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This book is divided into eight chapters, a reference list, a software list, and
an index. After an elementary introduction in Chapter 1, it splits into two
parts: Part I, Chapter 2 to Chapter 5, on finite dimensional Newton methods
for algebraic equations, and Part II, Chapter 6 to Chapter 8, on extensions
to ordinary and partial differential equations. Exercises are added at the end
of each chapter.

Chapter 1. This introductory chapter starts from the historical root, New-
ton’s method for scalar equations (Section 1.1). The method can be derived
either algebraically, which leads to local Newton methods only (presented in
Chapter 2), or geometrically, which leads to global Newton methods via the
concept of the Newton path (see Chapter 3).

The next Section 1.2 contains the key to the basic understanding of this mono-
graph. First, four affine invariance classes are worked out, which represent the
four basic strands of this treatise:

• affine covariance, which leads to error norm controlled algorithms,

• affine contravariance, which leads to residual norm controlled algorithms,

• affine conjugacy, which leads to energy norm controlled algorithms, and

• affine similarity, which may lead to time step controlled algorithms.

Second, the affine invariant local estimation of affine invariant Lipschitz con-
stants is set as the central paradigm for the construction of adaptive Newton
algorithms.

In Section 1.3, we give a roadmap of the large variety of Newton-type
methods—essentially fixing terms to be used throughout the book such as or-
dinary and simplified Newton method, Newton-like methods, inexact Newton
methods, quasi-Newton methods, Gauss-Newton methods, quasilinearization,
or inexact Newton multilevel methods. In Section 1.4, we briefly collect de-
tails about iterative linear solvers to be used as inner iterations within finite
dimensional inexact Newton algorithms; each affine invariance class is linked
with a special class of inner iterations. In view of function space oriented inex-
act Newton algorithms, we also revisit linear multigrid methods. Throughout
this section, we emphasize the role of adaptive error control.
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PART I. The following Chapters 2 to 5 deal with finite dimensional Newton
methods for algebraic equations.

Chapter 2. This chapter deals with local Newton methods for the numerical
solution of systems of nonlinear equations with finite, possibly large dimen-
sion. The term ‘local’ refers to the situation that ‘sufficiently good’ initial
guesses of the solution are assumed to be at hand. Special attention is paid
to the issue of how to recognize, whether a given initial guess x0 is ‘suffi-
ciently good’. Different affine invariant formulations give different answers
to this question, in theoretical terms as well as by virtue of the algorithmic
paradigm of Section 1.2.3. Problems of this structure are called ‘mildly non-
linear’; their computational complexity can be bounded a-priori in units of
the computational complexity of the corresponding linearized system.

As it turns out, different affine invariant Lipschitz conditions, which have
been introduced in Section 1.2.2, lead to different characterizations of local
convergence domains in terms of error oriented norms, residual norms, or
energy norms, which, in turn, give rise to corresponding variants of Newton
algorithms. We give three different, strictly affine invariant convergence anal-
yses for the cases of affine covariant (error oriented) Newton methods (Sec-
tion 2.1), affine contravariant (residual based) Newton methods (Section 2.2),
and affine conjugate Newton methods for convex optimization (Section 2.3).
Details are worked out for ordinary Newton algorithms, simplified Newton al-
gorithms, and inexact Newton algorithms—synoptically for each of the three
affine invariance classes. Moreover, affine covariance is naturally associated
with Broyden’s ‘good’ quasi-Newton method, whereas affine contravariance
corresponds to Broyden’s ‘bad’ quasi-Newton method.

Affine invariant globalization, which means global extension of the conver-
gence domains of local Newton methods in the affine invariant frame, is pos-
sible along several lines:

• global Newton methods with damping strategy—see Chapter 3,

• parameter continuation methods—see Chapter 5,

• pseudo-transient continuation methods—see Section 6.4.

Chapter 3. This chapter deals with global Newton methods for systems of
nonlinear equations with finite, possibly large dimension. The term ‘global’
refers to the situation that here, in contrast to the preceding chapter, ‘suffi-
ciently good’ initial guesses of the solution are no longer assumed. Problems
of this structure are called ‘highly nonlinear’; their computational complexity
depends on topological details of Newton paths associated with the nonlinear
mapping and can typically not be bounded a-priori.
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In Section 3.1 we survey globalization concepts such as

• steepest descent methods,

• trust region methods,

• the Levenberg-Marquardt method, and

• the Newton method with damping strategy.

In Section 3.1.4, a rather general geometric approach is taken: the idea is
to derive a globalization concept without a pre-occupation to any iterative
method, just starting from the requirement of affine covariance as a ‘first
principle’. Surprisingly, this general approach leads to a topological derivation
of Newton’s method with damping strategy via Newton paths.

In order to accept or reject a new iterate, monotonicity tests are applied.
We study different such tests, according to different affine invariance require-
ments:

• the most popular residual monotonicity test, which is related to affine con-
travariance (Section 3.2),

• the error oriented so-called natural monotonicity test, which is related to
affine covariance (Section 3.3), and

• the convex functional test as the natural requirement in convex optimiza-
tion, which reflects affine conjugacy (Section 3.4).

For each of these three affine invariance classes, adaptive trust region strate-
gies are designed in view of an efficient choice of damping factors in Newton’s
method. They are all based on the paradigm of Section 1.2.3. On a theoretical
basis, details of algorithmic realization in combination with either direct or
iterative linear solvers are worked out. As it turns out, an efficient determina-
tion of the steplength factor in global inexact Newton methods is intimately
linked with the accuracy matching for affine invariant combinations of inner
and outer iteration.

Chapter 4. This chapter deals with both local and global Gauss-Newton
methods for nonlinear least squares problems in finite dimension—a method,
which attacks the solution of the nonlinear least squares problem by solving a
sequence of linear least squares problems. Affine invariance of both theory and
algorithms will once again play a role, here restricted to affine contravariance
and affine covariance. The theoretical treatment requires considerably more
sophistication than in the simpler case of Newton methods for nonlinear
equations.

In order to lay some basis, unconstrained and equality constrained linear
least squares problems are first discussed in Section 4.1, introducing the use-
ful calculus of generalized inverses. In Section 4.2, an affine contravariant
convergence analysis of Gauss-Newton methods is given and worked out in
the direction of residual based algorithms. Local convergence turns out to
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be only guaranteed for ‘small residual’ problems, which can be characterized
in theoretical and algorithmic terms. Local and global convergence analysis
as well as adaptive trust region strategies rely on some projected residual
monotonicity test. Both unconstrained and separable nonlinear least squares
problems are treated.

In the following Section 4.3, local convergence of error oriented Gauss-Newton
methods is studied in affine covariant terms; again, Gauss-Newton methods
are seen to exhibit guaranteed convergence only for a restricted problem class,
named ‘adequate’ nonlinear least squares problems, since they are seen to be
adequate in terms of the underlying statistical problem formulation. The
globalization of these methods is done via the construction of two topological
paths: the local and the global Gauss-Newton path. In the special case of
nonlinear equations, the two paths coincide to one path, the Newton path.
On this theoretical basis, adaptive trust region strategies (including rank
strategies) combined with a natural extension of the natural monotonicity
test are presented in detail for unconstrained , for separable, and—in contrast
to the residual based approach—also for nonlinearly constrained nonlinear
least squares problems. Finally, in Section 4.4, we study underdetermined
nonlinear systems. In this case, a geodetic Gauss-Newton path exists generi-
cally and can be exploited to construct a quasi-Gauss-Newton algorithm and
a corresponding adaptive trust region method.

Chapter 5. This chapter discusses the numerical solution of parameter de-
pendent systems of nonlinear equations, which is the basis for parameter
studies in systems analysis and systems design as well as for the globaliza-
tion of local Newton methods. The key concept behind the approach is the
(possible) existence of a homotopy path with respect to the selected param-
eter. In order to follow such a path, we here advocate discrete continuation
methods , which consist of two essential parts:

• a prediction method, which, from given points on the homotopy path, pro-
duces some ‘new’ point assumed to be ‘sufficiently close’ to the homotopy
path,

• an iterative correction method, which, from a given starting point close to,
but not on the homotopy path, supplies some point on the homotopy path.

For the prediction step, classical or tangent continuation are the canonical
choices. Needless to say that, for the iterative correction steps, we here con-
centrate on local Newton and (underdetermined) Gauss-Newton methods.
Since the homotopy path is a mathematical object in the domain space of
the nonlinear mapping, we only present the affine covariant approach.

In Section 5.1, we derive an adaptive Newton continuation algorithm with
the ordinary Newton method as correction; this algorithm terminates locally
in the presence of critical points including turning points. In order to follow
the path beyond turning points, a quasi-Gauss-Newton continuation algo-
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rithm is worked out in Section 5.2, based on the preceding Section 4.4. This
algorithm still terminates in the neighborhood of any higher order critical
point. In order to overcome such points as well, we exemplify a scheme to
construct augmented systems , whose solutions are just selected critical points
of higher order—see Section 5.3. This scheme is an appropriate combination
of Lyapunov-Schmidt reduction and topological universal unfolding. Details
of numerical realization are only worked out for the computation of diagrams
including simple bifurcation points.

PART II. The following Chapters 6 to 8 deal predominantly with infinite
dimensional , i.e., function space oriented Newton methods. The selected top-
ics are stiff initial value problems for ordinary differential equations (ODEs)
and boundary value problems for ordinary and partial differential equations
(PDEs).

Chapter 6. This chapter deals with stiff initial value problems for ODEs.
The discretization of such problems is known to involve the solution of non-
linear systems per each discretization step—in one way or the other.

In Section 6.1, the contractivity theory for linear ODEs is revisited in terms
of affine similarity. Based on an affine similar convergence theory for a sim-
plified Newton method in function space, a nonlinear contractivity theory for
stiff ODE problems is derived in Section 6.2, which is quite different from
the theory given in usual textbooks on the topic. The key idea is to replace
the Picard iteration in function space, known as a tool to show uniqueness in
nonstiff initial value problems, by a simplified Newton iteration in function
space to characterize stiff initial value problems. From this point of view, lin-
early implicit one-step methods appear as direct realizations of the simplified
Newton iteration in function space. In Section 6.3, exactly the same theo-
retical characterization is shown to apply also to implicit one-step methods,
which require the solution of a nonlinear system by some finite dimensional
Newton-type method at each discretization step.

Finally, in a deliberately longer Section 6.4, we discuss pseudo-transient con-
tinuation algorithms, whereby steady state problems are solved via stiff in-
tegration. This type of algorithm is particularly useful, when the Jacobian
matrix is singular due to hidden dynamical invariants (such as mass con-
servation). The (nearly) affine similar theoretical characterization permits
the derivation of an adaptive (pseudo-)time step strategy and an accuracy
matching strategy for a residual based inexact variant of the algorithm.

Chapter 7. In this chapter, we consider nonlinear two-point boundary value
problems for ODEs. The presentation and notation is closely related to Chap-
ter 8 in the textbook [71]. Algorithms for the solution of such problems can be
grouped into two approaches: initial value methods such as multiple shooting
and global discretization methods such as collocation. Historically, affine co-
variant Newton methods have first been applied to this problem class—with
significant success.



6 Outline

In Section 7.1, the realization of Newton and discrete continuation methods
within the standard multiple shooting approach is elaborated. Gauss-Newton
methods for parameter identification in ODEs are discussed in Section 7.2,
also based on multiple shooting. For periodic orbit computation, Section 7.3
presents Gauss-Newton methods, both in the shooting approach (Sections
7.3.1 and 7.3.2) and in a Fourier collocation approach, also called Urabe or
harmonic balance method (Section 7.3.3).

In Section 7.4 we concentrate on polynomial collocation methods, which have
reached a rather mature status including affine covariant Newton methods. In
Section 7.4.1, the possible discrepancy between discrete and continuous solu-
tions is studied including the possible occurrence of so-called ‘ghost solutions’
in the nonlinear case. On this basis, the realization of quasilinearization is
seen to be preferable in combination with collocation. The following Section
7.4.2 is then devoted to the key issue that quasilinearization can be inter-
preted as an inexact Newton method in function space: the approximation
errors in the infinite dimensional setting just replace the inner iteration er-
rors arising in the finite dimensional setting. With this insight, an adaptive
multilevel control of the collocation errors can be realized to yield an adaptive
inexact Newton method in function space—which is the bridge to adaptive
Newton multilevel methods for PDEs (compare Section 8.3).

Chapter 8. This chapter deals with Newton methods for boundary value
problems in nonlinear PDEs. There are two principal approaches: (a) finite
dimensional Newton methods applied to a given system of already discretized
PDEs, also called discrete Newton methods , and (b) function space oriented
Newton methods applied to the continuous PDEs, at best in the form of
inexact Newton multilevel methods.

Before we discuss the two principal approaches in detail, we present an affine
covariant analysis of asymptotic mesh independence that connects the finite
dimensional and the infinite dimensional Newton methods, see Section 8.1.
In Section 8.2, we assume the standard situation in industrial technology
software, where the grid generation module is strictly separated from the
solution module. Consequently, nonlinear PDEs arise there as discrete sys-
tems of nonlinear equations with fixed finite, but usually high dimension and
large sparse ill-conditioned Jacobian matrix. This is the domain of applicabil-
ity of finite dimensional inexact Newton methods. More advanced, but often
less favored in the huge industrial software environments, are function space
oriented inexact Newton methods, which additionally include the adaptive
manipulation of discretization meshes within a multilevel or multigrid solu-
tion process. This situation is treated in Section 8.3 and compared there with
finite dimensional inexact Newton techniques.




