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This introductory textbook is, in the first place, addressed to students of
mathematics, computer science, science, and engineering. In the second
place, it is also addressed to computational scientists already on the job
who wish to get acquainted with modern concepts of Numerical Analysis
and Scientific Computing on an elementary level via personal studies.

The book is divided into nine chapters, including associated exercises, a
software list, a reference list, and an index. The contents of the first five
and of the last four chapters are each closely related.

In Chapter 1 we begin with Gaussian elimination for linear systems
of equations as the classical prototype of an algorithm. Beyond the ele-
mentary elimination technique we discuss pivoting strategies and iterative
refinement as additional issues. Chapter 2 contains the indispensable error
analysis based on the fundamental ideas of J. H. Wilkinson. The condition
of a problem and the stability of an algorithm are presented in a unified
framework, well separated and illustrated by simple examples. The quite
unpopular “ε-battle” in linearized error analysis is avoided—which leads
to a drastic simplification of the presentation and to an improved under-
standing. A stability indicator arises naturally, which allows a compact
classification of numerical stability. On this basis we derive an algorithmic
criterion to determine whether a given approximate solution of a linear
system of equations is acceptable or not. In Chapter 3 we treat orthogo-
nalization methods in the context of Gaussian linear least-squares problems
and introduce the extremely useful calculus of pseudo-inverses. It is imme-
diately applied in the following Chapter 4, where we present iterative
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methods for systems of nonlinear equations (Newton method), nonlinear
least-squares problems (Gauss-Newton method), and parameter-dependent
problems (continuation methods) in close mutual connection. Special at-
tention is paid to modern affine invariant convergence theory and iterative
algorithms. Chapter 5 starts with a condition analysis of linear eigen-
value problems for general matrices. From this analysis, interest is naturally
drawn to the real symmetric case, for which we present the power method
(direct and inverse) and the QR-algorithm in some detail. Into the same
context fits the singular value decomposition for general matrices, which is
of utmost importance in application problems. As an add-on in this second
edition, we finally consider stochastic eigenvalue problems, which in recent
years have played an increasing role, especially in cluster analysis.

The second closely related chapter sequence begins in Chapter 6 with
an extensive theoretical treatment of three-term recurrences, which play
a key role in the realization of orthogonal projections in function spaces.
The condition of three-term recurrences is represented in terms of discrete
Green’s functions—thus paving the way toward mathematical structures in
initial and boundary value problems for differential equations. The signif-
icant recent spread of symbolic computing has renewed interest in special
functions also within Numerical Analysis. Numerical algorithms for their
fast summation via the corresponding three-term recurrences are exem-
plified for spherical harmonics and for Bessel functions. In Chapter 7 we
start with classical polynomial interpolation and approximation in the one-
dimensional case. We then continue over Bézier techniques and splines up
to methods that nowadays are of central importance in CAD (Computer-
Aided Design) or CAGD (Computer-Aided Geometric Design), disciplines
of computer graphics. Our presentation in Chapter 8 on iterative methods
for the solution of large symmetric systems of linear equations benefits con-
veniently from Chapter 6 (three-term recurrences) and Chapter 7 (minimax
property of Chebyshev polynomials). The same is true for our treatment
of the Lanczos algorithm for large symmetric eigenvalue problems.

Finally, Chapter 9 has deliberately gotten somewhat longer: it bears
the main burden of presenting principles of the numerical solution of or-
dinary and partial differential equations without any technicalities at the
simplest possible problem type, which here is numerical quadrature. We
start with the historical Newton-Cotes and Gauss-Christoffel quadrature.
As a first adaptive algorithm, we introduce the classical Romberg quadra-
ture, wherein, however, only the approximation order can be varied. The
formulation of the quadrature problem as an initial value problem offers the
opportunity to work out an adaptive Romberg algorithm with variable or-
der and step-size control; this approach opens the possibility to discuss the
principle of extrapolation methods, which play a key role in the numerical
solution of ordinary differential equations. The alternative formulation of
the quadrature problem as a boundary value problem is used for the deriva-
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tion of an adaptive multigrid quadrature; in this way we can deal with the
adaptivity principle behind multigrid methods for partial differential equa-
tions in isolated form—clearly separated from the principle of fast solution,
which is often predominant in the context of partial differential equations.




