
Bei Fragen und Problemen wenden Sie sich bitte an webmaster@zib.de!
Kaie Kubjas (Freie Universität Berlin)
Ehrhart polynomials, group-based models and Berenstein-Zelevinsky triangles
Programm / Abstract:
Group-based models are statistical models originating from evolutionary biology. There is a lattice polytope associated with each group-based model and tree. For the simplest group-based model, the Jukes-Cantor binary model, Buczynska and Wisniewski showed that the Ehrhart polynomial of this lattice polytope depends only on the number of leaves of the tree and not on its shape. We discuss the possibilities of generalizing this result and connections between group-based models and Berenstein-Zelevinsky triangles. This talk is based on joint work with Chris Manon.
Zeit:
am Montag den 13. Mai 2013 um 16:00
Ort:
Graduiertenkolleg "Methods for Discrete Structures", TU Berlin
Straße des 17. Juni 136
10623 Berlin
room MA 041
eingetragen von Dorothea Kiefer(kiefer@math.tu-berlin.de, )
