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This book is divided into eight chapters, a software list, a reference list,
and an index. The first three chapters lay the ground in modeling, analysis,
and numerical analysis. The following four chapters deal with algorithms
for initial value problems, among them three with one-step methods and
the fourth one with multistep methods. The final chapter is devoted to
boundary value problems.

Chapter 1. Here we go into the scientific background of ordinary dif-
ferential equations (ODEs) as examples of deterministic models. Newton’s
celestial mechanics still arises today in orbit calculation for satellites or
asteroids. Classical molecular dynamics, which plays an increasing role in
the design of drugs and in the understanding of viral diseases, is also based
on the concept of Newtonian mechanics. At this point Hamiltonian dif-
ferential equations already enter. Historically, stiff initial value problems
(IVPs) arose for the first time in chemical reaction kinetics, which is an
important part of industrial chemical engineering nowadays. As the last
field of application we present the electric circuit models that arise in the
design of rather diverse appliances, from mobile phones to automatic brak-
ing systems in cars. They lead naturally to IVPs for differential-algebraic
equations (DAEs).

Chapter 2. In this chapter we lay the basis of analytical existence and
uniqueness theory with a particular view toward application in mathemat-
ical modeling. At points where the right sides of ODEs are not Lipschitz
continuous an interesting structure of nonunique solutions arises, which in
this fine degree of representation can be found nearly nowhere else. Singu-
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lar perturbation problems are a beautiful and useful tool for the analytical
investigation of multiscale dynamical systems, and they also play a role in
their numerical treatment. For their extension to general quasilinear DAE
problems we introduce explicit expressions for orthogonal projectors that
permit a characterization of an index-1 case that typically needs index-2
treatment in the literature. This characterization is of help later in the im-
plementation of one-step and multistep methods for DAEs. The restriction
to index 1 is made throughout the book.

Chapter 3. Here we turn to the practically important question of nu-
merical analysis concerning the sensitivity of problems with respect to their
typical input data. In the precise sense of our introductory textbook [58],
Chapter 2, we define condition numbers for initial value problems. Asymp-
totic stability is studied first for linear autonomous ODEs, in which case
a characterization purely via the real parts of the eigenvalues is possible.
The extension to the nonlinear case is done for a neighborhood of fixed
points decomposing the invariant tangent subspaces of the associated mani-
folds. Following the same pattern discrete dynamical systems are presented,
which arise by discretization of ODEs: First linear autonomous recursions
are treated where a characterization via the moduli of the eigenvalues is
possible, then the extension by decomposition of the tangent space at fixed
points. The connection of the eigenvalue real parts in the continuous case
and the eigenvalue moduli in the discrete case is used to discuss the in-
heritance of properties from the matrix exponential to the approximating
rational matrix functions.

After these three basic chapters we are prepared for the treatment of
numerical methods for the actual solution of ODE problems.

Chapter 4. In this chapter we present explicit one-step methods for
nonstiff initial value problems. From the beginning the notation includes
the adaptive case of nonuniform grids. One-step methods transform the
evolution of the ODE into a discrete evolution and correspondingly the
ODE IVP condition number into associated discrete condition numbers.
The comparison of continuous and discrete condition numbers easily de-
fines the concept of stiffness of IVPs, even for a single scalar ODE. In
Taylor expansions, which come up in the order conditions of any Runge-
Kutta method, the occurring higher derivatives and coefficient products are
written consistently as multilinear mappings. Thus we are able to inter-
pret Butcher’s rooted trees in an index-free form just as representations
of an insertion structure within multilinear mappings. Especially in this
slightly technical part, we have put considerable effort into a transparent
presentation and suggestive notation and therefore hope to have made this
not easily accessible material nevertheless quite readable. Explicit extrapo-
lation methods with an asymptotic τ2-expansion of the discretization error
are characterized via the reversibility of discrete evolutions (Stetter trick).
The asymptotic energy conservation of the Störmer/Verlet discretization is
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discussed by an example of the chaotic behavior of Hamiltonian systems; a
deeper understanding of the associated numerical findings is obtained only
via the condition of the IVPs.

Chapter 5. The adaptive control of step size and order in numerical
integrators is, for strongly varying dynamics, of crucial importance in view
of computational complexity. This chapter focuses on one-step methods.
For a deeper understanding we make a methodical excursion into control
theory and interpret the step-size control as a discrete controller. From
this point of view we obtain an extremely useful stability condition that
explains the empirically known robustness of step-size controls in higher-
order methods in the presence of order reduction. This builds the bridge
to stiff integrators.

Chapter 6. This chapter is concerned with one-step methods for stiff and
differential-algebraic initial value problems. We analyze the inheritance of
properties of a continuous phase flow to discrete flows. The solution of the
scalar linear ODE is the complex exponential function, known to have an
essential singularity at the point z = ∞. Among the corresponding ra-
tional approximations we select those that in the approach to z = ∞ for
�(z) < 0 vanish, thus arriving at the fundamental concept of L-stability.
The approach for �(z) = 0 cannot realize the zero at infinity, and is there-
fore treated in connection with the isometric structure of phase flows. Fol-
lowing this analysis our presentation naturally bifurcates into implicit and
linearly implicit one-step methods. In the Runge-Kutta frame of Butcher
this leads to implicit Runge-Kutta methods where nonlinear systems of
equations must be solved. Among these methods we focus on collocation
methods, which stand out due to their transparent methods of proof and
their beautiful inheritance properties. Apart from that they represent an
important class of methods for the treatment of boundary value problems
(see below). The direct realization of the concept of perturbations of linear
phase flows leads to linearly implicit one-step methods where only linear
systems of equations must be solved. Among these methods we emphasize
the extrapolated linearly implicit Euler method, which at present is the
only usable W -method of higher and even variable order; it is applicable to
DAE problems only up to index 1, a restriction made throughout the book.
The latter class of methods is especially well suited for use within a method
of lines approach to partial differential equations (PDEs). Moreover, they
are a convenient basis for a realization of numerical singular perturbation
computations, which recently have played an important role in the elimina-
tion of fast modes, in particular in the context of model reduction for time
dependent PDEs of diffusion reaction type.

This completes the presentation of one-step methods.
Chapter 7. The chapter on multistep methods deals with nonstiff and

stiff initial value problems in parallel. At the beginning the classical con-
vergence theory over uniform grids is presented. The traditional derivation



xviii Outline

formulates k-step methods as one-step methods of k-times the ODE di-
mension, an approach that leads, however, to an unwieldy norm defined
via the Jordan canonical form. In contrast to that standard derivation we
apply some quite simple sequence calculus that permits estimates in the
maximum norm. Our sequence calculus takes up an old idea of P. Henrici,
where we, however, have avoided the use of complex analysis, which was
typical for this grand classic of ODE methods. The point of view of in-
heritance of stability of the phase flow supplies the essential structures of
multistep methods for both nonstiff and stiff IVPs out of one hand: Via the
stability at z = 0 we arrive at Adams methods; via the stability at z = ∞
we are led to BDF methods. On the one hand, the family of Adams meth-
ods can be interpreted as numerical integration based on interpolation of
the direction field. On the other hand, the family of BDF methods can be
interpreted as numerical differentiation based on interpolation of the ap-
proximate solution. Both classes are presented in a unified framework over
a variable grid and also in Nordsieck form, down to important details of
adaptive control of step sizes and order. By the construction selected here
the extension of BDF methods to DAE problems follows immediately.

The four chapters on initial value problems are strictly oriented toward
only a small number of efficient numerical integrators:

• for nonstiff problems to

1. the explicit Runge-Kutta methods of Dormand and Prince,
2. the explicit extrapolation methods based on the midpoint rule

and on the Störmer/Verlet discretization,
3. the Adams methods in various implementations;

• for stiff and differential-algebraic problems to

1. the Radau collocation method due to Hairer and Wanner,
2. the extrapolation method based on the linearly implicit Euler

discretization due to Deuflhard and Nowak,
3. the BDF or Gear method in various implementations.

Chapter 8. In the treatment of boundary value problems we again start
from (local) uniqueness results. They form the basis for the definition of
condition numbers for BVPs that are invariant under affine transformation
of the boundary conditions. The comparison with IVPs suggests a distinc-
tion between timelike and spacelike BVPs. For timelike BVPs there exists a
clearly preferable direction in which the associated IVP is well-conditioned;
typically, the independent variable is a time variable. For spacelike BVPs
no such preferable direction exists; typically, the independent variable is a
spatial variable; in fact, these BVPs often stem from a reduction of BVPs
for PDEs to one spatial dimension. Accordingly, this chapter is oriented
toward two classes of efficient BVP solvers:
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• for timelike problems to multiple shooting methods,

• for spacelike problems to adaptive collocation methods.

Both classes give rise to corresponding definitions of discrete condition
numbers. These terms also emerge from the analysis of elimination meth-
ods for the cyclic systems of linear equations that arise. Beyond the clas-
sical two-point BVPs we give some insight into underdetermined BVPs,
exemplified by periodic orbit computation, and into overdetermined BVPs,
exemplified by parameter identification in ODEs. Finally, we mention, of
necessity briefly to remain within the scope of the book, problems of vari-
ational calculus and of optimal control, which as a rule lead to multipoint
BVPs.




