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Chapter 1

Fare Planning

1.1 What is Fare Planning?

In this chapter we deal with the problem to optimize fares for a public
transport system. We assume that we are given a price system and we want
to optimize with respect to different objectives, such as maximization of
the revenue, profit, or the number of passengers. The price system includes
structural decisions, for instance, whether we have zone tariffs or distance
dependent fares and it includes the types of different tickets, such as single
tickets, monthly tickets etc.

Currently, fares in public transport system are planned through a polit-
ical process, i.e., they are subject to negotiations. The main question often
is: To what extent can one raise fares under political and social constraints?
The goal of fare planning, as we will present it in the following, is to in-
troduce mathematical optimization into this process. With the models of
this chapter one can reach quantitative results and new fare systems can be
tested in silico. New and more complicated fare systems are likely to appear
in the future, when they are made practical through technical innovations
like electronic ticketing.

The outline of this chapter is as follows. We first fix notation and then
present several different nonlinear models for fare planning. These models
are based on so-called demand functions, i.e., functions that determine the
number of passengers that want to travel with a given ticket type for a given
fare. We will discuss how we obtain such a demand function using a so-called
logit model, which is a special kind of discrete choice model. Then we present
computational results.

Details can be found in Borndörfer, Neumann, and Pfetsch [2].

1.2 Basic Models

The fare planning problem involves a traffic network G = (V,E), where the
nodes V represent locations and the edges E connections that can be used
for travel. Given is a set D ⊆ V × V of origin-destination pairs (OD-pairs
or traffic relations). We assume fixed passenger routes, i.e., for every OD-
pair (s, t) ∈ D there is a unique path Qst through the traffic network the
passengers will use. In our case, the passengers use the time-minimal path.

Furthermore, we are given a finite set C of travel choices. Examples of
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Figure 1.1: Examples for a demand and revenue function.

travel choices that we have in mind are: single or monthly tickets, distance
dependent fares, etc. Travel choices may also include the number of trips
during a time horizon, e.g., 30 trips during a month with a monthly ticket.

We consider n ∈ N nonnegative fare variables x1, . . . , xn, which we call
fares in the following. A fare vector is a vector x ∈ Rn

+ of such fares.
The model involves price functions pi

st : Rn → R+ and demand functions
di

st : Rn → R+ for each OD-pair (s, t) ∈ D and each travel choice i ∈ C. The
price functions pi

st(x) determine the price for traveling with travel choice i
from s to t depending on the fare vector x. All pi

st appearing in this paper
are affine functions and hence differentiable. The demand functions di

st(x)
measure the amount of passengers that travel from s to t with travel choice i,
depending on the fare vector x. To simplify notation, we use

dst(x) :=
∑

i∈C

di
st(x).

We assume that dst is nonincreasing, i.e.,

x1 ≤ x2 ⇒ dst(x
1) ≥ dst(x

2).

It follows that the demand is maximized for x = 0. Note that the com-
ponents di

st will not be nonincreasing in general. In our examples, demand
functions are also differentiable and, in particular, continuous. See Figure 1.1
for an illustration.

The revenue r(x) is calculated as:

r(x) :=
∑

(s,t)∈D

∑

i∈C

pi
st(x) · di

st(x).

The first model for the fare planning problem maximizes revenue:

(Max-R) max
∑

(s,t)∈D

∑

i∈C

pi
st(x) · di

st(x)

s.t. x ≥ 0 .

The model assumes a fixed level of service, that is constant costs. Additional
constraints on x can also be included into the model, e.g., upper bounds
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on the fares, because of political reasons. Since the demand function is
nonincreasing, lower bounds on the fare could ensure a certain demand.

The next model is more realistic, since it allows a variable level of service.
This means to include the costs for the service into the model. We do this
by also planning the frequencies of the lines. In principle, we would like
to include a complete line planning model. Due to the complexity of line
planning, in this context, however, we can only include a simplified version.
That is, we consider a line pool L and compute a continuous frequency fℓ ≥ 0
for each line ℓ ∈ L. We are given parameters cℓ ≥ 0 for the operating costs of
line ℓ ∈ L. We assume that the lines are symmetric, i.e, fℓ is the frequency
for the back and forth direction. Finally, we are given vehicle capacities
κℓ ≥ 0 for each line.

With these additional assumptions we can maximize the profit (revenue
minus costs) under the restriction of sufficient transportation capacity on
each edge and including a fixed subsidy S ≥ 0:

(Max-P) max
∑

(s,t)∈D

∑

i∈C

pi
st(x) · di

st(x) − z

s.t.
∑

ℓ∈L

cℓ fℓ − S ≤ z

∑

(s,t)∈D
e∈Qst

dst(x) ≤
∑

ℓ:e∈ℓ

fℓ κℓ ∀e ∈ E

x ≥ 0

f ≥ 0

z ≥ 0.

Because z is nonnegative and is minimized (−z is maximized), we have

z = max
{

∑

ℓ∈L

cℓ fℓ − S, 0
}

.

Therefore it is guaranteed that the subsidy can only be used for compensating
the costs.

Note. If the costs for transporting passengers are smaller than the revenue,
then optimal fares for Max-P with S = 0 are optimal for Max-P with S > 0
and conversely, as long as the subsidy is smaller than the “optimal” costs of
model Max-P. This holds, because of the following reasoning. Under the
given conditions, we have

∑

ℓ∈L

cℓ fℓ − S = z.

Substituting this into the objective of model Max-P leaves a constant S,
which does not influence optimal solutions. This shows the claim.
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These two models are meant to improve the profit of the public transport
system. We now consider a model that also covers social issues of public
transport. The objective is to maximize the number of passengers such that
the public transport system is not a “losing deal”. More precisely: In the case
of zero subsidy, the objective is to maximize the number of passengers such
that the costs have to be smaller than the revenue; in the case of positive
subsidy the costs have to be smaller than the revenue plus subsidy.

(Max-D) max
∑

(s,t)∈D

dst(x)

s.t.
∑

(s,t)∈D

∑

i∈C

pi
st(x) · di

st(x) ≥
∑

ℓ

cℓ fℓ − S

∑

(s,t)∈D
e∈Qst

dst(x) ≤
∑

ℓ:e∈ℓ

fℓ κℓ ∀e ∈ E

x ≥ 0

f ≥ 0.

Note. Without the first side constraint, the optimal solution would be x = 0
since the dst are nonincreasing.

All introduced models are nonlinear programs that may be quite hard to
solve in general. Nevertheless, in our examples all functions are differentiable
and we managed to compute the optimum.

1.3 Demand Functions

Our approach to fare planning is based on the assumption that passenger
behavior in response to fares can be given by the demand functions di

st. This
is a necessary, but in practice quite strong assumption.

There are several issues that are discussed in the literature.

◦ For di
st to exist, passengers need full knowledge of the situation and act

rationally with respect to the change of fares. It follows that demand
functions are nonincreasing. The assumption on full knowledge and ra-
tionality is clearly unrealistic.

◦ Passenger behavior in reality is asymmetric, i.e., passengers behave dif-
ferently to increasing and decreasing fares. In particular, if a fare is
raised and lowered back to the original value, passengers do not behave
as before, at least not immediately.

◦ In general, passengers need time to adjust to fare changes.
◦ A principle drawback is that demand functions cannot be measured, since

(ceteris paribus) experiments cannot be carried out, and surprising effects
significantly influence the situation. For instance, in many experiments
with zero fares the main passenger increase is caused by induced traffic
and by passengers that used a bike or went by foot before.
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These are valid arguments that demand functions cannot model the
“truth”. Nevertheless, we will follow large parts of the economic and public
transport literature that take the point of view that demand functions can
be used to predict reality with reasonable accuracy.

1.3.1 Elasticity Demand Functions

The perhaps best known class of demand functions arise from constant elas-
ticity models and are also called Cobb-Douglas functions, see Cerwenka [3].
They play a prominent role in the economic literature on public transport
fares, see Oum, Waters, and Yong [7], and Goodwin [5].

The elasticity is the relative change in demand divided by the relative
change in fares. For a (continuously) differentiable function d : R>0 → R>0

(with R>0 := {x ∈ R : x > 0}), we get for x0 > 0:

ǫ(x0) = lim
x→x0

d(x)−d(x0)
d(x0)
x−x0

x0

=
x0

d(x0)

d(x) − d(x0)

x − x0
= x0

d′(x0)

d(x0)
.

In the public transport literature the elasticity is often assumed to be con-
stant, e.g., ε = −0.3, a value which is usually attributed to Curtin and
Simpson [4]. Constant elasticities are designed for use in a small neighbor-
hood around some point. In fact, for ε < 0 Cobb-Douglas functions are
undefined at zero and hence not applicable for situations where a fare can be
reduced to zero. We will not use Cobb-Douglas functions in the following.

1.4 Discrete Choice Models

A popular type of demand functions arises from a discrete choice analysis,
see, e.g., Ben-Akiva and Lerman [1] or Maier and Weiss [6]. Here, pas-
sengers choose among a number of travel alternatives the one with highest
utility. The so-called logit models include randomness in passenger prefer-
ences, which captures fuzziness in decision changes of passengers and renders
the resulting demand functions continuous. We will introduce the basics of
this approach in the following.

In a discrete choice model for public transport, each passenger chooses
among a finite set A of alternatives for travel, e.g., single ticket, monthly
ticket, bike, car travel, etc. Associated with each alternative a ∈ A and each
OD-pair (s, t) ∈ D is a utility Ua

st which may depend on the passenger. Each
utility is the sum of an observable part, the deterministic utility V a

st, and a
random utility, the disturbance term νa

st, i.e.:

Ua
st = V a

st + νa
st.

Assuming that each passenger chooses the alternative with the highest utility,
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Figure 1.2: Gumbel density function g(x).

the probability of choosing alternative a ∈ A is

P a
st := P[

V a
st + νa

st = max
b∈A

(V b
st + νb

st)
]

. (1.1)

1.4.1 Logit Models

In a logit model the disturbance terms νa
st are assumed to be independently

and identically distributed according to the Gumbel distribution G(η, µ),
which is defined by the density function

g(x) = µe−µ(x−η) exp(−e−µ(x−η)),

where η is a location parameter and µ > 0 is a scale parameter. The distri-
bution function is then

G(x) =

x
∫

−∞

g(t) dt =

x
∫

−∞

µe−µ(t−η) exp(−e−µ(t−η)) dt = exp(−e−µ(x−η)).

The Gumbel distribution resembles the Gauß distribution (see Figure 1.2)
and we have:

Lemma 1.1. The Gumbel distribution has the following properties.

(a) The mean is η + γ/µ, where γ is the Euler constant, γ ≈ 0.577. The
variance is π2/(6µ2).

(b) If v is Gumbel distributed with parameters (η, µ), then α ·v+c is Gumbel
distributed with parameters (αη + c, µ/α), for α > 0, c ∈ R.

(c) If v1 and v2 are independent Gumbel distributed variables with parame-
ters (η1, µ) and (η2, µ), respectively, then v1−v2 is logistically distributed,
i.e., according to the following distribution function:

F (x) :=
1

1 + eµ(η2−η1−x)
(1.2)



1.4 Discrete Choice Models 7

(d) If v1, . . . , vn are independent Gumbel distributed variables with param-
eters (η1, µ), . . . , (ηn, µ), respectively, then max{v1, . . . , vn} is Gumbel
distributed with parameters:

(

1
µ

ln

n
∑

j=1

eµ ηj , µ
)

.

We skip the proof here, but will now derive the logit model, where we
assume η = 0 in the following.

Proposition 1.2. Let νa
st be independent Gumbel distributed variables with

parameters (0, µ). Then the probability P a
st that alternative a for OD-pair

(s, t) ∈ D is chosen is

P a
st =

eµV a
st

∑

b∈A

eµV b
st

. (1.3)

Proof. We fix (s, t) ∈ D. By Lemma 1.1 (b) it follows that Ua
st = V a

st + νa
st is

Gumbel distributed with parameters (V a
st, µ). From (1.1) we know that

P a
st := P[

V a
st + νa

st ≥ max
b∈A\{a}

(V b
st + νb

st)
]

.

Choose a ∈ A and define

U⋆
st := max

b∈A\{a}
U b

st.

Then Lemma 1.1 (d) shows that U⋆
st is Gumbel distributed with parameters

(V ⋆
st, µ), where

V ⋆
st := 1

µ
ln

∑

b∈A\{a}

eµ V b
st .

Then, we can write U⋆
st = V ⋆

st + ν⋆
st, where ν⋆

st is Gumbel distributed with
parameters (0, µ). It follows that

P a
st = P[

V a
st + νa

st ≥ V ⋆
st + ν⋆

st

]

= P[

ν⋆
st − νa

st ≤ V a
st − V ⋆

st

]

.

By Lemma 1.1 (c), ν⋆
st − νa

st is logistically distributed. Applying (1.2) and
using that η = 0 for both variables, we get

P a
st = F (V a

st − V ⋆
st) =

1

1 + eµ(V ⋆
st−V a

st)
=

eµV a
st

eµV a
st + eµV ⋆

st

=
eµV a

st

eµV a
st + eln

P

b∈A\{a} eµ V b
st

=
eµV a

st

∑

b∈A

eµ V b
st

,

which proves the claim.
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1.5 Application to Fare Planning

We apply the above logit model to fare optimization as follows. We consider a
time horizon T and assume that a passenger who travels from s to t performs
a random number of trips Xst ∈ Z+ during T , i.e., Xst is a discrete random
variable. We assume that passengers do not mix alternatives, i.e., the same
travel alternative is chosen for all trips. Furthermore, we assume an upper
bound N on Xst. Let the alternatives have utilities

Ua,k
st (x) = V a,k

st (x) + νa
st

that depend on the fare vector x and the number of trips k.

Let A′ be the set of public transport alternatives. Then the travel choices
are C = A′ × {1, . . . , N}. We write da,k

st (x) for the amount of passengers

traveling k times during T with alternative a from s to t and similarly pa,k
st (x)

for the price of this travel. It follows that

da,k
st (x) = ρst ·P

a
st(x, k)·P[Xst = k] = ρst ·

eµV
a,k

st (x)

∑

b∈A

eµV
b,k
st (x)

·P[Xst = k], (1.4)

where ρst is the entry of the OD-matrix corresponding to (s, t) ∈ D. The
revenue can then be written as:

r(x) =
∑

(s,t)∈D

∑

a∈A′

N
∑

k=1

pa,k
st (x) · da,k

st (x) =
∑

(s,t)∈D

∑

i∈C

pi
st(x) · di

st(x).

This formula expresses the expected revenue over the probability spaces
for Xst and disturbance terms νa

st.

Note that r(x) is continuous and even differentiable if the deterministic

utilities V a,k
st (and the price functions pa,k

st (x)) have this property. This is, for
instance, the case for affine functions as customary in discrete choice models,
see also the example below.

1.6 Computational Results

In this section, we will present computational results for two different fare
systems.

1.6.1 Fare System 1

For the first fare system we use the following:

◦ We distinguish two tariff zones.
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Figure 1.3: Probabilities for the number of travels.

◦ Travel choices: monthly ticket (M), single ticket (S), car (C); we use:
A = {M,S,C}.

◦ Fare variables x = (xs, xm) (where xs and xm are the fares for a single
and monthly ticket, respectively).

◦ Gumbel parameter µ = 1
30 , ν = 0

◦ The probabilities for each number of trips can be seen in Figure 1.3,
where the maximum number of trips is N = 60.

The price functions for one tariff zone are:

◦ pS,k
st (xs, xm) = xs · k

◦ pM,k
st (xs, xm) = xm

◦ pC,k
st (xs, xm) = qF + ℓC

st · qV · k, with qF = 100, qV = 0.1.

Hence, for alternative “single ticket” one has to pay the fare for a single ticket
times the number of trips k. For a monthly ticket one pays the monthly ticket
price only. For using a car one pays a combination of a fixed cost qF and a
distance dependent price ℓC

st · qV , where ℓC
st is the length of the trip for a car

and qV are operating cost.

We use the following (deterministic) utilities for one tariff zone:

◦ V S,k
st (xs, xm) = −(xs · k) − 0.1 · tst · k

◦ V M,k
st (xs, xm) = −(xm) − 0.1 · tst · k

◦ V C,k
st (xs, xm) = −(qF + ℓC

st · qV · k) − 0.1 · tCst · k + yst

Here, tst and tCst are the travel times for using public transport and car,
respectively. The parameters yst measure the “comfort” of car travel and
are calibrated such that the model for the current fares yields the original
demand data. The minus signs in the utilities are used, because we want the
utility to decrease when the fares or travel times increase. The two parts
are weighted by 0.1, i.e., one minute of traveling time is worth 0.1 monetary
units.
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Figure 1.4: Results for maximizing demand Max-D. The fares are given for the two
tariff zones. The pictures show results for tariff zone 2. The comparison is with respect
to the status quo.

Using (1.4), the revenue can be computed as:

r(x) =
∑

(s,t)

∑

a∈{S,M}

N
∑

k=1

ρst ·
pa,k

st (xs, xm) · eµV
a,k

st (xs,xm)

∑

b∈{M,S,C}

eµV
b,k

st (xs,xm)
·P(Xst = k).

Note that we sum only over the public transport alternatives (S and M)
and that this expresses the expected revenue subject to both probability
distributions (for the number of trips and the disturbance terms). This
revenue has to be combined for the two tariff zones.

The demand and revenue functions and optimization results for fare sys-
tem 1 are shown in Figure 1.4. Table 1.1 shows the optimization results of
all models presented previously.

Figure 1.5 shows the distribution of passengers for cars and public trans-
port. One can see that much more passengers use the car than public trans-
port. One can also see the space distribution of the passengers.

Figure 1.6 shows a plot of the objective function when we vary subsidy
in model Max-D. Here x = 0 is the optimal solution when we have that S
is larger than ≈ 3 200 000. If x = 0 we have ≈ 112 000 (of totally 209 315)
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Table 1.1: Results for all models with fare system 1. We use a subsidy of 1 000 000 for
the models marked with *, otherwise S = 0.

xs xm revenue demand cost

1.45 32.50 1 831 499 60 627.0
Status quo

2.20 49.50 254 818 5876.0
1 914 519

1.75 45.01 1 909 843 51 038.8
Max-R

1.98 51.06 255 439 5 982.3
1 662 187

3.96 64.66 1 613 537 29 819.2
Max-P

7.93 87.59 170 892 2 310.8
912 876

3.46 62.23 1 683 464 32 560.5
Max-P*

6.93 83.25 183 202 2 597.7
1 000 000

1.09 32.42 1 771 871 64 988.3
Max-D

2.09 53.03 255 154 5 783.7
2 027 026

0.57 18.98 1 293 622 80 034.0
Max-D*

1.13 37.95 233 809 7 651.9
2 527 431

passengers with car pass. with public transport

Figure 1.5: Results for Max-D with S = 1 000 000. The size of the circles are propor-
tional to the number of passengers that start their travel at the corresponding districts
(which can be seen in the background).
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Figure 1.6: Changing subsidy S for the model Max-D.
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Table 1.2: Computational results for all models with fare system 2. We use a subsidy of
1 000 000 for the parts marked with * and S = 0 otherwise.

xb xd revenue demand cost

Max-R 27.34 0.26 1 901 102 59 673.9 1 456 154
Max-P 33.30 0.65 1 568 256 33 989.0 728 189
Max-P* 30.88 0.45 1 778 231 44 216.2 1 000 000
Max-D 20.68 0.18 1 822 608 71 253.3 1 822 608
Max-D* 12.94 0.09 1 402 984 88 144.1 2 402 984

passengers that use public transport.

1.6.2 Fare System 2

In the second fare system we do not distinguish the two tariff zones, but
introduce a distance dependent fare. We have the following travel choices:
standard ticket (S), reduced ticket (R), car (C) and define A = {S,R,C}.
For the reduced ticket one pays a basic fare xb once in the beginning and
then only has to pay half the distance dependent fare xd (which is also used
for the standard ticket). More precisely, the price functions are as follows:

◦ pS,k
st (xb, xd) = xd · ℓst · k

◦ pR,k
st (xb, xd) = xb + 1

2xd · ℓst · k

◦ pC,k
st (xb, xd) = qF + ℓC

st · qV · k, with qF = 100, qV = 0.1.

Here, ℓst is the distance for traveling from s to t with public transport.
The (deterministic) utilities are defined as follows:

◦ V S,k
st (xb, xd) = −(xd · ℓst · k) − 0.1 · tst · k

◦ V R,k
st (xb, xd) = −(xb + 1

2xd · ℓst · k) − 0.1 · tst · k

◦ V C,k
st (xb, xd) = −(qF + ℓC

st · qV · k) − 0.1 · tCst · k + yst

These utilities are set up similar to fare system 1.
The (expected) revenue function can be computed as follows:

r(x) =
∑

(s,t)

∑

a∈{S,R}

N
∑

k=1

ρst ·
pa,k

st (xb, xd) · e
µV

a,k
st (xb,xd)

∑

b∈{S,R,C}

eµV
b,k

st (xb,xd)
·P(Xst = k)

Table 1.2 shows optimization results for all models and Table 1.3 presents
a comparison between the two fare systems. One can see that with model
Max-D one can attract more passengers with fare system 2 than with fare
system 1, but with less revenue. The same holds for model Max-R.
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Table 1.3: Comparison between fare system 1 and 2. We use S = 0.

revenue demand costs

Status quo 2 072 106 66 503.0 3 597 604

fare system 1 2 165 282 57 021.1 1 662 187
Max-R

fare system 2 1 901 102 59 673.9 1 456 154

fare system 1 2 027 026 70 772.0 2 027 026
Max-D

fare system 2 1 822 608 71 253.3 1 822 608
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