

Line Planning and Steiner Path Connectivity

Ralf Borndörfer

2015 Workshop on Combinatorial Optimization with Applications in Transportation and Logistics

Beijing, 28.07.2015

Line Planning and Steiner Path Connectivity | CO∈TL 2015

Overview

Freie Universität 🕑 Berlin

- Service Design
- Steiner Path Connectivity
- Line Planning
- Project Stadt+

Planning Problems in Public Transit

Service Design Am Stern, Johannes-Kepler-Platz Umland (ohne Stad 2,20 rif ab 1.4.2004 für Berlin und Umland (mit 423 221 11:48 423 221 423 058 423 05 11:48 507 423 365 11:51 11:51 423 365 7555 \$5 508 2B 423 219 423 219 **Operational Planning** 1D 77 11:53 11:53 11:55 11:55 128 423 182 423 182 423 159 423 159 423 288 423 148 423 288 423 148 822 823 7855 11:58 11:58 423 318 423 31 423 28 423 282 12:02 12:02 12:04 12:04 12:08 12:08 423 26 423 269 423 169 713 423 169 2B 423 225 0 14 423 155 423 155 22F 423 115 205 423 183 12:11 423 235 12:11 423 10F 423 079 12:13 12:13 114 423 26 12:15 12:15 423 174 821 423 28 S4 412 423 281 12:18 S4 413 423 264 12:18 7457 2B 423 167 12:22 708 423 075 12:22 **Operations Control**

Line Plan

Line Planning and Steiner Path Connectivity | COETL 2015

Line Planning Problem

Find a cost minimal set of lines and associated frequencies, s.t. a given set of travel demands can be transported in minimal time.

Steiner Path Connectivity Problem

Find a cost minimal set of paths that provide enough capacity to route a fastest multi-commodity flow.

Features

- Bicriteria problem (cost vs. quality)
- Passenger behavior (transfers)

Line Planning and Steiner Path Connectivity

Line Planning Problem

 Find lines and frequencies to satisfy a given demand

Objectives

- Minimize operation costs
- Minimize travel time
 Input
- Public transport network
- OD-matrix of travel demands
- Operation costs and travel times

Output

- Set of lines and frequencies
- Passenger flow

Steiner Path Connectivity Problem

 Find paths to connect a set of terminal nodes

Objectives

Minimize path costs

Input

- Undirected graph
- Set of terminal nodes
- Path costs

Output

Connecting set of paths

Steiner (Path) Connectivity Problem (B., Karbstein., Pfetsch [2009])

Proposition

- 1. The Steiner connectivity problem (SCP) is NP-hard even for T=V.
- 2. The SCP is solvable in polynomial time for |T| = r, r fixed (T set of OD nodes).
- 3. The SCP is not approximable in the general case.

Theorem

There exists a (k + 1)-approximation algorithm for the SCP, where

 $k = min\{max. path length, max. number of terminals per path\}.$

Proof: Primal dual algorithm similar to Goemans, Williamson [1995] for the Steiner forest problem.

Basic property of minimal solutions (w.r.t. inclusion):

Proposition (B, Karbstein [2014]): The average path-degree (nr. of paths incident to a node) of a terminal node is $\leq k + 1$.

Freie Universität

For Steiner trees the node degree (nr. of edges) of non-terminal nodes is ≥ 2 ; the analogue is not true for minimal solutions of the SCP.

Cut Formulation

where $\mathcal{P}_{\delta(W)} = \{p \in \mathcal{P} : \mathcal{P}\delta(W) \cap p \neq \emptyset\}$ (Steiner path cuts) is the set of paths that cross a Steiner cut

 $W = \{d, f, g\} \rightarrow x_1 + x_2 + x_4 + x_6 \ge 1$ Weaker: $x_1 + x_2 + 2x_4 + x_6 \ge 1$

Line Planning and Steiner Path Connectivity | COETL 2015

Construct Steiner connectivity digraph D' for $\hat{x} \in \mathbb{R}^{P}_{\geq 0}$:

- Consider cuts between s and t; $V' = \{s, t\} \cup \{v_p, w_p : p \in \mathcal{P}\}$
- Insert arcs $a = (v_p, w_p), p \in \mathcal{P}$ with capacity $\kappa_a = \hat{x}_p$
- Insert arcs $a = (s, v_p), (w_p, t), p \in \mathcal{P}$ with capacity $\kappa_a = \hat{x}_p$
- Insert arcs $a = (w_{\tilde{p}}, v_p), p, \tilde{p} \in \mathcal{P}, r \notin p, p \cap \tilde{p} \neq \emptyset$ with capacity $\kappa_a = \min\{\hat{x}_p, \hat{x}_{\tilde{p}}\}$

Separation of Cut Constraints

Proposition

There is a one-to-one correspondence between minimal directed (s, t)-cuts in D' and minimal (s, t)-Steiner path cuts in G, and the capacities are equal.

Proposition

The separation problem for Steiner path cut constraints can be solved in polynomial time.

Steiner Partition Inequality

Let $P = (V_1, V_2, ..., V_k), V_i \cap T \neq \emptyset, i = 1, ..., k, V = \bigcup_{i=1}^k V_i$. The Steiner partition inequality is defined as

$$\sum_{p \in \mathcal{P}} a_p \cdot x_p \ge k - 1$$

where $a_n \coloneqq |\{i \in \{1, \dots, k\}: V_i \cap p \neq \emptyset\}| - 1.$

Facetness

Freie Universität

Let $\overline{\mathcal{P}} \coloneqq \{p \in \mathcal{P}: a_p = 0\}$. Generalization of a result of Grötschel, Monma & Stoer [1990]:

Proposition

A Steiner partition inequality is facet defining if the following properties are satisfied.

- 1. $G[V_i]$ is connected by $\overline{\mathcal{P}}$, $\forall i$
- 2. $G[V_i]$ contains no Steiner-path-bridge in $\overline{\mathcal{P}}$, $\forall i$
- 3. Each path is incident with at most two node sets, i.e., $a_p \in \{0,1\}$
- 4. The shrunk graph (each node set a single node) is 2-nodepath-connected

Only property 4 is necessary!

Directed Cut Formulation

Can use Steiner connectivity digraph to get equivalent directed formulation:

All "path"-arcs get the cost of the corresponding path. All other arcs get 0 cost.

 \rightarrow Directed Steiner tree problem in D'

Theorem

$$P_{LP}(SCP_{cut}) = P_{LP}(SCP_{arc}) \Big|_{\mathcal{P}}$$

Consequence: objective value of (SCP_{arc}^r) is independent of r.

Line Planning and Steiner Path Connectivity | CO∈TL 2015

Flow balance constraints:

$$\sum_{a\in\delta^+(v)}y_a\geq\sum_{a\in\delta^-(v)}y_a\quadorall\,v\in V'\setminus T$$

$$(\mathsf{SCP}_{\mathsf{arc}^+}^r) \min \sum_{a \in A'} c'_a y_a$$
s.t. $\sum_{a \in \delta^-(W)} y_a \ge 1$ $\forall W \subseteq V' \setminus \{r\}, W \cap T \neq \emptyset$
 $y_{v_p w_p} \ge \sum_{a \in \delta^-(v_p)} y_a$ $\forall v_p \in V' (p \in \mathfrak{P} : r \notin p)$
 $\sum_{a \in \delta^+(w_p)} y_a \ge y_{(v_p, w_p)}$ $\forall w_p \in V' (p \in \mathfrak{P} : t \notin p \forall t \in T)$
 $y_a \in \{0, 1\}$ $\forall a \in A'$

Quality depends on root

Line Planning and Steiner Path Connectivity | CO∈TL 2015

Theorem

 $P_{LP}(SCP_{arc}^{r})|_{\mathcal{P}}$ satisfies all Steiner partition inequalities.

 $2x_{1} + x_{2} + x_{3} + x_{4} = 2x_{1\overline{1}} + x_{2\overline{2}} + x_{3\overline{3}} + x_{4\overline{4}}$ $\geq 2x_{a1} + x_{a2} + x_{a3} + x_{\overline{1}4} + x_{\overline{2}4} + x_{\overline{3}4}$ $\geq 1 + x_{a1} + x_{a3} + x_{\overline{1}4} + x_{\overline{2}4}$ $\geq 2 + x_{\overline{1}4}$ ≥ 2

 $(\mathsf{SCP}_{cut}) \qquad \min \sum_{p \in \mathcal{P}} c_p \, x_p$

$$\sum_{p \in \mathcal{P}_{\delta(W)}} x_p \ge 1 \qquad \quad \forall \emptyset \neq W \cap T \subsetneq T$$
 $x_p \in \{0, 1\} \qquad \forall p \in \mathcal{P}$

Theorem

(SCP_{cut}) is TDI for $T = \{s, t\}$. In particular, it is integral.

Totally dual integral (TDI): For each integral c for which the optimum is finite, the dual has an integral optimal solution.

Proof: Primal-dual algorithm.

 $\begin{array}{ll} (\mathsf{SCP}_{cut}) & \min \ \sum_{p \in \mathfrak{P}} c_p \ x_p \\ & \sum_{p \in \mathfrak{P}_{\delta(W)}} x_p \geq 1 & \forall \ \emptyset \neq W \cap T \subsetneq T \\ & x_p \in \{0,1\} & \forall \ p \in \mathfrak{P} \end{array}$

 $c \equiv 1$: A Menger companion theorem follows:

Theorem

The minimum cardinality of an (s, t)-connecting set is equal to the maximum number of path-disjoint (s, t)-disconnecting sets.

Min-Max Results

- An (s, t)-connected set of paths connects two nodes s and $t (\triangleq (s, t)$ -path).
- An (s,t)-disconnecting set of paths breaks all (s,t)-connected sets ($\triangleq (s,t)$ -cut).

Theorem (Menger and companion theorem for path-connectivity)

- 1. The minimum cardinality of an (s, t)-disconnecting set is equal to the maximum number of path-disjoint (s, t)-connected sets.
- 2. The minimum cardinality of an (s,t)-connected set is equal to the maximum number of path-disjoint (s,t)-disconnecting sets.
- 1. is hypergraph folklore, 2. is new.
- Generalizes class of blocking pairs of ideal incidence matrices of paths and cuts.

Example (2): Network with 5 paths

- \triangleright (s, t)-connected:
 - 1. green, 2. yellow, 3. red
- ▷ (s, t)-disconnecting (path-disjoint):
 - 1. green
 - 2. yellow, blue, brown
 - 3. red

Relation to Line Planning

Observation for $c \equiv 1$:

 minimum number of paths connecting s and t
 △ lower bound on number of transfers-1 in line planning

Idea: use this lower bound in line planning

- associate with a passenger route r the minimum number of transfers k
- *k* depends on *all possible* lines
- include constraints to ensure direct connections, i.e., for $k_r = 0$
 - $y_{r,0}$ variable for direct connection
 - $y_{r,1}$ variable for connections with at least one transfer

Line Planning Problem

Find a cost minimal set of lines and associated frequencies, s.t. a given set of travel demands can be transported in minimal time.

Steiner Path Connectivity Problem

Find a cost minimal set of paths that provide enough capacity to route a fastest multi-commodity flow.

Features

- Bicriteria problem (cost vs. quality)
- Passenger behavior (transfers)

Line Planning and Steiner Path Connectivity

Line Planning Problem

 Find lines and frequencies to satisfy a given demand

Objectives

- Minimize operation costs
- Minimize travel time
 Input
- Public transport network
- OD-matrix of travel demands
- Operation costs and travel times

Output

- Set of lines and frequencies
- Passenger flow

Steiner Path Connectivity Problem

 Find paths to connect a set of terminal nodes

Objectives

Minimize path costs

Input

- Undirected graph
- Set of terminal nodes
- Path costs

Output

Connecting set of paths

Example

Line capacities 50

Demands

$$a \rightarrow f = 50, a \rightarrow b = 50$$

 $d \rightarrow f = 20, d \rightarrow c = 80$

Freie Universität

• Solution lines ℓ_3, ℓ_4 with frequency 2 line ℓ_5 with frequency 1

Literature

Minimize transfers/transfer time

Scholl [2005], Schöbel & Scholl [2005], Schmidt [2012]

- Advantage: detailed treatment of transfers
- Disadvantage: change-and-go-graph on the basis of all possible lines; large scale model
- Maximize travel quality

Nachtigall & Jerosch [2008]

- Advantage: utility for each path including all transfers
- Disadvantage: capacity constraint for each partial route and line; large scale model
- Minimize pareto function of line cost and travel times
 - B., Grötschel & Pfetsch[2005], B., Neumann & Pfetsch [2008]
 - Advantage: allows line pricing; computationally tractable
 - Disadvantage: ignores transfers within same transportation mode

Line Planning and Steiner Path Connectivity | COETL 2015

Basic Line Planning Model (B)

е

g

(B., Grötschel & Pfetsch [2007])

а

Travel time on path is sum of travel times on edges

 ℓ_4

 $p_{1} = (a, e, f), \quad \tau_{p_{1}} = \tau_{ae} + \tau_{ef}$ $p_{2} = (a, e, f, b), \quad \tau_{p_{2}} = \tau_{ae} + \tau_{ef} + \tau_{fb}$ $p_{3} = (d, g, f), \quad \tau_{p_{3}} = \tau_{dg} + \tau_{gf}$ $p_{4} = (d, g, c), \quad \tau_{p_{4}} = \tau_{dg} + \tau_{gc}$

С

Note: direct connection are not distinguished from transfer connections, e.g., paths $p_{\rm 1}$ and $p_{\rm 3}$

line ℓ_5 with frequency 1

Basic Line Planning Model (B)
(B., Grötschel & Pfetsch [2007])Freie Universität @ Berlinmin $\lambda \sum_{\ell \in \mathcal{L}} \sum_{f \in \mathcal{F}} c_{\ell,f} x_{\ell,f} + (1 - \lambda) \sum_{p \in \mathcal{P}} \tau_p y_p$ Minimize cost and travel time $\sum_{p \in \mathcal{P}_{st}} y_p = d_{st}$ $\forall s, t \in D$ Transport all demand

$$\sum_{p \ni a} y_p \leq \sum_{\ell \in \mathcal{L} \ni a} \sum_{f \in \mathcal{F}} \kappa_{\ell, f} x_{\ell, f} \quad \forall \ a \in A$$

$$\sum_{f \in \mathcal{F}} x_{\ell, f} \le 1 \qquad \forall \ \ell \in \mathcal{L} \qquad \text{One frequency per line}$$
$$y_p \ge 0, \ x_{\ell, f} \in \{0, 1\}$$

Variables: $x_{\ell,f} = 1$ if line $\ell \in \mathcal{L}$ is chosen with frequency $f \in \mathcal{F}$; $x_{\ell,f} = 0$ otherwise $y_p \ge 0$ passengers on path $p \in \mathcal{P}$

Features

- Complete line pool
- Multi-criteria objective
- Integrated passenger routing

Line Planning and Steiner Path Connectivity | CO∈TL 2015

Disadvantage

 No transfers → Direct Connection Model (Metric Inequalities)

Change & Go Model (CG) (Schöbel & Scholl [200])

ğ

 ℓ_3

Copy every node number of lines containing node times, i.e., nodes

Freie Universität

 $(v, \ell) \ \forall v \in V, v \ni \ell \in \mathcal{L}$

• Complete transfer graph for every node, i.e., edges $((v, \ell), (v, \overline{\ell})) \forall \ell, \overline{\ell} \in \mathcal{L}$

Travel time on path is sum of travel times on tavel + transfer edges

$$p_{1} = (a, e, f), \quad \tau_{p_{1}} = \tau_{(a,\ell_{3})(e,\ell_{3})} + \tau_{(e,\ell_{3})(f,\ell_{3})}$$

$$p_{2} = (a, e, f, b), \quad \tau_{p_{2}} = \tau_{(a,\ell_{3})(e,\ell_{3})} + \tau_{(e,\ell_{3})(f,\ell_{3})} + \tau_{(f,\ell_{3})(f,\ell_{5})} + \tau_{(f,\ell_{5})(b,\ell_{5})}$$

$$p_{3} = (d, g, f), \quad \tau_{p_{3}} = \tau_{(d,\ell_{4})(g,\ell_{4})} + \tau_{(g,\ell_{4})(g_{\ell_{5}})} + \tau_{(g,\ell_{5})(f,\ell_{5})}$$

$$p_{4} = (d, g, c), \quad \tau_{p_{4}} = \tau_{(d,\ell_{4})(g,\ell_{4})} + \tau_{(g,\ell_{4})(c,\ell_{4})}$$

Note: all transfers are taken into account

lл

Change & Go Model (CG) (Schöbel & Scholl [200])

$$\min \lambda \sum_{\ell \in \mathcal{L}} \sum_{f \in \mathcal{F}} c_{\ell,f} x_{\ell,f} + (1 - \lambda) \sum_{p \in \mathcal{P}} \tau_p y_p$$
 Minimize cost and travel time
$$\sum_{p \in \mathcal{P}_{st}} y_p = d_{st}$$
 $\forall s, t \in D$ Transport all demand
$$\sum_{p \ni a} y_p \leq \sum_{\ell \in \mathcal{L} \ni a} \sum_{f \in \mathcal{F}} \kappa_{\ell,f} x_{\ell,f}$$
 $\forall (a, \ell) \in \mathcal{A}_{\mathscr{L}}$ Capacity constraints
$$\sum_{f \in \mathcal{F}} x_{\ell,f} \leq 1$$
 $\forall \ell \in \mathcal{L}$ One frequency per line
$$y_p \geq 0, \ x_{\ell,f} \in \{0,1\}$$

Variables: $x_{\ell,f} = 1$ if line $\ell \in \mathcal{L}$ is chosen with frequency $f \in \mathcal{F}$; $x_{\ell,f} = 0$ otherwise $y_p \ge 0$ passengers on path $p \in \mathcal{P}$

Features

- Complete line pool
- Multi-criteria objective
- Integrated passenger routing
- Correct handling of transfers

Line Planning and Steiner Path Connectivity | CO∈TL 2015

Disadvantage

Very large graph

Direct Line Connection Model (DLC) (B., Karbstein [2012])

• Idea: associate with a pax path either a direct connection line or a transfer penalty: $y_{p,0}^{\ell}$ number of pax on ptraveling directly with ℓ $y_{p,1}$ number of pax on ptraveling with ≥ 1 transfer

Freie Universität

Associate transfer penalty σ with non-direct connections

$$p_{1} = (a, e, f), \qquad y_{p_{1},0}^{\ell_{3}} = 50, \qquad \tau_{p_{1}} = \tau_{ae} + \tau_{ef}$$

$$p_{2} = (a, e, f, b), \qquad y_{p_{2},1} = 50 \quad , \quad \tau_{p_{2}} = \tau_{ae} + \tau_{ef} + \tau_{fb} + \sigma$$

$$p_{3} = (d, g, f), \qquad y_{p_{3},1} = 20, \qquad \tau_{p_{3}} = \tau_{dg} + \tau_{gf} + \sigma$$

$$p_{4} = (d, g, c), \qquad y_{p_{4},0}^{\ell_{4}} = 80, \qquad \tau_{p_{4}} = \tau_{dg} + \tau_{gc}$$
Note:
$$y_{p_{1},0}^{\ell_{1}} = y_{p_{3},0}^{\ell_{7}} = 0, \text{ since } \ell_{1}, \ell_{7} \text{ not in solution}$$

Ν

Direct Line Connection Model (DLC) (B., Karbstein [2012])

Variables:
$$x_{\ell,f} \in \{0,1\}$$
 choose line ℓ with frequency f
 $z_{p,0}^{\ell} \in \mathbb{R}_{+}$ passenger flow on direct connection (p,ℓ)
passenger flow on p with at least one transfer
 $y_{p,1} \in \mathbb{R}_{+}$ passenger flow on p with at least one transfer
 $y_{p,1} \in \mathbb{R}_{+}$ passenger flow on p with at least one transfer
 $\sum_{line \ cost}$ $\sum_{line \ cost}$ $\sum_{\ell \in \mathcal{L}} \sum_{f \in \mathcal{F}} c_{\ell,f} x_{\ell,f} + (1-\lambda) \left(\sum_{p \in \mathcal{P}^{0} \ \ell \in \mathcal{L}: p \in \mathcal{P}^{0,\ell}} \tau_{p,0} z_{p,0}^{\ell} + \sum_{p \in \mathcal{P}} \tau_{p,1} y_{p,1} \right)$

transport all passengers

$$\sum_{\ell \in \mathcal{L}} \sum_{p \in \mathcal{P}_{st}^{0,\ell}} z_{p,0}^{\ell} + \sum_{p \in \mathcal{P}_{st}} y_{p,1} = d_{st} \qquad \forall (s,t) \in D$$

capacity constraints

$$\begin{split} \sum_{\ell \in \mathcal{L}} \sum_{p \in \mathcal{P}^{0,\ell}: a \in p} z_{p,0}^{\ell} + \sum_{p \in \mathcal{P}: a \in p} y_{p,1} & \leqslant \sum_{\ell \in \mathcal{L}: e(a) \in \ell} \sum_{f \in \mathcal{F}} \kappa_{\ell,f} x_{\ell,f} & \forall a \in A \\ \text{direct line connection (capacity) constraints} \\ & \sum_{p \in \mathcal{P}^{0,\ell}: a \in p} z_{p,0}^{\ell} & \leqslant \sum_{f \in \mathcal{F}} \kappa_{\ell,f} x_{\ell,f} & \forall \ell \in \mathcal{L}, \ e(a) \in \ell \\ \text{one frequency per line } \sum_{f \in \mathcal{F}} x_{\ell,f} & \leqslant 1 & \forall \ell \in \mathcal{L} \end{split}$$

Relaxation I – Line Aggregation

Idea: Aggregate $y_{p,0} = \sum_{\ell \in \mathcal{L}} y_{p,0}^{\ell}$ Problem: Replace dlc constraints

Freie Universität

$$\sum_{p \in \mathcal{P}^{0,\ell}: a \in p} z_{p,0}^{\ell} \leq \sum_{f \in \mathcal{F}} \kappa_{\ell,f} x_{\ell,f}$$

Idea: find set of paths that have the same direct connection lines

\$\mathcal{L}_{st}^0(a)\$ = set of dc lines for
 \$(s,t)\$ containing arc \$a\$

•
$$[s,t]_a = \{(u,v): \mathcal{L}^0_{uv}(a) = \mathcal{L}^0_{st}(a)\}$$

•
$$[s,t]_a^{\leq} = \{(u,v): \mathcal{L}_{uv}^0(a) \subseteq \mathcal{L}_{st}^0(a)\}$$

 $\sum_{(u,v)\in[s,t]_a^{\leq}}\sum_{p\in\mathcal{P}_{uv}^{0+}(a)}y_{p,0} \leq \sum_{\ell\in\mathcal{L}_{st}^0(a)}\sum_{f\in\mathcal{F}}\kappa_{\ell,f}x_{\ell,f}$ $\forall a\in A, \forall [s,t]_a$

Direct Connection Model (DC) (B., Karbstein [2012])

$$p_{1} = (a, e, f), \qquad y_{p_{1},0} = 50, \qquad \tau_{p_{1}} = \tau_{ae} + \tau_{ef}$$

$$p_{2} = (a, e, f, b), \qquad y_{p_{2},1} = 50 , \qquad \tau_{p_{2}} = \tau_{ae} + \tau_{ef} + \tau_{fb} + \sigma$$

$$p_{3} = (d, g, f), \qquad y_{p_{3},1} = 20, \qquad \tau_{p_{3}} = \tau_{dg} + \tau_{gf} + \sigma$$

$$p_{4} = (d, g, c), \qquad y_{p_{4},0} = 80, \qquad \tau_{p_{4}} = \tau_{dg} + \tau_{gc}$$

Here: same travel times as in DLC

Direct Connection Model (DC) (B., Karbstein [2012])

Variables: $x_{\ell,f} \in \{0,1\}$ choose line ℓ with frequency f $y_{p,0} \in \mathbb{R}_+$ passenger flow on a direct connection path $y_{p,1} \in \mathbb{R}_+$ passenger flow on a path with at least one transfer

Objective:

$$\min \lambda \sum_{\ell \in \mathcal{L}} \sum_{f \in \mathcal{F}} c_{\ell,f} x_{\ell,f} + (1-\lambda) \left(\sum_{p \in \mathcal{P}^{0+}} \tau_{p,0} y_{p,0} + \sum_{p \in \mathcal{P}} \tau_{p,1} y_{p,1} \right)$$

transport all passengers

$$\sum_{p \in \mathcal{P}_{st}^{0+}} y_{p,0} + \sum_{p \in \mathcal{P}_{st}} y_{p,1} = d_{st} \qquad \forall (s,t) \in D$$

capacity constraints

$$\sum_{p \in \mathcal{P}^{0+}: a \in p} y_{p,0} + \sum_{p \in \mathcal{P}: a \in p} y_{p,1} \leq \sum_{\ell \in \mathcal{L}: e(a) \in \ell} \sum_{f \in \mathcal{F}} \kappa_{\ell,f} x_{\ell,f} \quad \forall a \in A$$

direct connection (capacity) constraints
$$\sum_{(u,v) \in [s,t]_a^{\leq}} \sum_{p \in \mathcal{P}_{uv}^{0+}(a)} y_{p,0} \leq \sum_{\ell \in \mathcal{L}_{st}^0(a)} \sum_{f \in \mathcal{F}} \kappa_{\ell,f} x_{\ell,f} \quad \forall a \in A, [s,t]_a \in D(a)$$

one frequency per line
$$\sum_{f \in \mathcal{F}} x_{\ell,f} \leq 1 \qquad \forall \ell \in \mathcal{L}$$

Problem: How to identify direct connection paths, i.e., what is \mathcal{P}^{0+} ? Idea: For OD pair (s, t) consider *direct connection st-passenger routing digraph* G_{st} induced by all direct connection lines for (s, t)

$$\mathcal{P}_{st}^{0+}$$
 = set of all paths in G_{st} , $\mathcal{P}^{0+} = \bigcup_{s,t} \mathcal{P}_{st}^{0+}$

Proposition

- The pricing problem for the passenger paths variables $y_{p,0}$ for OD pair (s,t) is a shortest path problem in G_{st} .
- *G_{st}* can be constructed in polynomial time.
- The pricing problem for the passenger paths variables y_{p,1} is a shortest path problem in the passenger routing graph induced by all lines.

Problem: How to identify direct connection paths, i.e., what is \mathcal{P}^{0+} ? Idea: For OD pair (s,t) consider *direct connection st-passenger routing digraph* G_{st} induced by all direct connection lines for (s,t)

$$\mathcal{P}_{st}^{0+}$$
 = set of all paths in G_{st} , $\mathcal{P}^{0+} = \bigcup_{s,t} \mathcal{P}_{st}^{0+}$

Example

- Line capacity = 50
- Demands $c \rightarrow a = 50, \qquad d \rightarrow b = 50$ $c \rightarrow e = 50$

Freie Universität

- Path (c, d, e) is considered as a direct connection since it is a path in G_{ce}
- Line capacity = 50
- Demands

 $c \rightarrow a = 50, \qquad d \rightarrow b = 50$

DC-constraints on (b, c)

 $\begin{aligned} y_{abc,0} &\leq \sum_{f \in \mathcal{F}} \kappa_{\ell_1,f} x_{\ell_1,f} + \kappa_{\ell_3,f} x_{\ell_3,f} \\ y_{bcd,0} &\leq \sum_{f \in \mathcal{F}} \kappa_{\ell_1,f} x_{\ell_1,f} + \kappa_{\ell_2,f} x_{\ell_2,f} \end{aligned}$

• $y_{abc,0} = y_{bcd,0} = 50$, but either (*a*, *c*) or (*b*, *d*) must transfer

- The direct line connection model (DLC) accounts exactly for the number of direct travelers in a system optimum. It is a first order approximation of model (CG).
- Model (DC) is a relaxation of the projection of model (DLC) onto the space of the direct connection path variables, i.e., (DC) approximates the number of direct travelers.
- The relaxation is due to
 - a larger set of direct connection paths $\mathcal{P}_{st}^0 \subseteq \mathcal{P}_{st}^{0+}$,
 - the direct connection constraints, a small, combinatorial set of all projected direct line connection constraints.
- (DC) is algorithmically tractable:
 - passenger paths variables not dependent on lines;
 - pricing passenger path variables is a shortest path problem.
- Model (DC) can be seen as transfer improvement of model (B)

Proposition

- 1. Uncapacitated case (B., G., Pfetsch [2009]): The fundamental classes of Steiner cut and Steiner partition inequalities can be generalized to the Steiner connectivity problem and hence to the line planning problem.
- 2. Capacitated case (K. [recently]): The fundamental classes of band inequalities and Steiner partition band inequalities can be generalized to the line planning problem.

Example (2): Network with 4 lines

Freie Universität

- \triangleright Capacity $\kappa_{\ell} = 10$
- ▷ Frequency $\mathcal{F} = \{1,2\}$
- ▷ Steiner partition band inequality $2x_{1,2} + x_{2,2} + x_{3,2} + x_{4,2} \ge 2$
- The yellow or two other lines with frequency 2 have to be chosen.

Public transport network partitioned into 3 components Numbers give max. number of passengers leaving/entering component

Column Generation Approach

Test Instances

China

Test Instances

Test Instances

problem	D	$ V_O $	V	A	$ \mathcal{L} $	x-vars	dc-cons	cons
Dutch1	420	23	23	106	402	1 608	1832	1 080
Dutch2	420	23	23	106	2 679	10716	7 544	3 341
Dutch3	420	23	23	106	7 302	29 208	9736	7 945
China1	379	20	20	98	474	1896	2754	1178
China2	379	20	20	98	4871	19 484	8162	5 457
China3	379	20	20	98	19 355	77 420	12443	19931
SiouxFalls1	528	24	24	124	866	3 464	4 4 0 0	1779
SiouxFalls2	528	24	24	124	9 397	37 <mark>5</mark> 88	16844	10 197
SiouxFalls3	528	24	24	124	15 365	61 460	21 220	16 145
Potsdam98a	7734	107	344	2746	207	776	3538	9970
Potsdam98b	7734	107	344	2746	1 907	7 <mark>5</mark> 72	60 902	11991
Potsdam98c	7734	107	344	2746	4 3 4 2	17 313	76640	14 366
Potsdam2009	4 4 4 3	236	851	5 542	3 4 3 3	14 140	30780	12006

- Frequencis: 3,6,9,18 (△ cycle time of 60,30,20,10 min in 3 h)
- Could not solve CG root LP for red instances in 10 h

DC vs. B

		(DC)			(B)	
problem	time	nodes	gap	time	nodes	gap
Dutch1	15s	329	opt.	10h	5 940 327	0.03%
Dutch2	< 1h	11 532	opt.	10h	815 966	0.04%
Dutch3	10h	57 273	0.05%	10h	151 053	0.08%
China1	10h	814 964	0.32%	10h	3 754 582	0.11%
China2	10h	5 366	0.53%	10h	129 217	0.15%
China3	10h	997	0.47%	10h	37 519	0.18%
SiouxFalls1	10h	458 379	0.10%	< 1h	347 999	opt.
SiouxFalls2	10h	13868	0.09%	10h	110 836	0.01%
SiouxFalls3	10h	3 2 3 0	0.10%	10h	44713	0.00%
Potsdam98a	10h	7 357	0.09%	10h	6 266	0.12%
Potsdam98b	10h	62	0.28%	10h	2 4 9 1	0.26%
Potsdam98c	10h	10	0.27%	10h	661	0.25%
Potsdam2010	10h	2	0.81%	10h	2123	0.41%

- Line costs proportional to line lengths plus fixed cost
- Objective weighing parameter $\lambda = 0.8$, transfer penalty $\sigma = 15$ min

Verifying D	Freie Universität 😰 Berlin				
problem	travel time	cost	obj.	dir. trav. ¹	dir. trav. ²
Dutch1 (DC)	1.279·10 ⁷	68 900	2613305	179 496	179 496
Dutch1 (B)	1.333·10 ⁷	57 800	2711770	183 <mark>5</mark> 82	148 924
Dutch2 (DC)	1.279·10 ⁷	66 900	2612122	180 484	179 384
Dutch2 (B)	1.319·10 ⁷	57 500	2683071	183 <mark>5</mark> 82	156 251
Dutch3 (DC)	1.279·10 ⁷	66 900	2612122	180 484	179 384
Dutch3 (B)	1.319·10 ⁷	57 500	2683071	183 <mark>5</mark> 82	156 251
China1 (DC)	1.259·10 ⁷	267 937	2732445	749 736	716 040
China1 (B)	1.559·10 ⁷	233 268	3304432	759 950	509 526
China2 (DC)	1.258·10 ⁷	247 241	2714438	759 936	709 145
China2 (B)	1.559·10 ⁷	233 268	3304432	759 950	509 526
China3 (DC)	$1.245 \cdot 10^7$	244 361	2684860	759 950	714 728
China3 (B)	$1.559 \cdot 10^7$	233 268	3304432	759 950	509 526

¹ direct travelers computed by model

² direct travelers computed a posteriori at system optimum

1. . . .

N.

SHIFE

Freie Universität

problem	travel time	cost	obj.	dir. trav.	dir. trav.
SiouxFalls1 (DC)	3.267·10 ⁶	9 205	660675	360 600	358 888
SiouxFalls1 (B)	3.633·10 ⁶	8 295	733288	360 600	335 355
SiouxFalls2 (DC)	3.392·10 ⁶	5 787	682996	360 600	360 178
SiouxFalls2 (B)	3.776·10 ⁶	5 178	759365	360 600	326 625
SiouxFalls3 (DC)	3.431·10 ⁶	4 899	690200	360 600	355 068
SiouxFalls3 (B)	3.695·10 ⁶	4 283	742397	360 600	334 052
Potsdam98a (DC)	5.076·10 ⁶	27 044	1036865	70 513	71 075
Potsdam98a (B)	5.102·10 ⁶	29 018	1043617	83 702	68 900
Potsdam98b (DC)	4.836·10 ⁶	33 484	993938	78 745	79 511
Potsdam98b (B)	4.970·10 ⁶	28 302	1016610	84 879	73 983
Potsdam98c (DC)	4.829·10 ⁶	32 544	991772	79 694	79 576
Potsdam98c (B)	4.952·10 ⁶	29 320	1013779	84 979	74 356
Potsdam2010 (DC)	$1.032 \cdot 10^6$	9 314	213769	38 152	38 001
Potsdam2010 (B)	$1.073 \cdot 10^6$	8 734	221549	41 052	35 285

Line Planning and Steiner Path Connectivity | COETL 2015

Deviation of direct travelers from a posteriori system optimum:

DCBMax: 7%Max: 49%Min: 0%Min: 7.5%Avg: 1.9%Avg: 22.8%

- Cost per kilometer for bus and tram
- Penalty of 15 minutes for each transfer

Project Stadt+

Goal

- Rearrange line plan, minimize travel time, no cost increase Data
- Public transport network including lengths and times of 2009
- Demand estimation (OD data) of 2007
- Vehicle capacity bus 125, tram 170

Planning Requirements

- Cycle time of (10,) 20, 30, 60 minutes; tram at least 20 minutes
- Minimum frequency 20, 60 (one line), 10, 30 (two lines) minutes
- Maximum travel time for each line < 45 minutes
- Definition of endpoints for lines, important and forbidden stations
- No parallel traffic of bus and tram
- Fixed BVG and HVG lines

Objectives

Bus: ViP vs. ZIB

Tram: ViP vs. ZIB

Comparing Cost and Travel Times

Freie Universität Berlin

from 6:00 to 9:00 am	ViP	ZIB	min cost	min time
bus lines	16	16	17	120
tram lines	7	7	6	18
bus km	2392	2497	1644	10565
tram km	1440	1207	1054	3156
cost	8057	7717	5688 ¹	28091 ²
time ³ with transfer penalty ⁴	6.2484	6.1927	6.7344	6.0812
time ³ without transfer penalty	5.1641	5.1550	5.2889	5.1422

Comparing Travel Times with VISUM

	ZIB	ViP
Average travel time	36 min 3 s	36 min 39 s
Average carriage time	16 min 8 s	17 min 42 s
Average time in vehicle	13 min 8 s	14 min 36 s
Average transfer waiting time	1 in 30 s	1 min 29 s
Average walking time	1 min 38 s	1 min 37 s
Average perceived travel time	26 min	27 min 37 s
Total number transfers	10595	11141
0 transfers	37338	36851
1 transfer	10088	10503
2 transfers	243	306
>2 transfers	7	9

Comparing Transfers and Loads

Freie Universität

Line Planning and Steiner Path Connectivity | COETL 2015

- The ViP line plan achieves a good compromise between minimizing travel times and costs.
- The ZIB line plan achieve additional improvements by shortening the tram network.
- The guidelines (for means of transportation, minimum service frequencies) strongly influence the result.
- Even if the network is changed only slightly, passenger routes can differ strongly.
- The current practice of data acquisition, computation of statistics, and evaluation of results is unsatisfactory.
- Given suitable data and parameterization, optimization tools can compute line plans which are at least on a par with plans computed by experienced planners.

Line Plan Potsdam 2010

Freie Universität

Line Planning and Steiner Path Connectivity | COETL 2015

Thank you for your attention

Ralf Borndörfer

Freie Universität Berlin Zuse-Institute Berlin Takustr. 7 14195 Berlin-Dahlem

Freie Universität

Fon (+49 30) 84185-243 Fax (+49 30) 84185-269

borndoerfer@zib.de

www.zib.de/borndoerfer