
hn-sn4-random-00020 5 020 5 020 23.3 23.3 0.647 0 1 2.6 14
hn-sn4-random-00021 27 27 2.6 2.6 0.072 0 1 0.5 10
hn-sn4-random-00022 344 344 4.5 4.5 0.125 0 1 0.7 12
hn-sn4-random-00023 20 20 2.7 2.7 0.075 0 1 0.6 9
hn-sn4-random-00024 76 76 5.4 5.4 0.150 0 1 1.7 16
hn-sn4-random-00025 – 29 – 1.7 – 0 0 0.4 10
hn-sn4-random-00026 21 21 2.3 2.3 0.064 0 1 0.6 11
hn-sn4-random-00027 18 18 2.0 2.0 0.056 0 1 0.6 9
hn-sn4-random-00028 – 0 – 0.2 – 0 0 0.0 1
hn-sn4-random-00029 – 0 – 0.2 – 0 0 0.0 1
hn-sn4-random-00030 23 23 2.2 2.2 0.060 0 1 0.3 10
hn-sn4-random-00031 – 0 – 0.2 – 0 0 0.0 1
hn-sn4-random-00032 1 400 1 400 8.1 8.1 0.224 0 1 1.0 16
hn-sn4-random-00033 5 5 2.2 2.2 0.061 0 1 0.7 11
hn-sn4-random-00034 158 158 4.5 4.5 0.124 0 1 0.4 9
hn-sn4-random-00035 7 7 2.9 2.9 0.081 0 1 0.7 11
hn-sn4-random-00036 – 0 – 0.1 – 0 0 0.0 1
hn-sn4-random-00037 1 1 1.9 1.9 0.053 0 1 0.8 9
hn-sn4-random-00038 19 19 2.8 2.8 0.078 0 1 0.6 10
hn-sn4-random-00039 81 81 3.3 3.3 0.092 0 1 0.6 13
hn-sn4-random-00040 20 20 2.3 2.3 0.064 0 1 0.9 9
hn-sn4-random-00041 – 0 – 0.3 – 0 0 0.0 1
hn-sn4-random-00042 7 7 3.5 3.5 0.097 0 1 1.1 14
hn-sn4-random-00043 – 0 – 0.2 – 0 0 0.0 1
hn-sn4-random-00044 1 1 0.6 0.6 0.017 0 1 0.2 7
hn-sn4-random-00045 5 5 2.5 2.5 0.068 0 1 0.5 11
hn-sn4-random-00046 31 31 3.8 3.8 0.104 0 1 0.7 10
hn-sn4-random-00047 1 270 1 270 8.7 8.7 0.241 0 1 1.4 14
hn-sn4-random-00048 1 1 1.8 1.8 0.050 0 1 0.8 9
hn-sn4-random-00049 1 1 1.4 1.4 0.039 0 1 0.5 9
hn-sn4-random-00050 122 122 4.2 4.2 0.117 0 1 1.9 11
hn-sn4-random-00051 83 83 2.9 2.9 0.081 0 1 0.4 12
hn-sn4-random-00052 1 1 2.2 2.2 0.061 0 1 0.8 9
hn-sn4-random-00053 15 15 2.6 2.6 0.072 0 1 0.5 9
hn-sn4-random-00054 1 1 2.3 2.3 0.064 0 1 0.9 9
hn-sn4-random-00055 21 21 2.3 2.3 0.064 0 1 0.4 9
hn-sn4-random-00056 13 13 2.6 2.6 0.072 0 1 0.7 11
l-abnahme9-00000 – 30 643 – limit – 0 0 11.2 12
l-abnahme9-00001 – 27 022 – limit 100.000 0 0 34.6 19
l-abnahme9-00002 – 34 250 – limit – 0 0 36.3 18
l-abnahme9-00003 – 41 407 – limit 100.000 0 0 19.6 19
l-abnahme9-00004 – 33 165 – limit 100.000 0 0 23.5 19
l-abnahme9-00005 – 35 402 – limit 100.000 0 0 49.6 19
l-abnahme9-00006 – 53 701 – limit – 0 0 32.4 19
l-abnahme9-00007 – 125 653 – limit – 0 0 14.2 17
l-abnahme9-00008 – 47 740 – limit – 0 0 21.7 18
l-abnahme9-00009 – 26 685 – limit – 0 0 14.9 18
l-abnahme9-00010 – 47 470 – limit 100.000 0 0 17.5 18
l-abnahme9-00011 – 41 915 – limit – 0 0 18.4 19
l-abnahme9-00012 – 53 413 – limit – 0 0 15.4 18
l-abnahme9-00013 – 47 623 – limit 100.000 0 0 23.3 19
l-abnahme9-00014 – 91 750 – limit 100.000 0 0 30.3 19
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Table B.32 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

l-abnahme9-00015 – 60 620 – limit 100.000 0 0 22.7 19
l-abnahme9-00016 – 63 595 – limit – 0 0 23.0 18
l-abnahme9-00017 – 41 106 – limit – 0 0 18.8 18
l-abnahme9-00018 – 42 960 – limit 100.000 0 0 17.2 18
l-abnahme9-00019 – 48 420 – limit – 0 0 21.0 19
l-abnahme9-00020 – 46 158 – limit 100.000 0 0 19.7 18
l-abnahme9-00021 – 19 817 – limit 100.000 0 0 21.9 19
l-abnahme9-00022 – 69 774 – limit 100.000 0 0 29.2 15
l-abnahme9-00023 – 32 454 – limit 100.000 0 0 14.1 19
l-abnahme9-00024 – 49 552 – limit – 0 0 16.4 19
l-abnahme9-00025 – 48 451 – limit 100.000 0 0 38.8 19
l-abnahme9-00026 – 45 432 – limit – 0 0 22.0 18
l-abnahme9-00027 – 73 961 – limit 100.000 0 0 17.3 19
l-abnahme9-00028 – 54 940 – limit – 0 0 21.5 19
l-abnahme9-00029 – 37 100 – limit – 0 0 10.8 12
l-abnahme9-00030 – 29 635 – limit 100.000 0 0 69.1 18
l-sn-random-00000 – 83 713 – limit 100.000 0 0 24.5 18
l-sn-random-00001 – 119 654 – limit 100.000 0 0 30.1 19
l-sn-random-00002 – 97 569 – limit 100.000 0 0 28.3 18
l-sn-random-00003 – 42 296 – limit 100.000 0 0 26.0 19
l-sn-random-00004 – 80 895 – limit 100.000 0 0 19.8 18
l-sn-random-00005 – 64 580 – limit – 0 0 24.2 18
l-sn-random-00006 – 90 407 – limit 100.000 0 0 18.5 19
l-sn-random-00007 – 120 056 – limit 100.000 0 0 17.4 19
l-sn-random-00008 – 91 973 – limit 100.000 0 0 25.1 18
l-sn-random-00009 – 56 486 – limit – 0 0 17.7 18
l-sn-random-00010 – 56 263 – limit 100.000 0 0 30.9 19
l-sn-random-00011 – 87 441 – limit 100.000 0 0 18.4 18
l-sn-random-00012 5 5 13.4 13.4 0.372 0 1 2.0 12
l-sn-random-00013 19 272 19 272 681.7 681.7 18.937 0 1 21.1 19
l-sn-random-00014 – 95 303 – limit 100.000 0 0 28.8 18
l-sn-random-00015 – 62 974 – limit 100.000 0 0 36.0 19
l-sn-random-00016 – 70 421 – limit 100.000 0 0 39.6 18
l-sn-random-00017 5 5 12.3 12.3 0.342 0 1 2.1 12
l-sn-random-00018 – 68 416 – limit 100.000 0 0 21.3 18
l-sn-random-00019 – 191 633 – limit 100.000 0 0 9.2 19
l-sn-random-00020 – 78 483 – limit 100.000 0 0 21.5 19
l-sn-random-00021 – 104 705 – limit 100.000 0 0 25.7 19
l-sn-random-00022 – 124 240 – limit 100.000 0 0 22.3 18
l-sn-random-00023 – 102 977 – limit 100.000 0 0 19.3 18
l-sn-random-00024 – 182 028 – limit 100.000 0 0 19.7 18
l-sn-random-00025 – 124 034 – limit 100.000 0 0 31.3 18
l-sn-random-00026 – 67 434 – limit 100.000 0 0 16.7 18
l-sn-random-00027 – 99 318 – limit 100.000 0 0 27.4 19
l-sn-random-00028 – 96 162 – limit 100.000 0 0 25.3 19
l-sn-random-00029 – 66 991 – limit 100.000 0 0 29.9 19
l-sn-random-00030 – 93 647 – limit 100.000 0 0 21.1 19
l-sn-random-00031 – 71 217 – limit 100.000 0 0 21.9 18
l-sn-random-00032 – 57 607 – limit 100.000 0 0 32.2 16
l-sn-random-00033 – 69 203 – limit 100.000 0 0 25.6 18
l-sn-random-00034 – 59 596 – limit 100.000 0 0 27.7 19
l-sn-random-00035 – 135 491 – limit 100.000 0 0 22.9 19
l-sn-random-00036 – 106 632 – limit 100.000 0 0 34.2 18
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Table B.32 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

l-sn-random-00037 240 240 35.2 35.2 0.978 0 1 3.1 12
l-sn-random-00038 – 0 – 1.7 – 0 0 0.0 1
l-sn-random-00039 – 0 – 1.6 – 0 0 0.0 1
l-sn-random-00040 – 0 – 2.2 – 0 0 0.0 1
l-sn-random-00041 – 129 115 – limit 100.000 0 0 34.8 19
l-sn-random-00042 – 0 – 2.1 – 0 0 0.0 1
l-sn-random-00043 – 107 231 – limit – 0 0 21.2 16
l-sn-random-00044 – 0 – 1.7 – 0 0 0.0 1
l-sn-random-00045 – 111 530 – limit 100.000 0 0 20.4 18
l-sn-random-00046 – 136 122 – limit – 0 0 16.5 19
l-sn-random-00047 – 88 644 – limit – 0 0 16.7 18
l-sn-random-00048 – 0 – 0.4 – 0 0 0.0 1
l-sn-random-00049 – 121 388 – limit – 0 0 18.4 19
l-sn-random-00050 – 176 294 – limit – 0 0 27.2 18
l-sn-random-00051 – 0 – 2.0 – 0 0 0.0 1
l-sn-random-00052 – 189 366 – limit – 0 0 26.4 19
l-sn-random-00053 – 0 – 1.7 – 0 0 0.0 1
l-sn-random-00054 – 130 766 – limit 100.000 0 0 19.0 19
l-sn-random-00055 – 67 206 – limit 100.000 0 0 18.2 19
l-sn-random-00056 – 49 359 – limit – 0 0 20.3 18
l-sn-random-00057 – 148 403 – limit – 0 0 22.6 19
l-sn-random-00058 – 91 209 – limit 100.000 0 0 17.3 19
l-sn-random-00059 – 143 094 – limit 100.000 0 0 25.1 18
l-sn-random-00060 – 137 590 – limit 100.000 0 0 40.9 18
l-sn-random-00061 – 0 – 1.9 – 0 0 0.0 1
l-sn-random-00062 – 108 374 – limit – 0 0 19.0 19
l-sn-random-00063 – 70 686 – limit – 0 0 28.4 18
l-sn-random-00064 – 105 191 – limit – 0 0 21.0 19
l-sn-random-00065 – 95 887 – limit 100.000 0 0 25.3 19
l-sn-random-00066 – 88 729 – limit 100.000 0 0 30.7 18
l-sn-random-00067 – 70 636 – limit 100.000 0 0 23.6 18
l-sn-random-00068 – 155 896 – limit – 0 0 27.5 19
l-sn-random-00069 – 66 630 – limit – 0 0 26.6 18
l-sn-random-00070 – 78 007 – limit – 0 0 28.1 18
l-sn-random-00071 – 85 922 – limit – 0 0 24.7 19
l-sn-random-00072 2 620 2 620 128.2 128.3 3.556 0 1 14.6 19
l-sn-random-00073 – 56 112 – limit – 0 0 27.6 18
l-sn-random-00074 – 56 940 – limit 100.000 0 0 18.4 19
l-sn-random-00075 – 44 423 – limit 100.000 0 0 22.9 18
l-sn-random-00076 – 80 177 – limit – 0 0 21.3 19
l-sn-random-00077 – 88 695 – limit 100.000 0 0 25.5 18
l-sn-random-00078 – 64 853 – limit 100.000 0 0 21.2 19
l-sn-random-00079 – 68 936 – limit 100.000 0 0 37.6 18
l-sn-random-00080 – 85 854 – limit – 0 0 20.5 18
l-sn-random-00081 – 149 629 – limit 100.000 0 0 21.9 18
l-sn-random-00082 – 66 844 – limit 100.000 0 0 13.8 18
l-sn-random-00083 – 142 532 – limit 100.000 0 0 25.9 19
l-sn-random-00084 – 100 726 – limit 100.000 0 0 19.0 18
l-sn-random-00085 – 38 211 – limit – 0 0 17.5 18
l-sn-random-00086 – 52 238 – limit – 0 0 15.9 18
l-sn-random-00087 – 100 188 – limit 100.000 0 0 21.5 19
l-sn-random-00088 – 85 140 – limit 100.000 0 0 17.8 19
l-sn-random-00089 – 76 892 – limit 100.000 0 0 27.6 19
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Table B.32 continued

Nodes Time [s] Heuristics

Name First Total First Total Prim Int LP Sols Sols Time #

l-sn-random-00090 – 47 198 – limit 100.000 0 0 16.7 18
l-sn-random-00091 – 83 691 – limit 100.000 0 0 15.7 17
l-sn-random-00092 – 119 988 – limit – 0 0 33.3 19
l-sn-random-00093 680 680 60.3 60.4 1.677 0 1 13.2 18
l-sn-random-00094 – 136 334 – limit 100.000 0 0 29.8 18
l-sn-random-00095 – 73 965 – limit – 0 0 19.6 19
l-sn-random-00096 – 94 047 – limit 100.000 0 0 20.3 18
l-sn-random-00097 – 62 038 – limit 100.000 0 0 22.0 18
l-sn-random-00098 37 37 30.2 30.2 0.839 0 1 9.4 18
l-sn-random-00099 – 73 499 – limit 100.000 0 0 20.0 19
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Table B.33.: Performance of SCIP 3.0.2, primal heuristics deactivated, on
the ForNe test set

Nodes Time

Name First Total First Total Prim Int LP Sols

hn-abnahme9-00000 416 349 416 349 1837.4 1837.9 51.052 1
hn-abnahme9-00001 347 033 347 033 1261.4 1262.7 35.076 1
hn-abnahme9-00002 23 588 23 588 101.7 101.8 2.828 1
hn-abnahme9-00003 189 189 7.4 7.4 0.206 1
hn-abnahme9-00004 1 097 1 097 8.3 8.3 0.230 1
hn-abnahme9-00005 52 417 52 417 278.2 278.4 7.722 1
hn-abnahme9-00006 28 389 28 389 77.3 77.4 2.149 1
hn-abnahme9-00007 338 338 4.4 4.5 0.122 1
hn-abnahme9-00008 179 455 179 455 657.5 658.7 18.297 1
hn-abnahme9-00009 – 599 862 – limit 100.000 0
hn-abnahme9-00010 3 111 3 111 20.8 20.8 0.578 1
hn-abnahme9-00011 11 125 11 125 45.4 45.5 1.263 1
hn-abnahme9-00012 2 633 2 633 11.4 11.4 0.317 1
hn-abnahme9-00013 2 012 2 012 5.7 5.7 0.158 1
hn-abnahme9-00014 2 525 2 525 6.4 6.4 0.177 1
hn-abnahme9-00015 – 288 – 5.7 – 0
hn-abnahme9-00016 1 195 1 195 9.5 9.5 0.264 1
hn-abnahme9-00017 8 026 8 026 34.7 34.7 0.964 1
hn-abnahme9-00018 – 1 398 268 – limit 100.000 0
hn-abnahme9-00019 – 655 748 – limit 100.000 0
hn-abnahme9-00021 78 937 78 937 374.1 374.5 10.389 1
hn-abnahme9-00022 3 143 3 143 20.3 20.4 0.566 1
hn-abnahme9-00023 7 564 7 564 43.2 43.2 1.200 1
hn-abnahme9-00024 2 2 22.6 22.6 0.628 1
hn-abnahme9-00025 605 605 4.0 4.0 0.111 1
hn-abnahme9-00026 – 1 455 639 – limit 100.000 0
hn-abnahme9-00027 36 916 36 916 132.7 132.8 3.690 1
hn-abnahme9-00028 – 682 209 – limit 100.000 0
hn-abnahme9-00029 251 251 4.0 4.0 0.110 1
hn-abnahme9-00030 – 725 442 – limit 100.000 0
hn-abnahme9-00031 89 528 89 528 449.4 449.9 12.498 1
hn-abnahme9-00032 23 138 23 138 166.0 166.2 4.611 1
hn-abnahme9-00033 – 1 051 081 – limit 100.000 0
hn-abnahme9-00034 1 219 210 1 219 210 3208.5 3212.3 89.222 1
hn-abnahme9-00035 1 391 1 391 4.9 4.9 0.136 1
hn-abnahme9-00036 63 594 63 594 184.6 184.9 5.137 1
hn-abnahme9-00037 326 104 326 104 1226.7 1228.1 34.111 1
hn-abnahme9-00038 27 570 27 570 154.0 154.1 4.278 1
hn-abnahme9-00039 – 1 035 523 – limit 100.000 0
hn-abnahme9-00040 – 744 373 – limit 100.000 0
hn-abnahme9-00041 223 481 223 481 525.1 526.0 14.611 1
hn-abnahme9-00042 – 795 766 – limit 100.000 0
hn-frei-corr-00000 45 187 45 187 182.2 182.2 5.056 1
hn-frei-corr-00001 1 559 1 559 7.8 7.8 0.217 1
hn-frei-corr-00002 – 0 – 0.1 – 0
hn-frei-corr-00003 – 0 – 0.1 – 0
hn-frei-corr-00004 491 491 3.2 3.2 0.089 1
hn-frei-corr-00005 852 852 4.5 4.5 0.125 1
hn-frei-corr-00006 – 247 – 2.7 – 0
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Table B.33 continued

Nodes Time

Name First Total First Total Prim Int LP Sols

hn-frei-corr-00007 245 386 245 386 554.0 555.1 15.417 1
hn-frei-corr-00008 – 703 – 4.1 – 0
hn-frei-corr-00009 – 1 514 650 – limit 100.000 0
hn-frei-corr-00010 3 718 3 718 9.7 9.7 0.269 1
hn-frei-corr-00011 129 690 129 690 511.1 511.2 14.194 1
hn-frei-corr-00012 997 997 4.9 4.9 0.136 1
hn-frei-corr-00013 – 53 – 2.2 – 0
hn-frei-corr-00014 315 315 2.3 2.3 0.063 1
hn-frei-corr-00015 – 19 – 1.5 – 0
hn-frei-corr-00016 1 544 1 544 8.4 8.4 0.233 1
hn-frei-corr-00017 – 0 – 0.2 – 0
hn-frei-corr-00018 4 210 4 210 15.4 15.4 0.428 1
hn-frei-corr-00019 – 479 – 3.3 – 0
hn-frei-corr-00020 – 459 – 3.5 – 0
hn-frei-corr-00021 – 387 – 3.8 – 0
hn-frei-corr-00022 – 0 – 1.5 – 0
hn-frei-corr-00023 387 387 2.8 2.8 0.076 1
hn-frei-corr-00024 – 159 – 2.8 – 0
hn-frei-corr-00025 880 880 5.2 5.2 0.144 1
hn-frei-corr-00026 – 251 – 3.1 – 0
hn-frei-corr-00027 1 274 1 274 8.2 8.2 0.226 1
hn-frei-corr-00028 2 170 2 170 9.9 9.9 0.275 1
hn-frei-corr-00029 – 0 – 0.1 – 0
hn-frei-corr-00030 – 90 – 1.9 – 0
hn-frei-corr-00031 1 536 1 536 5.3 5.3 0.146 1
hn-frei-corr-00032 – 256 – 3.1 – 0
hn-frei-corr-00033 – 134 – 2.0 – 0
hn-frei-corr-00034 511 092 511 092 1515.3 1518.9 42.193 1
hn-frei-corr-00035 – 524 – 4.6 – 0
hn-frei-corr-00036 85 538 85 538 302.9 303.4 8.417 1
hn-frei-corr-00037 483 483 3.0 3.0 0.083 1
hn-frei-corr-00038 61 61 2.0 2.0 0.056 1
hn-frei-corr-00039 – 0 – 0.2 – 0
hn-frei-corr-00040 – 0 – 1.6 – 0
hn-frei-corr-00041 – 0 – 0.2 – 0
hn-frei-corr-00042 3 926 3 926 10.2 10.2 0.282 1
hn-frei-corr-00043 – 185 – 2.7 – 0
hn-frei-corr-00044 9 205 9 205 35.7 35.7 0.992 1
hn-frei-corr-00045 1 678 1 678 5.8 5.9 0.163 1
hn-frei-corr-00046 – 696 – 4.8 – 0
hn-frei-corr-00047 849 849 3.4 3.4 0.094 1
hn-frei-corr-00048 – 579 – 4.0 – 0
hn-frei-corr-00049 947 947 5.0 5.0 0.139 1
hn-frei-corr-00050 – 21 – 1.5 – 0
hn-frei-corr-00051 – 414 – 38.8 – 0
hn-frei-corr-00052 – 481 – 4.0 – 0
hn-frei-corr-00053 – 30 – 1.9 – 0
hn-frei-corr-00054 832 832 3.4 3.4 0.093 1
hn-frei-corr-00055 64 758 64 758 197.4 197.8 5.495 1
hn-frei-corr-00056 – 529 – 3.8 – 0
hn-frei-corr-00057 – 403 – 3.1 – 0
hn-frei-corr-00058 – 0 – 0.0 – 0
hn-frei-corr-00059 – 255 – 2.4 – 0
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hn-frei-corr-00060 – 74 568 – 265.3 – 0
hn-frei-corr-00061 – 0 – 0.2 – 0
hn-frei-corr-00062 – 1 867 – 8.6 – 0
hn-frei-corr-00063 – 0 – 0.1 – 0
hn-frei-corr-00064 – 189 – 2.4 – 0
hn-frei-corr-00065 – 0 – 0.1 – 0
hn-frei-corr-00066 – 0 – 0.2 – 0
hn-frei-corr-00067 – 0 – 0.1 – 0
hn-frei-corr-00068 – 0 – 0.1 – 0
hn-frei-corr-00069 – 0 – 1.6 – 0
hn-frei-corr-00070 – 0 – 1.8 – 0
hn-frei-corr-00071 – 13 185 – 59.3 – 0
hn-frei-corr-00072 9 9 3.6 3.6 0.100 1
hn-frei-corr-00073 – 249 – 3.2 – 0
hn-frei-corr-00074 985 985 6.7 6.7 0.185 1
hn-frei-corr-00075 2 278 2 278 8.2 8.2 0.227 1
hn-frei-corr-00076 – 84 – 2.1 – 0
hn-frei-corr-00077 9 9 2.3 2.3 0.064 1
hn-frei-corr-00078 – 168 657 – 751.0 – 0
hn-frei-corr-00079 – 116 – 1.8 – 0
hn-frei-corr-00080 – 228 – 2.5 – 0
hn-frei-corr-00081 52 924 52 924 169.4 169.6 4.711 1
hn-frei-corr-00082 – 0 – 1.7 – 0
hn-frei-corr-00083 391 391 2.5 2.5 0.069 1
hn-frei-corr-00084 866 866 5.5 5.5 0.153 1
hn-frei-corr-00085 293 797 293 797 818.4 819.9 22.775 1
hn-frei-corr-00086 – 723 – 4.1 – 0
hn-frei-corr-00087 – 116 – 2.0 – 0
hn-frei-corr-00088 24 087 24 087 44.7 44.8 1.243 1
hn-frei-corr-00089 6 473 6 473 30.1 30.1 0.836 1
hn-frei-corr-00090 – 105 – 2.4 – 0
hn-frei-corr-00091 – 42 – 1.6 – 0
hn-frei-corr-00092 – 498 – 4.2 – 0
hn-frei-corr-00093 – 69 – 2.1 – 0
hn-frei-corr-00094 13 869 13 869 47.2 47.3 1.313 1
hn-frei-corr-00095 640 640 3.3 3.3 0.091 1
hn-frei-corr-00096 – 308 – 2.8 – 0
hn-frei-corr-00097 1 108 1 108 3.7 3.7 0.102 1
hn-frei-corr-00098 1 936 1 936 6.4 6.4 0.178 1
hn-frei-corr-00099 39 005 39 005 73.1 73.2 2.033 1
hn-frei-corr95-00000 655 655 2.3 2.3 0.063 1
hn-frei-corr95-00001 647 647 3.2 3.2 0.089 1
hn-frei-corr95-00002 – 0 – 0.2 – 0
hn-frei-corr95-00003 – 0 – 0.2 – 0
hn-frei-corr95-00004 2 609 2 609 8.5 8.5 0.236 1
hn-frei-corr95-00005 300 815 300 815 1032.1 1034.1 28.722 1
hn-frei-corr95-00006 206 206 2.0 2.0 0.056 1
hn-frei-corr95-00007 12 322 12 322 25.4 25.5 0.708 1
hn-frei-corr95-00008 24 164 24 164 78.2 78.3 2.175 1
hn-frei-corr95-00009 – 2 027 300 – limit 100.000 0
hn-frei-corr95-00010 201 201 2.4 2.4 0.066 1
hn-frei-corr95-00011 57 333 57 333 217.7 218.0 6.055 1
hn-frei-corr95-00012 2 669 2 669 10.4 10.4 0.289 1
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hn-frei-corr95-00013 221 221 2.2 2.2 0.061 1
hn-frei-corr95-00014 563 563 2.6 2.6 0.072 1
hn-frei-corr95-00015 1 107 1 107 4.0 4.0 0.111 1
hn-frei-corr95-00016 13 663 13 663 31.1 31.2 0.866 1
hn-frei-corr95-00017 – 0 – 0.2 – 0
hn-frei-corr95-00018 805 805 3.4 3.4 0.093 1
hn-frei-corr95-00019 1 007 1 007 3.8 3.8 0.104 1
hn-frei-corr95-00020 124 124 1.6 1.6 0.044 1
hn-frei-corr95-00021 578 578 3.4 3.4 0.094 1
hn-frei-corr95-00022 3 412 3 412 28.5 28.5 0.792 1
hn-frei-corr95-00023 605 605 3.2 3.2 0.089 1
hn-frei-corr95-00024 128 128 1.8 1.9 0.050 1
hn-frei-corr95-00025 378 378 3.1 3.1 0.086 1
hn-frei-corr95-00026 6 689 6 689 12.7 12.7 0.353 1
hn-frei-corr95-00027 750 750 3.5 3.5 0.097 1
hn-frei-corr95-00028 1 113 1 113 22.7 22.7 0.630 1
hn-frei-corr95-00029 – 0 – 0.2 – 0
hn-frei-corr95-00030 78 131 78 131 224.0 224.3 6.222 1
hn-frei-corr95-00031 21 815 21 815 42.0 42.0 1.167 1
hn-frei-corr95-00032 784 784 3.2 3.2 0.089 1
hn-frei-corr95-00033 39 265 39 265 95.2 95.4 2.649 1
hn-frei-corr95-00034 4 231 4 231 11.5 11.6 0.321 1
hn-frei-corr95-00035 608 608 3.3 3.3 0.092 1
hn-frei-corr95-00036 1 073 1 073 5.2 5.2 0.144 1
hn-frei-corr95-00037 198 198 2.6 2.6 0.072 1
hn-frei-corr95-00038 162 162 2.3 2.3 0.064 1
hn-frei-corr95-00039 – 0 – 1.3 – 0
hn-frei-corr95-00040 – 0 – 1.7 – 0
hn-frei-corr95-00041 – 0 – 1.0 – 0
hn-frei-corr95-00042 230 230 1.6 1.6 0.044 1
hn-frei-corr95-00043 3 616 3 616 12.5 12.6 0.349 1
hn-frei-corr95-00044 1 343 1 343 6.5 6.5 0.180 1
hn-frei-corr95-00045 200 200 2.1 2.1 0.058 1
hn-frei-corr95-00046 44 900 44 900 166.3 166.6 4.627 1
hn-frei-corr95-00047 841 841 4.8 4.8 0.133 1
hn-frei-corr95-00048 333 333 2.9 2.9 0.080 1
hn-frei-corr95-00049 174 816 174 816 267.2 267.5 7.431 1
hn-frei-corr95-00050 2 284 2 284 7.6 7.6 0.211 1
hn-frei-corr95-00051 12 237 12 237 69.4 69.4 1.928 1
hn-frei-corr95-00052 3 503 3 503 8.4 8.5 0.235 1
hn-frei-corr95-00053 529 529 3.2 3.2 0.088 1
hn-frei-corr95-00054 3 859 3 859 9.4 9.4 0.261 1
hn-frei-corr95-00055 75 75 1.4 1.4 0.039 1
hn-frei-corr95-00056 1 147 1 147 4.5 4.5 0.124 1
hn-frei-corr95-00057 6 335 6 335 12.1 12.1 0.336 1
hn-frei-corr95-00058 – 0 – 0.0 – 0
hn-frei-corr95-00059 6 076 6 076 19.2 19.3 0.535 1
hn-frei-corr95-00060 800 800 3.4 3.4 0.094 1
hn-frei-corr95-00061 – 0 – 0.2 – 0
hn-frei-corr95-00062 1 614 1 614 8.3 8.3 0.230 1
hn-frei-corr95-00063 – 0 – 0.1 – 0
hn-frei-corr95-00064 1 250 1 250 7.3 7.3 0.203 1
hn-frei-corr95-00065 – 0 – 0.1 – 0
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hn-frei-corr95-00066 – 0 – 0.2 – 0
hn-frei-corr95-00067 – 0 – 0.5 – 0
hn-frei-corr95-00068 – 0 – 0.1 – 0
hn-frei-corr95-00069 – 0 – 1.6 – 0
hn-frei-corr95-00070 – 0 – 1.7 – 0
hn-frei-corr95-00071 1 351 1 351 5.1 5.1 0.142 1
hn-frei-corr95-00072 9 9 9.8 9.8 0.271 1
hn-frei-corr95-00073 3 065 3 065 6.8 6.8 0.189 1
hn-frei-corr95-00074 20 550 20 550 70.8 70.9 1.968 1
hn-frei-corr95-00075 3 137 3 137 9.3 9.3 0.258 1
hn-frei-corr95-00076 735 735 3.9 3.9 0.108 1
hn-frei-corr95-00077 285 285 13.6 13.6 0.377 1
hn-frei-corr95-00078 5 139 5 139 39.4 39.4 1.094 1
hn-frei-corr95-00079 26 839 26 839 57.2 57.2 1.589 1
hn-frei-corr95-00080 539 539 3.6 3.6 0.100 1
hn-frei-corr95-00081 739 739 3.4 3.4 0.094 1
hn-frei-corr95-00082 – 0 – 1.7 – 0
hn-frei-corr95-00083 35 927 35 927 139.2 139.4 3.861 1
hn-frei-corr95-00084 116 043 116 043 180.7 180.9 5.025 1
hn-frei-corr95-00085 61 298 61 298 113.7 113.7 3.159 1
hn-frei-corr95-00086 256 256 2.1 2.1 0.058 1
hn-frei-corr95-00087 4 116 4 116 12.4 12.4 0.344 1
hn-frei-corr95-00088 55 877 55 877 82.1 82.2 2.283 1
hn-frei-corr95-00089 32 831 32 831 70.3 70.4 1.955 1
hn-frei-corr95-00090 1 504 1 504 4.6 4.6 0.128 1
hn-frei-corr95-00091 84 257 84 257 211.8 212.1 5.889 1
hn-frei-corr95-00092 109 533 109 533 309.8 310.1 8.611 1
hn-frei-corr95-00093 1 426 1 426 5.3 5.3 0.146 1
hn-frei-corr95-00094 10 009 10 009 26.0 26.1 0.724 1
hn-frei-corr95-00095 46 710 46 710 172.5 172.8 4.799 1
hn-frei-corr95-00096 19 824 19 824 39.7 39.8 1.106 1
hn-frei-corr95-00097 3 919 3 919 9.2 9.2 0.256 1
hn-frei-corr95-00098 175 042 175 042 284.1 284.5 7.903 1
hn-frei-corr95-00099 – 2 311 864 – limit 100.000 0
hn-sn4-random-00000 1 506 1 506 10.3 10.3 0.286 1
hn-sn4-random-00001 2 552 2 552 8.5 8.5 0.236 1
hn-sn4-random-00002 16 304 16 304 39.5 39.5 1.097 1
hn-sn4-random-00003 688 688 4.6 4.6 0.128 1
hn-sn4-random-00004 – 1 159 – 9.7 – 0
hn-sn4-random-00005 – 0 – 0.3 – 0
hn-sn4-random-00006 7 730 7 730 18.3 18.3 0.508 1
hn-sn4-random-00007 1 776 1 776 7.2 7.2 0.199 1
hn-sn4-random-00008 15 571 15 571 45.6 45.6 1.267 1
hn-sn4-random-00009 1 633 1 633 8.0 8.0 0.221 1
hn-sn4-random-00010 3 645 3 645 14.8 14.8 0.411 1
hn-sn4-random-00011 – 1 255 303 – limit 100.000 0
hn-sn4-random-00012 19 882 19 882 57.5 57.5 1.597 1
hn-sn4-random-00013 10 359 10 359 45.1 45.1 1.253 1
hn-sn4-random-00014 7 896 7 896 29.0 29.0 0.806 1
hn-sn4-random-00015 1 074 032 1 074 032 1496.5 1497.2 41.583 1
hn-sn4-random-00016 90 047 90 047 262.3 262.6 7.295 1
hn-sn4-random-00017 1 457 1 457 6.6 6.6 0.182 1
hn-sn4-random-00018 – 0 – 0.3 – 0
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hn-sn4-random-00019 6 363 6 363 16.6 16.6 0.460 1
hn-sn4-random-00020 1 914 1 914 8.0 8.0 0.222 1
hn-sn4-random-00021 2 024 2 024 8.7 8.7 0.241 1
hn-sn4-random-00022 8 012 8 012 43.7 43.7 1.214 1
hn-sn4-random-00023 2 907 2 907 9.2 9.2 0.256 1
hn-sn4-random-00024 1 204 1 204 8.3 8.3 0.230 1
hn-sn4-random-00025 – 0 – 2.7 – 0
hn-sn4-random-00026 2 884 2 884 10.0 10.0 0.278 1
hn-sn4-random-00027 – 3 065 510 – limit 100.000 0
hn-sn4-random-00028 – 0 – 0.3 – 0
hn-sn4-random-00029 – 0 – 0.3 – 0
hn-sn4-random-00030 1 878 1 878 8.1 8.1 0.225 1
hn-sn4-random-00031 – 0 – 0.2 – 0
hn-sn4-random-00032 539 539 4.3 4.3 0.119 1
hn-sn4-random-00033 3 588 3 588 10.4 10.4 0.289 1
hn-sn4-random-00034 1 000 1 000 6.6 6.6 0.183 1
hn-sn4-random-00035 1 737 1 737 7.2 7.2 0.199 1
hn-sn4-random-00036 – 0 – 0.1 – 0
hn-sn4-random-00037 62 412 62 412 138.0 138.1 3.833 1
hn-sn4-random-00038 956 763 956 763 1805.3 1807.3 50.194 1
hn-sn4-random-00039 26 064 26 064 46.9 47.0 1.305 1
hn-sn4-random-00040 33 701 33 701 68.0 68.1 1.891 1
hn-sn4-random-00041 – 0 – 0.3 – 0
hn-sn4-random-00042 175 175 5.1 5.1 0.141 1
hn-sn4-random-00043 – 0 – 0.2 – 0
hn-sn4-random-00044 747 461 747 461 1768.9 1769.6 49.155 1
hn-sn4-random-00045 – 1 566 651 – limit 100.000 0
hn-sn4-random-00046 1 431 1 431 8.0 8.0 0.221 1
hn-sn4-random-00047 6 258 6 258 22.8 22.8 0.632 1
hn-sn4-random-00048 31 578 31 578 53.4 53.5 1.485 1
hn-sn4-random-00049 51 805 51 805 125.9 126.0 3.500 1
hn-sn4-random-00050 29 453 29 453 80.2 80.2 2.228 1
hn-sn4-random-00051 127 315 127 315 262.1 262.3 7.278 1
hn-sn4-random-00052 622 412 622 412 1635.4 1638.4 45.500 1
hn-sn4-random-00053 53 341 53 341 139.6 139.8 3.883 1
hn-sn4-random-00054 47 074 47 074 115.1 115.3 3.194 1
hn-sn4-random-00055 2 2 12.4 12.4 0.344 1
hn-sn4-random-00056 1 590 1 590 9.7 9.7 0.269 1
l-abnahme9-00000 – 46 488 – limit – 0
l-abnahme9-00001 – 10 770 – limit 100.000 0
l-abnahme9-00002 – 10 814 – limit – 0
l-abnahme9-00003 – 35 638 – limit 100.000 0
l-abnahme9-00004 – 51 169 – limit 100.000 0
l-abnahme9-00005 – 22 517 – limit 100.000 0
l-abnahme9-00006 – 61 389 – limit – 0
l-abnahme9-00007 – 50 635 – limit – 0
l-abnahme9-00008 – 49 823 – limit – 0
l-abnahme9-00009 – 42 114 – limit – 0
l-abnahme9-00010 – 29 467 – limit 100.000 0
l-abnahme9-00011 – 18 305 – limit – 0
l-abnahme9-00012 – 37 933 – limit – 0
l-abnahme9-00013 – 17 767 – limit 100.000 0
l-abnahme9-00014 – 43 623 – limit 100.000 0
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l-abnahme9-00015 – 48 847 – limit 100.000 0
l-abnahme9-00016 – 39 225 – limit – 0
l-abnahme9-00017 – 25 667 – limit – 0
l-abnahme9-00018 – 28 457 – limit 100.000 0
l-abnahme9-00019 – 43 878 – limit – 0
l-abnahme9-00020 – 44 173 – limit 100.000 0
l-abnahme9-00021 – 72 050 – limit 100.000 0
l-abnahme9-00022 – 83 779 – limit 100.000 0
l-abnahme9-00023 – 81 468 – limit 100.000 0
l-abnahme9-00024 – 57 905 – limit – 0
l-abnahme9-00025 – 48 821 – limit 100.000 0
l-abnahme9-00026 – 34 734 – limit – 0
l-abnahme9-00027 – 64 996 – limit 100.000 0
l-abnahme9-00028 – 68 541 – limit – 0
l-abnahme9-00029 – 33 146 – limit – 0
l-abnahme9-00030 – 23 523 – limit 100.000 0
l-sn-random-00000 – 133 371 – limit 100.000 0
l-sn-random-00001 – 52 085 – limit 100.000 0
l-sn-random-00002 – 104 077 – limit 100.000 0
l-sn-random-00003 – 60 708 – limit 100.000 0
l-sn-random-00004 – 59 429 – limit 100.000 0
l-sn-random-00005 – 63 739 – limit – 0
l-sn-random-00006 – 86 584 – limit 100.000 0
l-sn-random-00007 – 50 018 – limit 100.000 0
l-sn-random-00008 – 54 782 – limit 100.000 0
l-sn-random-00009 – 64 447 – limit – 0
l-sn-random-00010 – 44 437 – limit 100.000 0
l-sn-random-00011 – 59 134 – limit 100.000 0
l-sn-random-00012 – 44 528 – limit 100.000 0
l-sn-random-00013 – 92 293 – limit 100.000 0
l-sn-random-00014 – 57 734 – limit 100.000 0
l-sn-random-00015 – 86 288 – limit 100.000 0
l-sn-random-00016 – 69 319 – limit 100.000 0
l-sn-random-00017 – 60 220 – limit 100.000 0
l-sn-random-00018 – 58 247 – limit 100.000 0
l-sn-random-00019 – 128 670 – limit 100.000 0
l-sn-random-00020 – 45 114 – limit 100.000 0
l-sn-random-00021 – 48 463 – limit 100.000 0
l-sn-random-00022 – 67 045 – limit 100.000 0
l-sn-random-00023 – 59 338 – limit 100.000 0
l-sn-random-00024 – 77 530 – limit 100.000 0
l-sn-random-00025 – 80 683 – limit 100.000 0
l-sn-random-00026 – 119 733 – limit 100.000 0
l-sn-random-00027 – 79 977 – limit 100.000 0
l-sn-random-00028 – 44 351 – limit 100.000 0
l-sn-random-00029 – 66 908 – limit 100.000 0
l-sn-random-00030 – 51 356 – limit 100.000 0
l-sn-random-00031 – 39 242 – limit 100.000 0
l-sn-random-00032 – 135 555 – limit 100.000 0
l-sn-random-00033 – 93 608 – limit 100.000 0
l-sn-random-00034 – 85 821 – limit 100.000 0
l-sn-random-00035 – 71 191 – limit 100.000 0
l-sn-random-00036 – 90 446 – limit 100.000 0
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l-sn-random-00037 – 66 014 – limit 100.000 0
l-sn-random-00038 – 0 – 1.6 – 0
l-sn-random-00039 – 0 – 1.7 – 0
l-sn-random-00040 – 0 – 2.0 – 0
l-sn-random-00041 – 89 709 – limit 100.000 0
l-sn-random-00042 – 0 – 2.0 – 0
l-sn-random-00043 – 145 985 – limit – 0
l-sn-random-00044 – 0 – 1.6 – 0
l-sn-random-00045 – 95 208 – limit 100.000 0
l-sn-random-00046 – 76 254 – limit – 0
l-sn-random-00047 – 107 638 – limit – 0
l-sn-random-00048 – 0 – 0.3 – 0
l-sn-random-00049 – 50 669 – limit – 0
l-sn-random-00050 – 95 320 – limit – 0
l-sn-random-00051 – 0 – 1.7 – 0
l-sn-random-00052 – 70 025 – limit – 0
l-sn-random-00053 – 0 – 1.6 – 0
l-sn-random-00054 – 191 399 – limit 100.000 0
l-sn-random-00055 – 72 223 – limit 100.000 0
l-sn-random-00056 – 107 842 – limit – 0
l-sn-random-00057 – 66 859 – limit – 0
l-sn-random-00058 – 81 691 – limit 100.000 0
l-sn-random-00059 – 101 742 – limit 100.000 0
l-sn-random-00060 – 44 677 – limit 100.000 0
l-sn-random-00061 – 0 – 1.9 – 0
l-sn-random-00062 – 173 883 – limit – 0
l-sn-random-00063 – 36 866 – limit – 0
l-sn-random-00064 – 123 562 – limit – 0
l-sn-random-00065 – 33 205 – limit 100.000 0
l-sn-random-00066 – 55 523 – limit 100.000 0
l-sn-random-00067 – 100 530 – limit 100.000 0
l-sn-random-00068 – 72 457 – limit – 0
l-sn-random-00069 – 62 380 – limit – 0
l-sn-random-00070 – 51 814 – limit – 0
l-sn-random-00071 – 66 077 – limit – 0
l-sn-random-00072 – 53 841 – limit 100.000 0
l-sn-random-00073 – 37 474 – limit – 0
l-sn-random-00074 – 81 735 – limit 100.000 0
l-sn-random-00075 – 40 036 – limit 100.000 0
l-sn-random-00076 – 82 597 – limit – 0
l-sn-random-00077 – 59 724 – limit 100.000 0
l-sn-random-00078 – 72 659 – limit 100.000 0
l-sn-random-00079 – 55 891 – limit 100.000 0
l-sn-random-00080 – 91 603 – limit – 0
l-sn-random-00081 – 43 201 – limit 100.000 0
l-sn-random-00082 – 59 181 – limit 100.000 0
l-sn-random-00083 – 81 709 – limit 100.000 0
l-sn-random-00084 – 64 192 – limit 100.000 0
l-sn-random-00085 – 72 169 – limit – 0
l-sn-random-00086 – 73 938 – limit – 0
l-sn-random-00087 – 68 885 – limit 100.000 0
l-sn-random-00088 – 86 475 – limit 100.000 0
l-sn-random-00089 – 61 684 – limit 100.000 0
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l-sn-random-00090 – 43 568 – limit 100.000 0
l-sn-random-00091 – 74 390 – limit 100.000 0
l-sn-random-00092 – 87 190 – limit – 0
l-sn-random-00093 – 65 523 – limit 100.000 0
l-sn-random-00094 – 78 112 – limit 100.000 0
l-sn-random-00095 – 28 613 – 1865.5 – 0
l-sn-random-00096 – 88 533 – limit 100.000 0
l-sn-random-00097 – 55 154 – limit 100.000 0
l-sn-random-00098 – 54 135 – limit 100.000 0
l-sn-random-00099 – 51 206 – limit 100.000 0




	Introduction
	Concepts
	Mixed integer nonlinear programming
	Algorithms and global solvers for MINLP
	Heuristic methods in MINLP

	Measuring the impact of primal heuristics
	Introduction
	Trading off speed against solution quality
	The primal integral
	Computational experiments
	Variants and extensions
	Conclusion

	Rounding and propagation heuristics for MIP
	Introduction
	Rounding and improvement heuristics
	Rounding heuristics
	Improvement heuristics

	Domain propagation for MIP
	Shift-And-Propagate
	Computational experiments
	Conclusion

	Feasibility Pump(s)
	Introduction
	Feasibility pumps for MIP
	Feasibility pumps for MINLP
	New tricks for a nonconvex objective feasibility pump
	Computational experiments
	Conclusion

	Large Neighborhood Search: From MIP to MINLP
	Introduction
	Large neighborhood search for MIP
	LNS for other problem classes
	Two variants of a generalization
	Computational experiments
	SCIP vs. LocalSolver
	Conclusion

	RENS: the optimal rounding
	Introduction
	A scheme for an LNS rounding heuristic
	Design and implementation details
	Experimental setup
	Computational experiments
	Conclusion

	Undercover
	Introduction
	A generic algorithm
	Finding minimum covers
	Fix-and-propagate and conflict learning
	The complete algorithm
	Computational experiments
	Variants
	Conclusion

	Rapid Learning
	Introduction
	Conflict learning in MIP
	Rapid Learning for integer programs
	Computational results
	Conclusion

	Cloud Branching
	Introduction
	Branching heuristics for MIP
	Branching on variables
	Branching on general disjunctions

	A cloud of solutions
	Pseudocost Branching with a cloud
	Full strong branching with a cloud
	Computational experiments
	Conclusion

	Computational results
	Test sets and experimental setup
	Computational results for academic test sets
	Computational results for industrial test sets
	All instances grouped by complexity
	Conclusion

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Notation
	Tables

