Network Design and Operation (WS 2015)

Excercise Sheet 1
Submission: Mo, 26. October 2015, tutorial session

Exercise 1. 8+2 Points
Show that connectedness induces an equivalence relation on the nodes of an undirected graph. What are the equivalence classes?

Exercise 2. 10 Points
Show that an edge is a bridge of an undirected graph if and only if it is not contained in a cycle.

Exercise 3. 10 Points
Show that an undirected graph is bipartite if and only if it doesn’t contain an odd cycle (with an odd number of nodes = number of edges).

Exercise 4. 10 Points
Show that a tree with maximum degree $\Delta(G) := \max_{v \in V} \delta(v)$ has at least $\Delta(G)$ leaves (nodes of degree 1).
Exercise 5.

The *assignment problem* involves a complete bipartite graph $G = (U, V, E)$ with the same number of nodes $|U| = |V|$ on both sides and a matrix of edge weights $c \in \mathbb{Q}^E = \mathbb{Q}^{U \times V}$. An *assignment* is a set of edges $M \subseteq E$ such that each node u is contained in exactly one edge uv that matches or assigns it to v. The assignment problem is to find an assignment M of minimum cost $c(M)$.

Solve the assignment problem given by the matrix in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>7</th>
<th>9</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1: Assignment problem

Exercise 6.

Solve the problem in exercise 5 by integer programming using the programs *zimpl* and *scip*.

a) Download *zimpl* and *scip* from zibopt.zib.de and have a look at the example section in the *zimpl* manual.

b) Formulate the assignment problem as an integer linear program (IP).

c) Translate your IP model into a *zimpl* model.

d) Solve the model using *scip*.

e) Construct the LP relaxation of the model.

f) Solve the LP relaxation using *scip*.

g) Prove that the solution of the LP relaxation is always integer.