
Preface

In 1970, my former academic teacher Roland Bulirsch gave an exercise to
his students, which indicated the fascinating invariance of the ordinary New-
ton method under general affine transformation. To my surprise, however,
nearly all global Newton algorithms used damping or continuation strate-
gies based on residual norms, which evidently lacked affine invariance. Even
worse, nearly all convergence theorems appeared to be phrased in not affine
invariant terms, among them the classical Newton-Kantorovich and Newton-
Mysovskikh theorem. In fact, in those days it was common understanding
among numerical analysts that convergence theorems were only expected to
give qualitative insight, but not too much of quantitative advice for applica-
tion, apart from toy problems.

This situation left me deeply unsatisfied, from the point of view of both math-
ematical aesthetics and algorithm design. Indeed, since my first academic
steps, my scientific guideline has been and still is that ‘good’ mathematical
theory should have a palpable influence on the construction of algorithms,
while ‘good’ algorithms should be as firmly as possible backed by a transpar-
ently underlying mathematical theory. Only on such a basis, algorithms will
be efficient enough to cope with the enormous difficulties of real life problems.

In 1972, I started to work along this line by constructing global Newton algo-
rithms with affine invariant damping strategies [59]. Early companions on this
road were Hans-Georg Bock, Gerhard Heindl, and Tetsuro Yamamoto. Since
then, the tree of affine invariance has grown lustily, spreading out in many
branches of Newton-type methods. So the plan of a comprehensive treatise
on the subject arose naturally. Florian Potra, Ekkehard Sachs, and Andreas
Griewank gave highly valuable detailed advice. Around 1992, a manuscript
on the subject with a comparable working title had already swollen to 300
pages and been distributed among quite a number of colleagues who used it
in their lectures or as a basis for their research. Clearly, these colleagues put
screws on me to ‘finish’ that manuscript.

However, shortly after, new relevant aspects came up. In 1993, my former
coworker Andreas Hohmann introduced affine contravariance in his PhD
thesis [119] as a further coherent concept, especially useful in the context
of inexact Newton methods with GMRES as inner iterative solver. From then
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on, the former ‘affine invariance’ had to be renamed, more precisely, as affine
covariance. Once the door had been opened, two more concepts arose: in
1996, myself and Martin Weiser formulated affine conjugacy for convex opti-
mization [84]; a few years later, I found affine similarity to be important for
steady state problems in dynamical systems. As a consequence, I decided to
rewrite the whole manuscript from scratch, with these four affine invariance
concepts representing the columns of a structural matrix, whose rows are the
various Newton and Gauss-Newton methods. A presentation of details of the
contents is postponed to the next section.

This book has two faces: the first one is that of a textbook addressing itself
to graduate students of mathematics and computational sciences, the second
one is that of a research monograph addressing itself to numerical analysists
and computational scientists working on the subject.

As a textbook, selected chapters may be useful in classes on Numerical Anal-
ysis, Nonlinear Optimization, Numerical ODEs, or Numerical PDEs. The
presentation is striving for structural simplicity, but not at the expense of
precision. It contains a lot of theorems and proofs, from affine invariant ver-
sions of the classical Newton-Kantorovich and Newton-Mysovskikh theorem
(with proofs simpler than the traditional ones) up to new convergence theo-
rems that are the basis for advanced algorithms in large scale scientific com-
puting. I confess that I did not work out all details of all proofs, if they were
folklore or if their structure appeared repeatedly. More elaboration on this
aspect would have unduly blown up the volume without adding enough value
for the construction of algorithms. However, I definitely made sure that each
section is self-contained to a reasonable extent. At the end of each chapter,
exercises are included. Web addresses for related software are given.

As a research monograph, the presentation (a) quite often goes into the depth
covering a large amount of otherwise unpublished material, (b) is open in
many directions of possible future research, some of which are explicitly indi-
cated in the text. Even though the experienced reader will have no difficulties
in identifying further open topics, let me mention a few of them: There is no
complete coverage of all possible combinations of local and global, exact and
inexact Newton or Gauss-Newton methods in connection with continuation
methods—let alone of all their affine invariant realizations; in other words,
the above structural matrix is far from being full. Moreover, apart from con-
vex optimization and constrained nonlinear least squares problems, general
optimization and optimal control is left out. Also not included are recent re-
sults on interior point methods as well as inverse problems in L2, even though
affine invariance has just started to play a role in these fields.
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Generally speaking, finite dimensional problems and techniques dominate the
material presented here—however, with the declared intent that the finite
dimensional presentation should filter out promising paths into the infinite
dimensional part of the mathematical world. This intent is exemplified in
several sections, such as

• Section 6.2 on ODE initial value problems, where stiff problems are an-
alyzed via a simplified Newton iteration in function space—replacing the
Picard iteration, which appears to be suitable only for nonstiff problems,

• Section 7.4.2 on ODE boundary value problems, where an adaptive multi-
level collocation method is worked out on the basis of an inexact Newton
method in function space,

• Section 8.1 on asymptotic mesh independence, where finite and infinite
dimensional Newton sequences are synoptically compared, and

• Section 8.3 on elliptic PDE boundary value problems, where inexact New-
ton multilevel finite element methods are presented in detail.

The algorithmic paradigm, given in Section 1.2.3 and used all over the whole
book, will certainly be useful in a much wider context, far beyond Newton
methods.

Unfortunately, after having finished this book, I will probably lose all my
scientific friends, since I missed to quote exactly that part of their work that
should have been quoted by all means. I cannot but apologize in advance,
hoping that some of them will maintain their friendship nevertheless. In fact,
as the literature on Newton methods is virtually unlimited, I decided to not
even attempt to screen or pretend to have screened all the relevant literature,
but to restrict the references essentially to those books and papers that are
either intimately tied to affine invariance or have otherwise been taken as
direct input for the presentation herein. Even with this restriction the list is
still quite long.

At this point it is my pleasure to thank all those coworkers at ZIB, who have
particularly helped me with the preparation of this book. My first thanks
go to Rainer Roitzsch, without whose high motivation and deep TEX knowl-
edge this book could never have appeared. My immediate next thanks go
to Erlinda Körnig and Sigrid Wacker for their always friendly cooperation
over the long time that the manuscript has grown. Moreover, I am grateful
to Ulrich Nowak, Andreas Hohmann, Martin Weiser, and Anton Schiela for
their intensive computational assistance and invaluable help in improving the
quality of the manuscript.
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Nearly last, but certainly not least, I wish to thank Harry Yserentant, Chris-
tian Lubich, Matthias Heinkenschloss, and a number of anonymous reviewers
for valuable comments on a former draft. My final thanks go to Martin Peters
from Springer for his enduring support.

Berlin, February 2004

Peter Deuflhard
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