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Fare Planning for Public Transport∗

Ralf Borndörfer Marika Neumann Marc E. Pfetsch

Abstract

In this paper we introduce the fare planning problem for public
transport which consists in designing a system of fares maximizing
revenue. We propose a new simple general model for this problem.
It is based on a demand function and constraints for the different
fares. The constraints define the structure of the fare system, e.g.,
distance dependent fares or zone fares. We discuss a simple example
with a quadratic demand function and distance dependent fares. Then
we introduce a more realistic discrete choice model in which passen-
gers choose between different alternatives depending on the number
of trips per month. We demonstrate the examples by computational
experiments.

1 Introduction

In public transport, fares are among the most important factors that in-
fluence the number of passengers and with it the revenue. Especially in
local public transport, there are several ticket fares that can be individually
adjusted, e.g., fares for single tickets, monthly tickets, distance dependent
tickets, etc. From the viewpoint of a public transport company or transit
authority it would therefore be interesting to optimize the system of fares
such that its revenue is maximized. Since public transport companies of-
ten work at deficit, the objective is then to reduce the deficit as much as
possible.

Of course, in many countries the problem to design fares is inherently
political, limiting the degree of freedom in planning. In reality, fares are
often more the outcome of negotiations than really planned. Nevertheless,
it would be useful to provide the planner with mathematical programming
models that support his or her decision. This paper is meant as a first step
in this direction.

We propose to consider the fare planning problem (FPP) in public trans-
port which consists in designing a fare system such that revenue is maxi-
mized. A fare system consists of several prices for different types of tickets.

∗Supported by the DFG Research Center Matheon“Mathematics for key technologies”
Address of the authors: Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7,
14195 Berlin, Germany; Email: {borndoerfer, marika.neumann, pfetsch}@zib.de
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Given a fare system, the revenue is given by the fares times the number
of passengers using each ticket type in this situation. Our fundamental
assumption is that the number of passengers in dependence on the fare
can be expressed by a demand function. This requires that passengers act
rationally and have full knowledge of the all alternatives. In this situation
the demand function will be non-increasing: the higher the fare, the lower
the number of passengers willing to use public transport. We note, however,
that it it is hard to estimate a demand function which describes reality with
acceptable quality; see the discussion in Section 2.

The fare planning problem and related problems have received little at-
tention in the operations research literature up to now. To our knowledge
there is no publication considering a mathematical optimization model for
this problem. On the other hand, demand functions are well established in
economics and the public transport literature [11]. Furthermore, the geomet-
ric or structural design of fare zone systems has been treated by Hamacher
and Schöbel [7, 8].

In this paper, we propose a simple general mathematical programming
model for FPP, see Section 3. The model allows for a general coupling of
individual fares of passengers to create a complete fare system.

In a first “textbook” example in Section 5, we use a simple quadratic
demand function and only one ticket type. The fare consists of a part
proportional to the traveled distance plus a basic fare. Similar systems are
typically used in public rail transport. Such models may also become more
interesting for local public transport systems in the future, once electronic
tickets will be available. To illustrate our approach towards FPP, we then
optimize the distance dependent fare and basic fare in order to maximize
revenue and provide computational experiments.

In Section 6 we propose the usage of more realistic demand functions
based on a discrete choice model. We introduce a particular model, where
passengers can choose between three different travel alternatives depending
on the number of trips within a given time horizon. The alternatives are
a standard ticket, a reduced ticket for which a basic fare has to be paid
once, and car travel. With this model we then optimize fares for the public
transport alternatives and provide computational experiments.

The computational experiments are performed on data for the intercity
network of the Netherlands. The data are relatively far from being realistic
and hence no conclusions should be drawn for the real situation. The results
are, however, meant to provide evidence for the applicability of our model
to the real world situation. See Section 4 for a discussion.

The rest of this paper is organized as follows. In Section 2 we discuss
properties of demand functions. Section 3 introduces the general model. The
data and methods used for the computational experiments are discussed in
Section 4. In Section 5 we discuss the first example. Section 6 deals with
the discrete choice model.
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2 Demand Functions

A demand function measures the amount of clients which choose a particular
option depending on input parameters. An example is the number of cus-
tomers buying a product depending on its price and the prices of competing
products. In this paper, we are concerned with the number of passengers
which use public transport depending on the fare and possibly on the cost
of other options like cars, bikes, etc.

It is not at all clear that demand functions are adequate for modeling
real-world problems, i.e., that demand function can give a good enough ap-
proximation of the behavior of clients for such problems. However, demand
functions are commonly used in the economic literature and in publications
on planning in public transport. The reason is that otherwise a mathemat-
ical treatment of planning problems is hard, if not impossible. Following
this argument, our approach towards FPP is also via demand functions. In
fact, we work with concrete demand functions which measure the amount
of passengers using public transport depending on the fare.

Note that the existence of such a demand function implies that passen-
gers act rationally with respect to the change of fares. It has been observed
that such an assumption hardly holds in the real world, see e.g. the dis-
cussion of Walther [14]. For instance, the behavior of passengers is not
symmetric: There is a difference between increasing and decreasing fares. If
the fare is increased and then decreased to the original value, the numbers
of passengers using public transport probably is different from the initial
values. Furthermore, after changing the fare there is a time of adaption
until the behavior of passengers has stabilized. One can argue that after a
long enough time the situation comes close to being symmetric1. But then
this effect is covered by other changes in the system, e.g., a change in the
timetable, line system, or network. This also shows that in fact an exact
demand function cannot empirically be determined.

That estimating real-world demand functions is complicated is shown by
the fact that experiments with a zero fare policy do not give a clear picture
of the passenger’s behavior, see, e.g., Baum [1] and Storchmann [12]. In
some towns the increased passenger numbers are mainly due to influenced
traffic and passengers that used a bike or went by foot before.

Let us outline the class of demand functions suitable for our approach.
We assume that the fare and the corresponding function values take con-

tinuous values. This is a simplification, since the number of passengers are
integer and usually fares have integer values, too (when measured in correct
units). We assume, however, that the number of passengers is large enough
and fares can be rounded; hence, these effects are negligible. Since passen-
gers usually base their decisions on discrete conditions, e.g., whether there is

1Note that purchasing a car is a long-term decision, so the time could be quite long.
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a car or a parking place available, one cannot assume that the demand func-
tion itself is continuous. In our two examples below, however, the demand
functions will even be differentiable. This enables an easy optimization of
the corresponding mathematical programming models.

As noted above, it follows from our assumption that passengers act ra-
tionally that the demand function will be non-increasing. Furthermore, the
demand function and fares have to be nonnegative. Summarizing, our de-
mand functions take the following form:

d :
� n

+ →
�

+,

when there are n different fares. Furthermore, d is (componentwise) non-
increasing. The revenue r :

� n
+ →

�
+ for this demand type is then the

inner product r(p) = pTd(p). See Figure 1 of Section 5 for examples. In
practice, the fares should only vary in a small interval around the current
fare, such that the function gives a reliable estimate of the behavior of the
passengers, but is not too small to be useless.

Note that a fare of 0 is likely to be a source of discontinuity and one has
to be careful near this value. Nevertheless, in our first example we allow fares
in the range of [0,∞). In fact, in this example we make assumptions about
the number of passengers traveling at a zero fare to calibrate our demand
function. The point 0 is chosen for convenience only, and the evaluations of
the resulting demand function are far from this point.

In the literature there are basically two types of demand functions. One
is the function one gets from a fixed fare elasticity ε, which is defined as
the relative demand change in percent divided by the relative fare change in
percent. For the case of one fare and fixed elasticity, Cerwenka [5] showed
that the demand function is

d(p) = c · pε

for some constant c ∈
�

. In the literature one often uses values around
ε = −0.3; this value is usually attributed to Curtin and Simpson [6]. As
long as ε < 0 the above demand function is undefined at zero and hence not
applicable for experiments where the fare is reduced to zero. We do not use
elasticities in this paper.

The other type of demand function used in the literature arises from so
called discrete choice analysis. To get an approximation of the demand func-
tion, one uses questionnaires on the planned behavior of passengers (“stated
preferences”) in addition to measured behavior (“revealed preferences”), see
for instance Vrtic and Axhausen [13]. Such data can then be used to design
a discrete choice model. Such models include a certain random effect on
the preferences of passengers which takes the inability to measure the real
preferences into account. This also forces the resulting demand function to
be continuous. See Section 6 for more information.
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3 A General Model

For our general model for optimizing the revenue, we are given a public
transport network N with k different ticket types; for instance, a ticket can
be for a single trip, for a day, a month etc. Additionally, we are given a set D
of (ordered) pairs of nodes, so called origin-destination pairs (OD-pairs). For
each OD-pair (s, t) ∈ D and each ticket type i, we have fares pi

st for traveling
from s to t with ticket type i. These fares are in general not independent
from each other, see below. Furthermore, we have bounds ai

st ≤ pi
st ≤ bi

st for
each fare, where ai

st ≥ 0 and bi
st may be infinity. We write pst = (p1

st, . . . , p
k
st)

for the vector of all fares from s to t and p = (pst) for the vector of all fares.
Analogous notation is used for ai

st and bi
st.

Similarly,
di

st : {p : a ≤ p ≤ b} →
�

+ ,

gives the amount of passengers that travel through N with ticket i from s
to t depending on all fares p. The total revenue for (s, t) ∈ D and ticket
type i is computed as

ri
st(pst) := pi

st · d
i
st(pst) and rst(pst) :=

k
∑

i=1

ri
st(pst)

is the total revenue for all travels from s to t.
The goal of the fare planning problem is to design the fares pi

st such that
the revenue is maximized. Thereby several constraints can be imposed on
the fares, e.g.:

◦ pst = pts for all (s, t) ∈ D (symmetric fares).
◦ pi

st = pi
uv for all (s, t) ∈ D, (u, v) ∈ D (e.g. a unit fare ticket).

◦ pi
st = fare proportional to the distance between s and t.

◦ pi
st = c ∈

�
, if the distance between s and t is below a certain bound

(short travel ticket).

Such constraints are usually needed to improve the comprehensibility of the
fare system or to enforce certain political objectives.

Our general model can therefore be written as:

max
∑

(s,t)∈D

rst(pst)

s.t. p ∈ P

a ≤ p ≤ b,

(1)

where P ⊆
� n, n := k · |D|. The set P captures the constraints on the fares.

In fact, all of the constraints listed above are linear in the fares. Therefore
in this paper, P is always a polyhedron, but we do not make explicit use of
this.
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When no constraints are given on the fares, i.e., P =
� n, and the demand

function is differentiable, the problem amounts to find a fixed point for
d(p)/d′(p). In these cases this can be done analytically in a straightforward
way.

In general, however, the above model is a quite hard nonlinear program-
ming problem. For instance, note that the revenue is usually not convex,
see Figure 1 for examples, and might even be discontinuous. Nevertheless,
in our computational experiments we could solve the resulting programs by
standard methods with reasonable quality.

4 Data for Computational Experiments

In the following two sections we provide computational experiments with
our approach on particular examples.

Obtaining data for such experiments is quite hard. There are almost no
publicly available OD-data which capture traffic in public transport. Even
less data is available which covers all kind of traffic, i.e., all types of public
transport and cars. Moreover, corresponding fares, traveling times, and
distances are hard to get. Although there are lots of publications dealing
with discrete choice models, only few deal with several different user groups
or destinations. Therefore, the computational experiments presented in this
paper should be treated with care and are meant to provide evidence of the
practicability of our approach only.

Our experiments were conducted on data for the intercity network of the
Netherlands and a corresponding origin-destination matrix. The data can
be found in a GAMS model set up by Bussieck [3] (see also [4]). The origin-
destination matrix is used to calibrate our models and gives the number of
passengers that want to travel between every pair of cities connected by the
intercity network. The matrix is symmetric and has 420 nonzero entries.
The network has 23 nodes (cities).

Furthermore, we collected the currently valid fares, distances, and travel
times in the Netherlands for every pair of towns from the Internet, see
Section 6.4. Note that the origin-destination data and the current fares were
collected in different years and might not fit together. We think, however,
that the deviation is reasonable for our experiments. With these data, the
current total demand is 91791 and the current total revenue is 860991.3 e.

All computations were performed with GAMS 2.50 and Matlab 7.

5 A Textbook Example

In this section we want to demonstrate the applicability of our model on a
simple example. We use one ticket type with a quadratic demand function
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Figure 1: Left: Sketch of quadratic demand function (2) for different values of γ. Right:

Resulting revenue functions.

and compute distance dependent fares. More precisely, we consider a dis-

tance fare pd which gives the fare per traveled distance. Additionally, we
have a basic fare pb which has to be paid whenever public transport is used.
Hence, the fare between s and t is

pst(pb, pd) = pb + pd · `st,

where `st is the shortest distance between s and t.
We use the following quadratic demand function

dst(pb, pd) =

{

αst · (pst(pb, pd) − βst)
2 pst(pb, pd) ≤ βst

0 otherwise.
(2)

where αst, βst are positive parameters. We also experimented with the fol-
lowing demand function:

dst(pb, pd) = αst · e
−βst·pst(pb,pd)

(again αst, βst > 0 are parameters). The results are quite similar and we
therefore do not present them here.

The model (1) specialized for our fare system now reads:

max
∑

(s,t)∈D

pst(pb, pd) · dst(pb, pd)

s.t. pst(pb, pd) = pb + pd · `st

pb, pd ≥ 0.

(3)

We fix the parameters αst and βst such that the demand function inter-
polates between two points. As the first point, we take the current fare p0

st

with current demand d0
st, i.e., dst(p

0
st) = d0

st for all (s, t) ∈ D, i.e., the model
is calibrated with the current situation.
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Figure 2: Textbook example. Left: Total revenue. Right: A contour plot of the total
revenue. The optimum is at pb ≈ 2.29 and pd ≈ 0.26.

Table 1: Computed fares versus currently valid fares for selected trips for γ = 1.4. The
current fares are p0, the current demand is d0, while the new ones are p and d; ` denotes
the distance between the selected endpoints of the travel.

pb = 0 pd = 0
` d0 p0 d p d p d p

11 1456 2.1 789.2 5.12 1194.8 3.17 74.0 10.98
35 5826 5.2 3591.6 11.30 3983.2 10.11 3695.1 10.98
50 1829 7.1 1147.6 15.16 1201.1 14.45 1481.2 10.98

106 720 14.0 456.6 29.57 440.7 30.63 778.1 10.98
150 24 19.2 15.1 40.90 14.2 43.35 27.9 10.98
202 77 24.1 45.7 54.29 42.1 58.37 93.1 10.98
250 1 28.5 0.6 66.64 0.5 72.24 1.2 10.98
303 14 33.3 7.7 80.29 6.9 87.55 17.6 10.98

As the second point we take a zero fare with demand γ · d0, where γ
is a parameter, i.e., dst(0) = γ · d0

st. See Figure 1 for examples of demand
functions arising from different values of γ: The higher γ, the more sensitive
passengers react to a change of the fares, i.e., the less passengers would travel
with an increased fare. Similarly, the lower γ, the less sensitive passengers
react to a change of the fares. When computing the fare elasticity (see
Section 2) at the current fare and γ = 1.4, we get ε = −0.37.

We performed computational experiments with this model for the inter-
city network of the Netherlands as described in Section 4. Figure 2 shows
the resulting total revenue for γ = 1.4, i.e., a passenger increase of 40% at
zero fare. The optimal fares are pb ≈ 2.29 and pd ≈ 0.26. The computations
were performed by standard methods without difficulties. In this case we
used GAMS with Minos 5.5.

Table 1 shows a comparison between the currently valid fares and de-
mands versus the optimal ones. Furthermore, the table shows optimal solu-
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Table 2: Results of the optimization for different values for γ; d denotes the total demand,
r the total revenue. The bold numbers indicate values that are closest to the current values,
i.e., indicate values of γ for which current fares and demand would be optimal.

γ pb pd d r

1.2 4.08 0.46 48925 1755148
1.4 2.29 0.26 57079 1152190
1.6 1.7 0.19 65233 973588
1.7 1.52 0.17 69311 929658
1.8 1.39 0.16 73388 900812
1.9 1.29 0.15 77465 882001
2 1.21 0.13 81541 870194
2.2 1.09 0.12 89696 860532

2.25 1.07 0.12 91735 860200

tions for the cases where pb and pd are fixed to zero, respectively. Table 2
shows solutions of the optimization for varying γ.

We tried to extend these experiments to the case of several ticket types,
but found out that it is hard to construct demand functions for this case by
hand. In Section 6 we investigate an approach for obtaining such demands.

Discussion. A very rough summary of the results is that the fares should

double while the demand halves. As noted above, the consequences that
can be drawn from these results are limited. Nevertheless, this result can
be interpreted as follows: When maximizing revenue it pays off to exploit
the passengers which depend on public transport as much as possible. In
reality, often such a plan is politically and socially not possible. However,
it might explain why many public transport companies try to increase the
fares as much and as often as possible. On the other hand, the fares in
public transport cannot be seen independent from private transport. (The
model in Section 6 tries to incorporate both modes of transport). It may
very well be that such a result also holds for private transport, i.e., taxes on
cars and fuel should double while the demand halves, hence maximizing the
revenue of the tax collector.

6 A Discrete Choice Model

In this section we investigate the behavior of passengers when several dis-
crete alternatives of travel are present. The decisions of passengers depend
on the utilities (i.e., a combination of fares, travel time, comfort, etc.) of
the corresponding alternatives. Assuming that the alternative with highest
utility is chosen, this leads to a discrete choice model. Considering the fare
as variable and the other parameters as fixed, this gives a demand function
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which can be used in our model for FPP. This demand function is more
realistic than the previous example.

First we introduce discrete choice models and, in particular, logit models,
which are well known in the literature, see for instance Ben-Akiva and Ler-
man [2]. Then we apply and extend the model to the fare planing problem
and discuss a concrete example. The additional feature is the incorpora-
tion of the number of trips in a given time horizon, which we assume to be
random.

6.1 A General Discrete Choice Model

In the context of public transport, each passenger chooses among a set
A = {a1, . . . , an} of alternatives for the travel mode, e.g., single ticket,
monthly ticket, bike, car travel, etc. Associated with each alternative a ∈ A
is a certain utility Ua which may depend on the passenger. For such a dis-
crete choice model, it is assumed that the utilities cannot be completely be
estimated. Therefore each utility decomposes into an observable part, the
deterministic utility Va, and a random utility, the disturbance term νa:

Ua = Va + νa.

Assuming that each passenger chooses the alternative with the highest util-
ity, the probability of choosing alternative ai is

Pai
:= �

[

Vai
+ νai

≥ max
j∈{1,...,n}\{i}

(Vaj
+ νaj

)
]

. (4)

In general, it is impossible to find an analytical expression for this prob-
ability. The following logit model is a discrete choice model with specific
assumptions on the distribution of each νa which make the analysis possi-
ble.

6.2 Logit Model

In the logit model the disturbance terms νa are assumed to be independent
identically Gumbel distributed. This distribution is defined as

F (c) = exp(−e−µ(c−η)).

The density function of the Gumbel distribution is defined as

f(c) = µe−µ(c−η) exp(−e−µ(c−η)),

where η is a location parameter and µ > 0 is a scale parameter. For conve-
nience, we assume η = 0 in the following.

Consider the probability for alternative ai as defined in (4). It turns
out that utility Uaj

= Vaj
+ νaj

for each alternative aj is also Gumbel dis-
tributed with parameters (Vaj

, µ). A characteristic of independent Gumbel

10



distributed random variables with identical scale parameter µ is that their
maximum is Gumbel distributed, too. More precisely, the maximum in (4)
is a Gumbel distributed random variable ν̃ with parameters (Ṽ , µ), where

Ṽ =
1

µ
ln

n
∑

j=1
j 6=i

eµVaj .

We obtain for the probability for choosing alternative ai:

Pai
= �

[

Vai
+ νai

≥ ν̃
]

= �
[

Vai
≥ ν̃ − νai

]

. (5)

The difference of two independent Gumbel distributed random variables is
logistically distributed; in this case, ν̃ − νai

in (5) is logistically distributed
with distribution

F̃ (x) =
1

1 + eµ(Ṽ −x)
.

Hence for the probability for alternative ai we obtain

Pai
=

1

1 + eµ(Ṽ −Vai
)

=
eµVai

n
∑

j=1

eµVaj

. (6)

6.3 Example with Three Alternatives

In this section we apply a logit model to the fare planning problem and
optimize over the fares of public transport in the model. For concreteness,
we discuss our approach on an example with three alternatives and two
variables, but the approach can easily be generalized. The choice among the
alternatives will depend on the number of trips during a given time horizon,
which we assume to be random. The goal is then to maximize the expected
revenue.

The three alternatives in our example are: a1 = “reduced ticket”, a2 =
“standard ticket”, and a3 = “car”, for each pair (s, t) of nodes. Our model
works within a given time horizon T , for instance one month. Each passenger
is allowed to choose one of these three modes of travel for all trips during the
time horizon. Hence, we assume that passengers do not mix the alternatives
in the time horizon and that it is not possible to skip trips.

The passenger has to pay a distance dependent fare with the standard
ticket for each trip. For reduced tickets this fare is reduced, but the pas-
senger has to pay a basic fare once per time horizon. For alternative “car”,
the passenger has to pay a fixed price and distance dependent operating
costs. Below, the fares of the public transport alternatives a1 and a2 will be
considered variable, while the other parameters will be fixed.

11



We work with a nonnegative random variable Xst indicating the number
of trips of a single passenger between s and t during T . Usually Xst is a
discrete random variable, but our model allows for continuous probability
as well. In practice, one tries to estimate the number ni

st of passengers that
make a given number of trips i between s and t during T . From this one
gets a discrete probability distribution by setting

� [Xst = i] :=
ni

st
∑

j nj
st

.

For each OD-pair (s, t) ∈ D we define the following: Let U a
st be the utility

for each alternative a. Let pB be the basic fare during T and pa1

st the fare of
one trip for alternative “reduced ticket”. Let pa2

st be the fare of one trip with
alternative “standard ticket”, where we assume that pa2

st > pa1

st . Let P a3 the
fixed costs for a car in the time horizon and pa3

st the operating costs for a
car. Note that the distance between s and t is already accounted for in pa1

st ,
pa2

st , and pa3

st .
In this example, we let the deterministic utility Vst include the fare and

the travel time tai
st for one trip of the corresponding alternative. The two

parts are weighted by parameters δ1, δ2 > 0. The utilities (with respect to T
and (s, t) ∈ D) for the alternatives are:

Ua1

st = −δ1 (pB + pa1

st · Xst) − δ2 · t
a1

st · Xst + νa1

st “reduced ticket”

Ua2

st = −δ1 · p
a2

st · Xst − δ2 · t
a2

st · Xst + νa2

st “standard ticket”

Ua3

st = −δ1 (P a3 + pa3

st · Xst) − δ2 · t
a3

st · Xst + νa3

st “car”.

Note that in this model all travelers for an OD-pair (s, t) ∈ D are treated
the same, i.e., they all have the same alternatives and parameters.

We now can derive formulas for the probabilities of choice. The proba-
bility for a traveler from s to t to choose alternative a with respect to the
number of trips Xst can easily be computed using (6). For instance, for
alternative a1 (“reduced ticket”) we obtain the conditional probability:

P a1

st (k) := �
[

Ua1

st ≥ max{Ua2

st , Ua3

st }
∣

∣ Xst = k
]

=
eµV

a1

st

eµV
a1

st + eµV
a2

st + eµV
a3

st

.

The expected number of passengers using a reduced ticket then is:

Ea1

st := dst

∞
∑

k=0

P a1

st (k) � [Xst = k],

where dst is the number of persons that have to travel between s and t,
(s, t) ∈ D. The other numbers can be computed similarly. We obtain the
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expected total revenue (over all pairs (s, t) ∈ D) for public transport:

r(pB, pa1

st , pa2

st ) =

∑

(s,t)∈D

dst

∞
∑

k=0

(

P a1

st (k) · (pB + pa1

st · k) + P a2

st (k) · pa2

st · k
)

� [Xst = k]. (7)

Note that this total expected revenue is differentiable.
If no disturbance terms would be present, all passengers for a given OD-

pair (s, t) ∈ D with the same number of trips Xst would choose the same
alternative. Furthermore, in this case the revenue can be discontinuous since
there is a certain fare for which all travelers change their decision from the
public transport alternatives to car travel and are then not accounted for
in (7). Hence, the introduction of the disturbance terms, i.e., the logit model
part, smoothes the discrete choice model.

6.4 Computational Results

We are now ready to perform computational experiments with the model
described in the previous section.

For our computational experiments we again worked on the data for the
Netherlands. Thus, we are given an OD-matrix which captures the number
of passengers using the intercity network. We assume that this constitutes
the only source of traffic in public transport. We estimated the total number
of travelers (including car travel) by using our model as follows. Given the
current fares and traveling times, we calculated the percentage of passengers
using public transport with our model and then computed the number of
total travelers from it. This should give an (extremely) rough estimation of
the real number of travelers.

Additionally, we obtained data about the current fares, (railway) dis-
tances, and traveling time from the web site [10]. The distances and trav-
eling times for using a car were obtained from the routing planer [9]; here
we entered the corresponding train stations as start and end points of the
travel.

Our time horizon is one month. The number of trips Xst were chosen
as discrete identically independent random variables with the probabilities
given in Figure 3 for every OD-pair (s, t); the probabilities are centered
around 30 trips and are nonzero between 0 and 60.

We assumed that pa2

st = 2 · pa1

st , i.e., for a reduced ticket one has to pay
half of the distance dependent fare of the standard ticket. Furthermore, we
let pa1

st = pd · `P
st, where `P

st is the distance in kilometers between s and t
for the public transport and pd is a variable to be determined. The other
variable is the basic fare pB for reduced tickets, paid once per month. The
travel time ta1

st = ta2

st for the public transport alternatives is measured in
minutes, as obtained from [10].
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Figure 3: Left: The discrete random variable X for the number of trips. Right: Example
of fares in dependence on the number of trips for a selected OD-pair (s, t) of high distance.
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Figure 4: Discrete choice model. Left: Total revenue. The optimum is at pB ≈ 153.30
and pd ≈ 0.06. Right: A contour plot of the total revenue.

Table 3: Computed fares and currently valid fares for selected trips. The current fares
are p0, the current demand is d0. For each alternative a, Ea

st gives the expected number
of passengers traveling with a from s to t. For alternative “reduced ticket”, F

a1

st = pB +
pd · `

P
st · 30 is its expected fare, and F

a2

st = 2 · pd · `
P
st · 30 is the expected fare for alternative

“standard ticket”. ` denotes the distance between the selected endpoints (with public
transport) of the travel.

` d0 p0 · 30 Ea1

st F a1

st Ea2

st F a2

st Ea3

st

11 1456 63 345.0 174.16 1289.3 41.71 445.5
35 5826 156 2211.8 219.66 5362.8 132.72 4756.7
50 1829 213 801.4 248.10 1359.9 189.60 475.7

106 720 420 649.5 354.28 417.1 401.95 257.2
150 24 576 38.5 437.70 14.8 568.80 22.4
202 77 723 38.3 536.30 63.1 765.98 1303.6
250 1 855 2.6 627.30 0.5 948.00 2.3
303 14 999 25.5 727.79 2.8 1149.00 3.5
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We set the fixed costs P a3 of car travel to be 100 e, as an estimation for
insurance and car repair for one month. The operating costs of car travel
were set to pa3

st = 0.1 · `C
st, where `C

st is the distance in kilometers between s
and t for the quickest route obtained with the routing planer [9]; hence, we
estimated the operating cost for one kilometer to be 0.1 e. The travel time
for a car ta3

st is measured in minutes for the quickest route with the routing
planer [9].

The random utilities in the logit part were chosen to be Gumbel dis-
tributed with parameters µ = 1, η = 0. In the utility functions we used
the scaling parameters δ1 = 1 and δ2 = 0.1, i.e, 10 minutes of travel time is
worth one Euro.

On the right of Figure 3, one sees the fares for the different alternatives
and the current fare in dependence on the number of trips for a particular
(s, t) ∈ D with high distance.

The resulting expected revenue function in dependence on the basic
fare pB and the distance fare pd for reduced tickets is shown in Figure 4.
The optimal fare is determined by pB ≈ 153.30 and pd ≈ 0.06. For the
computations again we used standard methods, in this case a Newton-type
method in Matlab 7 for finding the critical point (the result was confirmed
by the Nelder-Mead method).

Table 3 illustrates the results for selected OD-pairs. The third column
gives the current fares for public transport (here only a “standard ticket”
is available). The second column lists the corresponding number of pas-
sengers – these numbers arise from the original OD-matrix. Then for each
alternative a, we list the corresponding expected number of passengers Ea

st

traveling between the selected pair (s, t). Since the expectation of Xst is 30,
F a1

st = pB + pd · `
P
st · 30 is the expected fare for alternative “reduced ticket”,

and F a2

st = 2 ·pd ·`
P
st ·30 is the expected fare for alternative “standard ticket”.

The data show that with increasing distance, alternative “reduced ticket”
becomes more attractive than alternative “standard ticket” since the contri-
bution of the basic fare becomes smaller and the reduction of the distance
dependent fare becomes more important. Furthermore, in each case the
demand for public transport with optimal fares is always higher than the
demand with the current fares. This is in contrast to the example in Sec-
tion 5. An explanation may be that one cannot exploit passengers as in this
first example, because at a certain point they switch to alternative car.

We also performed experiments with the situation where the public trans-
port alternatives are “single ticket” and “monthly ticket”; this also yields a
model with three alternatives and two variables. We opted for the presen-
tation of the above example since monthly tickets are somewhat uncommon
in rail transport.
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