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Routing in Line Planning for Public Transport∗

Marc E. Pfetsch Ralf Borndörfer

Abstract

The line planning problem is one of the fundamental problems in
strategic planning of public and rail transport. It consists in finding
lines and corresponding frequencies in a network such that a given de-
mand can be satisfied. There are two objectives. Passengers want to
minimize travel times, the transport company wishes to minimize op-
erating costs. We investigate three variants of a multi-commodity flow
model for line planning that differ with respect to passenger routings.
The first model allows arbitrary routings, the second only unsplittable
routings, and the third only shortest path routings with respect to the
network. We compare these models theoretically and computationally
on data for the city of Potsdam.

1 Introduction

Integer programming methods have become a successful tool for line plan-
ning in the last decade. Fixing passenger routes according to a so-called
system split and choosing lines from a precomputed pool, Bussieck et al. [3]
maximized direct travelers, and Claessens et al. [4] minimized costs; the
latter approach was improved by Goossens et al. [6]. Recently, the system-
split assumptions were relaxed by Goossens et al. [5] and by Schöbel and
Scholl [7, 8], who minimize the number of transfers or transfer times.

In [1, 2] we introduced a basic IP model for the line planning problem in
which both lines and passenger routes are generated dynamically, imposing a
length restriction on lines. The results can contain multiple passenger paths
between the same endpoints and detours, which passengers would not take
in practice. The aim of this paper is to study more realistic variants of our
model with passenger routing restrictions, namely, unsplittable routings and
routings on a shortest path w.r.t. the network. Length restricted routes
would lead to additional interesting variants. We have also investigated
these, but do not discuss them here due to lack of space.
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2 Line Planning Models

The line planning problem involves a number k of transportation modes (bus,
subway, etc.), an undirected multigraph G = (V,E) = (V,E1∪̇ . . . ∪̇Ek),
which we call transportation network, terminal sets T1, . . . ,Tk ⊆ V , oper-
ating costs c1 ∈ QE1

+ , . . . , ck ∈ QEk

+ , vehicle capacities κ1, . . . , κk ∈ Q+,
and a (not necessarily symmetric) origin-destination matrix (OD-matrix)
(dst) ∈ QV ×V

+ of travel demands, i.e., dst is the number of passengers that
want to travel from node s to t. Let D := {(s, t) ∈ V × V : dst > 0} be the
set of all OD-pairs.

A line of mode i is a path in the mode graph Gi := (V,Ei) connecting
two (different) terminals of Ti. Note that paths are always simple, i.e.,
node repetitions are not allowed. We denote by L the set of all lines, by
Le :=

⋃
{ℓ ∈ L : e ∈ ℓ} the set of lines that use edge e ∈ E, by cℓ :=

∑
e∈ℓ ci

e

the operating cost of line ℓ of mode i, and by κℓ := κi its vehicle capacity.
We derive from G a directed passenger route graph (V,A) by replacing

each edge e ∈ E with two antiparallel arcs a(e) and a(e); conversely, let
e(a) ∈ E be the undirected edge corresponding to a ∈ A. For an OD-pair
(s, t) ∈ D, an (s, t)-passenger path is a directed path in (V,A) from s to t. Let
Pst be the set of all (s, t)-passenger paths and P :=

⋃
{p ∈ Pst : (s, t) ∈ D}

be the set of all passengers paths. We are given travel times τa ∈ Q+ for
every arc a ∈ A. The weighted travel time of a passenger path p ∈ Pst is
defined as τp := dst ·

∑
a∈p τa.

Let P′ ⊆ P and P′

st := P′ ∩ Pst be subsets of passenger paths that model
routing restrictions. Introducing variables yp ∈ R+ for the fraction of the
demand dst traveling from s to t on path p and fℓ ∈ R+ for the frequency
of line ℓ ∈ L, and a parameter 0 ≤ λ ≤ 1 that weights line operating costs
and travel times, we can state the following general line planning model:

(LPP) min λ γTf + (1 − λ) τTy

y(P′

st) = 1 ∀ (s, t) ∈ D (1a)
∑

(s,t)∈D

dst

∑

p:a∈p∈P′

st

yp ≤
∑

ℓ:e(a)∈ℓ

κℓfℓ ∀ a ∈ A (1b)

fℓ ≥ 0 ∀ ℓ ∈ L (1c)

0 ≤ yp ≤ 1 ∀ p ∈ P
′. (1d)

Here, we write y(P′

st) :=
∑

p∈P′

st

yp and similarly for other vectors and sets.

Constraints (1a) force that demand dst is routed from s to t. The capacity

constraints (1b) ensure that all passengers can be transported.
We now derive three variants of the model (LPP). The multi-path routing

(MPR) model is obtained from (LPP) by setting P′ := P, i.e., by allowing
arbitrary passenger routings. The unsplittable path routing (UPR) model is
derived from (LPP) by setting P′ := P and by forcing yp ∈ Z for all p ∈ P,
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which ensures passenger paths to be unsplittable. The network path routing

(NPR) model is obtained from (LPP) by letting P′ only contain shortest
paths from s to t with respect to the travel times in the transportation
network G (independent of the lines) for every (s, t) ∈ D. We assume w.l.o.g.
that shortest paths are unique and, therefore, that passengers are routed
on a unique shortest path for every OD-pair; note that such a routing is
automatically unsplittable.

3 Theoretical Comparison

We study in this section the influence of routing restrictions on the optima
and the complexity of the line planning problem. Denote by opt(X; I) the
optimal solution of problem X ∈ {MPR,UPR,NPR} for an instance I, by
optLP(X; I) the optimal solution of the corresponding LP relaxation, and by

gap(X,Y ) := sup
I

opt(X; I)

opt(Y ; I)

the gap between (the optimum of) problem X and Y , where the supremum is
taken over all instances I. From the definitions of the problems, by observing
that (MPR) and (NPR) are LPs, and that (MPR) is the LP relaxation of
(UPR), we obtain immediately for any instance I:

opt(MPR; I) ≤ opt(UPR; I) ≤ opt(NPR; I) (2)

optLP(MPR; I) = opt(MPR; I) = optLP(UPR; I)

optLP(NPR; I) = opt(NPR; I) .

We have shown in [2] that (MPR), even though it is an LP, is NP-hard.
Our complexity proof uses only unsplittable shortest paths. This implies:

Proposition 3.1. (MPR), (UPR), and (NPR) are NP-hard.

We can strengthen this result for (UPR) as follows:

Proposition 3.2. (UPR) is NP-hard, even when the lines are fixed a priori.

We skip the proof, which works by reduction of the disjoint paths prob-
lem, and return to the relations (2). We show that there exist instances for
which the inequalities are strict and that, in fact, the gap can be arbitrary
large.

Theorem 3.1. gap(UPR,MPR) = ∞.

Proof. Consider the digraph D on the left of Figure 1. It has 2k + 2 nodes.
The graph G underlying D gives rise to a line planning problem as follows.
We consider a mode i for each edge {s, i} and a mode i′ for each {i′, t},
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Figure 1: Constructions for Theorems 3.1 and 3.2, respectively.

i = 1, . . . , k, with edge sets Ei := {{s, i}} and Ei′ := {{i′, t}}, and terminal
sets Ti := {s, i} and Ti′ := {i′, t}, i.e., there exists exactly one line path for
each such mode and its terminals are the endpoints of the corresponding edge.
The costs and capacities of these lines ℓ are cℓ = 0 and κℓ = 1, respectively.
There is an additional line mode for the zig-zag structure in the middle; its
edge set are the zig-zag-edges (the edges shown dashed) and its terminal set
is {1, k′}. This modes also supports exactly one line path on the zig-zag
structure. The cost of this line is cℓ′ = 1 and its capacity is κℓ′ = 1. The
travel times are all zero. We finally set the demand between s and t to k

and to zero otherwise.
Consider (MPR) associated with this instance. Its optimal solution is

to set all line frequencies to 1 and to route a passenger flow of 1 on the k

paths of length three between s and t. We therefore have opt(MPR; I) = 1,
since only the zig-zag line contributes to the objective. Now consider the
corresponding (UPR). Any solution must choose a single path between s

and t and has to route a flow of k on it. Such a path must use the zig-
zag line, whose frequency must therefore be k, i.e., opt(UPR; I) = k. This
implies

opt(UPR; I)

opt(MPR; I)
=

k

1
= k → ∞,

which concludes the proof.

Note that this shows that the integrality gap for (UPR) is arbitrarily
large.

Theorem 3.2. gap(NPR,UPR) = ∞.

Proof. Consider the digraph D on the right of Figure 1 and number its nodes
from left to right as s = 1, 2, . . . ,m− 1,m = t. It gives rise to an instance I

of the line planning problem as follows. D has m − 1 arcs at the top and
one arc at the bottom. We associate with each arc a mode as in the proof
of Theorem 3.1 that supports exactly one line on this arc. The cost of each
such line ℓ is cℓ = m and its capacity is κℓ = 1. We want to route a demand

4



of 1 from s to t and set the travel times to 1 on the top arcs and to m on
the bottom arc.

The optimal (unsplittable) solution of the associated (UPR) sets the
frequency of the line on the bottom arc to 1, incurring a line cost of m, and
routes all demand on this line with a travel time of m. Hence, opt(UPR; I) =
2m. The optimal solution of the associated (NPR) routes all demand on the
shortest path with respect to G, which is the path through the upper arcs.
Since we need m − 1 lines with frequencies 1 and costs m, the line costs are
m · (m − 1). The travel time is m − 1. Hence, opt(NPR; I) = m2 − 1. It
follows that

opt(NPR; I)

opt(UPR; I)
=

m2 − 1

2m
= 1

2(m − 1
m

) → ∞,

which concludes the proof.

4 Computational Results

We now provide an empirical comparison of the different routing variants of
our model on data for the city of Potsdam. The data represents the network
of 1998. It has 27 bus lines and 4 tram lines. Including line variants, regional
trains, and city railroad, the total number of lines is 80. The preprocessed
network has 410 nodes, 106 of which are OD-nodes, and 891 edges. The OD-
matrix has 4685 nonzeros and the total demand is 42,796, for a time horizon
of 3 hours. No data was available for line costs; we decided on operating
costs ci

e := 100 for each edge e and mode i.
We have described in [2] a column generation algorithm for the line plan-

ning problem, solving shortest path problems to price the passenger vari-
ables y and longest path problems to price the line variables f . In our
approach, we restrict the set L of line paths. Namely, we compute the min-
imal number k(a, b) of edges needed to connect a and b in Gi = (V,Ei) and
allow only lines with k ≤ max{1.2 ·k(a, b), 55} edges. The idea is to produce
only lines that do not deviate too much from a shortest path. With this
restriction, line pricing can be performed quite fast by enumeration. Pas-
senger paths are priced out by using Dijkstra’s algorithm. The master LPs
are solved with the barrier algorithm and, towards the end, with the primal
simplex algorithm of CPLEX 9.1. Our algorithm can be applied directly to
(MPR). Table 1 reports our computational results as well a reference solu-
tion, i.e., an optimal solution to (MPR), where the lines were fixed to be the
lines of the 1998 Potsdam system (only 61 were active, i.e., had a positive
frequency).

To compute solutions for (NPR) we modified our code by fixing the pas-
senger paths to shortest connections between the OD-nodes. The restrictions
on the line construction, however, can cause that there are arcs which cannot
be covered by lines. We ignore such arcs for the computation of the shortest
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Table 1: Comparison of all results for λ = 0.9979. The CPU time is measured in seconds
on a 3.4 Ghz Pentium 4.

pass. time line cost objective lines/pass. CPU

Reference solution: 104,977,699.00 479,839.22 699,284.72 61/4854 49.8
MPR: 108,763,392.00 225,062.62 452,993.11 63/4890 191.2
NPR: 92,124,536.00 886,760.85 1,078,360.18 95/4685 89.9

shortest path UPR: 95,270,123.00 652,363.55 851,060.85 67/4685 222.8
thickest path UPR: 108,729,269.00 236,046.53 463,882.29 69/4685 233.6

paths. From the results in Table 1, we see that indeed 4685 passenger paths
are needed which equals the number of OD-pairs.

Computing optimal solutions to (UPR) is not only hard from a theoret-
ical, but also from a practical viewpoint. Indeed, the model uses 4, 174, 335
binary variables yst

a for our data. This makes a direct integer programming
approach impractical. Note that a Lagrangean relaxation of the capacity
constraints (1b) will not help, as this does not improve over the LP relax-
ation solution (MPR). We therefore implemented two heuristics for (UPR).

The first heuristic computes a solution to (MPR) and determines the
shortest paths with respect to the computed line system. It then deletes all
other passenger paths and re-solves the LP, thereby allowing the pricing of
new lines. Table 1 shows that the gap to the MPR solution is 46.8%. The
second heuristic chooses for each OD-pair among the paths used by the MPR
solution the thickest, i.e., the one carrying the highest number of passengers.
It then prices out lines as above. The gap to the MPR solution is only 2.3%.
The quality of these heuristics clearly depends on the weighting λ. If λ is
very small, the MPR solution will use very short passenger paths and the
solutions of both heuristics will be close to that of (MPR), i.e., the gap is
small.

Analyzing Table 1, we see that (MPR) improves upon the reference solu-
tion (but increases the total travel time). The NPR solution has the shortest
total travel time, but the highest objective. The shortest path UPR solution
also has very low total travel time and high line costs, while the thickest
path UPR solution is very close to the lower bound solution of (MPR).
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