Network Design and Operation (WS 2015)

Excercise Sheet 4
Submission: Mo, 16. November 2015, tutorial session

Exercise 1. 10 Points

Prove that the smallest enclosing circle of \(n \) points in the plane is uniquely determined by 3 points.

Exercise 2. 5+5 Points

Solving the 1-center network location problem \(1/N/\cdot/sp/\max \) requires the solution of minimization problems

\[
(P_{uv}) = \min_{w \in V} \max_{\lambda \in [0,1]} \{ \text{sp}(u, w) + \lambda c_{uv}, \text{sp}(v, w) + (1 - \lambda)c_{uv} \}
\]

for all undirected edges \(uv \in E \).

a) The functions

\[
\lambda \mapsto \max_{w \in V} \min_{\lambda \in [0,1]} \{ \text{sp}(u, w) + \lambda c_{uv}, \text{sp}(v, w) + (1 - \lambda)c_{uv} \}
\]

are continuous and piecewise affine with at most \(2|V| \) pieces.

b) \((P)_{uv} \) can be solved in linear time.

Exercise 3. 5+3+2 Points

Consider a modification of the select median finding algorithm that subdivides \(m \) given numbers into groups of \(k \) elements, where \(k \) can be different from 5.

a) Ignoring integrality issues, derive a recursion for the run time.

b) What is the ratio in the resulting geometric series?

c) What is special about \(k = 5 \)?

Exercise 4. 10 Points

Consider real number \(a_1, \ldots, a_m \) and positive weights \(w_1, \ldots, s_m \); let \(W := \sum_{i=1}^m w_i \).

The weighted median of \(\{a_i\} \) w.r.t. \(w_i \) is

\[
w\text{-med} \{a_i\} := \left[a_k : \sum_{a_i < a_k} w_i < W/2, \sum_{a_i \geq a_k} w_i \leq W/2 ; a_{\ell} : \sum_{a_i < a_{\ell}} w_i \leq W/2, \sum_{a_i \geq a_{\ell}} w_i < W/2 \right].
\]

Prove that the median of \(\{a_i\} \) is the weighted median of \(\{a_i\} \) w.r.t. weights \(w \equiv 1/m \).
Exercise 5.

Consider the 6-node graph $N = (V, E)$ in Fig. 1 with distances d_{ij} and demands w_i as drawn next to the edges and nodes.

a) Solve the warehouse location problem $1/V/\cdot/sp/\sum w_i$.

b) Solve the warehouse location problem $2/V/\cdot/sp/\sum w_i$ by fixing the solution of a) and adding a second warehouse in a best possible way.

c) Develop an IP formulation for $2/V/\cdot/sp/\sum w_i$.

d) Solve your formulation from c).

e) Did b) produce the optimum?

f) Solve the network center problem $1/V/\cdot/sp/\max$.

g) Solve the network center problem $2/V/\cdot/sp/\max$ by fixing the solution of f) and adding a second center in a best possible way.

h) Develop an IP formulation for $2/V/\cdot/sp/\max$.

i) Solve your formulation from h).

j) Did g) produce the optimum?

Figure 1: Warehouse location/network center problem.