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Chapter 1

Introduction

Many real-world optimization problems can be formulated as mixed inte-
ger programs (MIPs). Although solving MIPs is computationally hard [86],
state-of-the-art MIP solvers—commercial and non-commercial ones—are able
to solve many of these problems in a reasonable amount of time (see e.g.,
Koch [55]). A widely used technique to solve MIPs is the branch-and-cut
paradigm which is employed by most MIP solvers.

In this thesis, we regard a different, but related method to solve MIPs,
namely the branch-and-price method and its extension, the branch-cut-and-
price method. Their success relies on exploiting problem structures in a MIP
via a decomposition. The problem is split into a coordinating problem and
one or more typically well structured subproblems that can often be solved
rather efficiently. For many huge and extremely difficult, but well structured
combinatorial optimization problems, this approach leads to a remarkably
better performance than a branch-and-cut algorithm.

While there exist very effective generic implementations of branch-and-
cut, almost every application of branch-(cut-)and-price is ad hoc, i.e., problem
specific. Therefore, using a branch-(cut-)and-price algorithm usually comes
along with a much higher implementational effort. In recent years, there
has been a development towards the implementation of a generic branch-
(cut-)and-price solver. Such a solver should ideally detect the structure of a
problem, perform the decomposition—if promising—and solve the problem
without further user interaction. An actual implementation of such a fully
automated solving process is still a long way off. However, there are codes
in development, e.g., DIP [78] and BaPCod [93], that just require the user to
define the structure of the problem, before an automated branch-(cut-)and-
price solving process is started.

Typically, such a generic implementation does not achieve the perfor-
mance of a problem specific one. However, it ideally incorporates sophis-
ticated acceleration strategies and other expert knowledge that would be
missing in a basic problem specific implementation and that can partially
compensate the disadvantage due to the generic approach. A generic imple-
mentation provides the possiblity to solve a problem with a branch-(cut-)and-
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2 Chapter 1. Introduction

price algorithm without any implementational effort and enables researchers
to easily test new ideas.

This thesis deals with the generic branch-cut-and-price solver GCG that
extends the existing non-commercial state-of-the-art MIP solver and branch-
and-price framework SCIP [3] to a branch-and-price solver. GCG was devel-
oped by the author of the thesis and meets the aforementioned demands, i.e.,
for a given structure, it performs a decomposition and solves the resulting
reformulation with a branch-cut-and-price algorithm. Actually, it still takes
into account the original problem and solves both problems simultaneously,
profiting from the additional information.

We present the theoretical background, implementational details, and
computational results concerning the solver GCG. Computations are carried
out for four classes of problems that are known to fit well into the branch-and-
price approach. We investigate whether even a generic approach to branch-
cut-and-price is still more effective than a state-of-the-art branch-and-cut
MIP solver for these problems.

Outline of the thesis

In the remainder of this chapter we present some basic definitions, give a short
summary of the history of branch-and-price and review current developments
concerning this topic.

The foundation of the generic branch-cut-and-price approach presented
in this thesis is the Dantzig-Wolfe decomposition for MIPs which we discuss
in Chapter 2.

After that, in Chapter 3 we present the branch-cut-and-price framework
SCIP which is the basis of our implementation. Furthermore, we describe the
general structure of GCG and some general information about the computa-
tional experiments that we conducted.

The next three chapters focus on the most important parts of a branch-
cut-and-price solver. The solving process of the employed relaxation by col-
umn generation is treated in Chapter 4. Chapter 5 describes how this is
combined with a branch-and-bound approach in order to compute an opti-
mal solution. Furthermore, in Chapter 6, we describe how to include cutting
plane generation to obtain a branch-cut-and-price algorithm. In each of these
chapters, we first present the theoretical background, followed by implemen-
tational details and some computational results.

Chapter 7 deals with the overall performance of the branch-cut-and-price
solver GCG and the impact of the features mentioned in the previous chapters.
Since SCIP with default plugins is a state-of-the-art branch-and-cut based
MIP solver, we also draw a comparison between the results obtained by GCG
and SCIP in order to assess the effectiveness of the generic branch-cut-and-
price approach.

Finally, we summarize the contents of this thesis in Chapter 8 and present
concluding remarks as well as directions for further research.
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In the appendix, we present a German summary, survey the symbols
used in this thesis, define the classes of problems used for our computational
experiments, and present detailed computational results.

1.1 Definitions

In this section, we define the most important terms that we use in this thesis.
For a more detailed introduction into combinatorial optimization, linear and
mixed integer programming we refer to [18, 40, 85]. The notation used in
this thesis is summarized in Appendix B.

Problem definitions and some polyhedral theory

For a given set of real-valued variables, a linear program is an optimization
problem that either minimizes or maximizes a linear objective function, sub-
ject to some linear equations or inequalities. Using various transformations,
we can transform each linear program into the form that is presented in the
following definition.

Definition 1.1 (Linear Program)
Let n,m ∈ N, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. An optimization problem of
the form

min cTx

s.t. Ax ≥ b
x ∈ Rn

+

is called a linear program (LP).

Note that throughout this thesis, we denote by Z+, Q+, and R+ the non-
negative integer, rational, and real numbers, respectively.

The set of solutions to an LP forms a polyhedron:

Definition 1.2 (Polyhedron [69])
Let n ∈ N.

• A polyhedron P ⊆ Rn is the set of points that satisfy a finite number
m ∈ N of linear inequalities; that is, P = {x ∈ Rn | Ax ≥ b}, where
(A, b) is an m× (n+ 1) matrix.

• A polyhedron is said to be rational, if there exists m′ ∈ N and an
m′ × (n + 1) matrix (A′, b′) with rational coefficients such that P =
{x ∈ Rn | A′x ≤ b′}.

• A polyhedron is called bounded if there exists ω ∈ R+ such that
P ⊆ {x ∈ Rn | − ω ≤ xj ≤ ω for j = 1, . . . , n}. A bounded poly-
hedron is called polytope.
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In this thesis, we restrict ourselves to rational polyhedra and assume
rational-valued matrices and vectors. This is actually no limitation in prac-
tice since computers are restricted to rational numbers, anyway.

When adding integrality restrictions to a part of the variables of an LP,
we get a mixed integer program:
Definition 1.3 (Mixed Integer Program)
Let n,m ∈ N, c ∈ Qn, A ∈ Qm×n, b ∈ Qm, and I ⊆ [n] := {1, . . . , n}. An
optimization problem of the form

min cTx

s.t. Ax ≥ b
x ∈ Qn

+

xi ∈ Z ∀i ∈ I

(1.1)

is called mixed integer program (MIP).

Like in the case of linear programs, there are several variations of mixed
integer programs like maximization problems and problems containing equal-
ity constraints, but all of these can be transformed to the previously stated
form, see e.g., [39]. Since each MIP in maximization form can be transferred
into a minimization problem by multiplying the objective function coeffi-
cients by minus one, we restricted ourselves to minimization problems in the
following. Throughout this thesis, a solution is called integral, if and only if
it satisfies the integrality restrictions, even if continuous variables may have
fractional values.

We distinguish the following special cases of MIPs:
Definition 1.4
A MIP of form (1.1) is called

• an integer program (IP) if I = [n]

• and a binary program (BP) if it is an IP and xi ∈ {0, 1} ∀i ∈ I.

The set X = {x ∈ Qn
+ | Ax ≥ b, xi ∈ Z ∀i ∈ I} of solutions to a MIP

is a subset of the polyhedron P = {x ∈ Qn
+ | Ax ≥ b}. The latter is the

set of solutions to the so-called LP relaxation of the MIP, i.e., the LP that
we obtain by discarding the integrality restrictions of the MIP. Due to the
integrality restrictions, the set X is not a polyhedron. However, since we
assumed rational data, its convex hull conv(X) is a polyhedron:

Theorem 1.5 ([65])
If P is a rational polyhedron and X = P ∩ {x ∈ Qn

+ | xi ∈ Z ∀i ∈ I} 6= ∅,
then conv(X) is a rational polyhedron whose extreme points are a subset of
X and whose extreme rays are the extreme rays of P .

This does not neccessarily hold for polyhedra not restricted to rational
data and since Theorem 1.5 is an important result which we will use in
Chapter 2, it is one of the reasons for assuming rational data througout this
thesis.
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Solving methods

There exist solving methods which can solve LPs in polynomial time, e.g.,
the ellipsoid method [52, 53] and interior point methods [51, 81]. In practice,
the simplex method [21] is often used, although it may have an exponential
running time. In the context of MIP solving, however, it performs empirically
better than the alternatives mentioned previously. In this thesis, we will
therefore restrict ourselves to the simplex method for solving LPs.

Adding integrality constraints increases the complexity of the problem:
MIP-solving is NP-hard [86].

Two methods for solving MIPs are LP based branch-and-bound and the
general cutting plane method. Both rely heavily on the LP-relaxation of the
problem, i.e., the linear program obtained when disregarding the integrality
restrictions of the MIP.

The branch-and-bound algorithm, a form of divide-and-conquer, divides
the problem into subproblems until these can easily be solved to optimality.
For each subproblem, the LP-relaxation is solved, providing a lower bound
(also called dual bound) on the best feasible solution of the current subprob-
lem. On the other hand, the best known primal solution to the global problem
is referred to as the incumbent, its objective value is called upper bound or
primal bound. If the lower bound of a subproblem is greater or equal to the
upper bound, the current subproblem can be ignored since it cannot contain a
solution with objective value better than that of the incumbent. Otherwise,
the current problem is divided into multiple—typically two—subproblems.
These two steps are called bounding and branching, respectively, which gives
rise to the name of the algorithm. They are repeated until all subproblems
are either solved to optimality or discarded due to their lower bound.

The branch-and-bound procedure can easily be illustrated as a tree, where
each node represents one of the (sub-)problems. In particular, the root node
of the tree represents the initial problem. Whenever a problem is divided into
subproblems, these problems are represented by child nodes of the current
problem’s node in the tree. When a subproblem can be ignored due to the
bounding process, the corresponding node is pruned.

On the other hand, in the general cutting plane method, the LP relaxation
of the problem is also solved first. If the computed optimal LP solution
is fractional, a valid inequality is added to the LP, which is satisfied by
all feasible solutions of the MIP, but violated by the current fractional LP
solution. Thus we can say that this inequality “cuts off” the fractional LP
solution, it is therefore called cutting plane. Since geometrically, the cut can
be seen as a hyperplane that separates the vector corresponding to the LP
solution from all feasible solutions of the MIP, this process is also referred to
as separation. This is repeated, until the optimal LP solution is integral and
therefore an optimal solution of the MIP.

Most state-of-the-art MIP solvers use a combination of these two methods,
called branch-and-cut. The LP relaxation of the subproblems is strengthened
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by a reasonable number of cutting planes thereby trying to preserve its nu-
merical stability. Often, only the LP relaxation of the root-node is strength-
ened by cutting planes, afterwards, the problem is solved by a branch-and-
bound method.

Furthermore, branch-and-price [10] is a variant of branch-and-bound,
where only a subset of the variables is given explicitly, most of them are
handled implicitly. The key idea is that most of the variables will never
be part of an optimal LP solution. They would just slow down the solu-
tion process and would consume too much memory. During the optimization
process, at each node, the LP relaxation is solved with a column generation
approach: Whenever one of the implicitly given variables might improve the
current LP solution, it is added explicitly to the problem. We go into detail
about column generation and branching in this context in Chapters 4 and 5,
respectively.

Finally, branch-cut-and-price is a combination of branch-and-price and
branch-and-cut. The variables are given implicitly and added to the problem
only when needed. Additionally, cutting planes are added to the problem
during the solving process in order to strenghen the LP relaxation. Variables
and cutting planes are created alternately. Cutting plane generation in this
context will be treated in Chapter 6.

1.2 A Brief History of Branch-and-Price

When talking about the history of branch-and-price, we have to start with
column generation which is the foundation of branch-and-price.

Column generation is a method to solve linear problems with a huge num-
ber of variables. Instead of solving the complete linear program, we solve a
restricted problem containing only a subset of the variables; remaining vari-
ables are treated implicitly. Therefor, a high number of smaller, typically well
structured subproblems—called pricing problems—are solved that determine
some of the implicitly given variables which are then explictly added to the
restricted problem in order to improve its solution. Due to their structure,
the pricing problems can typically be solved rather efficiently. We give a
detailed description of column generation in Section 4.1.

Column generation has its roots in the 1960s when George B. Dantzig and
Philip Wolfe proposed their decomposition principle for linear programs [22,
23]. The original problem is reformulated as a linear problem with (typically)
an exponential number of variables. These variables represent the extreme
points and rays of the polyhedra corresponding to the pricing problems which
are linear subproblems.

Shortly after that, Paul C. Gilmore and Ralph E. Gomory presented a
formulation of an integer program—the cutting stock problem—containing a
huge number of variables that were implicitly treated [36, 37]. The pricing
problem was a knapsack problem. However, only linear programming meth-
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ods were used to solve the problem, so integrality of the variables could not
be enforced: “That integers should result of the example is, of course, for-
tuitous” [36]. Nevertheless, similar reformulations were proposed for several
other combinatorial optimization problems [66].

Combining the column generation approach with a branch-and-bound
algorithm in order to solve these problems to integrality poses several chal-
lenges [8, 47] which we will discuss in Chapters 4 and 5. Hence, several years
had to go by before column generation was successfully combined in practice
with branch-and-bound to a method called branch-and-price or IP column
generation.

In the 1990s, this concept was applied for example to the bin packing
problem [90], the vertex coloring problem [63], and the generalized assignment
problem [83]; problem independent surveys are given in [10, 97]. Besides,
the column generation approach was based on a decomposition for integer
programs [28, 91] that is similar to the Dantzig-Wolfe decomposition. This
decomposition principle is presented in Chapter 2 of this thesis.

In the last decade, several general acceleration strategies for the branch-
and-price process were proposed [26, 57] and branch-and-price was success-
fully applied to many problems [27]. Furthermore, branch-and-price was com-
bined with the general cutting plane method to branch-cut-and-price [33, 87].
We will go into detail about this in Chapter 6.

Nowadays, branch-and-price is a well-established method to solve huge
and extremely difficult combinatorial optimization problems. Its success re-
lies on exploiting structures contained in the problem via a decomposition
and being able to solve the occuring pricing problems rather efficiently with
problem specific algorithms.

The most widely used method to solve MIPs, however, is the branch-and-
cut algorithm employed by most state-of-the-art MIP solvers. Although the
user can extend the existing branch-and-cut solvers by adding problem spe-
cific plugins, these solvers—commercial and non-commercial ones—feature
very effective generic algorithms that can be used to solve many general
MIPs without further problem knowledge.

The situation differs strongly for branch-and-price algorithms. There
exist several branch-cut-and-price frameworks like ABACUS [48], BCP [80],
MINTO [68], and SCIP [3]—which is the one we used and extended in this
thesis. However, one cannot simply read in a problem and just solve it
with a branch-and-price algorithm since the most important properties—like
the pricing routine and a branching scheme—have to be implemented and
provided by the user. Therefore, even when using the aforementioned possi-
bilities, several problem specific parts of the solver have to be implemented
before a problem can be solved.

It would be much more satisfactory to have generic implementations also
for branch-and-price. These implementations shoul provide the essential
functionalities to solve a general—or just a well structured—MIP with a
branch-and-price approach. This could be used to easily test new ideas. Fur-
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thermore, if it turns out that the branch-and-price approach performs well
for specific problems, some of the generic functionalities could be replaced
by problem specific ones to speed up the solving process.

In recent years, there has been some progress into this direction. François
Vanderbeck has been developing important features [92, 94, 96, 95] for its own
implementation called BaPCod which is “a prototype code that solves Mixed
Integer Programs (MIP) by application of a Dantzig-Wolfe reformulation
technique” [93].

Also the COIN-OR initiative [20] hosts a generic decomposition code,
called DIP [76, 77] (formerly known as DECOMP), which is a “framework for
implementing decomposition-based bounding algorithms for use in solving
large-scale discrete optimization problems” [78].

The constraint programming G12 project develops “user-controlled map-
pings from a high-level model to different solving methods” [75], one of which
is branch-and-price.

Among these projects, only DIP is currently (March 2010) open to the
public, but just as a trunk development version, there has not been a release,
yet.

For all these implementations, the user has to specify the structure of
a problem after reading it in and an automated Dantzig-Wolfe decomposi-
tion is performed that reformulates the problem. The reformulation is then
solved with a branch-and-price algorithm; solving the pricing problems and
branching are handled in a generic way.

In relation to this thesis, we developed our own implementation of a
branch-cut-and-price solver called GCG. It extends the branch-cut-and-price
framework SCIP [3], which already features one of the fastest non-commercial
MIP solvers, to a branch-cut-and-price solver.



Chapter 2

Dantzig-Wolfe Decomposition
for MIPs

The Dantzig-Wolfe decomposition for linear programs [22, 23] can be trans-
ferred to MIPs in two different ways: the convexification approach [28, 91]
and the discretization approach [91, 47]. The former is the more general one,
while the latter leads to better computational results when the problem has
the appropriate structure so that it can be applied. The symbols related to
the decomposition that are introduced in this chapter can also be looked up
in Appendix B.

In this chapter, we present both concepts and and a comparison of them.
Our presentation is based on [29, 57] for the convexification approach and [92,
96] for the discretization approach.

The first steps of the decomposition are the same in both approaches.
Suppose we are given a MIP of the following form, which we will call the
original formulation:

Model 2.1 (Original Program)

z?
OP = min

∑
k∈[K]

ck
Txk

s.t.
∑

k∈[K]

Akxk ≥ b (2.1)

Dkxk ≥ dk ∀k ∈ [K] (2.2)

xk ≥ 0 ∀k ∈ [K] (2.3)

xk
i ∈ Z ∀k ∈ [K], i ∈ [n?

k]. (2.4)

The problem is modeled using K ∈ N vectors of variables xk ∈ Qnk , k ∈
[K] and corresponding objective function vectors ck ∈ Qnk . We have two
types of restrictions, linking constraints and structural constraints.

9
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A1 A2 · · · AK

D1

D2

. . .

DK

×

x1

x2

...

xK

≤

b

d1

d2

...

dK

Figure 2.1: Structure of the constraints in the original problem

The linking constraints (2.1) are given by coefficient matrices
Ak ∈ QmA×nk and a right-hand side b ∈ QmA and are “global” constraints
that contain variables of different vectors xk.

The structural constraints (2.2) can be divided into K blocks, where each
block k ∈ [K] imposes some restrictions on the variable vector xk. These
constraints are given by matrices Dk ∈ Qmk×nk and right-hand sides dk ∈
Qmk .

In addition to that, all variables are non-negative and for each variable
vector xk, the first n?

k variables are of integral type.
The structure of the contraint maxtrix of the original formulation is il-

lustrated in Figure 2.1. This structure will be called bordered block diagonal
in the following.

Typically, when using the Dantzig-Wolfe reformulation, we have multiple
blocks, i.e., k > 1 . However, if we have just one block but the structural
constraints define a combinatorial optimization problem that can be solved
much more efficiently than the global problem, the Dantzig-Wolfe reformu-
lation can be used to exploit this structure, too. In this case, the linking
constraints do not link the values of the variables of different blocks but are
complicating constraints that destroy the structure of the subproblem when
treating all constraints together.

We will now introduce a set Xk for each block k ∈ [K] that contains the
vectors satisfying the structural constraints as well as the non-negativity and
integrality constraints associated with this block:

Xk := {xk ∈ Zn?
k

+ ×Qnk−n?
k

+ | Dkxk ≥ dk}. (2.5)

Restricting the values of xk to this set Xk for all k ∈ [K], we treat con-
straints (2.2), (2.3) and (2.4) implicitly and can therefore omit them in the
compact formulation:
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Model 2.2 (Compact Program)

z?
CP = min

∑
k∈[K]

ck
Txk

s.t.
∑

k∈[K]

Akxk ≥ b (2.6)

xk ∈ Xk ∀k ∈ [K]. (2.7)

At this point, the further steps differ for the convexification approach
and the discretization approach. We start with a detailed description of the
convexification approach. After that, we present the discretization approach
and give a comparison between both approaches.

2.1 The Convexification Approach

In the convexification approach, we will now represent each vector xk ∈ Xk

by a convex combination of extreme points plus a conical combination of
extreme rays, like it is also done in the Dantzig-Wolfe decomposition for
linear programs (see [22, 23]).

In contrast to the classical Dantzig-Wolfe decomposition, the set Xk is not
a polyhedron since we have integrality conditions on some of the variables.
It is, however, the set of solutions to a MIP defined by rational data, so
its convex hull is a polyhedron (see Section 1.1). From now on, we thus
investigate the convex hull of Xk in order to get a polyhedron that we can
describe by a finite number of extreme points and extreme rays:

Theorem 2.3 (Minkowski and Weyl Theorems)
A set X ⊆ Qn is a polyhedron if and only if there exist finite sets
P = {p1, p2, . . . , pm} ⊆ Qn and R = {r1, r2, . . . , r`} ⊆ Qn such that
X = conv(P ) + cone(R).

So, for each set Xk there exist finite sets Pk ⊆ Zn?
k

+ ×Qnk−n?
k

+ of extreme

points of conv(Xk) and Rk ⊆ Zn?
k

+ × Qnk−n?
k

+ of extreme rays of conv(Xk) so
that each xk ∈ Xk ⊆ conv(Xk) can be represented as a convex combination
of the extreme points plus a non-negative combination of the extreme rays,
i.e., for each xk ∈ Xk there exists λ ∈ Q|P |+|R|+ with

xk =
∑
p∈P

λp · p+
∑
r∈R

λr · r;
∑
p∈P

λp = 1. (2.8)

With this result, we can substitute xk in the compact formulation (2.2)
according to (2.8) and get the following extended fomulation.

For ease of presentation, we define

ckq := ck
T q and ak

q := Akq for q ∈ Pk ∪Rk, for all k ∈ [K]. (2.9)
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Model 2.4 (Extended Formulation for Convexification)

z?
EPC = min

∑
k∈[K]

∑
p∈Pk

cpλ
k
p +

∑
k∈[K]

∑
r∈Rk

crλ
k
r

s.t.
∑

k∈[K]

∑
p∈Pk

apλ
k
p +

∑
k∈[K]

∑
r∈Rk

arλ
k
r ≥ b (2.10)

∑
p∈Pk

λk
p = 1 ∀k ∈ [K] (2.11)

λk ≥ 0 ∀k ∈ [K] (2.12)∑
p∈Pk

pλk
p +

∑
r∈Rk

rλk
r = xk ∀k ∈ [K] (2.13)

xk
i ∈ Z. ∀k ∈ [K],

i ∈ [n?
k]. (2.14)

This problem is a reformulation of the compact problem and thus equiv-
alent to the original problem. In addition to the K variable vectors xk that
represent the solution vectors of the compact problem (Model 2.2), we get
for each block k ∈ [K] one variable λk

p for each extreme point p ∈ Pk as well
as one variable λk

r for each extreme ray r ∈ Rk.

For each k ∈ [K], the coupling constraints (2.13) link the variable xk to
the values given by the selected combination of extreme points and extreme
rays of conv(Xk), which is a convex one for the former and a conical one
for the latter because of constraints (2.11) and (2.12). Using Theorem 2.3
(Minkowsky and Weyl), it follows xk ∈ conv(Xk) and, due to the integrality
constraints (2.14), even xk ∈ Xk. Therefore, for each k ∈ [K], xk satisfies
the corresponding constraint of type (2.7) in the compact problem.

The objective function and constraints (2.10) are equivalent to their coun-
terparts in the compact formulation: xk was substituted according to (2.8)
and definition (2.9) was used.

When we want to solve the LP-relaxation of Model 2.4, we relax the in-
tegrality of the variables xk and remove constraints (2.14). As the vectors
xk are only used to enforce integrality, after removing the integrality con-
straints (2.14), we can also remove the coupling constraints (2.13) as well as
the variable vectors xk, k ∈ [K], from the relaxation and get the following
linear program as a relaxation of Model 2.4.
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Model 2.5 (Master Problem for Convexification)

z?
MPC = min

∑
k∈[K]

∑
p∈Pk

cpλ
k
p +

∑
k∈[K]

∑
r∈Rk

crλ
k
r

s.t.
∑

k∈[K]

∑
p∈Pk

apλ
k
p +

∑
k∈[K]

∑
r∈Rk

arλ
k
r ≥ b (2.15)

∑
p∈Pk

λk
p = 1 ∀k ∈ [K] (2.16)

λk ≥ 0 ∀k ∈ [K] (2.17)

This master problem (MP) is a relaxation of the extended formulation
and therefore, its optimal solution value is also a lower bound for the op-
timal solution value of the original problem. Each optimal solution to the
master problem (Model 2.5) can be transformed into a (possibly fractional)
solution candidate of the original problem. As we will in Section 2.3, the
master problem typically gives rise to a better lower bound than the LP-
relaxation of the original problem, but it also has a big handicap: It has,
in general, exponential many variables and these variables are given implic-
itly. Computing even just one of the variables is in general NP-hard as they
correspond to solutions of an arbitrary MIP. Hence, computing all extreme
points and extreme rays in advance is far to costly and even if we would do so,
an LP containing all the variables explicitly would consume a vast amount of
memory and would be computationally hard to solve. In Chapter 4, we will
describe how to solve this master problem in a more efficient way by using
column generation.

2.2 The Discretization Approach

In many cases when a problem can be decomposed in the described way, all
the blocks or a part of them are identical, i.e., the polyhedra conv(Xk) are
identical and all contained points have the same objective function value. In
the bin packing problem (see Section C.1), for example, all bins have the
same size, so all the blocks are identical.

In the convexification approach however, in order to force the integrality
of the points chosen in each polyhedron, we have to distinguish between the
extreme points related to different blocks even if the polyhedra of these blocks
are identical. Therefore, we need to create multiple variables for the same
extreme point, each of which is related to a different block.

In case of pure integer programs, we can use the discretization approach
to avoid this.

Starting with the original program (Model 2.1), we transform it to the
compact program (Model 2.2) like described previously. Instead of using the
Minkowski and Weyl theorems to get a representation of all points x ∈ Xk
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and introducing variables for the extreme points and extreme rays, we simply
create integral variables λk

p and λk
r for a number of points p ∈ Xk and rays

r ∈ Zn. Again, we only allow a convex combination of points what is equal
to choosing exactly one of them this time.

The following therorem, a slightly modified version of Theorem 6.1 in [69],
shows that it is possible to get such a representation with finitely many points
and rays for each set Xk defined like in (2.5).

Theorem 2.6
If P = {x ∈ Qn

+ | Ax ≤ b} 6= ∅ and S = P ∩ Zn, where (A, b) is a rational
m× (n+ 1) matrix, then there exist a finite set of points {q`}`∈L of S and a
finite set of rays {rj}j∈J of P such that

S =

x ∈ Qn
+ | x =

∑
`∈L

α`q
` +

∑
j∈J

βjr
j ,
∑
`inL

α` = 1, α ∈ Z|L|+ , β ∈ Z|J |+

 .

For the proof of this theorem, we refer to [69]. An integer matrix is
required there, but we can easily scale the rational matrix (A, b) to integer
values without changing the problem.

Corollary 2.7
For each set Xk defined like in (2.5), there exist finite sets Pk ⊆ Xk and
Rk ⊆ Znk such that the following is equivalent:

1. x ∈ Xk

2. There exists λ ∈ Z|Pk|+|Rk|
+ with

∑
p∈Pk

λp = 1 such that

x =
∑
p∈Pk

λpp+
∑
r∈Rk

λrr. (2.18)

This looks similar to the Minkowski and Weyl theorems 2.3, except that
the factors λ are integral. This is compensated by a higher number of points
in the set Pk while the number of rays stays the same.

Using this representation of all points in Xk, we can substitute xk in the
compact formulation (model 2.2) and get an extended formulation for the
discretization approach using the abbreviations (2.9).
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Figure 2.2: The points represented by variables in the convexification (left)
and the discretization approach (right) for a bounded polyhedron conv(Xk)

Model 2.8 (Extended Formulation for Discretization)

z?
EPD = min

∑
k∈[K]

∑
p∈Pk

ckpλ
k
p +

∑
k∈[K]

∑
r∈Rk

ckrλ
k
r

s.t.
∑

k∈[K]

∑
p∈Pk

ak
pλ

k
p +

∑
k∈[K]

∑
r∈Rk

ak
rλ

k
r ≥ b (2.19)

∑
p∈Pk

λk
p = 1 ∀k ∈ [K]

(2.20)

λk ∈ Z|Pk|+|Rk|
+ ∀k ∈ [K]

(2.21)

Model 2.8 is again a reformulation of the compact problem and thus also
of the original problem. As mentioned previously, xk is replaced according
to (2.18) and (2.9) in objective function and linking constraints. Due to
Theorem 2.6, constraints (2.20) and (2.21) are equivalent to constraints (2.7)
in the compact formulation.

Hence, we can impose integrality constraints directly on the variables
related to the points and rays in order to enforce integrality of the corre-
sponding solution in the original program and do not need the vectors xk

anymore.
Apart from the missing variable vectors xk and the integrality of the λ

variables, this looks similar to the extended formulation of the convexification
approach. The only further difference is given implicitly in the definition of
the sets Pk and Rk.

The relation between the sets of variables in the convexification and the
discretization approach are pictured in Figure 2.2 and Figure 2.3. The poly-
hedron conv(Xk) is colored grey while the points and rays contained in the
sets Pk and Rk, respectively, are colored red. The chosen points in the dis-
cretization approach for an unbounded polyhedron are the smallest set of the
form given in Corrolary 2.7, one could also choose a bigger set.
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Figure 2.3: The points and rays represented by variables in the convexifica-
tion (left) and the discretization approach (right) for an unbounded polyhe-
dron conv(Xk)

Furthermore, when relaxing the integrality restrictions, we get a master
problem, that is also equivalent to the master problem in the convexification
approach.

Model 2.9 (Master Problem for Discretization)

z?
MPD = min

∑
k∈[K]

∑
p∈Pk

ckpλ
k
p +

∑
k∈[K]

∑
r∈Rk

ckrλ
k
r

s.t.
∑

k∈[K]

∑
p∈Pk

ak
pλ

k
p +

∑
k∈[K]

∑
r∈Rk

ak
rλ

k
r ≥ b (2.22)

∑
p∈Pk

λk
p = 1 ∀k ∈ [K] (2.23)

λk ≥ 0 ∀k ∈ [K] (2.24)

The constraints (2.23) and (2.24) assure that a convex combination of
points and a conical combination of rays is chosen. The rays Rk have the
same directions as in the convexification approach, they are only scaled to
integral values. The set of points Pk contains all the extreme points that are
contained in the convexification approach, but even some more points. These
additional points, however, are all interior points, so they do not change
the polyhedron described by conv(Pk) + cone(Rk). Thus, this polyhedron
is the same for the two different definitions of the sets Pk and Rk in the
convexification and the discretization approach: it is the set conv(Xk), the
convex hull of the set Xk.

Therefore, in both master formulations, we optimize over the same poly-
hedron, namely the intersection of the polyhedron defined by the linking
constraints and the polyhedron conv(Xk) and both problems have the same
objective function, so these problems are equivalent.

The integrality restrictions on the λ-variables in the extended formula-
tion 2.8 allow standard primal heuristics to find feasible solutions and also
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cutting planes could be derived from this formulation. The biggest advantage,
however, is that we do not need the relation between blocks and variables in
order to enforce integrality, so we can treat identical blocks jointly and need
to create the same point only once for all these blocks.

Suppose [K] can be partitioned into L sets K`, ` ∈ [L] of identical blocks,
called identity classes in the following. For ease of presentation, we assume
that the first L blocks are pairwise different and for 1 ≤ ` ≤ L, block `
represents the set K`, i.e.,

K` = {k ∈ [K] | ck = c`, A
k = A`, Dk = D`, dk = d`}.

Since all blocks k ∈ K` are identical, they have the same set of solutions
Xk = X` and thus also the same points Pk = P` and rays Rk = R` in the
representation.

Moreover, in the extended formulation 2.8, there is no distinction be-
tween two variables of different, identical blocks representing the same point
(or ray), they have the same objective function coefficient and the same co-
efficients in the linking constraints (2.19). Therefore, we can aggregate the
variables representing the same point or the same ray and get new variables

λ̃`
p =

∑
k∈K`

λk
p (2.25)

and

λ̃`
r =

∑
k∈K`

λk
r . (2.26)

This leads to the following aggregated extended formulation, again using
the abbreviations (2.9).

Model 2.10 (Aggregated Extended Formulation for Discretization)

z?
EPDa = min

∑
`∈[L]

∑
p∈P`

clpλ̃
`
p +

∑
`∈[L]

∑
r∈R`

clrλ̃
`
r

s.t.
∑
`∈[L]

∑
p∈P`

al
pλ̃

`
p +

∑
`∈[L]

∑
r∈R`

al
rλ̃

`
r ≥ b (2.27)

∑
p∈P`

λ̃`
p = |K`| ∀` ∈ [L] (2.28)

λ̃` ∈ Z|P`|+|R`|
+ ∀` ∈ [L] (2.29)

In the objective function and in the linking constraints (2.19), we intro-
duced the variables λ̃`

p and λ̃`
r according to their definitions (2.25) and (2.26)

and we now get one summand for each class ` ∈ [L] of identical blocks instead
of one for each block k ∈ [K].
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The convexity constraints (2.20) of identical blocks are added up, we
substitute λ̃`

p =
∑

k∈K`
λk

p, and the right-hand side changes to the cardinality
of the class of identical blocks.

Finally, the integrality constraints (2.21) of identical blocks are combined
to constraints (2.29) forcing the aggregated variables λ̃` to be integral.

Altogether, this leads to the following lemma:

Lemma 2.11 (Equivalence of the Extended Formulations)
The aggregated extended problems (Model 2.10) is equivalent to the extended
problem for the discretization apporach (Model 2.8): Each solution to
Model 2.8 corresponds to a solution to Model 2.10 with the same objective
function value and vice versa.

Proof 2.12
Given a solution to Model 2.8, by applying the aggregation prescriptions (2.25)
and (2.26) we get values of the aggregated variables that form a feasible so-
lution for Model 2.10 with the same objective value.

On the other hand, if we have a solution λ̃ to Model 2.10, for each class of
identical blocks, all variables have non-negative integer values and the values
of variables that belong to points sum up to |K`|. We can distribute these
values among the set K` of identical blocks of this class to get a feasible
solution of Model 2.8 by doing the following for each class ` ∈ [L] of identical
blocks. Let λ̃`

p1
, . . . , λ̃`

ps
be the variables corresponding to points that have

strictly positve value in the given solution and K` = {k1, . . . , k|K`|}. We set

λk1
r = λ̃`

r ∀r ∈ R`

λk
r = 0 ∀k ∈ K` \ {k1}, r ∈ R`.

For i = 1, . . . , s and j =
∑i−1

t=1 λ̃
`
pt

+ 1, . . . ,
∑i

t=1 λ̃
`
pt

, we set:

λ
kj
pi = 1

λ
kj
p = 0 ∀p ∈ P` \ {pi}.

That is, we distribute the solution values among the set K` of identical blocks
of this class, such that in each block, exactly one variable corresponding to a
point gets value 1, all other variables receive value 0.

Hence, the convexity constraints of Model 2.8 are satisfied, as well as
constraints (2.19), since the value of each variable in the given solution was
distributed among variables that have the same coefficients in (2.19) as the
given variable in (2.27). Finally, the values were also distributed among vari-
ables with the same objective function coefficient, thus, the objective function
value stays the same. 2
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The disaggregation of a solution to the aggregated extended problem
presented in Proof 2.12 is not unique. By permuting the set of blocks corre-
sponding to an identity class, we get a different solution in the non-aggregated
extended problem and in the original problem. This is due to the afore-
mentioned symmetry: In the original and in the non-aggregated extended
problem, we get, for each feasible solution, equivalent solutions by permuting
identical blocks. All these solutions correspond to a single solution in the ag-
gregated extended problem, since we do not distinguish the identical blocks
in this model.

Corollary 2.13
The following problems are equivalent:

• the original problem (Model 2.1)

• the compact problem (Model 2.2)

• the extended problem for the convexification approach (Model 2.4)

• the extended problem for the discretization approach (Model 2.8)

• the aggregated extended problem for the discretization approach
(Model 2.10)

When relaxing the integrality of the λ̃` variables in order to get the LP
relaxation, we get a master problem quite similar to the master problem in
the convexification approach (Model 2.5).

Model 2.14 (Aggregated Master Problem for Discretization)

z?
MPDa = min

∑
`∈[L]

∑
p∈P`

clpλ̃
`
p +

∑
`∈[L]

∑
r∈R`

clrλ̃
`
r

s.t.
∑
`∈[L]

∑
p∈P`

al
pλ̃

`
p +

∑
`∈[L]

∑
r∈R`

al
rλ̃

`
r ≥ b∑

p∈P`

λ̃`
p = |K`| ∀` ∈ [L]

λ̃` ≥ 0 ∀` ∈ [L]

Like the extended formulations, the master problems of the two different
approaches are equivalent, as the following lemma states.

Lemma 2.15 (Equivalence of the Master Problems)
The aggregated master problem for the discretization approach (Model 2.14) is
equivalent to the master problem for the convexification approach (Model 2.5):
Each solution to one of the problems corresponds to a solution of the other
problem with the same objective function value and vice versa.
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Proof 2.16
The convexification master problem (Model 2.5) is equivalent to the non-
aggregated master problem of the discretization approach (Model 2.9), so it
is sufficient to show that the aggregated master problem for the discretization
approach (Model 2.14) is equivalent to Model 2.9.

Given a solution to Model 2.9, by applying the aggregation prescriptions
(2.25) and (2.26), we get values of the aggregated variables that form a feasible
solution for Model 2.14 with the same objective value.

On the other hand, if we have a solution λ̃ to Model 2.14, for each class
of identical blocks, all variables have non-negative values and the values of
variables that belong to points sum up to |K`|. We construct a solution λ to
Model 2.9 in the following way: For each class of identical blocks ` ∈ [L] we
set

λk
q =

λ̃`
q

|K`|
∀k ∈ K`, q ∈ P` ∪R`.

The values are distributed among variables with the same coefficients in ob-
jective function and linking constraints, so the objective function value stays
the same and constraints (2.22) are still satisfied. The non-negativity con-
straints (2.24) are still satisfied, too, and by dividing the values by |K`|, the
sum of values of variables corresponding to points is 1 for each block, so con-
straints (2.23) are also satisfied. Hence, this solution is feasible for Model 2.9
and has the same objective value as the given one. 2

Thus, the aggregated master problem for discretization (Model 2.14)
has the same optimal objective value as the convexification master prob-
lem (Model 2.5) and the discretization master problem (Model 2.9), i.e.,
z?
MPC = z?

MPD = z?
MPDa . In the following, when speaking of one of these

master problems, we will simply denote its optimal objective value by z?
MP .

Remark 2.17
When transferring a solution of the aggregated master problem (Model 2.14)
into a solution to the original problem, we also need to distribute the values
of variables corresponding to a class of identical blocks to the single blocks of
this class. This could be done in the way as described in Proof 2.16, but in
practice, it is much more efficient to preserve integrality of the variables. As
far as possible, in each block, exactly one point should be chosen, only for the
last blocks, when all remaining values are fractional, a convex combination
of multiple points has to be chosen.

This way, an integral solution of the aggregated master problem results in
an integral solution of the original problem after the transformation. For a
more sophisticated scheme to transfer a solution from the aggregated extended
problem to the original problem which makes use of a lexicographical order
we refer to [95].

Like the convexification master problem, the both master problems for the
discretization approach have in general an exponential number of variables.
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We will give a detailed description of how to solve them with a column
generation approach in Chapter 4.

Let us regard again the variables corresponding to integral points. Like
mentioned previously, we do not need them to solve the master problem and
as we will see later, we will only create variables corresponding to extreme
points in the column generation procedure. Nevertheless, in order to find
optimal or even feasible solutions to one of the extended formulations for
the discretization approach (Model 2.8 or Model 2.10), interior points are
essential since they may be contained in an optimal solution or the linking
constraints may even forbid solutions containing only extreme points.

It is important to notice, that for a pure BP, all feasible integral points
are extreme points, so in this case, we do not need to bother about creating
interior points in the column generation procedure.

For an IP, we have two different possibilities: On the one hand, if the IP
is bounded, it can be converted into a BP by replacing each integral variable
by some binary variables. On the other hand, we can use branching rules
that modify the subproblems, the set of solutions Xk, k ∈ [K] and thus also
the polyhedra conv(Xk), so that each initially interior point will become an
extreme point at some level in the branching tree. In Chapter 5, we will
discuss different branching rules with that property.

The discretization approach can also be applied to MIPs but this is more
complicated. We will only give a short overview at this point, for which we
assume that the MIP is bounded. For a deeper discussion, we refer to [96].
Since the MIP is bounded, the projection of conv(Xk) to the integral vari-
ables leads to a set Pk of integral points and for each point of this set, we get
a polytope in the continuous variables. Like in the discretization approach
for IPs, we choose exactly one point of the set Pk and for the continuous
variables, we choose a convex combination of extreme points of the poly-
tope corresponding to that integral point. The number of variables is still
finite since we have a finite number of integral points and for each of these
points a finite number of extreme points of the corresponding polytope in the
continuous variables.

2.3 Quality of the Relaxation

If we would solve the original problem (Model 2.1) with a standard branch-
and-bound algorithm, we would get a lower bound z?

LP on the optimal ob-
jective value z?

OP by solving its LP-relaxation.
The LP relaxation of the extended formulation is the master problem,

Model 2.5 for the convexification, Model 2.9 or 2.14 for the discretization
approach. All these three models give rise to the same lower bound z?

MP

which is in general a better bound than the bound z?
LP obtained by solving

the LP relaxation of the original problem:
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Theorem 2.18
For the optimal objective value z?

OP to the original problem and the solutions
z?
LP and z?

MP of its LP relaxation and the master problem, respectively, the
following holds:

z?
LP ≤ z?

MP ≤ z?
OP . (2.30)

Proof 2.19
In the LP relaxation, we minimize over the intersection of the two polyhedra

PA =

(x1T
, . . . , xKT

)T ∈ Qn
+ |

∑
k∈[K]

Akxk ≥ b


and

PLP
D =

{
(x1T

, . . . , xKT
)T ∈ Qn

+ | Dkxk ≥ dk ∀k ∈ [K]
}

.

The set of feasible solutions to the master problem is the intersection of PA

with the polyhedron

PMP
D = conv(X1)× · · · × conv(XK)

that further restricts the polyhedron PLP
D since it is the inclusion minimal

polyhedron containing all points that satisfy both Dkxk ≥ dk as well as the
integrality restictions for each block.

Therefore, PMP
D ⊆ PLP

D and so PA ∩ PMP
D ⊆ PA ∩ PLP

D . It follows

z?
LP = min

x∈PA∩P LP
D

{
(cT1 , . . . , c

T
K)x

}
≤ min

x∈PA∩P M
D

{
(cT1 , . . . , c

T
K)x

}
= z?

MP

and since the master problem is a relaxation of the extended formulation
which is equivalent to the original problem, it follows (2.30). 2

It can be shown (see [35]) that the master problem is the dual formulation
of the Lagrangean dual obtained by dualizing the linking constraints (2.1),
so the master problem provides the same lower bound as the Lagrangean
relaxation.

The bound obtained by the master problem is typically strictly better
than the LP bound, using it as a relaxation helps in closing part of the inte-
grality gap. However, when the pricing subproblem possesses the integrality
property, i.e., each basic solution to the pricing problem is integral even if it
is solved as an LP, PMP

D equals PLP
D , so the LP bound equals the bound ob-

tained by the master problem [57]. Examples are the shortest path problem
or a minimum cost flow problem with integral data.

We end this chapter with a small example that demonstrates the different
polyhedra and the better lower bound of the master problem.
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Example 2.20
Let the following original problem be given:

Model 2.21

min −x− 4y
s.t. 5x+ 4y ≤ 20 (2.31)

x+ 6y ≤ 21 (2.32)
3x+ y ≤ 10 (2.33)
x, y ≥ 0
x, y ∈ Z.

We treat constraint (2.31) as a linking constraint, i.e., it will be part of
the master problem, and regard constraints (2.32) and (2.33) as structural
constraints of the single block; they are used to define the set X1.

Figure 2.4 illustrates the problem; the black line represents the linking
constraint (2.31), so the polyhedron PA contains all non-negative points that
are to the left of this line.

y

x

Figure 2.4: The polyhedra considered by the LP relaxation and the master
problem

The blue lines enclose the polyhedron PLP
D described by the structural

constraints (2.32) and (2.33) and the non-negativity constraints. The convex
hull of integral points in PLP

D is surrounded by the red lines and equals the
polyhedron PMP

D .
When solving the LP relaxation of the problem, we optimize over the

intersection of PA and PLP
D , which is the colored area (blue and red). Solving

the master problem corresponds to optimizing over the intersection of PA and
PMP

D , this polyhedron is painted red and is a subset of the former polyhedron.
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For the given objective function, the integer point that is colored yellow
is the optimum of Model 2.21. The optimal solution to the LP relaxation
is illustrated by the green point while the master problem’s optimal solution
is represented by the red point. As one can easily see, the optimal objective
value of the LP relaxation is better than the optimal objective value of the
master problem, so the master problem gives rise to the tighter lower bound.



Chapter 3

Extending SCIP to a Generic
Branch-Cut-and-Price Solver

In this chapter, we describe a way to integrate the Dantzig-Wolfe decompo-
sition into a MIP solver. First, we briefly explain the algorithmic concept of
the branch-cut-and-price framework SCIP, which is the basis of our imple-
mentation.

After that, we present the generic branch-cut-and-price solver GCG and
describe its general structure and its solution process. Details about the
solving process of the master problem, specific branching rules and specialized
cutting plane separators are given in Chapters 4, 5, and 6, respectively.

At the end of this chapter, we state general information about the com-
putational studies that we performed in order to evaluate the performance
of our implementation.

3.1 SCIP—a MIP Solver

SCIP [2] is a framework created to solve Constraint Integer Programs, shortly
called CIPs . Constraint Integer Programming is an integration of Constraint
Programming (see for example [9]) and Mixed Integer Programming. For an
exact definition and discussion of CIPs we refer to [1, 4]. SCIP was developed
by Achterberg et al. [3] and is implemented in C.

SCIP is conceived as a framework that provides the infrastructure to im-
plement branch-and-bound based search algorithms. The majority of the
algorithms that are needed to control the search, e.g., branching rules, must
be included as external plugins. The plugins are user defined callback ob-
jects, which interact with the framework through a very detailed interface
provided by SCIP. This is, they define a set of methods that are registered in
the framework and called by SCIP during the solving process.

In the following, we give a short overview of the most important plugins.
A detailed discussion of all types of plugins supported by SCIP and the un-
derlying concepts can be found in [1, Chapter 3]. Furthermore, Figure 3.1
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Start Presolving

Node selection Stop

Domain propagation

Relaxation solving

Constraint Enforcement

Branching

Call LP solver

Variable Pricing

Cut Separation

LP relaxation details

Figure 3.1: Solving process of SCIP with detailed LP relaxation

illustrates how the different plugins cooperate in the main solving loop of
SCIP. For clarity reasons, we missed out primal heuristics in the figure. They
can be called after each step of the solving loop.

The central objects of SCIP are the constraint handlers. Each of them rep-
resents one class of constraints, e.g., linear constraints, and provides methods
to handle constraints of its type. Their primary task is to check solutions for
feasibility with respect to their constraint class and to enforce that solutions
satisfy all constraints of their class. Furthermore, they can provide additional
constraint specific methods for presolving, separation, domain propagation,
and branching.

For the branch-and-bound process, branching rules and node selectors are
needed. The former split the current problem into subproblems and create
new nodes in the branch-and-bound tree, while the latter select the next node
to be processed when the solving process of a node is finished.

Domain propagation, also called node preprocessing, is performed at every
node of the branch-and-bound tree. Its goal is to tighten the local domains
of variables for the current subproblem.

LP based branch-and-cut algorithms try to solve the current subproblem
via its LP relaxations. If its solution satisfies the integrality restrictions, the
subproblem is solved, otherwise, the optimal LP objective value serves as a
dual bound for the subproblem. This is also the default strategy in SCIP.
However, other relaxations of the problem can be used, too. In SCIP, this
functionality is provided by relaxation handler plugins, which can compute
dual bounds and primal solution candidates. They can be used in addition
to the LP relaxation or even replace it.

Furthermore, primal heuristics try to find feasible solutions and cutting
plane separators can produce valid inequalities that cut off the current LP
solution or a given arbitrary solution.
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Finally, variable pricers can add variables to the problem during the solv-
ing process. Variables can be treated implicitly and added to the problem
only when needed. This concept is called column generation—see Chapter 4
for a detailed discussion—and allows to implement branch-and-price algo-
rithms in SCIP.

The current distribution of SCIP already contains a bundle of plugins that
can be used for MIP solving. The most important ones are described in [1,
Chapter 5 – 10]. SCIP with default plugins is a state-of-the-art MIP solver
which is competitive (see Mittelmann’s “Benchmarks for Optimization Soft-
ware” [67]) with other free solvers like CBC [31], GLPK [38], and Symphony [79]
and also with commercial solvers like Cplex [43] and Gurobi [42]. Therefore,
in order to compare the performance of our branch-cut-and-price solver GCG
to a branch-and-cut MIP solver, we will use SCIP with default plugins as a
MIP solver of this kind.

3.2 GCG—a Generic Branch-Cut-and-Price Solver

GCG (an acronym for “Generic Column Generation”) is an add-on for SCIP
that takes into account the structure of a MIP and solves it with a branch-
cut-and-price approach after performing a Dantzig-Wolfe decomposion. It
was developed by the author of this thesis. GCG supports both the convex-
ification approach (see Section 2.1) as well as the discretization approach
(Section 2.2). The description of the solving process and the structure of
GCG in the remainder of this section is valid for both these approaches. Dif-
ferences that occur for the pricing, branching, and separation process are
discussed in the following three chapters. The most important parameters of
GCG described in the following are summarized in Appendix B.

Even though the specifications of SCIP did not always allow a straightfor-
ward implementation and sometimes lead to some overhead, by embedding
GCG into SCIP, we benefit from the efficient branch-and-bound framework
with all its sophisticated functionalities.

The general structure of GCG is the following: Besides the main SCIP
instance, that reads in the original problem, we use a second SCIP instance
that represents the extended problem. In the following, we will call these
instances the original and the extended (SCIP) instance, respectively. In
addition to these two SCIP instances, all pricing problems are represented by
their own SCIP instance, too.

The original SCIP instance is the primary one which coordinates the solv-
ing process, the extended SCIP instance is controlled by a relaxation handler
that is included into the original SCIP instance. This relaxation handler is
called DW relaxator in the following. The relaxator provides the two parame-
ters usedisc and aggrblocks, that specify, whether the discretization approach
should be used for the decomposition and whether identical blocks should be
aggregated, respectively.
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Figure 3.2: Solving process of GCG

The structure of GCG can be interpreted in the following way: We treat
the original problem as the essential one, by actually solving it with a “stan-
dard” branch-and-bound method, like it is done by most state-of-the-art MIP
solvers. The only difference is, that we do not use the LP relaxation to com-
pute lower bounds and corresponding primal solution candidates, but another
relaxation, namely the master problem. Hence, the original SCIP instance
coordinates the solving process while the extended instance is only used to
represent and solve the relaxation.

In the following, we survey the solving process of GCG, the most important
parts are described in detail in the following chapters. The main solving loop
of GCG is illustrated in Figure 3.2.

Dantzig-Wolfe decomposion In the current version of GCG, information
about the structure of the problem has to be provided in an additional file
that is read in after reading the MIP. In particular, the number of blocks
in the constraint matrix and the variables corresponding to each block can
be specified in this file. In addition to that, constraints can be explicitly
labelled to be linking constraints (see (2.1) in Model 2.1), which forces these
constraints to be transferred to the extended problem (see Model 2.4, 2.8,
and 2.10). In the following, we describe the decomposition and the setup of
the SCIP instances, an ilustration is given in Figure 3.3.

After the original instance has finished its presolving process, the relax-
ator performes the Dantzig-Wolfe decomposion and initializes the extended
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Figure 3.3: Example for the decomposition process of the original problem’s
constraint matrix. We miss out the right-hand sides of the linear constraint
for the sake of clarity. Note that the extended SCIP instance does not contain
any variables right from the beginning so the corresponding constraints do
neither.

SCIP instance as well as the SCIP instances representing the pricing prob-
lems. Initially, the extended instance does contain neither constraints nor
variables. The variables that are labelled to be part of a block are copied
and added to the corresponding pricing problem: For each constraint of the
original instance, it is determined whether it only contains variables of one
block. If this is the case, the constraint is regarded as a structural constraint
of this block and added to the corresponding pricing problem. Otherwise, it
is viewed as a linking constraint, transformed according to the Dantzig-Wolfe
reformulation and added to the extended instance. If a constraint is explic-
itly labeled to be a linking constraints, it will be transferred to the extended
instance even if all contained variables belong to the same block. Further-
more, the convexity constraints (see e.g., (2.11) in Model 2.4) are created in
the extended problem.

We do not add variables to the extended instance in this process. This is
only done in the solving process of the master problem. Hence, we do not only
use a restricted master problem, but we also restrict the extended problem to
the same set of variables. Therefore, the constraints in the extended problem
do not explicitly contain any variables at the beginning, but they implicitly
know the coefficients of all implicitly given variables.
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When using the discretization approach and aggregation of blocks, iden-
tical blocks are identified during the reformulation process and aggregated.
We provide a rather basic check for identity, i.e., in the problem definition,
constraints and variables have to be defined in the same sequence for identi-
cal blocks. Much more sophisticated methods could be used for this process,
but that was not the aim of this thesis.

Coordination of the branch-and-bound trees During the solving pro-
cess, the extended instance builds the same branch-and-bound tree as the
original instance. Each node of the original instance corresponds to a node
of the extended instance. In the following, we describe, how this is estab-
lished. An illustration is given in Figure 3.4.

The connection between a node in the original instance and the corre-
sponding node in the extended instance is established by additional constraint
handlers in the original and the extended instance. In a slight abuse of the
proper sense of constraint handlers, they do not handle problem restrictions
but establish the coordination of both branch-and-bound trees. In the follow-
ing, we will call the constraint handler in the original instance the origbranch
constraint handler and the one in the extended instance the masterbranch
constraint handler. The corresponding constraints are called origbranch and
masterbranch constraints, respectively. These constraints are added to the
nodes of the original and extended instance, respectively, to synchronize the
solving process of both instances.

Each origbranch constraint knows the node in the original instance it
belongs to and the origbranch constraints associated with the father and the
children of this node in the branch-and-bound tree. Furthermore, it contains
a pointer to the masterbranch constraint of the corresponding node in the
extended instance. Each masterbranch constraint knows about the node
in the extended instance to which it belongs, the masterbranch constraints
corresponding to its father and its children and the origbranch constraint of
the corresponding node in the original instance.

We need this overhead, since we cannot create branch-and-bound nodes
of two SCIP instances at the same time. Nodes of one instance can only be
created by a branching rule plugin included in this instance.

When branching in the extended instance (see step 2 in Figure 3.4), we
just create two children without imposing any further branching restrictions.
To each of these children, a masterbranch constraint is added and pointers
to these constraints are stored in the masterbranch constraint of the current
node. The masterbranch constraints of the child nodes only know the node
they belong to as well as the masterbranch constraint corresponding to their
father node. The connection to the origbranch constraint of the correspond-
ing node in the original instance is established later.

In a subsequent step, branching is performed at the corresponding node
in the original instance (see step 3 in Figure 3.4). The branching rule of
the original instance creates two child nodes, too. To these child nodes,
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1. Connection between the two current nodes established,
solve the master problem

..
.

..
.

2. Perform branching in the extended SCIP instance
..
.

..
.

3. Perform branching in the original SCIP instance (if needed)

..
.

..
.

4. Select next node in the original SCIP instance

..
.

..
.

5. Select the corresponding node in the extended SCIP instance,
establish the connection between the nodes

..
.

..
.

Figure 3.4: The coordination of the branch-and-bound trees. The branch-
and-bound tree of the original SCIP instance is pictured on the left side, the
one of the extended instance on the right side. We identify the origbranch and
masterbranch constraints with the branch-and-bound nodes and represent
the pointers stored at the constraints by the dotted lines.



32 Chapter 3. Extending SCIP to a Generic Branch-Cut-and-Price Solver

origbranch constraints are added. Like the masterbranch constraints, they
initially only know about the corresponding node in the original instance and
the origbranch constraint of the father node. Furthermore, the branching rule
imposes restrictions on the (original) subproblems corresponding to the child
nodes.

The corresponding subproblems in the extended instance were created
without any restrictions. In order to transfer the restrictions imposed on the
original subproblems to the corresponding nodes in the extended instance,
the original branching rule can store information about these restrictions
at the origbranch constraints added to the child nodes. Furthermore, it
can provide callback functions that are called when a node in the extended
instance is activated. These callback functions can be used to finally enforce
the branching restrictions in the subproblems of the corresponding nodes in
the extended instance. More details about these callback functions and how
the branching rules incorporated in GCG use them can be found in Chapter 5.

Node selection We currently use the default node selection rule of SCIP in
the original instance, which realizes a best first search. When solving a node
in the branch-and-bound tree of the original SCIP instance, the lower bound of
the node is not computed by solving its LP relaxation, but the DW relaxator
is called for this purpose. It instructs the extended SCIP instance to continue
its solving process. A special node selector in the extended instance chooses
as the next node to be processed the node corresponding to the current node
in the original instance. Its subproblem is always a valid reformulation of the
subproblem corresponding to the current node in the original instance.

As described previously, the connection between the nodes was not yet
established. It is established by the node selector when it activates the node
in the extended instance that corresponds to the current node in the original
instance. The origbranch constraint corresponding to the current node in
the original instance knows the origbranch constraint of its father node. If
there does not exist a father node, then the current node is the root node
and the node selector activates the root node in the extended instance, too.
Otherwise, the father node was activated before and the corresponding orig-
branch constraint already knows the corresponding masterbranch constraint.
If the current node in the original problem is a left child, then the node
selector activates in the extended problem the left child of the node corre-
sponding to the father node of the current node in the original problem (see
step 5 in Figure 3.4). Otherwise, it chooses the right child of the node in
the extended problem corresponding to the father node. Furthermore, the
origbranch and the masterbranch constraints corresponding to the selected
nodes in the original and extended instance, respectively, store the pointer
to each other.

When the node in the extended instance is activated, one of the pre-
viously mentioned callback methods, that is defined by the branching rule
in the original instance, is called. Since the branching rule in the original
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instance did not know about the corresponding node in the extended in-
stance when it performed branching, this callback method is used to apply
the branching restrictions to the selected node in the extended instance. For
this purpose, it uses the information about the branching restriction that was
stored in the origbranch constraint of the corresponding node and transfers it
to the subproblem corresponding to the newly selected node in the extended
instance.

Relaxation solving Then, the extended SCIP instance solves the selected
node. Therefor, the LP relaxation of the problem corresponding to the
node—the master problem—is solved by column generation. For this pur-
pose, we added a variable pricer plugin to the extended instance. An in-
troduction into column generation and a detailed description of the solving
process of the master problem are given in Chapter 4. The computed dual
bound can be strengthened further by cutting planes (see Chapter 6). During
and after this process, primal heuristics are applied that try to find feasible
solutions to the extended problem.

After the master problem is solved, the node is pruned if its lower bound
exceeds the primal bound. If the solution to the master problem is feasible
in the extended problem, we have solved the problem corresponding to the
node to optimality. Otherwise, the branching rule of the extended instance
is called which simply creates two children in the branch-and-bound tree and
the corresponding masterbranch constraints as described previously.

The solving process of the extended problem is then put on hold and the
DW relaxator transfers the new information: The dual bound of the node
in the extended instance is transferred to the current node of the original
instance. Furthermore, the current solution to the master problem and—
if existing—new feasible solutions are transformed into the original variable
space and added as the current relaxator’s solution and new feasible solutions,
respectively.

Branching The node in the original instance is pruned if and only if the
corresponding node in the extended instance was pruned, too. Both nodes
have the same dual bound and since each solution of the extended prob-
lem corresponds to a solution of the original problem and vice versa, both
instances have the same primal bound, too.

Basically, the relaxator’s solution substitutes the solution obtained by
solving the LP in the branch-and-bound solving process: It satisfies all but
the integrality restrictions of the original problem. The problem correspond-
ing to the current node has been solved to optimality if the integrality re-
strictions are satisfied, too. Furthermore, this solution guides the branching
decisions and it can be used by primal heuristics to derive feasible solutions
in the original variable space.

If the node was not pruned, i.e., if the relaxator’s solution is fractional
and the dual bound does not exceed the primal bound, we perform branching
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in the original instance and create two children as described previously. The
branching decisions will be transferred to the corresponding nodes in the
extended problem later. Different possibilities to perform branching in this
context are presented in Chapter 5.

After branching, the original SCIP instance selects a node that is solved
next and the process is iterated.

An alternative interpretation of the branch-cut-and-price process

Like stated previously, we treat the original instance as the essential one
and actually solve it with a “standard” branch-and-bound method. The LP
relaxation is substituted by the DW relaxator that uses the extended SCIP
instance to solve the master problem.

Anyhow, solving a MIP using the Dantzig-Wolfe decomposion and branch-
cut-and-price can also be interpreted in another way: The problem that is
actually solved is the extended problem, we only need the original problem to
ensure integrality of the solution in the original variable space and to guide
branching decisions. Thus, another possible structure for the implementation
would have been to make the extended instance the coordinating one and to
store the original problem only for the previously mentioned purposes.

For the discretization approach, integrality can even be directly enforced
in terms of the variables of the extended formulation and branching is often
performed in terms of these variables as well (see Chapter 5). Hence, we
could actually forget about the original problem, solve the extended problem
to optimality by branch-cut-and-price and transfer the optimal solution of
the extended problem to the original problem afterwards.

Motivation for the employed structure

We had to weight these possibilities against each other and we chose the
former one for our implementation since it fits better into the SCIP framework
and makes better use of the functionalities already provided by SCIP. The
original problem can be read in by the original instance using the default file
reader plugins provided by SCIP, so there is a variety of formats that can
be read in. If we do not read an additional file defining the structure of the
problem, the problem is solved by SCIP with a branch-and-cut algorithm.

On the other hand, if we read such an additional file, the DW relaxator is
activated, it creates the second SCIP instance, performes the Dantzig-Wolfe
decomposion and substitutes the LP relaxation in the branch-and-bound pro-
cess. Furthermore, by choosing this structure, we solve both problems simul-
taneously and can transfer information from one problem to the other during
the solving process. Hence, techniques that speed up the solving process,
e.g., presolving and domain propagation, can be used in both instances.

We provide possibilities to use either the convexification or the discretiza-
tion approach, so we had to make sure, that the structure of the implemen-
tation fits for both approaches. For the convexification approach, the first
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interpretation is the more natural structure, anyway, since integrality is de-
fined in terms of the original variables. For the discretization approach, we
can define branching rules that branch in terms of the variables in the ex-
tended problem and do not change the original problem explicitly, turning
the implementation into an algorithm that essentially realizes the second
interpretation.

However, we do not forget about the original problem and under certain
conditions, we can conclude that a problem is solved to optimality due to the
additional information provided by the original problem: If we only used the
extended problem and the solution to the master problem was fractional, we
would perform branching unless the node can be pruned. Anyhow, a frac-
tional solution of the master problem may correspond to an integral solution
of the original problem, like in the convexification approach. In this case, we
have solved the current subproblem since this original integral solution can
be retransferred into an optimal solution of the current extended problem.

3.3 Computational Environment

For the computational experiments presented in the following chapters con-
cerning the pricing process (Section 4.4), different branching schemes (Sec-
tion 5.7), and the separation of cutting planes (Section 6.4), and for final
results and comparisons to SCIP (Chapter 7), we used four classes of prob-
lems: The bin packing problem (BPP), the vertex coloring problem (VCP),
the capacitated p-median problem (CPMP), and a resource allocation problem
(RAP).

Problem definitions and the different test sets for each of the problem
classes are presented in Appendix C. For each test set, we also defined a
small test set containing less instances. In order to reduce the computational
effort, we used these test sets in all computations concerning the performance
effect of certain features of GCG. As some of these small test sets were defined
with respect to the performance of GCG for the single instances, we did not
use them for the comparison of GCG and SCIP. In this context, we used
the complete test sets; the results are presented in Section 7.4. We present
summaries of the results in the according chapters and interpret the results.
Detailed results of the computations can be looked up in Appendix D.

For all computations presented in this thesis, we used GCG version 0.7.0
and SCIP version 1.2.0.5, which were compiled with gcc 4.4.0 with the
-O3 optimizer option under openSUSE 11.2 (64 Bit). Cplex 12.1 [43] was
always used as underlying LP solver for solving the LP relaxations.

The computational tests described in Section 4.4 and 6.4 were carried out
on a 3 GHz Intel Xeon with 4 MB cache and 8 GB RAM. In the remaining
chapters, the computations for the BPP and the VCP were performed on a
3.60 GHz Intel Pentium D with 2 MB cache and 4 GB RAM, those for the
CPMP on a 2.66 GHz Intel Core 2 Quad with 4 MB cache and 4 GB RAM.
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The computations for the RAP test sets were performed on a 2.83 GHz Intel
Core 2 Quad with 6 MB cache and 16 GB RAM.

When summarizing the results and not listing individual results for each
single instance, we report average values for each test set. However, there
are different possibilities to define the average values.

Since the values for the instances in our test sets differ highly in their
magnitude, we use the shifted geometric mean. For non-negative numbers
a1, . . . , ak ∈ R+, for instance the number of nodes or the final gap of the
individual instances of a test set, and a shift s ∈ R+, it is defined as

γs(a1, . . . , ak) =

(
k∏

i=1

max{ai + s, 1}

) 1
k

− s.

It focuses on ratios instead of totals, so it does not overestimate the huge
numbers, as it is done by the arithmetic mean. By shifting the values, we
prevent the smaller numbers from having a bigger influence which is often
encountered for the geometric mean. For a more detailed description and
comparison of these three possibilities to compute averages, we refer to [1].

In the summary tables in the following chapters and also in Tables D.1
to D.30 in Appendix D, we just list shifted geometric means for each test
set, only the number of timeouts is always given in absolute numbers. All
time measurements are given in seconds. We often present percental changes
of some settings compared to a “default” setting. In this case, we highlight
changes of at least five percent by printing them blue if they represent an
improvement and red in case of a deterioration.

We use a shift of s = 5 for the LP solving time, s = 10 for pricing time,
solving time of the master problem and total time as well as for the number
of nodes. A shift s = 100 is used for the number of pricing problems that
are solved, the number of pricing rounds, the number of variables created
in the master problem, and the final gap in percent. We used the small
shifts for time and nodes since many of the regarded problems are solved
in a small amount of time and after a small number of nodes. The other
numbers are typically higher so we also used a greater shift. Since all shifts
are larger than 1, the maximum in the definition of the shifted geometric
mean is always achieved for the first value, so the shifted geometric mean is
actually given as

γs(a1, . . . , ak) =

(
k∏

i=1

(ai + s)

) 1
k

− s.

We define the final gap of an instance by |pb−db|
|db| with pb and db being the

global primal and dual bound, respectively, at the moment when the solving
process was stopped. The dual bound db is always positive for the instances
we regarded, so we do not divide by zero. However, if we did not find a
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solution for the instance within the time limit, the gap for this instance is
infinity, denoted by a “–” in the tables. In this case, we charged a gap of
100% for the computation of the average. For general MIPs, this value is
often exceeded and would therefore not be a good choice, for the problem
classes that we examined in this thesis, however, final gaps larger than that
did not occur.

In the summary tables, we typically list the shifted geometric mean for
each test set. In order to get an average number over all test sets, we compute
the shifted geometric mean of the mean values for the single test sets. Since
the test sets have different sizes (the small test sets range from 12 to 28
instances), the single instances from the smaller test sets have a greater
influence on the overall average. This is intended as we want to give the same
weight to each test set. Furthermore, since we defined multiple test sets for
some of the problem classes treated in this thesis, these classes of problems
are overrepresented in the computation of the average values. However, the
different test sets for one class typically differ from each other in terms of
problem size so we decided to treat each size the same way as all other test
sets. If there are big differences between the results for different classes of
problems, we name these differences, anyhow, and do not just consider the
average value.
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Chapter 4

Solving the Master Problem

As described previously, we solve the original and the extended problem
simultaneously. In order to compute dual bounds, we use the LP relaxation
of the extended formulation, which we called the master problem (Model 2.5,
Model 2.9, or Model 2.14 for the different approaches). As the extended
formulation has an exponential number of variables, the master problem does
so, too. In this chapter, we describe how we solve the master problem despite
this.

We present the concept of column generation (sometimes also called de-
layed column generation) in Section 4.1, which is a method to solve LPs with
a huge number of variables. Instead of treating all variables explicitly, only
a small subset of variables is added to the LP, the remaining variables are
considered implicitly and added to the LP only when needed.

In Section 4.2, we illustrate how this concept can be used to solve the
master problem obtained by the Dantzig-Wolfe decomposition. After that,
in Section 4.3, we describe the integration into the generic branch-cut-and-
price framework GCG and discuss implementational details. Finally, in Sec-
tion 4.4, we present computational results for the pricing process based on
the problems classes presented in Appendix C.

4.1 Basics in Column Generation

Column generation is a method for solving linear programs with typically a
huge number of variables but a reasonable number of constraints.

It is mostly used for solving the LP relaxation of certain (mixed-)integer
programs where the variables are not given explicitly but by a specific struc-
ture (see [27]). In the set partitionig formulation of the bin packing problem
(see Section C.1), for instance, we define a binary variable for each feasible
packing of a bin, that is a set of items that can be assigned to a bin without
exceeding its capacity. There is a huge number of these packings, so we do
not want to enumerate all of them but treat them implicitly.

In this section, we focus on the solution process of such an LP, which is

39
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an important basis for the concepts presented in this thesis.
We start with an LP that explicitly contains all variables. This problem

is called the master problem (MP).

Model 4.1 (Master Problem)

zMP = min cTx

s.t. Ax ≥ a (4.1)
Bx = b (4.2)
x ∈ Qn

+

with c ∈ Qn, A ∈ Qm×n, B ∈ Qp×n, a ∈ Qm, and b ∈ Qp.

In Chapter 2, we also defined master problems, namely the LP relaxations
of the extended fomulations. We did so, since we will solve these problems—
which are also LPs with an exponential number of variables—using column
generation (see Section 4.2). In this process, they will be the counterpart of
Model 4.1. In this section, however, we regard the general master problem
defined in Model 4.1.

Storing the whole LP explicitly in the memory of a computer is typi-
cally impossible due to the enormous number of variables, so we restrict the
problem to a subset of the variables and add variables to this subset only
when needed. The resulting problem is called the restricted master problem
(RMP).

Model 4.2 (Restricted Master Problem)

zRMP = min cNxN

s.t. A·,NxN ≥ a (4.3)
B·,NxN = b (4.4)

xN ∈ Q|N |+

with N ⊆ {1, . . . , n}

In order to define subsets of vectors and matrices, we normally need an
ordered set. As we do not need a special ordering in this section, we assume
the set N to be ordered increasingly and use it in a slight abuse of notation
in order to define subvectors and submatrices.

Each solution to the RMP is also a solution to the master problem, if we
set all variables not contained in the master problem to 0. In the following,
we assume that this is done whenever we speak of solutions of the RMP that
are regarded with respect to the master problem. An optimal solution to the
RMP, however, may be suboptimal in the master problem, since considering
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Solve RMP
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Figure 4.1: The solving process of the master problem

the whole set of variables could lead to a better solution. Nevertheless, we
start the solving process of the master by solving the RMP to optimality.

If the RMP is primally unbounded, then this also holds for the master
problem (see Theorem 4.7 at the end of this section). We can stop the solving
process since we have proven the master problem to be unbounded.

If the RMP is primal infeasible, the master problem might also be primal
infeasible. In most cases, however, we only have to add some variables to the
set N in order to restore feasibility. In particular, when solving the RMP
the first time, we can start without variables, i.e., N = ∅, so the RMP is
infeasible if a 6≤ 0 or b 6= 0. The process that looks for variables that can
help to restore feasibility is called Farkas pricing [41, 16] in the following.

In case we get an optimal primal solution to the RMP, we do not know
whether it is also optimal for the master problem. Hence, we have to look for
variables in the master problem, that could improve that solution and add
these variables to the set N of variables of the RMP. We refer to this process
as reduced cost pricing since we look for variables with negative reduced costs.

After variables have been added, the RMP is resolved and the process is
iterated. This is repeated, until no more variable can improve the current
solution or can help to fix an infeasibility. If the RMP is still infeasible, then
the master problem is infeasible, too. If the RMP has an optimal solution,
then this solution is also optimal for the master problem. We will prove these
statements at the end of this section.

The solving process of the master problem is illustrated in Figure 4.1.
Once the RMP is feasible, it stays feasible since adding variables conserves

feasibility. Hence, Farkas pricing is used until the RMP gets feasible, after
that, we use nothing but reduced cost pricing.

In the next two subsections, we specify how the two pricing types work
exactly, starting with reduced cost pricing and concluding with Farkas pric-
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ing.
Before that, we take a look at the dual of the master problem 4.1 which

gives us some more insight into the pricing problems.

Model 4.3 (Dual Master Problem)
For the master problem 4.1, the dual problem looks as follows:

zDP = max aTπ + bTσ

s.t. ATπ +BTσ ≤ c (4.5)
π ∈ Qm

+

σ ∈ Qp.

The vector π represents the dual variables related to the inequality con-
straints (4.1), σ is associated with the equality constraints (4.2).

As we miss out variables in the RMP, the dual of the restricted mas-
ter problem does not contain all constraints but only those related to the
variables xj , j ∈ N .

4.1.1 Reduced Cost Pricing

Reduced cost pricing is performed whenever the RMP is solved to optimality,
so there exist an optimal primal solution x? and the corresponding optimal
dual solution (π?, σ?).

The reduced cost of a non-negative primal variable xi with objective
function coefficient ci and coefficients A·,i and B·,i w. r. t. constraints (4.3)
and (4.4), respectively, is given as ci − AT

·,iπ − BT
·,iσ for the current dual so-

lution (π, σ). The corresponding dual constraint is AT
·,iπ +BT

·,iσ ≤ ci, so the
dual constraint is violated if and only if the corresponding primal variable
has negative reduced cost.

Therefore, looking for a variable that could improve the RMP’s optimal
solution equals searching a constraint of type (4.5) in the dual master problem
that is violated by the optimal dual solution (π?, σ?) of the restricted master
problem.

The pricing problem

c? = min
{
ci −AT

·,iπ
? −BT

·,iσ
? | i ∈ [n]

}
(4.6)

computes the smallest reduced cost of all variables in the master problem
w. r. t. this dual solution. If c? < 0, this optimum is achieved for a variable
xi? and we add this variable to the set N of variables of the RMP. If c? ≥ 0,
we have the proof, that the current solution to the RMP is also optimal for
the master problem.

In general, the pricing problem could be solved by iterating over all vari-
ables and computing their reduced costs, it is, however, usually much more
efficient to solve an optimization problem that exploits a certain structure of
the variables. For example, for the bin packing problem, where each variable
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corresponds to a feasible packing of the items, the pricing problem can be
solved by solving a knapsack problem.

4.1.2 Farkas Pricing

If the RMP is infeasible, the Farkas-Lemma gives us a possibility to prove
this infeasiblity.

Lemma 4.4 (Farkas)
For Model 4.2, exactly one of the following holds:

1. ∃xN ∈ Q|N |+ with A·,NxN ≥ a, B·,NxN = b

2. ∃u ∈ Qm
+ , v ∈ Qp with uTA·,N + vTB·,N ≤ 0T and uTa+ vT b > 0.

For the proof of Lemma 4.4, we refer to [85, 39].
Given u ∈ Qm

+ , v ∈ Qp that prove the infeasiblity of the RMP, the in-
equality

(uTA·,N + vTB·,N )xN ≥ uTa+ vT b

is a valid inequality in the restricted master problem 4.2, since it is a combi-
nation of valid inequalities.

This inequality cannot be satisfied: As xN is non-negative, (uTA·,N +
vTB·,N )xN is non-positive while the right-hand side uTa + vT b is strictly
positive.

In the dual problem, the vector (uT , vT )T represents a ray; adding this
vector to a feasible dual solution will never violate a constraint but improve
the objective value of the solution. We call the vectors u and v the (dual)
Farkas multipliers in the following.

The goal of the Farkas pricing is to now find a variable of the master
problem that corrupts this proof and add it to the RMP, or to detect that
there is no such variable and the master is infeasible, too. The proof is
corrupted if a variable xi, i ∈ [n] is found with uTA·,i+vTB·,i > 0T . From the
dual point of view, this variable induces the dual constraint AT

·,iπ+BT
·,iσ ≤ ci

that is always violated when adding a sufficiently large multiple of the vector
(uT , vT )T to a dual feasible solution. Therefore, the vector (uT , vT )T is not
a feasible ray for the dual of RMP enlarged by xi, anymore.

The pricing problem in this case looks as follows:

c? = min
{
−AT
·,iu−BT

·,iv | i ∈ [n]
}
.

Hence, the pricing problem for Farkas pricing is similar to the pricing problem
for reduced cost pricing. We simply use a zero objective function and the
farkas multipliers u and v instead of the dual solution values π and σ.

Finally, let us note that in most implementations of column generation
procedures, Farkas pricing is not performed in the explicit form stated previ-
ously. Instead, the RMP is often initialized with some variables corresponding
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to a previously computed heuristic solution or with artificial variables that
are penalized by a big M cost, like in the the simplex first phase. However,
due to the generic approach presented in this thesis, we restrict ourselves to
Farkas pricing for restoring feasibility of the RMP.

4.1.3 Finiteness and Correctness

We conclude this section with two theorems proving the finiteness and the
correctness of the column generation procedure as described above.

Theorem 4.5 (Finiteness of the column generation process)
The column generation process terminates after a finite number of iterations.

Proof 4.6
In each iteration, we either are finished and stop or add at least one variable
of the master problem to the restricted master problem.

Since the number of variables in the master problem is finite, it is suffi-
cient to show that each variable is added to the RMP at most once.

When performing reduced cost pricing, we add a variable xi? to the RMP
only if the optimum c? of (4.6) is achieved for i? and c? < 0. Since c? equals
the reduced cost of xi?, xi? has negative reduced cost. The current solution to
the RMP, however, is optimal and thus, there exists no variable in the RMP
with negative reduced cost. Therefore, xi? was not part of the RMP before.

In the case of Farkas pricing, a variable is added only if it corrupts the in-
feasibility proof given by u and v. For the dual of the current RMP, (uT , vT )T

forms a ray; the variable that is added corresponds to a new constraint in the
dual of the RMP that limits this ray. If the variable that is added was part
of the RMP before, the corresponding dual constraint would have been part of
the RMP’s dual before, too. This is not possible since (uT , vT )T is a ray in
the dual of the current RMP. 2

Theorem 4.7 (Equivalence of master problem and RMP)
After the column generation process has finished, the following holds:

• The RMP is unbounded if and only if the master problem is unbounded.

• The RMP is infeasible if and only if the master problem is infeasible.

• The RMP has an optimal solution if and only if the master problem
has an optimal solution and each optimal solution to the RMP is also
optimal for the master problem.

Proof 4.8
The column generation procedure can be interpreted as a generalization of the
simplex method. Instead of explicitly enumerating all variables to find one
with negative reduced cost, the pricing step of the simplex method is implicitly
performed by solving the pricing problem. However, we give a formal proof
for the equivalence in the following.
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• If the RMP is unbounded, there exist a ray r ∈ Q|N |+ with cNr < 0,
A·,Nr ≥ 0, and B·,Nr = 0 that proves the unboundedness. Let r̃ ∈ Qn

+

with r̃i = rj if i = Nj and r̃i = 0, if i /∈ N . Then r̃ is a ray in the master
problem proving its unboundedness: cr̃ = cNr < 0, Ar̃ = A·,Nr ≥ 0,
and Br̃ = B·,Nr = 0. Hence, the master problem is also unbounded.

• If the RMP is infeasible, then there exist a vector (uT , vT )T that proves
the infeasibility (see Section 4.1.2). This vector represents a ray in the
dual of the RMP with strictly positive objective function value. The
dual of the RMP contains the same variables as the dual of the master
problem—the RMP contains all constraints—but only a subset of the
constraints, since the RMP does not contain all variables contained in
the master problem.

The column generation process is finished, so we did not add a variable
in the last pricing round. Since the RMP is infeasible, we performed
Farkas pricing and searched for a variable xi in the master satisfying
uTA·,i+vTB·,i > 0T . We did not add a variable to the RMP, thus, such
variable does not exist in the master problem. So in the dual of the mas-
ter problem, adding (uT , vT )T to a feasible solution preserves feasibility
as it does not increase the left-hand side of any of the constraints.

Thus, (uT , vT )T is also a feasible ray in the dual of the master problem
with strictly positive objective function value. Therefore, the master
problem is infeasible, too.

• Let the RMP have an optimal solution. As the RMP is feasible and
the column generation process is finished, we performed reduced cost
pricing in the last pricing round but did not add a variable.

For the optimal solution of the RMP, we get a corresponding solution
x̃ in the master problem by setting the solution values of all variables
not contained in the RMP to 0. This solution is also a basic solution,
so we can perform a simplex iteration in order to improve it. In the
simplex method, we search for a variable in the master that has negative
reduced cost w. r. t. x̃. This is exactly what was done in the last pricing
round and since no variable was added to the RMP, all variables in the
master have non-negative reduced cost. Due to the optimality criterion
of the simplex method, x̃ is an optimal solution of the master problem.

4.2 Solving the Dantzig-Wolfe Master Problem

When applying the Dantzig-Wolfe decomposition to a problem like described
in Chapter 2, we get an extended problem with typically an exponential
number of variables. Now, we describe how the master problem—the LP
relaxation of this problem—is solved with a column generation approach.
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For the two different approaches to the Dantzig-Wolfe decomposition,
we get slightly different master problems, Model 2.5 for the convexification
approach and Model 2.9 and Model 2.14 for the discretization approach.

In this section, we picture how the master problem of the convexifica-
tion approach (Model 2.5) is solved. This can easily be transferred to the
non-aggregated and to the aggregated master problem for the discretization
approach (Model 2.9 and Model 2.14), for the latter, one has to replace the
set [K] of all blocks by the set [L] of partitions. Hence, whenever we mention
the master problem in this section, we refer to Model 2.5.

The master problem has less constraints than the original problem, but
in general exponentially many, implicitly given variables. Even if we would
generate all variables, reading in such a big LP would consume much memory
and solving it would be computationally hard.

In order to avoid this and since most of the variables will not be needed
in an optimal solution of the master problem, we use the concept of column
generation, which was introduced in the last section, to solve the master
problem to optimality. We focus on the reduced cost pricing in the following,
Farkas pricing is handled in the same way, replacing the dual solution values
by the Farkas multipliers and omitting the objective function coefficients.

As described in the last section, we regard a restricted master problem
(RMP) in which we do not consider all extreme points and extreme rays,
but only subsets P̄k ⊆ Pk and R̄k ⊆ Rk for k ∈ [K]. Variables are added to
these subsets only when needed to improve the current solution or to repair
an infeasibility.

Before we state the pricing problem, we first take a look at the dual of
the master problem (Model 2.5).

Model 4.9 (Dual Master Problem)

z?
DMP = max

mA∑
i=1

biπi +
∑

k∈[K]

ρk

s.t. ak
p
T
π + ρk ≤ ckp ∀p ∈ Pk, k ∈ [K] (4.7)

ak
r
T
π ≤ ckr ∀r ∈ Rk, k ∈ [K] (4.8)
π ≥ 0
ρ free

The vector π ∈ KmA
+ represents the dual variables related to the linking

constraints (2.15) while ρ ∈ KK refers to the convexity constraints (2.16).
As we miss out variables in the restricted master problem, the dual of the

restricted master does not contain all constraints of type (4.7) and (4.8) but
only those related to the extreme points p ∈ P̄k, k ∈ [K] and extreme rays
r ∈ R̄k, k ∈ [K].
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Looking for a variable that could improve the optimal solution of the RMP
equals searching a constraint of type (4.7) or (4.8) in the master problem that
is violated by the current dual solution of the restricted master problem.

For a given block k ∈ [K], the reduced cost of the variable corresponding
to an extreme point p ∈ Pk are given as

c̄kp = ckp − (πTak
p + ρk)

(2.9)
= ck

T p− (πTAkp+ ρk)

while an extreme ray r ∈ Rk has corresponding reduced cost

c̄kr = ckr − πTak
r

(2.9)
= ck

T r − πTAkr.

We get a variable with negative reduced cost belonging to block k by
solving the MIP

c̄?k = min
{(
ck

T − πTAk
)
x− ρk | x ∈ Xk

}
. (4.9)

If c̄?k ≥ 0, there exists no column belonging to block k with negative
reduced cost, so no extreme point or extreme ray of conv(Xk) can improve
the RMP’s current solution.

If c̄?k < 0 and finite, the optimum is achieved at an extreme point p
of conv(Xk) which has negative reduced cost w. r. t. the current solution of
the master problem. Thus, we can add a column to the RMP with objec-
tive function coefficient ckT p and coefficients Akp and 1 in constraints (2.15)
and (2.16), respectively.

If c̄?k = −∞, then there exists an extreme ray r of conv(Xk) with(
ck

T − πTAk
)
r < 0 and we can add a column with objective function co-

efficient ckT r and coefficients Akr and 0 in constraints (2.15) and (2.16),
respectively.

In order to solve the master problem to optimality, we start with solving
the RMP to optimality. Afterwards, we solve the pricing problems (4.9) for
all blocks k ∈ [K]. If we find a new variable with negative reduced cost, we
add it to the RMP and resolve it. We repeat this until all pricing MIPs have
non-negative objective values so that there exists no variable in the master
problem with negative reduced cost w. r. t. the current solution of the RMP.
The latter is therefore also optimal for the master problem.

There are multiple degrees of freedom concerning the pricing of new vari-
ables. We can stop the pricing routine after adding one variable, search the
variable with the most negative reduced costs, take all optimal solutions with
negative reduced costs or much more. We will discuss these options in the
next section.

Naturally, the optimal objective value z?
RMP of the RMP in each iteration

of the column generation process is an upper bound on the optimal objective
value z?

MP of the master problem since it converges from above towards the
optimal master solution value. It is, however, in general not an upper bound
on the optimal objective value z?

OP of the original problem, since the master
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problem does not respect the integrality restrictions in the original program.
Only if the current solution tranfers into a solution of the original program
that satisfies the integrality restrictions, the current solution to the RMP
corresponds to a feasible solution to the master problem and z?

RMP is thus
an upper bound on z?

OP .
Additionally, even if the master problem is not yet solved to optimality,

the optimal objective value z?
RMP of the RMP can be used to compute a

lower bound in case we know the optimal solution values c̄?k to the pricing
problems (4.9) for all k ∈ [K].

Theorem 4.10 ([97])
Let z?

RMP be the optimal objective value of the current RMP and c̄?k, k ∈ [K]
be the solution values to the pricing MIPs (4.9) w. r. t. the the RMP’s current
solution. Then

LBRMP = z?
RMP +

∑
k∈[K]

c̄?k ≤ z?
OP .

is a valid lower bound on the optimal objective value of the master problem.

4.3 Implementation Details

The solving process of the master problem is a crucial part of the branch-cut-
and-price solver in terms of performance: it typically consumes most of the
running time. Thus, it is very important to perform it as efficient as possible.

As described in the last sections, after solving the RMP, we solve pricing
problems of the form (4.9). They give rise to further variables that can be
added to the RMP to improve its solution—or fix an infeasibility—or the
proof, that the solvability of the RMP equals that of the master problem and
an optimal solution to the RMP—if existent—is also optimal for the master
problem.

The pricing process is structured into two components in our implementa-
tion: the variable pricer and a set of pricing solvers. The former coordinates
the pricing process, while the latter are called by the variable pricer to solve
a specific pricing problem. SCIP itself supports the use of variable pricers
(see Section 3.1 and [1, Chapter 3]), so we implemented a plugin of this type
and included it into the SCIP instance corresponding to the extended prob-
lem. This type of plugin has two essential callbacks that are called during
the pricing process, one for Farkas pricing, the other for reduced cost pricing.
The former is called by SCIP whenever the RMP is infeasible, the latter is
called if the RMP is feasible. This is repeated until no more variables were
added in the last pricing round.

The concept of pricing solvers was added to the project by the author of
this thesis. They are used by the pricer in a black box fashion: Whenever
a specific pricing problem should be solved, it is given to the set of solvers.
The pricing problem is solved by one of the solvers and a set of solutions is
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returned. We chose this concept, which is similar to the way the LP solver
is handled in SCIP, in order to provide a possiblity to add further solvers
without the need to change the inner structure of the branch-cut-and-price
solver.

Although the usage of a problem specific pricing solver can improve the
performance of the pricing process by far, we will in the following focus on the
influence of the pricer itself since we discuss a generic approach to branch-cut-
and-price. Therefore, the default pricing solver incorporated in the current
version of GCG is used, which solves the pricing problem as a MIP using SCIP.
This is the most general pricing solver: each pricing problem is formulated
as a MIP, so the solver can solve all kinds of pricing problems. Solving
specific subproblems within a branch-and-bound algorithm by modeling them
as a MIP (a so-called “subMip”) and solving them with a MIP solver has
previously been applied successfully in primal heuristics and separators, for
a survey see [30].

The second pricing solver included in the current version of GCG is a knap-
sack solver. It serves as an example for a special purpose pricing solver. It will
be used in Chapter 7 to demonstrate the potential savings in computational
time when using such a solver.

Since the goal of this thesis was to develop a generic branch-cut-and-price
solver, we will concentrate on the MIP pricing solver, which was also used
for most of the computations presented in this thesis.

In the remainder of this section, we will discuss implementational de-
tails and parameters that can be adjusted to tune the pricing process. An
overview of the parameter provided by GCG, the symbols used for them in this
thesis and the effect of these parameters can be found in Appendix B. We will
start with the Farkas pricing in Section 4.3.1 and deal with the reduced cost
pricing in Section 4.3.2. In the current version of GCG, we assume the pricing
problems to be bounded, so we only have to create variables corresponding to
extreme points in the pricing routine. Although this is to be extended in the
future, we only cover the case of creating extreme points in the following as
it also eases the presentation. Also for clarity reasons, we base the discussion
on the master problem of the convexification approach (Model 2.5). For the
discretization approach, pricing is performed in the same way, only when ag-
gregating blocks, the number of blocks that are actually treated changes from
K to L. In Section 4.4, we finally present computational results concerning
the described methods.

4.3.1 Farkas Pricing

When the current RMP is infeasible, the SCIP instance representing the ex-
tended problem automatically calls the variable pricer that we implemented.
The infeasibility proof by Farkas multipliers is provided by the LP solver.
The task of the Farkas pricing is to find a variable that corresponds to a dual
constraint that cuts off that ray.
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Farkas pricing problem

Given dual Farkas multipliers u ∈ QmA
+ corresponding to the linking

constraints and v ∈ QK corresponding to the convexity constraints,
find a block k ∈ [K] and a point p ∈ Pk of this block with

uTAkp+ vk > 0 (4.10)

or conclude that no such point exists.

If we have only one block (K = 1), the implementation is straightforward:
We solve the pricing problem

c̄?k = max
{
uTAkxk + vk | xk ∈ Xk

}
. (4.11)

The solution corresponds to a point p ∈ Pk. If c̄?k > 0, the corresponding
extreme point is added to the set P̄k of points regarded in the RMP. If
c̄?k ≤ 0, the infeasibility of the master problem is proven. The pricing round
is finished and SCIP calls the LP solver to reoptimize the RMP if and only
if variables were added in this pricing round. Afterwards, the variable pricer
is called again, if needed.

For the case of K blocks (and if these blocks were not aggregated for the
discretization approach), it gets more involved. For each block k ∈ [K], we
have a pricing problem of the form (4.11) and we have to solve these pricing
problems consecutively. During this process, we can stop solving the pric-
ing problems once we find a solution with positive objective function value.
However, we can also continue the pricing process and try to find multiple
variables. This implies more effort since we solve more pricing problems, but
it possibly gives rise to more variables to add to the RMP which hopefully
reduces the number of Farkas pricing rounds needed to restore feasibility of
the RMP. However, one variable suffices to cut off the dual ray (uT , vT )T

and thus, it is not clear whether adding more variables speeds up the solving
process. In particular, if the ray may be cut off only by variables of a specific
block, solving all remaining pricing problem without the hope to find other
variables is unnecessary.

Hence, we decided to stop the pricing procedure after finding one variable
that cuts off the dual ray and add just this variable to the RMP in the
default settings. Nevertheless, we introduced a parameter Mf ∈ [1,∞] that
defines the maximum number of variables that are added in one Farkas pricing
round. In addition to that, using the parameter Rf ∈ [0, 1], a relative limit
on the number of pricing problems that are solved in a pricing round can be
imposed. It is a relative limit, so setting Rf = 0.5 corresponds to solving half
of the pricing problems. If new variables were added after solving this part
of the pricing problems, the current pricing round is stopped, otherwise, it
is continued until a problem gives rise to variables that cut off the dual ray.
Note, that for all solutions of these problems with positive objective function
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value, that were found during the solving process of the pricing problem, we
add a variable to the RMP, in particular also for suboptimal solutions. By
setting Rf = 0, the pricing process is stopped after a pricing problem with
positive optimal objective function value is found and a variable is added for
each solution with positive objective function value, that was found during
the solving process.

In case we do not solve all pricing problems in a Farkas pricing round due
to these parameters, the order in which the pricing problems are examined is
very important. The goal is to solve those pricing problems at first that are
more likely to have a positive optimum. This way, we hope that the pricing
procedure can be stopped after solving a small number of pricing problems.

A possible order of the pricing problems can be defined in terms of the
dual Farkas multipliers v associated with the convexity constraints of the
blocks. A higher value corresponds to a higher probability that the optimal
objective function value of the problem is positive, especially if we have no
estimate for the value uTAkxk of optimal solutions xk of the different blocks
k ∈ [K]. Hence, we solve the pricing problems in decreasing order of the dual
Farkas multipliers vk.

Input: Farkas multipliers u ∈ QmA and v ∈ QK w. r. t. linking and
convexity constraints, respectively

Sort the pricing problems k ∈ K by vk in descending order k1, . . . , kK1

for i← 1 to K do2

Solve the pricing problem3

c̄?ki
← max

{
uTAkix+ vki

| x ∈ Xki

}
.

if c̄?ki
> 0 then4

Add the computed optimal solution x? to the set P̄ki
5

stop!6

Algorithm 1: Default Farkas Pricing Algorithm

For the problems that we regard in this thesis, this approach outper-
formes solving the problems in their natural order, i.e., by increasing block
number k, by far. We have to admit that most of the regarded problems have
rather similar blocks and a set partitioning structure in the master problem.
Therefore, the sets Xk of solutions to the pricing problems of the blocks are
similar and these variables lead to similar values uTAkxk so that the optimal
objective function value of the pricing problems depends in large part on the
dual Farkas multipliers. However, many of the problems that are solved with
a Dantzig-Wolfe decomposition approach have that structure, so solving the
pricing problems in the specified order should perform well for most of these
problems. Nevertheless, for rather different blocks and arbitrary structure in
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the master problem, defining another order could be more efficient.
The default Farkas pricing method is pictured in Algorithm 1. In Sec-

tion 4.4.1, we give a comparison to some other settings.

4.3.2 Reduced Cost Pricing

In the reduced cost pricing routine, we look, from the theoretical point of
view, for a variable of the master problem with the most negative reduced
cost. This variable is added to the RMP and the process is iterated. For the
master problem obtained by the Dantzig-Wolfe decomposition, this translates
into solving the pricing problem (4.9) for each block k ∈ [K]. After that, if
and only if the best optimal objective value is negative, a variable is added to
the RMP that represents the extreme point given by the computed optimal
solution.

By solving all pricing problems, however, we potentially get a whole bunch
of variables that can improve the RMP’s current solution, namely for each
pricing problem with negative optimal objective value at least the variable
corresponding to the optimal solution. If we found further (suboptimal) so-
lutions with negative objective value during the solving process of the pricing
problems, we could add these variables as well. Note, that in Section 4.1, we
added only one variable to the RMP per pricing round, however, finiteness
and correctness of the pricing process are obviously conserved when adding
more than one variable. In this case, the size of the RMP grows faster and we
run the risk of creating variables that will never be part of the basis which
leads to a slowdown of the simplex algorithm. We have to trade this off
against the benefit that variables are created without further effort, which
would possibly have been created in one of the successive pricing rounds,
anyway.

Additionally, when adding only the variable with the most negative re-
duced cost, this variable will definitely be chosen to enter the basis, which
equals to the so-called Dantzig pivot rule of the simplex method. Compu-
tational experiments (see [32]), however, have shown that this pivot rule is
mostly inferior to more sophisticated rules, like steepest-edge pivot rules. We
will not go into details about pivot rules of the simplex method in this thesis
and refer to [85, 32] and the references given there, but we want to give an
indication, that adding more than just one variable to the RMP per round
can help to reduce the number of simplex iterations during the solving pro-
cess of the master problem. Since the LP solver is treated as a black box,
we do not know which pivot rule is used by it, thus we cannot modify the
pricing process to search the variable with the highest priority according to
this pivot rule and add just this variable. However, when adding more than
one variable, the LP solver can choose the “best” of the new variables to
enter the basis according to the pivot rule employed by it. Additionally, af-
ter performing one simplex iteration, there is the possibility that one of the
other newly created variables still has negative reduced cost and can further
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improve the objective function value. This way, we can reduce the number
of times pricing has to be performed and hopefully also the total time spent
for the solving process of the master problem.

Another approach to reduce the effort of the pricing routine is to stop
the pricing process after a given number of variables with negative reduced
costs were found in this pricing round, add these variables to the RMP and
iterate the process. That way, we do not solve the pricing problem as stated
in Section 4.1, since we do not calculate the most negative reduced cost. We
find, however, variables with negative reduced cost that can enter the basis
when the RMP is re-optimized. Finiteness and correctness of the procedure
is assured as long as we do not abort the pricing process before finding a new
variable. Thus, at least in the last pricing round, we have to solve all pricing
problems to optimality in order to guarantee that no variable with negative
reduced cost exists in the master problem that can improve the solution of
the RMP.

We included these approaches into our branch-cut-and-price solver GCG
and provide some parameters to tune them. In the following, we will name
the most important parameters and their influence.

First of all, let us notice that without imposing limits by parameters, we
solve all pricing problems and add all variables with negative reduced cost to
the RMP that were found in this pricing round. In particular, we also add
suboptimal solutions of the pricing problems as long as they have negative
reduced cost.

Since these can be quite a lot of variables, a maximum number Mr ∈ [1,∞]
of variables that are added per reduced cost pricing round can be specified.
In the default setting, it is set to 100.

In addition to that, we can choose whether the pricing routine is stopped
after this number of variables with negative reduced cost was found or, al-
ternatively, all pricing problems are solved and after that, the Mr variables
with the most negative redced costs are added to the RMP. By choosing
the second possiblity, the parameter is called onlybest, together with a limit
Mr = 1, we perform pricing as stated in Section 4.1, i.e., we only add one
variable with the most negative reduced cost to the RMP.

Furthermore, we can limit the number of variables created for one block
in a pricing round by a value Mp ∈ [1,∞]. Setting this value to 1 corresponds
to taking into account only variables corresponding to an optimal solution of
a pricing problems while a greater value allows to create variables for sub-
optimal solutions, too. In the default setting, we set Mp = ∞. Apparently,
the parameters Mp and Mr overlap in some cases: By setting Mp ≥ Mr or
Mp ≤ Mr

K , one of these parameters becomes redundant.
Like for the farkas pricing, we introduced a parameter Rr ∈ [0, 1]. It is

a relative limit on the number of pricing problems that are solved in each
pricing round. If the limit is reached and new variables were added in the
current pricing round, the round is stopped, otherwise, it is continued until
improving variables have been found.
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In case we do not solve all of the pricing poblems in each pricing round
due to the parameter settings, it is also important, in which order the pricing
problems are examined. If we start with solving those pricing problems that
are expected to have the more negative solutions, we avoid solving instances
that are likely to have a non-negative optimum. The order can be specified by
the parameter sorting . The pricing problems can be solved in their natural
order, i.e., by increasing k (sorting = 0) or by decreasing dual solution value
of the convexity constraint corresponding to that block (sorting = 1), like
it is also done for the Farkas pricing. This makes use of the fact that for
each block, the negation of the corresponding dual solution value goes into
the reduced costs of the variables corresponding to that block. Hence, the
higher the value, the more likely it is that variables of the block have negative
reduced cost. It turned out that like for the Farkas pricing, this ordering of
the pricing problems is superior, so it is used per default.

Another approach to speed up the pricing process is the use of heuristics.
Instead of solving the pricing problems to optimality, we use a heuristic
that is expected to find “good” solutions in a reasonable amount of time.
For this purpose, each pricing solver can provide a routine that solves the
given pricing problem in a heuristic fashion. If a heuristic finds variables
with negative reduced costs, we add them to the RMP, according to the
previously defined settings. After that, the RMP is resolved and the process
is iterated. If the heuristic does not find any variable with negative reduced
cost, however, we have to solve the pricing problems to optimality in order
to find an improving variable or to prove that no such variable exists. The
usage of heuristics can be turned on with the parameter useheur , per default,
it is disabled.

For the MIP pricing solver, solving the problem heuristically is done by
solving the pricing problem with SCIP, too. In order to limit the effort spent
for the heuristic call of the pricing solver, we limit the number of solving nodes
and the number of stalling nodes. The first one is a hard limit on the number
of nodes that are at most processed, the latter defines the number of nodes,
that may be processed without finding an improving solution. Additionally,
we set a limit on the objective value of solutions, thus only solutions with
negative reduced costs are accepted and we cancel the solving process once
a given gap has been reached.

The reduced cost pricing process is presented in Algorithm 2.

4.3.3 Making Use of Bounds

In Section 4.2, we defined a lower bound LBRMP on the optimal objective
value of the master problem that can be computed using the current optimal
solution z?

RMP of the RMP and the optimal solutions c̄?k, k ∈ [K] of all pricing
problems (see Theorem 4.10). In the following, we describe how we use this
bound to speed up the solving process.
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Input: An optimal dual solution of the RMP π ∈ QmA , ρ ∈ QK

w. r. t. linking and convexity constraints, respectively

nvars← 0 // number of variables added1

heur ← useheur // solve pricing problems heuristically?2

V ← ∅ // set of variables found so far3

Sort the pricing problems k ∈ [K] according to the selected sorting4

method and obtain an order k1, . . . , kK

for i← 1 to K do5

nvarsprob← 0 // nr. of variables found in this problem6

Solve the pricing problem7

c̄?k ← min
{(
cki

T − πTAki

)
x− ρki

| x ∈ Xki

}
(4.12)

heuristically, if heur = TRUE, otherwise, solve it to optimality.
if c̄?ki

< 0 then8

for each solution x? of (4.12) that is found (sorted increasingly9

w. r. t. objective function value) do
if
(
cki

T − πTAki
)
x? − ρki

< 0 then10

if onlybest then11

V ← V ∪ {(x?, i)}12

nvarsprob← nvarsprob + 113

else14

P̄ki
← P̄ki

∪ {x?}15

nvars← nvars + 116

nvarsprob← nvarsprob + 117

if nvarsprob = Mp or nvars = Mr then18

break!19

if nvars = Mr or (i ≥ Rr ·K and nvars > 0) then20

break!21

if onlybest then22

Sort the set V w. r. t. the reduced costs of the saved variables23

for (x?, i) ∈ V in increasing order w. r. t. reduced costs do24

P̄ki
← P̄ki

∪ {x?}25

nvars← nvars + 126

if nvars = Mr then27

break!28

if nvars = 0 and heur = TRUE then29

heur ← FALSE30

Goto Line 531

Algorithm 2: Reduced Cost Pricing Algorithm
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Early branching First, it is possible to define a maximum number of
reduced cost pricing rounds maxrounds ∈ [0,∞] to be performed at each
node of the branch-and-price tree.

When creating a node, SCIP initially sets its local dual bound to the dual
bound of the father node, for the root node, it is set to minus infinity. This
local bound is automatically updated once the LP relaxation at the node
is solved to optimality. If maxrounds < ∞ and this number is exceeded
for a branch-and-price node, we do not know whether further variables with
negative reduced cost exist in the master problem. Thus, we did not solve
the master problem to optimality and the RMP’s optimal objective function
value is not a valid lower bound for the optimal solution value of the original
program.

However, the reduced cost pricing callback of variable pricers in SCIP
provides the possibility to specify a lower bound on the optimal objective
value of the local master problem. SCIP then automatically updates the
dual bound of the node to this value if it is better, i.e., higher, than its
current dual bound. Hence, in each pricing round in which the RMP and
all pricing problems are solved to optimality, the pricer computes the lower
bound LBRMP and returns this value so that SCIP updates the dual bound
of the node, if possible.

The behavior resulting from setting maxrounds <∞ is denoted by early
branching in the following, since the solving of the current node is interrupted
and branching is performed “earlier”.

We decided to give no possibility to limit the number of Farkas pricing
rounds, since then we would not have a feasible solution to the current master
problem and would not even know whether such a solution exists. On the one
hand, if the current master problem is infeasible, proving this by completing
the Farkas pricing process allows us to prune the current node in the branch-
and-bound tree. On the other hand, if it is not infeasible, we will have to
restore the feasibility in its children, anyway. All the dual rays providing
an infeasibility proof at the current node can still proof the infeasibility in
the subsequent nodes, so they have to be forbidden by adding new variables
to the RMP, anyhow. Besides, without knowing a feasible solution of the
master problem, we do not have the guidance for the branching process that
is usually provided by the relaxator’s current solution.

Early branching typically results in a slower increase of the dual bound.
In return, the branch-and-price tree is explored faster and nodes that are
situated deeper in the branch-and-price tree are investigated earlier. Since
these nodes correspond to problems that are more likely to have an integral
solution (e.g., since some variables are fixed to integral values), it may result
in feasible solutions being found earlier in the solving process.

Due to the weaker dual bound, this is primarily useful when we do not
want to solve the problem to optimality, but want to find a solution with
a given quality, e.g., a solution that has at most 10% additional cost com-
pared to the optimal solution. Besides, this concept is often used for primal
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heuristics. For example, pricing is performed only at the root node. After
that, one hopes, that the current set of variables contains a feasible solution
to the extended problem and tries to find a solution quickly by branching in
a depth-first-search way (see [10]).

Per default, we set maxrounds =∞ so the number of pricing rounds per
node is not limited.

Early termination Nevertheless, we use a weakened form of early branch-
ing, also called early termination of the pricing process (see [97]) even with
the default settings. In case we know that the objective function value of each
feasible solution is integral—e.g., if the original problem’s objective function
contains only integer variables with integral coefficients—we stop the pricing
process if further improvements of the node’s dual bound will never have
any advantages with regard to the bounding process. In the following, we
describe how this is detected.

Let z?
RMP be the optimal objective value of the RMP and LB be the

current dual bound of the active node, i.e., the maximum of the parent node’s
dual bound and all feasible lower bounds LBRMP computed in former pricing
rounds at the current node. By solving the master problem to optimality,
we obtain a lower bound z?

MP on the optimal objective function value of the
current original problem. This one lies between the two former values, i.e.,
LB ≤ z?

MP ≤ z?
RMP (see Section 4.2).

If dLBe ≥ z?
RMP then it follows dLBe = dz?

MPe. This means, that the best
feasible solution for the current problem has objective value at least dLBe, so
we can set the lower bound of the node to dLBe. Solving the master problem
to optimality can lead to no better dual bound, thus we can stop the solving
process of the master problem. Actually, the dual bound of the node does
not have to be updated to dLBe as SCIP knows about the integrality of the
objective function value of each solution. Therefore, it prunes the node as
soon as a solution with value dLBe or better is found, even if the dual bound
LB is maintained.

This result can easily be generalized to problems, for which z ∈ Q exists
such that each feasible solution has value k · z with k ∈ Z: if dLB

z e ≥
z?
RMP
z ,

the solving process of the master at the current node can be stopped.
By using early termination, we reduce the so-called tailing-off effect [57].

That means, that the column generation process finds a near optimal solution
in a reasonable amount of time, but obtaining optimality and proving it
typically needs many pricing rounds. Furthermore, the pricing problems often
get much harder to solve when the dual variables converge to the optimal
dual solution of the master problem. The long tail of computations needed
to prove the optimality is avoided by stopping the column generation earlier.

However, computing the exact lower bound by solving the master problem
to optimality can improve the effectiveness of methods that make use of
so-called pseudocosts. Pseudocosts denote the average increase in the dual
bound after tightening the bound of a certain variable (also see Section 5.6.1).
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They are used for example by branching rules [5], node selection strategies [1],
and some primal heuristics [11].

Nevertheless, our computational studies (see Chapter 7) show that the
effort saved in the pricing routine compensates this disadvantage and the
overall computation time is decreased when using early termination. How-
ever, it can be deactivated with the abortpricing parameter.

Objective limit for LP solving Finally, let us note that the RMP is not
always solved to optimality before the pricing plugin is called. Like most
state-of-the-art MIP solvers, SCIP imposes a limit on the objective function
value of the LP. When solving the LP with the dual simplex algorithm,
e.g., after adding branching restrictions, the solving process of the LP is
stopped as soon as the objective value of the current LP solution is greater
or equal to the primal bound. By continuing the solving process of the LP,
we would obtain an optimal solution with an objective value not smaller than
the current objective value of the LP, hence also not smaller than the primal
bound. If the LP contains all variables explicitly, i.e., no pricers are active,
the current node can be pruned since the current problem cannot contain
solutions that are better than the incumbent.

If pricers are active, however, the current LP is just a restricted version
of the implicitly given actual LP. Therefore, by adding more variables to
the restricted LP, we can improve its optimal objective value and will finally
get an optimal solution for the actual LP. This solution can have a better
objective value than the optimal solution of the restricted LP, hence the node
must not be pruned. Instead, in order to obtain this optimal solution of the
actual LP, pricing has to be performed. If and only if the optimal objective
value is then still greater or equal to the primal bound, the node can be
pruned.

When the solving process of the LP was stopped due to the objective limit,
however, we do not need to solve the restricted LP to optimality. We can
use the current dual solution values, since this solution has to be forbidden
in the dual of the LP in order to obtain a primal LP solution that is better
than the primal bound. If we find variables with negative reduced costs, we
add them to the LP and iterate the process. If we do not find any variable
with negative reduced cost, then the current dual solution is feasible in the
dual of the actual LP and thus, the optimal solution value of the actual LP
is greater or equal to the primal bound and the node can be pruned.

4.4 Computational Results

In this section, we describe our experiences of the solving process of the
master problem. We investigate different settings and variants mentioned in
the last section and compare their effectiveness.

We focus on the master problem at the root node and investigate the effort
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needed to obtain feasibility of the RMP in Section 4.4.1. In Section 4.4.2, we
look at the process of solving the master problem to optimality. However,
we do not regard the impact on the performance of the total branch-and-
price process. We cannot guarantee that pricing strategies that dominate
the solving process of the master problem at the root node are also superior
for the branch-and-price process. For example, it could be an advantage to
create more variables at the root node even if the pricing process at the root
node takes slightly longer in this case, since the additional variables could
speed up the solving process of the master problem at subsequent nodes. On
the other hand, adding much more variables also slows down the simplex
algorithm and it is not clear whether these variables help in finding good
primal feasible solutions or actually derange this process.

Since the branch-and-bound process and different branching rules were
not yet introduced (this will be done in the next chapter), we will in the
following regard several possible pricing strategies and name a subset that
seems to perform well. In Chapter 7, we will then compare some strategies
with respect to the branch-and-price process.

4.4.1 Farkas Pricing

We ran benchmarks to compare the performance of the default Farkas pricing
settings (see Algorithm 1) with the following variations.

• “All vars”: all pricing problems are solved in each pricing round and
all variables are added to the RMP that cut off the dual ray, i.e., fulfill
condition (4.10). This corresponds to Mf =∞.

• “No sort.”: like in the default setting, just one variable is added to the
RMP per pricing round, but the pricing problems are not sorted w. r. t.
the dual Farkas multipliers v, instead they are solved in their natural
order.

• “2 vars”: the pricing problems are sorted as for the default settings,
but instead of adding just the first variable, we add up to two variables.
With this setting, we want to investigate, whether adding not just one,
but also not all variables found is a good idea. This corresponds to
Mf = 2.

• “2%”: the pricing problems are sorted as for the default settings, but
instead of adding just the first variable, we solve 2% of the pricing
problems. The pricing round is stopped, if variables were added so far,
otherwise, it is continued until the first variable is added. We obtain
this behavior for Mf =∞ and Rf = 0.02.

• “1 prob”: the pricing problems are sorted as for the default settings,
but instead of adding just the best solution of a pricing problem, we
add all solutions of the problem that have a positive objective function
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value. As soon as a pricing problem gave rise to new variables, the
pricing round is stopped. This corresponds to Mf =∞ and Rf = 0.

Table 4.1 summarizes the results, further details can be found in Ta-
bles D.1 to D.10 in Appendix D. The computational environment and the
test sets are described in Section 3.3.

The upper and middle part of Table 4.1 picture the number of pricing
rounds and solved pricing problems, respectively, the lower part the time that
was needed to achieve feasibility of the RMP at the root node. We excluded
the time needed for presolving, problem creation, primal heuristics etc. and
list only the sum of pricing and LP solving time. The solving process was
stopped after at most 5 minutes.

The first column shows—in absolute numbers—for each test set the shif-
ted geometric mean of these values when performing Farkas pricing with
default settings. The columns “all vars”, “no sort.”, “2 vars”, “2%”, and
“1 prob”, show the percental change in the shifted geometric mean for the
variations compared to the default settings.

We used the convexification approach for these computations so the iden-
tical blocks in the vertex coloring and the bin packing problem where treated
independently. Hence, for these problems, all pricing problems have equiva-
lent optimal solutions, so the pricing problems with greater Farkas multipli-
ers have better optimal objective values. The same holds for the capacitated
p-median problem (CPMP): The only difference between the blocks is the ob-
jective function, which is disregarded for the Farkas pricing. For the resource
allocation problems, obtaining feasibility is rather easy since setting all vari-
ables to zero in the original problem gives us a feasible solution. Therefore,
for each of the pricing problems, the zero solution has to be found and the
corresponding variable has to be added to the RMP in order to restore fea-
sibility. Nevertheless, the presented results give us some indication for the
impact of the different settings.

For the default settings (column “default”), we solved exactly one pricing
problem per round, which was to be expected due to the similar structure of
the pricing problems.

When adding all variables (column “all vars”), the shifted geometric mean
of the number of pricing rounds is decreased by 68%. This was to be expected
since we add more variables in each round, in particular, in each round we
also add the variable that would be added when performing this pricing round
with default settings. The additional variables potentially cut off other dual
rays that would have caused an infeasibility in a subsequent iteration. In
return, we have to solve all pricing problems in each pricing round, hence we
solve about sixteen times as many pricing problems in spite of the consid-
erably smaller number of pricing rounds. Because of this, the total running
time increased more than sevenfold.

When not sorting the pricing problems (column “no sort.”), the number
of pricing rounds, the number of pricing problems that are solved, and the
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test set default all vars no sort. two vars 2 % 1 prob

ro
un

ds

cpmp50s 238.4 −60 +763 −25 −32 −32
cpmp100s 571.3 −67 +1038 −30 −49 −41
cpmp150s 1011.4 −77 +424 −35 −57 −48
cpmp200s 1457.7 −82 +126 −38 −60 −52
coloring 241.1 −40 +829 −10 −8 −4
rap32s 37.7 0 0 0 0 0
rap64s 19.0 0 0 0 0 0
bindata1-n1s 227.3 −73 +771 −24 −11 −4
bindata1-n2s 545.6 −78 +684 −24 −37 −15
bindata1-n3s 1463.0 −84 +237 −24 −56 −8
mean 385.4 −68 +353 −23 −38 −25

pr
ob

le
m

s

cpmp50s 238.4 +1895 +1938 +773 −32 −32
cpmp100s 571.3 +3209 +3453 +1215 +3 −41
cpmp150s 1011.4 +3428 +2315 +1553 +30 −48
cpmp200s 1457.7 +3563 +1831 +1880 +60 −52
coloring 241.1 +1251 +1444 +163 +9 −4
rap32s 37.7 +3444 +1744 +3444 +23 0
rap64s 19.0 +1721 +885 +1721 0 0
bindata1-n1s 227.3 +906 +6052 +319 −3 −4
bindata1-n2s 545.6 +1517 +5372 +505 +27 −15
bindata1-n3s 1463.0 +2273 +1618 +809 +57 −8
mean 385.4 +1690 +1849 +745 +16 −25

ti
m

e

cpmp50s 0.5 +891 +2603 +76 −30 −31
cpmp100s 3.6 +4964 +7982 +95 −40 −58
cpmp150s 15.2 +1964 +1854 +52 −31 −62
cpmp200s 50.7 +501 +481 +21 −26 −72
coloring 3.9 +903 +5294 +117 +10 −3
rap32s 0.1 +193 +99 +194 +2 +1
rap64s 0.0 +79 +40 +80 0 0
bindata1-n1s 0.2 +151 +10832 +40 −1 +1
bindata1-n2s 1.1 +852 +27542 +177 −14 −23
bindata1-n3s 8.5 +701 +3315 +134 −31 −1
mean 5.2 +602 +1857 +63 −21 −44

Table 4.1. Performance effect of different variants of the Farkas pricing for obtaining
feasibility of the RMP at the root node. The first column denotes the shifted geometric
means of the number of pricing rounds (top), the number of pricing problems that were
solved (middle) and the master problem solving time in second (bottom) for the default
settings. The other columns denote the percental changes in the shifted geometric mean of
the values for the other settings. Positive values represent a deterioration, negative values
an improvement.
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solving time of the master problem are increased by far. The increase of the
number of pricing problems is consequential, since for the default settings, the
pricing problem that is solved first has the best solutions due to the structure
of the problems in our test set. Hence, we only solve one pricing problem
per pricing round for the default settings. When not sorting the pricing
problems, it can happen that we need to solve several pricing problems until
we find a solution with positive objective function value. However, also the
number of pricing rounds is more than quadrupled. This can be explained by
the fact, that we add a variable with negative objective value in its pricing
problem, but there also exists an equivalent variable in the pricing problem
with the highest corresponding Farkas multiplier, which thus has a better
objective function value and which is added in the default settings. This
shows, that also for the Farkas pricing, adding variables that have a better
objective function value in the pricing problem reduces the number of pricing
rounds by far. A motivation for this is that a variable with better objective
value in its pricing problem corresponds to a potentially tighter constraint
in the dual of the RMP, at least, it only allows smaller multiples of the ray
given by the dual Farkas multipliers than a solution with smaller objective
function value.

Adding at most a given number of variables in each pricing round—
we tried adding two variables in each round (column “two vars”)—helps in
decreasing the number of pricing rounds, but it has an essential drawback: If
there only exists one variable that fulfills condition (4.10), we have to solve
all the pricing problems. This results in an eightfold increase of the number
of pricing problems that are solved, although the number of pricing rounds
is decreased by 23% in the shifted geometric mean. Therefore, the shifted
geometric mean of the total time is increased by 63%, too.

In order to overcome this drawback, we limit the number of pricing prob-
lems that are solved and not the number of variables added. Column “2%”
shows the results for solving 2% of the pricing problems and adding all vari-
ables that are found during this process. If no variable was found so far,
we continue the pricing round until variables are added, otherwise, we stop
the pricing round. This way, we obtain a decrease in the shifted geometric
mean of the number of pricing rounds of 38% with a moderate increase of
only 16% in the number of pricing problems that are solved. The shifted
geometric mean of the total time is even decreased by 21%.

Finally, we tried to add all variables of a pricing problem instead of only
the first one (column “one prob”). This way, we still solve just one pricing
problem per pricing round, but we add more variables and thus, we can
reduce the number of pricing rounds by 25% and the total time by 44%.
Hence, this variant seems to be superior to the default settings.

Finally, let us note that adding two variables led to one timeout, adding
all variables resulted in 38 timeouts and without sorting the pricing problems,
the time limit was reached by 95 out of 198 instances, so the results for these
settings would have been even worse without imposing a time limit.
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We draw the following conclusions that are valid at least for our test sets:

• Adding better variables, i.e., variables with higher objective function
value in the pricing problems, significantly reduces the number of pric-
ing rounds and the number of pricing problems that are solved as well
as the total time.

• Although one variables suffices to cut of the dual ray, adding more
variables per pricing round typically reduces the number of pricing
rounds.

• However, a fixed limit greater than one—also infinity—of variables to
add typically increases the number of pricing problems, that are solved
and also the total time, since all problems have to be solved if this
number is not exceeded. Imposing a limit on the number of pricing
problems is therefore superior.

Aggregating blocks in the discretization approach

Until now, we only investigated the Farkas pricing strategies for the convexi-
fication approach. In the following, we give a comparison between convexifi-
cation and discretization approach. When not aggregating blocks, the pricing
process is exactly the same for both approaches. Hence, we only investigate
the vertex coloring and the bin packing instances in this subsection, for which
blocks are identical and can thus be aggregated. In Table 4.2, we picture the
number of pricing rounds, the number of pricing problems that are solved
and the solving time of the master problem for setting “1 prob”, which out-
performed the default settings for the convexification approach. Since we
only have one pricing problem in the discretization approach, we do not have
the variety of possible pricing strategies as in the convexification approach.
We solve one—the only—pricing problem. We tried two possibilities of how
many variables are added. On the one hand, we can add to the RMP just
one variable corresponding to an optimal solution. This is done in setting
“disc best”. On the other hand, we can also add all variables corresponding
to solutions with positive objective function value that were found during
the solving process of the pricing problem. The results for this approach are
listed in column “disc all”.

Setting “disc all” resembles “1 prob” for the convexification approach,
where we solve the pricing problem with the most positive dual Farkas mul-
tiplier and add all variables corresponding to solutions with positive objective
function value, afterwards. Although this sounds similar, setting “disc all” is
superior in terms of pricing rounds, pricing problems that are solved and total
time needed for Farkas pricing at the root node. In the convexification ap-
proach, it may happen that a variable representing a point was created in one
of the blocks, but a variable corresponding to the same point will be needed
in another block later on. Then, in another pricing round, this variable has
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test set 1 prob disc all disc best
ro

un
ds

coloring 232.4 −26 −24
bindata1-n1s 219.1 −72 −71
bindata1-n2s 462.1 −74 −72
bindata1-n3s 1352.8 −83 −81
mean 442.5 −69 −67
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coloring 232.4 −26 −24
bindata1-n1s 219.1 −72 −71
bindata1-n2s 462.1 −74 −72
bindata1-n3s 1352.8 −83 −81
mean 442.5 −69 −67

ti
m

e

coloring 3.7 −24 −20
bindata1-n1s 0.2 −15 −14
bindata1-n2s 0.8 −73 −64
bindata1-n3s 8.4 −95 −91
mean 2.9 −73 −68

Table 4.2. Performance effect of the discretization approach for obtaining feasibility of
the RMP at the root node. The first column denotes the shifted geometric means of the
number of pricing rounds (top), the number of pricing problems that were solved (middle)
and the runtime (bottom) for the convexification approach with setting “1 prob”, The next
columns denote the percental change in the geometric mean of these values when using the
discretization approach and adding only the best variable (second column) or all variables
that cut off the dual ray (third column). Positive values represent a deterioration, negative
values an improvement.

to be created, too. This cannot happen in the discretization approach with
aggregated blocks since we do not distinguish the blocks and only have one
pricing problem. In some sense, the pricing in the discretization approach
is similar to pricing in the convexification approach, thereby adding not just
variables for one block, but the equivalent variables for all the other blocks,
too. However, this leads to a much bigger RMP slowing down the simplex
method and also the number of constraints in the RMP is slightly smaller for
the discretization approach since we have just one convexity constraint.

Like for the convexification approach, adding just one variable per round
is inferior to adding all variables with positive objective function value of one
problem (which this time is the only one). Thus, we should think about
changing the default setting from adding just one variable to adding all
variables of one problem with positive objective function value for both ap-
proaches. However, we do not know whether adding all variables is also
superior w. r. t. the branch-and-price process. We performed computations
about this and answer this question in Section 7.1.

To sum up, the discretization approach outperforms the convexification
approach in the case of identical blocks as it was to be expected. Especially
for test sets bindata1-n2s and bindata1-n3s, where each instance has 100
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and 200 identical blocks, respectively, feasibility of the RMP is obtained
about four and twenty times faster, respectively.

4.4.2 Reduced Cost Pricing

In this subsection, we present some computational results for the reduced
cost pricing. We just list the effort of the reduced cost pricing process of the
master problem at the root node, so we excluded the effort for the Farkas
pricing process. Furthermore, for the time listed in the tables, we also elimi-
nated the time needed for presolving, problem creation, primal heuristics etc.
and list only the time needed for the solving process of the master problem,
i.e., the sum of pricing and LP solving time. We imposed a time limit of five
minutes for each instance, except for the resource allocation problems where
we set a time limit of thirty minutes as the solving process of the master
problem takes much longer for these instances.

Again, we start with a comparison of some fundamental strategies. The
default pricing routine adds at most 100 variables to the RMP in each pricing
round (Mr = 100). The pricing process is stopped after this number of
variables was added, so we set onlybest = FALSE . We do neither limit the
number of variables created per pricing problem (Mp =∞) nor the number of
pricing problems that are solved in a single pricing round (Rr = 1). Table 4.3
summarizes the results of the computations. More details can be found in
Tables D.11 to D.20.

A first observation is the considerably smaller number of pricing rounds
for the default settings compared to Farkas pricing, which corresponds in
parts to the fact that we add much more variables in each pricing round.
In the shifted geometric mean, about 30 pricing problems are solved in each
pricing round and the time needed for reduced cost pricing is about six times
higher than the time needed for Farkas pricing. This shows, that the reduced
cost pricing is much more important than the Farkas pricing for the overall
performance. This holds even more for the branch-and-price process since at
the subsequent nodes, we start with the set of variables that were created
before so we have to perform just a few—if any—Farkas pricing rounds to
repair an infeasibility caused by the branching restrictions.

Pricing strategy “only best” solves all pricing problems and adds the vari-
able with the most negative reduced cost. This corresponds to the pricing
process as we described it from the theoretical point of view in Section 4.2.
We set Mr = 1 and onlybest = TRUE . This pricing method does not per-
form well: The number of pricing rounds, the number of pricing problems
that are solved and the time needed for reduced cost pricing are increased
by far. Actually, the values would have been even worse if we had not im-
posed a time limit: 101 out of 198 instances hit the time limit and were thus
stopped before the master problem was solved to optimality. This is also
the explanation for the decrease of the number of pricing rounds for test set
bindata1-n3s. As conjectured in Section 4.3.2, adding more than just the
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test set default only best all vars 100best one prob

ro
un

ds

cpmp50s 21.7 +1319 −15 +3 +2245
cpmp100s 35.8 +1761 −34 +5 +2890
cpmp150s 51.3 +662 −46 +5 +2979
cpmp200s 69.6 +118 −55 −4 +2160
coloring 40.5 +12 −21 −22 +21
rap32s 48.4 +332 −63 −51 +602
rap64s 35.3 +190 −56 −45 +324
bindata1-n1s 34.2 +55 +5 +7 +7
bindata1-n2s 79.1 +64 −2 +18 −6
bindata1-n3s 132.6 −19 −26 −14 −14
mean 52.2 +237 −32 −10 +511

pr
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le
m

s

cpmp50s 753.3 +1916 +20 +42 +333
cpmp100s 1539.0 +4214 +51 +136 +712
cpmp150s 2515.1 +2210 +62 +212 +671
cpmp200s 3534.6 +729 +73 +273 +402
coloring 487.3 +71 +24 +24 −83
rap32s 792.2 +831 −14 +12 +390
rap64s 321.9 +453 −6 +14 +159
bindata1-n1s 937.4 +77 +22 +25 −92
bindata1-n2s 3370.1 +166 +55 +89 −95
bindata1-n3s 6902.7 +128 +98 +142 −96
mean 1438.0 +551 +35 +81 +9

ti
m

e

cpmp50s 1.9 +1548 +27 +49 +462
cpmp100s 4.5 +3608 +84 +159 +788
cpmp150s 9.3 +2920 +112 +237 +799
cpmp200s 16.5 +1270 +129 +281 +622
coloring 34.1 +52 +23 +21 −82
rap32s 178.0 +684 −16 +4 +427
rap64s 289.7 +342 −10 +7 +198
bindata1-n1s 6.8 +149 +25 +25 −90
bindata1-n2s 51.1 +190 +64 +82 −88
bindata1-n3s 106.7 +160 +138 +127 −90
mean 33.8 +438 +37 +62 +47

Table 4.3. Performance effect of different variants of reduced cost pricing for solving the
master problem to optimality at the root node. We list the shifted geometric means of the
number of pricing rounds (top), the number of pricing problems that were solved (middle)
and the runtime (bottom) for reduced cost pricing with default settings (first column).
The other columns denote the percental changes in the shifted geometric mean of these
values for the other settings. Positive values represent a deterioration, negative values an
improvement.
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variable with the most negative reduced cost speeds up the solving process
by far.

Strategy “all vars” is the opposite: We solve all pricing problems and add
all variables to the RMP that are found during the solving process and that
have negative reduced costs. Therfor, we set Mr =∞, Mp =∞, and do not
limit the number of pricing problems that are solved in each pricing round
(Rr = 1). As for the Farkas pricing, this typically reduces the number of
pricing rounds compared to the default setting, since more variables are added
in each round. The number of pricing problems that are solved increases and
so does the total time. However, for the sets of RAP instances, this setting
performes better than the default setting. We will give an interpretation for
this later, but it already shows, that there is a big variation on the reduced
cost pricing performance for the different test sets.

We also tested whether adding not the first 100 variables that are found,
but the 100 variables with the most negative reduced costs improves the
performance (column “100best”). The only difference to the default settings
is that we set onlybest = TRUE . This increases the number of pricing
problems that are solved, since we have to solve all pricing problems in order
to determine the 100 “best” variables. Hence, also the total time is increased
by about 50%.

Finally, for pricing strategy “one prob”, we perform the reduced cost
pricing similar to the best setting for the Farkas pricing: We stop the pricing
round as soon as a pricing problem has a negative optimal objective value
and add all variables with negative reduced costs that were found during the
solving process of this problem. The shifted geometric mean of the number
of pricing rounds is increased by far, as it was to be expected since we add
a smaller number of variables in each pricing round. This pricing method
performs very well for the vertex coloring and the bin packing instances. In
return, for the other instances, it performs badly.

We can see that due to the rather different structure of the problem
classes, we get different results for the pricing methods that we investigate.
This shows that the performance of a pricing strategy is always problem de-
pendent and there does not exist a dominating pricing method. However, we
can draw some conclusions based on the presented computational results. For
the vertex coloring and the bin packing instances, pricing strategy “one prob”
performs best. This can be explained by the identical blocks: As all problems
are identical and only the dual solution values of the corresponding convexity
constraints differ, the pricing problems are rather similar. Therefore, also the
solutions that are found during the solution process of the pricing problems
are also rather similar. Thus, spending more effort to solve more than one
pricing problem leads to equivalent variables corresponding to other blocks
that just slow down the simplex algorithm.

For the class of resource allocation problems, adding all the variables
that are found and which have negative reduced cost in each pricing round
seems to perform best and adding the 100 best variables is competitive to the
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default settings. These problems have rather different blocks. Each block has
the same structure, i.e., it consists of a number of capacity constraints, but
the variables corresponding to the blocks are different, they have arbitrary
objective function values and different coefficients in the constraints of the
master problem. Hence, optimal solutions to different blocks are independent
and differ in the master problem’s coefficients, so each variable is important
and can help during the solving process.

In contrast to that, for the capacitated p-median instances, the blocks
are distinct, but still related. Each solution to a pricing problem is also
valid for all other pricing problems and the corresponding variables have
the same coefficients in the constraints of the master problem, they only
differ in terms of the objective function coefficients. Therefore, adding more
variables to the RMP in each round than just a few helps since it allows
more sophisticated pivot rules in the simplex method and multiple simplex
steps after one pricing round. Nevertheless, since the variables are somehow
similar, adding all variables leads to many similar variables out of which only
a few can be used, so it does not pay off.

Aggregating blocks in the discretization approach

Again, we investigate the effect of the discretization approach on the per-
formance. We only regard the problems that have identical blocks in the
following, since for the other problems, the pricing process is the same for
convexification and discretization approach. For the regarded problems, pric-
ing strategy “one prob” performed best for the convexification approach: The
master problem was solved five to ten times faster with it than with the de-
fault settings. Therefore, we take the performance for this strategy as the
reference value and compare it to the discretization approach in Table 4.4.
More details can be looked up in Tables D.5 and D.8 to D.10. In particular,
we regard two different strategies for the pricing routine: “disc all”, where we
add all variables to the RMP that were found during the pricing process and
that have negative reduced costs and “disc best”, where only one variable
with the most negative reduced cost is added to the RMP.

The first observation is that the number of pricing rounds needed for re-
duced cost pricing is higher for the discretization approach. However, this
is not an attribute of the reduced cost pricing routines, but it arises from
the different Farkas pricing methods used for the convexification and the
discretization approach. The default Farkas pricing method for the convex-
ification approach takes longer than its counterpart for the discretization
approach, but it also creates more variables. Due to the smaller number of
variables contained in the RMP at the beginning of the reduced cost pricing
process, more variables are created afterwards for the discretization approach
and so the number of pricing rounds is higher, too.

However, the number of pricing problems that are solved in the reduced
cost pricing process is slightly reduced when using the discretization ap-
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test set one prob disc all disc best
ro

un
ds

coloring 49.0 +43 +61
bindata1-n1s 36.7 +102 +165
bindata1-n2s 74.3 +102 +200
bindata1-n3s 114.0 +149 +312
mean 66.0 +98 +178
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coloring 82.8 −14 −3
bindata1-n1s 77.1 −3 +27
bindata1-n2s 152.3 −1 +47
bindata1-n3s 276.5 +3 +70
mean 135.5 −3 +36

ti
m
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coloring 6.0 +5 +22
bindata1-n1s 0.7 −26 −5
bindata1-n2s 6.1 −63 −33
bindata1-n3s 11.1 −40 +14
mean 5.5 −34 +1

to
ta
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coloring 12.2 −7 +2
bindata1-n1s 1.1 −37 −18
bindata1-n2s 8.6 −59 −37
bindata1-n3s 31.3 −50 −30
mean 10.8 −38 −21

Table 4.4. Performance effect of different variants of the reduced cost pricing for solving
the master problem to optimality at the root node. We list the shifted geometric means
of the number of pricing rounds (top), the number of pricing problems that were solved
(second part) and the time needed for reduced cost pricing (third part) and the total
runtime (bottom) for reduced cost pricing with setting “one prob” (first column). The next
columns denote the percental changes in the shifted geometric mean of these values for the
discretization approach and adding all variables with neg. reduced cost (second column)
or adding only one variable with the most negative reduced cost (third column). Positive
values represent a deterioration, negative values an improvement.

proach and adding all variables. In case we only add the best variable, it
is increased by a third. The better relation between pricing problems and
pricing rounds in the discretization approach can be explained by the fact,
that in each pricing round, one—the only—pricing problem is solved, while
in the convexification approach, all pricing problems are solved in the last
pricing round when no variable is found.

The shifted geometric mean of the pricing time is reduced by 34% when
adding all variables with negative reduced cost. For test set coloring, it
increases by 5%, which can be explained by the smaller number of variables
created in the Farkas pricing process before. Therefore, we also list the total
time, including presolving, problem creation and Farkas pricing. Now, the
discretization approach with setting “disc all” is superior to the convexifica-
tion approach for all test sets.
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Setting “disc best” performs better than the convexification approach,
too, but it is inferior to setting “disc all”. Hence, it pays off to add more
variables with negative reduced costs than just the “best” one, also for the
discretization approach. Since solving the pricing problems consumes most
of the time needed for pricing, we should therefore add all variables with
negative reduced costs to the RMP that are found during the pricing process,
hoping that this reduces the number of pricing rounds and thus also the
number of pricing problems that need to be solved.



Chapter 5

Branching

In Chapter 4, we have described how we can solve the master problem to
get a lower bound on the optimal objective value of the original problem
(Model 2.1). The optimal solution to the master problem that is computed
this way fulfills all constraints in the extended problem, except for the inte-
grality restrictions. Transferring this solution to the original variable space
gives rise to a solution of the original problem that does not neccessarily ful-
fill the integrality restrictions (2.4), but all the other constraints contained in
the original problem. If it additionally fulfills the integrality restrictions, we
have solved the original problem to optimality. Otherwise, we use a branch-
and-bound process to obtain integrality.

The special thing about branch-and-bound in our approach is the fact,
that we do not solve one problem, but two equivalent problems simultane-
ously: the original problem and the extended problem. This can be inter-
preted in two ways, as we explain in the following.

Let us start, however, with the connection between integrality in the orig-
inal problem and integrality in the extended problem. For the convexification
approach, the connection is clear. Since the integrality in the extended prob-
lem is defined in terms of the original variables, a solution to the extended
problem is integral if and only if its counterpart for the original problem is
so, too. Therefore, when using the convexification approach, it is natural to
perform branching in terms of the original variables, but this is also possible
for the discretization approach. How branching can be performed in terms of
the original variables and how the branching decisions influence the extended
formulation is described in Section 5.1.

This leads us to the first interpretation of the branch-and-bound solving
process: what we do is solving the original problem with a branch-and-bound
method. In contrast to the LP-based branch-and-bound algorithm used by
most state-of-the-art MIP solvers like Cplex, Gurobi, CBC or SCIP, we do
not solve the standard LP relaxation of the original problem at each node
of the branch-and-bound tree. In order to compute a lower bound and a
solution that fulfills all but the integrality constraints, we use the Dantzig-
Wolfe decomposition at each node. We reformulate the current problem,

71
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obtain a master problem that is then solved and that provides a lower bound
for that node. The solution of the master problem can then be transferred
to a solution of the original problem that does not neccessarily fulfill the
integrality restrictions. It can be used in the same way as the LP solution:
It is checked for integrality and guides the branching decisions. We can say,
we replaced the LP relaxation by a special relaxation that solves the master
problem.

For the discretization approach, however, we also obtain integrality of
the original solution by enforcing integrality of the solution to the master
problem. Hence, we can in this case also perform branching in terms of
the variables of the master problem. Branching rules that work in this way
are presented in Sections 5.2, 5.4 and 5.5. In fact, we do not need do con-
sider the original problem anymore during the solving process, we just solve
the extended problem to optimality and transfer the optimal solution of the
extended problem to an optimal solution of the original problem.

This is the second interpretation: at the beginning of the solving process,
we transform the original problem into an equivalent problem, the extended
problem. This problem is solved with a branch-and-price approach, the com-
puted optimal solution is then retransformed into the original variable space
and gives us an optimal solution to the original problem. Strictly speak-
ing, one could say that we only reformulated the problem and solved this
reformulation.

It is not possible to draw a distinct line between the two interpreta-
tions, since most branching decision can be expressed in both formulations.
Branching decisions in the original problem have to be expressed in terms of
the variables of the extended problem and added to it. This must be done
to assure that the master problem gives rise to an original solution that ful-
fills all but the integrality constraints, thus in particular also the branching
restrictions. Nevertheless, most of the branching decisions are derived from
either the original or the master problem and then transfered to the other
problem. Hence, they typically have the more natural expression in one of
the problems.

However, we will still consider the original problem, even if we derive the
branching decisions from the extended problem and use the additional infor-
mation provided by the original problem to speed up the solving process. For
example, we do not always need to solve the extended problem to optimality.
Since our prior target is to solve the original problem to optimality, we do
not insist on achieving an optimal solution to the extended formulation. As
fractional solutions to the extended problem can lead to an integral solu-
tion of the original problem—a nontrivial combination of extreme points can
for instance represent an interior point xk ∈ Xk like in the convexification
approach—we consider a problem to be solved once the solution to the mas-
ter problem transfers to an integral solution of the original problem, even if
the master solution is not integral itself.

Finally, let us clarify, that the variables added to the RMP at the root
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node do not suffice for the further solution process. In order to solve the
master problem of a node, we always have to perform pricing and add vari-
ables to the RMP that can improve the current solution or fix an infeasibility
arising from the branching restrictions.

5.1 Branching on Original Variables

As described above, the solving method can be interpreted as a branch-and-
bound process on the original formulation that uses the master problem as a
relaxation rather than the standard LP relaxation. In this context, it would
be natural to perform branching in terms of the original variables. Most
state-of-the-art MIP solvers use a branching on variables in the branch-and-
bound process, e.g., most infeasible branching, pseudocost branching, strong
branching, or reliability branching (see [5]). In this section, we describe how
branching on variables of the original problem can be transferred to the
Dantzig-Wolfe decomposition approach presented in this thesis. This branch-
ing scheme is widely proposed in the lierature, see for instance [47, 10, 29].

We start with the application to the convexification approach, since this
is the natural branching scheme for this approach. After that, we describe
how this branching scheme can be used in the discretization approach, too.

After solving the master problem to optimality, we get a solution x̄ of the
original problem according to the coupling constraints (2.13). The integrality
restrictions in the extended problem are expressed in terms of the original
variables, so if they are fulfilled, x̄ is an optimal solution of the current
original problem and we do not need to perform branching at the current
node. Otherwise, there exists a variable xk

i , k ∈ [K], i ∈ [n?
k] of the original

problem with fractional value x̄k
i .

Branching on this variable means creating two children, one with an ad-
ditional constraint

xk
i ≤ bx̄k

i c (5.1)

which we call the down-branch, and the up-branch with the additional con-
straint

xk
i ≥ dx̄k

i e. (5.2)

Ways to Enforce the Branching Decision

We have two possibilities, where to add the branching constraints (5.1)
and (5.2) in the down-branch and up-branch, respectively. As a branching
constraint contains variables of just one block, namely exactly one variable
xk

i , we can add it to the structural constraints (2.2) of this block. On the
other hand, we can also interpret the branching constraint as a part of the
linking constraints (2.1) and add it to this part of the constraints.
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In both cases, we get a modified original problem corresponding to the
newly created child node. We can again apply the Dantzig-Wolfe decompo-
sition for MIPs on this problem, like described in Chapter 2, in order to get
an extended formulation as well as a master problem that both consider the
branching decision. In fact, we do not need to do the reformulation from
scratch, we can adapt the current extended formulation and master problem
to the new original problem.

In the following, we describe how this can be done and which effect it has
on the pricing subproblems. We do this on the example of the up-branch,
the down-branch is handled similar.

Adding Branching Constraints to the Linking Constraints On the
one hand, we can add the branching constraint (5.2) to the linking con-
straints (2.1). Hence, we get an additional constraint∑

p∈Pk

piλ
k
p +

∑
r∈Rk

riλ
k
r ≥ dx̄k

i e

in the extended formulation and the master problem. For this constraint, we
get an additional dual variable σ which has to be respected in the pricing
routine. It is simply subtracted from the objective value of xk

i in the pricing
problem so that the pricing problem changes to the following:

c̄?k = min
{(
ck

T − πTAk − eiσ
)
x− ρk | x ∈ Xk

}
.

Thus, the reduced costs of the potential variables change, but any method
that was used before to solve the pricing problems can still be used since the
structure of the problem stays the same. The sets of variables corresponding
to each block stay the same, in particular, all variables that we created so
far are still valid.

Adding Branching Constraints to the Structural Constraints On
the other hand, if we add the branching constraint (5.2) to the structural con-
straints (2.2), the set Xk is changed and so are the sets Pk and Rk of variables
for this block. In the pricing subproblem for block k, the constraint (5.2) is
added. When the pricing problems are solved by a MIP solver, this con-
straint can be handled easily, but if we solve the pricing problems with a
special purpose solver, this solver has to be able to take into account upper
and lower bounds on the variables. This is, however, the case in most of the
applications: In the bin packing problem or the capacitated p-median prob-
lem, where the pricing problem is a knapsack problem, we remove items in
the preprocessing, that have a fixed value and subtract the sizes of the items
that have value fixed to 1 from the total capacity. For the vertex coloring
problem, the pricing problem is a stable set. Forcing a node to be part of
the stable set corresponds to removing all nodes from the problem that are
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adjacent to it. If a variable is fixed to 0, the corresponding node can simply
be removed.

In addition to that, we have to make sure, that we only use variables
corresponding to points and rays that fulfill the branching constraint. If we
do not start with an empty set of variables at each node, but use variables
that were created before at other nodes, we have to check these variables for
their feasibility w. r. t. the new pricing problem. If they do not fulfill the new
constraint, they are not allowed to be used in any solution of the master LP
at the current node and thus, they have to be removed or forbidden for the
current node.

Except for the modified sets Pk and Rk, the extended formulation and the
master problem stay the same, in particular, the number of constraints stays
the same, so we have the same dual variables as before and the calculation of
the objective function coefficients of the variables in the pricing subproblems
does not change.

Comparison Adding the constraints to the structural constraints usually
results in a tighter lower bound than adding it to the linking constraints, since
the latter only cuts off points that do not satisfy the new constraint while
the former also forbids points that fulfill the constraint but do no longer lie
in the convex hull of the points that fulfill both the structural constraints—
including the new one—as well as the integrality restrictions.

The better lower bound is achieved at the cost of a changed structure
of the subproblem, possibly preventing the usage of a special purpose solver
and the effort that has to be spent to assure the feasibility of all variables
and to fix variables that do not fulfill the new constraint.

For the convexification approach, this branching scheme is the most natu-
ral one as the integrality restrictions of the extended problem are formulated
in terms of the original variables, anyway. Nevertheless, it can also be applied
when using the dicretization approach.

Application to the Discretization Approach

For the discretization approach, when adding the branching decisions to the
structural constraints, the pricing subproblems are modified. This way, we
handle the problem of variables related to interior points: for an optimal
solution to the extended problem, we probably need variables corresponding
to interior points of the pricing polyhedra. The pricing routine, however,
does only find variables corresponding to extreme points or extreme rays of
the current polyhedra. By modifying the pricing polyhedra according to the
branching decisions, each initially interior point will become an extreme point
after a number of branching constraints are added to the subproblems.

Nevertheless, adding the branching decisions to the linking constraints is
also a valid branching scheme that allows us to compute the optimal integer
solution to the original problem. However, since we create no variables corre-
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sponding to interior points this way, we can typically not achieve an optimal
solution to the extended problem since we miss out variables that are needed
for this. For the master problem, these variables are redundant since they
can be expressed as a combination of extreme points and extreme rays, so we
will get fractional solutions to the master problem that correspond to interior
points and translate into integer solutions of the original problem. Therefore,
the branching restrictions suffice to ensure integrality in the original problem
and we do not need an optimal solution to the extended problem.

If we use the discretization approach and have identical blocks, branching
on variables corresponding to one of these blocks means modifying the block
so that it is no more identical to the others. We have to remove the modi-
fied block from the class of identical blocks and treat it separately, thereby
reintroducing symmetry.

In the case of identical blocks, in both the convexification as well as the
discretization approach, branching on the original variables leads to the same
symmetry as if we would solve the original problem with an LP-based branch-
and-bound approach: After bounding some variable in one of the identical
blocks, we usually get an equivalent solution that only permutes the points
chosen in the identical blocks.

One of the main advantages of the Dantzig-Wolfe decomposition is that we
can overcome symmetry by using the discretization approach and aggregating
identical blocks. Additionally, to achieve integrality, we need a branching
scheme that changes all of the blocks in the same way, so that the identity
of the blocks is preserved during the branch-and-bound process. We will
present branching schemes that fulfill these conditions in the next sections.

For a long time, symmetries in integer programs where typically handled
this way: an alternative formulation—which is often exactly the extended
formulation obtained by the Dantzig-Wolfe decomposition—was proposed,
usually together with a problem specific branching scheme. Alternatively,
problem specific symmetry breaking constraints were used, see for exam-
ple [44, 24, 25].

In the recent years, general problem independent methods were pro-
posed that handle symmetries, e.g., isomorphism pruning [61], orbital branch-
ing [70, 71], orbitopal fixing [49], and shifted column inequlities [50]. Using
these methods would allow to break symmetry even when using the convexi-
fication approach or branching on original variables. In this thesis, however,
we do not go into detail about these methods and restrict ourselves to the
discretization approach together with the branching rules presented in the
next sections in order to overcome symmetry.
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5.2 Branching on Variables of the Extended Prob-
lem

The discretization approach does not distinguish between identical blocks,
so it can be used to break symmetry. However, as described in the last sec-
tion, branching on original variables reintroduces the symmetry so it is rather
inefficient for problems with identical blocks. Hence, we need a branching
scheme that conserves the identity of the blocks. Since we have integrality re-
strictions on the λ variables for the discretization approach, the most natural
alternative would be to branch on variables of the extended problem.

Branching on these variables was applied to branch-and-price algorithms
for instance in [73, 89]; it has, however, two major disadvantages regarding
the structure of these problems (see [91, 10]):

• First, it generally leads to an unbalanced branch-and-bound tree. The
master problem has a huge number of variables but only a very small
part of them will have a strictly positive value in an optimal solution, so
most of the variables will be zero. When imposing a new upper bound
on a variable—fixing the variable to 0 in the binary case—this has in
most cases no big effect, since this variable is likely to have value 0
in an optimal solution, anyway. Introducing a new lower bound on a
variable—fixing it to 1 in the binary case—has much more effect since
one of the small set of variables that have a strictly positive value is
determined. Therefore, we get a very unbalanced branch-and-bound
tree by branching this way.

• The second disadvantage arises when the master problem is solved after
imposing a new upper bound on one of the variables. In the pricing
problem, we have to forbid the point or ray represented by this variable.
Otherwise, the same variable without tightened upper bound could be
created again which would allow to restore the old solution, the variable
that was bounded for branching would get redundant and the problem
would actually not change. In order to exclude the point or ray corre-
sponding to the bounded variable from the pricing problem, we can use
bound disjunction constraints (see [1, Section 11.2.4]). These are non-
linear constraints, however, SCIP incorporates this kind of constraints.
If we want to preserve the MIP-nature of the pricing problem, we can
linearize the bound disjunction constraints: for binary variables, this
can be done by adding a single linear constraint to the pricing problem,
for general MIPs, however, it is much more complicated. How it can
be done is described in [1, Section 11.2.4].

Furthermore, if the pricing problem is solved by a special purpose
solver, i.e., by a knapsack solver for the bin packing problem, excluding
solutions often means looking for the k-th best solution if the (k − 1)
first solutions are associated to points and rays that must not be regen-
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erated. Typically, this is computationally harder than finding only one
optimal solution and might destroy the structure of the pricing problem
with the consequence that the special purpose solver is not capable of
solving the problem anymore.

Due to these drawbacks, we do not consider branching on the variables of the
master problem and need one of the more sophisticated branching schemes
presented in the next sections.

5.3 Branching on Aggregated Variables

When solving an integer problem with identical blocks and using the aggre-
gated extended formulation for the discretization approach (Model 2.10), we
need a branching scheme that modifies all pricing problems of one identity
class in the same way.

Instead of branching on a single original variable like proposed in Sec-
tion 5.1, one possibility is to branch on a sum of original variables (see [95]).
This sum has to be defined in a way such that the identity of the blocks is
maintained. Therefor, we sum up the same variable over all blocks of one
class K` and get aggregated variables y` which are defined as

y` =
∑
k∈K`

xk (5.3)

for each class of identical blocks K`, ` ∈ [L].
Each integral solution of the original problem then leads to integral val-

ues of the aggregated variables, but the reversal does not hold: a fractional
solution can also give rise to integral values of the aggregated variables. Nev-
ertheless, if the aggregated variables have fractional values, we can branch
on them to enforce their integrality even if this does not guarantee to obtain
integral values of the single variables.

Let the current solution of the master problem translate into a solu-
tion x̄k, k ∈ [K] of the original problem. If the aggregated solution value
ȳ`

i =
∑

k∈K`
x̄k

i is fractional for some ` ∈ [L], i ∈ [n`], we branch on the
aggregated variable by creating two branch-and-bound nodes and adding to
these nodes the branching constraints∑

k∈K`

xk
i ≥ dȳ`

i e and
∑
k∈K`

xk
i ≤ bȳ`

i c. (5.4)

We get a new linking constraint in the original problem and a corre-
sponding constraint in the extended problem and the master problem. The
additional dual variable can easily be respected in the objective function of
the pricing problem, we simply handle it like the dual variables associated
with the other linking constraints. The blocks are not changed and so are
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the pricing problems, too. Note that the branching restriction cannot be
enforced in the pricing problems since it affects multiple problems.

This is a basic approach for enforcing integrality that has the advantage
that it maintains the identity of blocks and the structure of the pricing prob-
lems. However, as described above, it is often not sufficient in order to enforce
integrality of the original variables. In the bin packing problem, for example,
the original problem contains for each item a constraint enforcing that this
item is assigned to exactly one bin. Hence, the aggregate variables for the
items always have value 1, which can, however, still result in fractional values
for the original variables that assign an item to an individual bin.

Nevertheless, there are also problems that can be formulated in a way
such that enforcing integrality of the aggregate variables suffices to ensure
integrality of the original variables, e.g., the vehicle routing problem (see [95,
Proposition 1]).

And even if this is not the case for a special problem, due to its simplicity,
this branching scheme can be used to eliminate the first fractional solutions
until a more sophisticated branching scheme is needed that might change the
structure of the pricing problems.

5.4 Ryan and Foster Branching

In the 1980s, Ryan and Foster proposed a branching scheme for problems with
a set partitioning structure [82]. This branching scheme was successfully
applied to the many problems with identical blocks that were aggregated,
using the discretization approach (see [90, 92]). It is applicable to extended
formulations of BPs for which all blocks are identical, i.e., L = {1}, K1 = K.
For ease of presentation, we define X := X1, P := P 1, and λp := λ1

p. Since
the problem is binary, there do not exist rays in the pricing problem and we
thus do not have variables in the extended problem corresponding to rays.

Furthermore, the problem must have a set partitioning structure, that
means constraints (2.27) in the extended formulation (Model 2.10) must have
the form ∑

p∈P

pλp = 1. (5.5)

This property is always given if the original problem (Model 2.1) is a
BP and has a set partitioning structure with coefficients given by identity
matrices for each variable vector xk, i.e.,∑

k∈[K]

Ink
xk = 1. (5.6)

Many practical applications have constraints of type (5.6) in the original
formulation and therefore also the appropriate structure in the extended for-
mulation, e.g., the bin packing problem (see Section C.1), the vertex coloring
problem (see Section C.2), and the vehicle routing problem [88].
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Ryan and Foster observed, that for a feasible integer solution to a problem
with set partitioning structure, the following holds: Each constraint contains
one variable with value one in the solution, all other variables contained in
that constraint have solution value zero. We say that the variable with solu-
tion value one fulfills the constraint. When regarding two distinct constraints,
they are either fulfilled by the same variable, i.e., a variable that is contained
in both of the constraints, or by different variables. In this case, one variable
has solution value one that is contained in the first constraint but not in the
second one and one variable has value one that is contained in the second,
but not in the first one.

Furthermore, a solution that fulfills constraints (5.5) is integral if and only
if for each pair of two constraints, the sum of the values of variables contained
in both constraints is integral. Of course, this only holds if all variables are
pairwise different, i.e., no two variables have the same coefficients in all of the
constraints (5.5). This is the case for the Dantzig-Wolfe approach presented
in this thesis since in the master problem, we have exactly one variable for
each point in the set X.

So for each solution of the aggregated master problem (Model 2.14) that
is not integral, there exist two constraints i, j ∈ [mA] such that the sum of
the values of variables that cover both constraints is fractional, i.e.,

0 <
∑
p∈P :

pi=pj=1

λp < 1. (5.7)

We can now branch on this constraint, forcing∑
p∈P :

pi=pj=1

λp ≤ 0 (5.8)

in one child, and ∑
p∈P :

pi=pj=1

λp ≥ 1 (5.9)

in the other child. Due to the set partitioning constraints, (5.9) is equivalent
to ∑

p∈P :
pi 6=pj

λp ≤ 0. (5.10)

We call the child where we add constraint (5.8) the DIFFER-child, since
by fixing all variables to zero that cover both constraints i and j, they will be
fulfilled by two different variables with solution value one. To the other child,
we add constraint (5.10) which fixes all variables to zero that cover exactly
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one of the two constraints. So, both constraints have to be fulfilled by the
same variable with solution value one and we call this child the SAME-child.

Since the problem has a finite number of constraints, there exist only
finitely many combinations of two constraints and hence, the solving process
is finished after a finite number of branch-and-bound nodes.

Each variable in the master problem corresponds to a point x ∈ X, i.e.,
a binary vector that fulfills the structural and the integrality constraints of
the blocks. Removing variables from the master problem means that these
points are excluded in the compact formulation from the sets Xk, k ∈ [K]
and thus forbidden in the pricing problem.

In Section 5.2, we stated that it is difficult to forbid the recreation of a
single master variable in the pricing process and that this can destroy the
structure of the pricing problems. This time, we exclude a set of variables
in the pricing problem and only allow variables with a specific attribute that
can easily be expressed as a linear constraint in terms of the variables of the
original problem.

For the SAME-child, we add the constraint

xk
i = xk

j (5.11)

to all blocks k ∈ [K]. This assures that in none of the blocks, a solution is
chosen that fulfills only one of the two constraints i and j. In the DIFFER-
child, we add the linear constraint

xk
i + xk

j ≤ 1 (5.12)

to all blocks k ∈ [K] which forbids that a solution fulfills both constraints i
and j of block k.

These constraints should be treated as structural constraint and added
to the subproblems corresponding to the blocks.

Adding them to the linking constraints would corrupt the identity of the
blocks, since for all blocks, we add one constraint, that contains only variables
of this block and the blocks would not have the same coefficients in all linking
constraints, anymore.

In addition to the linear constraint added to the pricing problem, we also
have to remove variables form the RMP that were created before and do not
fulfill the branching restrictions.

Let us mention, that although it is only one additional linear constraint
that is added to the pricing problem, this additional constraint can destroy
the structure of the subproblem that is needed for a special purpose solver.
In the bin packing problem, for instance, constraints of type (5.11) can be
handled by a general knapsack solver by “merging” items i and j. However,
constraint (5.12) cannot be respected by the solver directly. One possibility
in this case is to solve two problems, one without item i, the other with-
out item j, but this gets costly when multiple branching constraints of this
type have to be enforced. For example, for n active branching decisions of
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type (5.12), we have to solve up to 2n times the same pricing problem with
slight modifications.

In contrast to that, for the vertex coloring problem where the pricing
problem is to find a stable set in a graph with maximum weight, both types
of branching restrictions can be handled without changing the subproblem’s
structure. Constraints of type (5.12) can be enforced by adding an edge
between nodes i and j while constraints of type (5.11) are imposed by con-
tracting the two nodes i and j (see [63]).

Finally, let us remark, that the Ryan and Foster branching scheme can
also be applied to some problems with a setpacking (

∑
p∈P pλp ≤ 1) or a

setcovering (
∑

p∈P pλp ≥ 1) extended formulation, if the objective function
assures that there exists at least one optimal solution that fulfills all these
constraints with equality.

One possible formulation for the vertex coloring problem, for example,
is a setcovering formulation that requires that each node gets at least one
color. In an optimal solution, more than one color can then be assigned to to
a node, but choosing exactly one of these possible colors for the node leads
to a feasible coloring of the graph. Therefore, it is clear, that there always
exists an optimal solution that fulfills the inequalities with equality. Thus,
the Ryan and Foster branching scheme can be applied to the vertex coloring
problem, even when using set covering constraints like it is done in [63]. We
also used set covering constraints instead of set partitioning constraints when
modeling the problems of our bin packing and vertex coloring test sets. Since
each solution of these formulations can easily be transferred to a solution of
the set partitioning formulations with the same objective function value (see
Appendix C), the Ryan and Foster branching scheme can be used for both
problems, nevertheless.

5.5 Other Branching Rules

We have mentioned several possibilities to perform branching when we use
the discretization approach with identical blocks.

The first option is branching on the original variables (Section 5.1). This
leads to additional constraints in the master problem or minor changes in
the pricing problems—only lower and upper bounds of variables are changed.
Nevertheless, it is in general not the method of choice since it destroys the
identity of the blocks so that we can not treat them together and therefore
reintroduces symmetry. Breaking this symmetry was one of the main reasons
for using the discretization approach, so we would like to conserve the identity
of the blocks.

Alternatively, we can branch on the variables of the master problem (Sec-
tion 5.2), but this leads to a highly unbalanced branch-and-bound tree and
to serious changes in the structure of the pricing problems.

Branching on the aggregate variables (Section 5.3) is a simple scheme
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that does not change the pricing problem, but it is no complete branching
scheme so we cannot guarantee to eliminate all fractional solutions using it.

The Ryan and Foster branching scheme (Section 5.4) is only adaptable
to binary problems with a set partitioning structure in the extended problem
(or set packing / covering structure if the objective function guarantees that
an optimal solution exists which fulfills the restrictions with equality). The
branching scheme is complete, i.e., each fractional solution can be eliminated
using it, and it leads to moderate changes in the pricing subproblem: we only
have to add one additional linear constraint.

In this section, we describe further branching schemes proposed in the
literature that can be applied to general bounded integer programs, do not
reintroduce symmetry, and are complete branching schemes.

First, we give an alternative interpretation of Ryan and Foster’s branching
scheme. Ryan and Fosters scheme regards a subset of the variables, namely
all variables that have value 1 in constraint i as well as in constraint j. This
corresponds to all variables representing a point p ∈ P` with pi = pj = 1.
So it can be interpreted as defining a subset P̃` = {p ∈ P` | pi = pj = 1} of
the points of this class of blocks and enforcing integrality of the sum of the
values of variables in this subset.

Vanderbeck [92] proposes to derive branching schemes in a similar way
for general IPs. For a block ` ⊆ [L] of a general (bounded) integer program,
we define a subset P̃` ⊆ P` of the points corresponding to that block. Now,
we can enforce ∑

p∈P̃`

λ̃`
p ∈ Z.

Hence, if this sum has a fractional value v in the current solution, we create
two children and add branching constraints of the form∑

p∈P̃`

λ̃`
p ≥ dve and

∑
p∈P̃`

λ̃`
p ≤ bvc. (5.13)

Vanderbeck [92] specifies several ways to define the subsets P̃`, including a
partition based on a hyperplane and a partition based on a set of bounds on
the components of the points p.

The latter was developed before by Vanderbeck and Wolsey [97] and Barn-
hart et al. [10] and can be interpreted as a generalization of Ryan and Foster’s
branching scheme. We will only give a short survey here, for a more detailed
review, we refer to [97, 10].

For each solution of the master problem, if one variable corresponding
to block ` ∈ [L] has fractional value, then there exists a subset P̃` ⊆ P`

of the points of this block, that is defined by lower bound constraints and
that corresponds to variables with a fractional aggregated value (see [97]). By
creating two children for the current node and enforcing the constraints (5.13)
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in the two children, respectively, we forbid the current fractional solution in
the master problem.

The branching constraints of type (5.13) can, however, in general not
be enforced in the pricing subproblems and have to be added to the mas-
ter problem. This leads to an additional dual variable ν which has to be
taken into account in the pricing subproblems. Since we cannot formulate an
equivalent linear constraint in the original variable space, this dual variable
cannot be considered directly in the objective function of the corresponding
pricing problem. Therefore, we have to introduce an additional binary vari-
able y with objective function coefficient −ν that gets value one in a solution
if and only if the solution fulfills all the bound constraints. This is ensured
by introcucing an additional binary variables zi for each bound constraint
that defines the subset P̃`.

Hence, sets defined by a small number of bound constraints cause less
modifications to the pricing problems and are used in priority. Empirically,
they also lead to a more balanced branch-and-bound tree.

Nevertheless, this branching scheme can yield to serious modifications to
the pricing problems which can make them much harder to solve and which
typically cannot be handled by a special purpose solver.

This drawback is avoided by another branching scheme proposed by Van-
derbeck [95]. In return, this one can lead to a non-binary branch-and-bound
tree and for each class of identical blocks, multiple pricing problems have to
be solved. However, the number of pricing problems to solve for a class K`

of blocks is limited by |K`|, so we do not solve more pricing problems in one
pricing round than we would solve in the convexification approach or after
having branched some times on original variables. We will only present the
general idea in the following, for a detailed description, we refer to [95].

This scheme also bases on the definition of subsets P̃` by bound con-
straints and the enforcement of an integral value of variables corresponding
to these subsets. However, a maximum value of the sum of all variables cor-
responding to P̃` is not enforced directly but a minimal value of the sum of
variables in the complement P̄` = P` \ P̃` is enforced.

It is not always possible to describe this complement P̄` by bound con-
straints, but it can be described as the union of sets that can be described by
bound constraints, say P̄` = P̄ i

` , i ∈ I. With each of these sets as well as the
set P̃`, a pricing problem is associated. We do not get a binary branch-and-
bound tree since for enforcing a lower bound in the complement, we need
to distinguish different cases. For example, when we force that at least one
point of the complement should be chosen, then for each of the problems P̄ i

` ,
we create a subproblem in which we require, that at least one variable of this
set is chosen.
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5.6 Implementation Details

In this section, we describe how branching rules can be integrated into the
branch-cut-and-price solver GCG. Furthermore, we survey the functions they
can provide in addition to the functions of a standard branching rule in SCIP,
which make it possible to define branching rules that use the information of
the two alternative formulations.

In the current version of GCG, we included two of the branching rules
that were presented in the last sections, the branching on original variables
(Section 5.1) and Ryan and Foster’s branching scheme (Section 5.4). In
Sections 5.6.1 and 5.6.2, we give some details about the two integrated rules
and the parameters that can be used to tune them.

As mentioned in Chapter 3, we use in our implementation two SCIP in-
stances, one representing the original problem, the other representing the
extended problem. Both problems are solved simultaneously and for each
node in the former instance there exists a corresponding node in the latter
SCIP instance. In the following, we identify these two nodes, so that the
current node always corresponds to a subproblem of the original problem
(in the original SCIP instance) as well as to a subproblem of the extended
problem (in the extended SCIP instance). For the current node, we thus have
the original subproblem, the extended subproblem, and the current master
problem that are used for the solving process.

In order to obtain correct dual bounds, it is important, that all branch-
ing restrictions are enforced in the extended problem. Thus, each restrictions
that a branching rule adds to the original problem at a node has to be en-
forced by it in the extended problem of that node, too. This assures, that
by transferring the current master problem’s solution into a solution to the
original problem, this transferred solution fulfills all but the integrality con-
straints of the current original problem. On the other hand, if the branching
rule adds restrictions to the extended problem, it does not necessarily need
to transfer these restrictions and to add them explicitly to the original prob-
lem. As the restrictions are respected in the master problem, the solution
obtained by the relaxation respects these constraints, so we implicitly treat
them in the original problem, anyway. The explicitly stated original sub-
problem then corresponds to a relaxation of the extended subproblem and
each solution to the master problem still transfers into a solution that fulfills
all but the integrality constraints of the original subproblem.

In this case, we primary solve the extended problem. Nevertheless, when
the current solution to the master problem transfers into a solution to the
original problem that fulfills the integrality restrictions, the current subprob-
lem is solved to optimality. It can contain no solution with better objective
value than the solution obtained by the transformation—this solution is an
optimal solution of the relaxation, hence giving a valid lower bound—so we
can stop the solving process of the current node.

However, the SCIP instance representing the original problem is the coor-
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dinating one, so branching rules have to be included into this instance. They
can, of course, create two nodes in the original problem that do not have
any further restrictions and only impose restrictions on the corresponding
extended problems.

SCIP does not store the whole problem corresponding to a node explicitly,
it only stores for each node the modifications of the problem that were done
at this node. When changing from one node to another, it deactivates all
nodes from the current one up to the deepest common ancestor node and from
this node on, it activates all nodes on the way to the new node. Whenever
deactivating a node, all modifications that were performed at this node are
reverted, when a node is activated, the corresponding changes are applied.

A branching rule can store at each node of the branch-and-bound tree
information about the modifications of the problem. Additionally, it can
provide methods that are called whenever a node is activated or deactivated
which enforce these changes in the master problem or the pricing problems.
For example, when branching on the original variables and enforcing the
branching decisions in the pricing problems, these methods can add and
remove the bound constraints in the pricing problems.

At each node of the branch-and-bound tree, SCIP performs domain prop-
agation, also called node preprocessing. Its goal is to tighten the domains
of variables for the current problem in the branch-and-bound tree. For a
detailed description how this is done, we refer to [1, Chapter 7].

We make use of this concept in two ways. On the one hand, a branching
rule can implement a method that is called during the domain propagation
process and that can change the bounds of variables for the current master
problem. We need to do this if branching restrictions are enforced in the
pricing problems. Since we do not start the solving process of the RMP at
each node with an empty set of variables, but use all the variables created
before at other nodes, we have to make sure that only variables are used in
the master problem that correspond to valid solutions of the modified pricing
problem. So each time a node is activated and new variables were created
since its last deactivation, we mark this node to be repropagated. In the
subsequent domain propagation process, the new variables are checked for
feasiblity w. r. t. the current pricing problem and fixed to zero for the current
problem if they are not feasible. Hence, we do not remove the variables
completely from the current problem but only forbid them locally, since they
are possibly needed in other parts of the branch-and-bound tree.

On the other hand, we keep the domain propagation of SCIP activated
in the original problem. Thus, especially when branching on the original
variables, the branching restrictions lead to other domain reductions in the
original problem. When propagating the corresponding node of the extended
problem, besides the domain changes due to the branching decision, we can
enforce these domain changes in the pricing problems, too, and forbid all vari-
ables in the master problem of the current node that do not respect them.
The remaining feasible variables, i.e., variables that also fulfill bounds derived
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from the original constraints, are called proper (see [96]). This functional-
ity can of course be disabled by the parameter enfoproper , but as we will
see in the computational results presented in Section 7.3, using only proper
variables slightly improves the performance of GCG.

In this context, we benefit from the fact that our implementation of the
branch-cut-and-price solver is integrated into SCIP which includes several
domain propagation methods that are automatically called for each node of
the branch-and-bound tree in the original instance. Furthermore, each time
the domain propagation methods in SCIP are enhanced, this will potentially
improve the performance of GCG as well.

5.6.1 Branching on Original Variables

Branching on the original variables has the highest priority in our implemen-
tation so it is performed whenever possible. However, we only branch on
variables if the corresponding block was not aggregated, hence in the current
version of GCG, we do not support a dynamic disaggregation. If branching
should be performed on variables of identical blocks, the aggregation of blocks
has to be disabled in advance. We do not consider a dynamic disaggregation,
since aggregating blocks leads in this case only to a temporary speedup of
the master problem’s solving process, later on, the pricing problems have to
be split anyway and the variables of one class have to be distributed among
the single blocks or copied and added to all of the blocks. Furthermore,
branching on the original variables in case of identical blocks reintroduces
the symmetry and is thus rather ineffective as we stated in Section 5.1.

In the following, we thus assume that there exist integer variables that
do not belong to an aggregated block and that have fractional value in the
current solution. The task of the branching rule is to select one of these
variables and to perform branching on it. Most state-of-the-art MIP solvers
use branching on variables as well, and it is well-known, that the choice of
the variable on which to branch has a big impact on the performance of the
branch-and-bound process (see [5]). Different strategies are used in practice,
ranging from simple methods like most fractional branching to more sophis-
ticated methods like pseudocost branching, strong branching and reliability
branching.

Most fractional branching—or most infeasible branching—selects the vari-
able that has the most fractional value, i.e., for which the fractional part is
closest to 0.5. This branching rule is easy to implement but it leads in gen-
eral to a performance that is not better than selecting the variables randomly
(see [5]).

Pseudocost branching keeps a history of the success of branching on a
variables at previous nodes. In particular, it stores the objective gain per
unit change of the variable for up-branch and down-branch, independently.
At subsequent nodes, out of the fractional variables, one is selected that has
the highest score w. r. t. these pseudocosts. The score is a combination of
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the average increase of the dual bound at both the child nodes. Pseudocost
branching performs in general remarkably better than most fractional banch-
ing, Achterberg et al. [5] report a speedup of about 200%. At the beginning
of the branch-and-bound process, however, there are no pseudocosts available
for the branching candidates so the variable has to be selected in a different
way.

Before branching is performed, strong branching checks which of the frac-
tional candidates leads to the best progress. This is done by temporarily
adding the bound constraint to the LP and solving it for both the down-
branch as well as the up-branch. These values are combined to a score as
for the pseudocost branching and branching is performed on a variable with
the highest score. Strong branching performs well in term of the branch-and-
bound nodes that have to be processed, but the time needed for branching
is very high.

Reliability branching is a combination of strong branching and pseudo-
cost branching. The pseudocosts corresponding to a variable are only used
if they are reliable, i.e., they were updated a specific number of times for
this variable. Otherwise, the score for this variable is computed using strong
branching. Reliability branching performs in general better than the alter-
natives mentioned previously and it is also the default branching scheme in
SCIP.

For a more detailed description of these and further branching rules, we
refer to [5] and [1, Chapter 5].

We transferred two of these possibilities to our implementation, most
fractional branching and pseudocost branching. We refrained from providing
possibilities to perform strong branching on variables, as solving the master
problem after adding a branching decision is much more costly than solving
the LP with an additional bound constraint in an LP-based branch-and-
bound algorithm. Furthermore, due to the stronger dual bound obtained by
the master problem, the branch-and-price approach needs on average con-
siderably less nodes than an LP based branch-and-bound method (see Sec-
tion 7.4). At each of the nodes, the relaxation is solved, so when we perform
strong branching a number of times before the pseudocosts are reliable, this
weights more for the branch-and-price approch than solving the same num-
ber of LPs for strong branching in a branch-and-bound approach since much
more relaxations are solved there, anyway.

Per default, we use pseudocost branching, most fractional branching can
be used by setting the parameter usepseudocosts to FALSE . When using
pseudocost branching, we make use of the structure of SCIP that provides
the possibility to store pseudocosts associated with variables of the problem.
Furthermore, SCIP also computes the score for branching on a variable with
given fractional value w. r. t. the pseudocosts associated with that variable.
The function used to determine this score can be changed, but we use the
default function incorporated in SCIP that calculates the score via a product
(see [1, Chapter 5]). We perform branching on a fractional variable with
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the highest score. SCIP automatically updates the pseudocost of variables
after the LP relaxation of a node has been solved the first time. Since we do
not use the LP relaxation in the original SCIP instance, the pseudocosts are
not stored automatically. Instead, we defined an additional callback function
that can be implemented by the branching rules and that is called after
the relaxation is solved. We introduced this callback function for GCG to
provide a possibility to store pseudocosts after the master problem is solved
to optimality at a node. For the branching on original variables, we compute
the change between the dual bound of the father node and the dual bound
of the current node and update the pseudocost of the variable on which we
performed branching w. r. t. this change.

As described in Section 5.1, branching decisions can be enforced either in
the master problem or in the pricing problems. In the default settings, we en-
force the branching restrictions in the pricing problems. Therefor, for each of
the child nodes in the original SCIP instance that are created by the branching
rule, we change the bound of the variable on which branching is performed.
Furthermore, we also store the information about the bound change at the
child node and implemented the callback methods, that are called whenever a
node is activated or deactivated. When a node is activated, the corresponding
method changes in the pricing problem the bound of the variable on which
branching was performed and stores the old bound. This is needed in order
to enable the deactivation callback method to restore the old bound when
the node is deactivated. We did not have to implement the callback method
that is called during the domain propagation process since the propagation is
automatically performed by the constraint handler that is responsible for the
linkage between nodes in the original and the extended instance. It identifies
all branching bound changes at the corresponding original node and fixes all
variables in the master problem to 0 that correspond to solutions that do not
fulfill these bound changes.

Alternatively, the branching decisions can also be enforced as linking
constraints in the master problem. In this case, we add the branching re-
strictions as local constraints to the child nodes. The branching decisions are
stored at the nodes, again. Whenever a node is activated, the correspond-
ing callback method reformulates the branching constraint according to the
Dantzig-Wolfe decomposition and adds it locally to the node in the extended
instance. When domain propagation is performed in the original instance,
the branching constraint will lead to a bound change of the branching vari-
able and this might cause bound changes of other variables as well. As we do
not want to modify the pricing problems when enforcing branching decision
in the master problem, we have to disable the enforcement of proper variables
in the master problem. Otherwise, these bound changes would automatically
be transferred to the pricing problems and variables in the master problem
that correspond to solutions of the pricing problems that violate these bounds
would be fixed to 0. This way, we would enforce the branching restrictions
in the pricing problem as well as in the master problem which is redundant.
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In Section 5.7, we present computational results that compare most frac-
tional branching and pseudocost branching as well as the enforcement of the
branching restrictions in the pricing problems and the master problem.

5.6.2 Ryan and Foster Branching

We also provide a rather fundamental implementation of Ryan and Foster’s
branching scheme. In case all blocks are identical and the master problem
has a set partitioning structure, this branching rule is called.

In order to determine the two constraints of the master problem that
are examined in the branching process, we first look for a variable x that
has fractional value (say v) in the current solution of the master problem.
Then, we take one constraint that contains this variable and look for another
variable y contained in this constraint that has a fractional value in the
current solution, say w. Such a variable must exist since the values of the
variables contained in the constraint sum up to 1. If such a variable would
not exist, the solution would not fulfill the constraint. Now, we look for a
second constraint that contains exactly one of these two variables. Such a
constraint must always exist since otherwise, both variables correspond to
the same point in the pricing polyhedron. However, we create at most one
variable per point, so this cannot happen. Thus, we found two constraints for
which the sum of the variables contained in both constraints is fractional: Say
x is contained in both constraints, then the value of the variables contained in
both constraints is at least v > 0. On the other hand, since y was contained
in the first constraint but not in the second one, the sum is at most 1−w < 1.

After finding two constraints that we will branch on, we additionally need
the variables in the pricing problem that are associated with these constraints.
Each constraint in the extended problem corresponds to a variable in the
pricing problem: it contains all variables that corresponds to a solution with
value 1 for the pricing variable. So let xk

i and xk
j be the two variables that

correspond to the selected constraints.
After selecting the two constraints, we create, in the original problem, two

child nodes SAME-child and DIFFER-child. As described in Section 5.4, we
add a constraint xk

i = xk
j for each block k ∈ [K] at the SAME-child; for the

DIFFER-child, we add the linear constraints xk
i + xk

j ≤ 1 for
k ∈ [K]. Furthermore, we store information about the branching decisions
at the nodes.

We implemented the callback functions that are called when nodes are
activated or deactivated and the callback function that is called during the
domain propagation process.

The callback that is called when nodes are activated creates a constraint
in the pricing problem corresponding to the branching constraints added in
the corresponding node in the original instance. Since all blocks are identical
and the pricing problem that belongs to the first block represents all blocks,
we create in this pricing problem the constraint x1

i = x1
j or x1

i + x1
j ≤ 1
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depending on whether it is a SAME-child or a DIFFER-child. This is only
done the first time a node is activated, later on, the constraint already exists,
but it is not active in the SCIP instance representing the pricing problem.
Therefore, we activate the constraint in the pricing problem when the node
is activated and deactivate the constraint in the deactivation callback.

In the propagation callback, we have to assure that only variables are
active at the current node and its subtree that respect the branching restric-
tion. Therefore, we iterate over all variables that were created after the last
deactivation of the node and check whether they correspond to a solution of
the pricing problem that fulfills the branching constraint. All variables for
which this does not hold are locally fixed to zero. We do not have to check
variables that were created before the node’s last deactivation, since these
variables were either checked when the node was activated the last time and
are thus automatically fixed to 0 when the node is activated again, if needed,
or they were created in the subtree defined by this node and therefore respect
the branching decision.

5.7 Computational Results

In this section, we compare computational results for the two branching rules
integrated in GCG as well as different settings for these branching rules. We
give no comparison of the performance of GCG to the performance of SCIP,
this will be done in Chapter 7. The test sets and the computational environ-
ment used in this chapter are described in Section 3.3. For all computations
presented in this section, we set a time limit of one hour per instance.

5.7.1 Branching on Original Variables

In this subsection, we present computational results concerning the integrated
branching rule that branches on variables of the original formulation. We
picture the effect of using pseudocosts in the branching routine and the effect
of where to enforce branching restrictions: In the pricing problems or in the
master problem.

In this context, the branching rule provides two major parameters: On
the one hand, the method that is used to choose the variable to branch on can
be specified. On the other hand, we have to decide whether the branching
restrictions are enforced in the pricing problems or in the master problem.

Variable Selection For the selection of a variable, we provide a most
fractional selection rule and a selection rule that makes use of the pseudocosts
of the original variables. The latter is used per default. A comparison of these
two possibilities for the p-median test sets is presented in Table 5.1. We list
the shifted geometric mean of the number of branch-and-bound nodes and of
the total solving time in seconds as well as the absolute number of instances



92 Chapter 5. Branching

pseudocost most fractional
test set nodes time (outs) nodes time (outs)

cpmp50s 44.9 12.8 (0) 82.5 20.7 (0)
cpmp100s 587.1 184.7 (1) 1962.6 469.5 (6)
cpmp150s 847.6 493.5 (5) 2211.7 920.3 (10)
cpmp200s 1753.3 1243.9 (3) 5577.7 2978.0 (10)

mean 461.8 220.1 (9) 1216.6 439.7 (26)
Table 5.1. Comparison of the pseudocost and the most fractional variable selection rule
for branching on original variables on the p-median test sets. The first two columns denote
branch-and-bound nodes and solving time for pseudocost branching, the last two columns
branch-and-bound nodes and solving time for most fractional branching. We list shifted
geometric means for each test set. Following the time, in brackets, we list the number of
timeouts on the test set.

that hit the timelimit of one hour. More details can be found in Tables D.21
to D.24.

We can see that using pseudocosts has a big effect on the performance of
GCG. Disabling it and using most fractional branching instead nearly triples
the number of branch-and-bound nodes and doubles the total solving time.
Also the number of timeouts is increased from 9 to 26. Similar results for
an LP based branch-and-cut solver are presented in [5]. Hence, this is an
example for a concept used in LP based branch-and-cut that can successfully
be transferred to the generic branch-cut-and-price approach presented in this
thesis and that leads to similar improvements.

In [5], a further speedup of 40% is reported for using reliability branching
in an LP based branch-and-cut solver. It remains to investigate whether this
branching rule can successfully be transferred, too. As mentioned in Sec-
tion 5.6, we doubt this, since the additional effort of the strong branching
calls seems to be more serious for the branch-cut-and-price approach as solv-
ing the master problem is much more costly and the number of nodes is in
general much smaller, anyway.

Enforcement of the branching restrictions Per default, when branch-
ing on original variables, the branching restrictions are enforced in the pricing
problems. However, we also provide the possibility to enforce them in the
master problem. We performed computations that demonstrate the influ-
ence of this decision. An overview of the results for the p-median test sets is
presented in Table 5.2. We list the shifted geometric mean of the number of
branch-and-bound nodes and of the total solving time as well as the absolute
number of instances that hit the timelimit of one hour. More details can be
found in Table D.21 to D.24.

In Section 5.1, we mentioned that enforcing the branching restrictions in
the pricing problems typically leads to a stronger dual bound. In return, we
have some effort for ensuring that variables are forbidden that do not respect
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pricing problems master problem
test set nodes time (outs) nodes time (outs)

cpmp50s 44.9 12.8 (0) 44.6 12.5 (0)
cpmp100s 587.1 184.7 (1) 596.2 181.7 (1)
cpmp150s 847.6 493.5 (5) 830.4 501.0 (5)
cpmp200s 1753.3 1243.9 (3) 1926.6 1343.6 (3)

mean 461.8 220.1 (9) 471.8 223.8 (9)
Table 5.2. Comparison of two ways to enforce the branching restrictions for the branch-
cut-and-price solver GCG on the p-median test sets. The first two columns denote branch-
and-bound nodes and solving time when restrictions are enforced in the pricing problems,
the last two columns branch-and-bound nodes and solving time when enforcing the restric-
tions in the master problem. We list shifted geometric means for each test set. Following
the time, in brackets, we list the number of timeouts on the test set.

the active branching constraints at a node.
In our computations, it turned out that these effects are rather small.

The shifted geometric mean of the number of nodes is increased by 2.1%
when branching restrictions are enforced in the master problem. This could
be an indication for the better dual bound that allows to prune more nodes.
However, since it is a rather small difference, it could also be a random varia-
tion. The change in the total running time is even smaller—it is increased by
1.7% when branching restrictions are enforced in the master problem—and
the number of time outs stays the same. Hence, this difference could also
be a random variation. However, it can also be a sign that enforcing the
restrictions in the pricing problems and spending the effort to forbid some of
the variables pays off due to the stronger dual bound even in terms of total
running time.

To sum up, for the CPMP instances, the decision where to enforce branch-
ing restrictions is nearly irrelevant for the number of branch-and-bound nodes
and the total running time.

Results for the set of RMP instances We also performed computa-
tional experiments concerning variable selection and enforcement of branch-
ing restrictions for the test sets of RMP instances. Table 5.3 summarizes
the results, more details can be found in Tables D.25 and D.26. For these
instances, the dual bound obtained by the Dantzig-Wolfe decomposition is
rather strong such that we need only a small number of branch-and-bound
nodes. When grouping 64 constraints per block, we need in the geometric
mean less than ten nodes to solve an instance. As pseudocosts for a variable
are obtained only when branching on this variable has been performed, the
first branchings have to be performed without the guidance of pseudocosts.
Therefore, for this small number of branch-and-bound nodes, pseudocosts do
not pay off, we even have slight improvements when using the most fractional
variable selection rule, probably due to random variations. When enforcing
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default most fractional master problem
test set nodes time (outs) nodes time (outs) nodes time (outs)

rap32s 26.8 549.0 (0) 32.9 615.8 (1) 27.3 569.8 (0)
rap64s 9.5 557.5 (1) 9.4 547.7 (1) 8.8 548.1 (1)
Table 5.3. Performance effect of variable selection and enforcement of branching restric-
tions for the test sets of RAP instances. The first two columns denote branch-and-bound
nodes and solving time for the default settings, i.e., pseudocost variable selection and en-
forcement in the pricing problems. The next two columns list nodes and time when using
most fractional instead of pseudocost variable selection. The last two columns present
these values when branching restrictions are enforced in the master problem, using again
pseudocost variable selection. The values are shifted geometric means for the test sets.
Following the time, in brackets, we list the number of timeouts on the test set.

the branching restrictions in the master problem, we also get a slightly smaller
shifted geometric mean of the solving time and a decrease of the shifted geo-
metric mean of the number of nodes of about 7%. Due to the small number
of nodes however, this is not convincing as it can for instance also be caused
by accidentially finding an optimal solution earlier in the solving process.

When grouping 32 constraints per block, the dual bound is not as good
as for 64 constraints, but the solving process of the master problem gets
easier. Therefore, the total solving time is slightly reduced for the default
settings although the number of nodes is tripled. Due to the larger number of
nodes, the effects of the branching rule can better be detected. The number
of nodes is increased by about 23% when using the most fractional variable
selection rule, the total time is higher by 12%. The effect is not as big as
for the p-median instances, since the number of nodes is still rather small so
the pseudocosts are less effective as they get more reliable the more branch-
ings have been performed on the corresponding variable. When branching
restrictions are enforced in the master problem, the number of nodes and the
total time are slightly increased as for the p-median instances. However, this
change is not significant.

5.7.2 Ryan and Foster Branching

In Section 4.4.2, we showed that for the bin packing and vertex coloring
instances, using the discretization approach and aggregating the identical
blocks speeds up the solving process of the master problem by far. Now, we
compare the performance of both approaches in the branch-and-price pro-
cess. For the convexification approach, we use reduced cost pricing strategy
“one prob” that performed best for these problems (see Section 4.4.2) and
perform branching on variables of the original problem. For the discretiza-
tion approach, we use the default pricing settings, i.e., Mr = 100, which
performed best in this case. We cannot branch on the original variables since
this would destroy the identity of the blocks, so we use the Ryan and Foster
branching scheme as both problems have a set partitioning master problem.
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convexification discretization
test set nodes time nodes time

bindata1-n1s 11.0 2.1 2.2 1.1
bindata1-n2s 20.8 15.1 10.9 5.6
bindata1-n3s 31.4 61.2 8.9 17.3

mean 19.9 17.9 6.9 6.8
Table 5.4. Comparison of the convexification approach with branching on original vari-
ables and the discretization approach with Ryan and Foster’s branching scheme for the test
sets of bin packing instances. All values are shifted geometric means.

Results for the bin packing instances In Table 5.4, we present a sum-
mary of the results on the test sets of bin packing instances. The discretiza-
tion approach and the aggregation of blocks primary affects the time since
the master problem at each node is solved faster. However, the dual bound of
a node stays the same, so it has no direct influence on the number of nodes.
The latter is primary affected by the branching rule. It turns out, that Ryan
and Foster’s branching scheme (column “discretization”) performs remark-
ably better than branching on original variables (column “discretization”),
the number of nodes is reduced by about 65% in the discretization approach.
Hence, despite of the lower bound being better, branching on original vari-
ables still suffers from the symmetry contained in the problem. Due to the
smaller number of branch-and-bound nodes, the speedup obtained by the bet-
ter pricing performance is enhanced and we achieve a speedup of about 60%.
In order to assure that “one prob” performs well for the convexification ap-
proach with identical blocks not only for the master problem of the root node
but also for the branch-and-price process, we performed computations with
the default pricing settings, too. The number of nodes essentially stays the
same, but the total time is nearly quintupled. More details about all these
results can be found in Tables D.27 to D.29.

Results for the vertex coloring instances Finally, in Table 5.5, we
present a summary of the results for the vertex coloring test set, further
details can be found in Table D.30.

Compared to the convexification approach with default pricing settings
(columns “conv. def.”), the discretization approach with aggregation of blocks
(columns “discretization”) is clearly superior in terms of the number of nodes
as well as of the total running time.

However, we observed in Section 4.4, that solving just one pricing problem
in each pricing round performs better at the root node than the default
settings for identical blocks in the convexification approach. For the branch-
and-price process, this pricing strategy (columns “conv. one prob”) dominates
the standard pricing method of the convexification approach, too. Compared
to the discretization approach, it leads to a higher number of nodes, but the
total time is reduced.
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conv. def. conv. one prob discretization disc. no aggr.
nodes time nodes time nodes time nodes time

84.4 151.2 78.2 60.6 52.3 65.9 69.3 56.0
Table 5.5. Comparison of branching on original variables and Ryan and Foster’s branching
scheme for the test set of vertex coloring instances. All values are shifted geometric means.

Even better than “conv. one prob” performs the discretization approach
without aggregation of blocks, when using the same pricing strategy (columns
“disc. no aggr.”). Compared to the results for the former variant, the shifted
geometric means of the number of nodes and the solving time are reduced
by eleven and seven percent, respectively. The reason for that is that primal
heuristics are used in the extended formulation of the discretization approach
that find feasible solutions which allows to prune nodes earlier.

Now, we compare the discretization approach with aggregated blocks and
Ryan and Fosters’s branching scheme on the one hand and the discretization
approach without aggregation and with branching on original variables on
the other hand. This gives us some more insight into the advantages and dis-
advantages of Ryan and Fosters’s branching scheme. The branching scheme
can be used after the aggregation of blocks and does not suffer from the
symmetry contained in the vertex coloring problem. So it typically helps in
improving the dual bound faster.

However, most of the instances contained in our test set have a rather
tight dual bound at the root node (see also Table D.37) so that the problem is
solved as soon as an optimal solution is found. For these instances, branching
on original variables performes better. The branching restrictions lead to
less modifications of the pricing problem and invalidate a smaller number of
variables already contained in the RMP.

In Section 4.4, we observed that for the vertex coloring instances, the
pricing performance of the discretization approach is not much better than
the performance when blocks are not aggregated and just one problem is
solved each round. So due to the smaller impact of the branching restric-
tions, the pricing effort per node is smaller when branching on the original
variables. This advantage overweights the disadvantage that without aggre-
gation of blocks, we need more nodes to find an optimal solution and prove
its optimality.

However, if the dual bound is not that tight, branching on the original
variables suffers from the symmetry contained in the problem and cannot
improve the dual bound as fast as Ryan and Fosters’s branching scheme.
This is the case for one of the instances where both approaches find an
optimal solution early in the branch-and-price process. While we can prove
its optimality after a small number of nodes when using Ryan and Foster’s
branching scheme, the optimality cannot be proven within the time limit of
one hour when branching on original variables.
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To summarize, it seems that branching on original variables performs
better for the coloring instances (also since the pricing effort is not increased
that much by treating the blocks independently) when the dual bound is
(nearly) optimal and we just have to find an optimal solution. However, when
this is not the case and we also have to improve the dual bound, it suffers
from the symmetry contained in the problem due to the identical blocks and
is clearly inferior to Ryan and Foster’s branching scheme. Therefore, if it
is applicable, using aggregation of blocks and Ryan and Foster’s branching
scheme is in general superior to treating blocks independently and performing
branching on the original variables.
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Chapter 6

Separation

In the last two sections, we have presented the pricing process and different
branching schemes. These are the essential ingredients needed to turn a
branch-and-bound method into a branch-and-price method. In this chapter,
we present the integration of cutting planes into a branch-and-price algorithm
which leads to a branch-cut-and-price algorithm.

Cutting plane separators have proven to be one of the most important
features of MIP solvers [12]. After solving the LP relaxation at a node,
separators try to rule out the computed optimal solution of the relaxation if
it does not satisfy the integrality restrictions. This is done by constructing
linear constraints that forbid the current fractional solution, but are typically
valid for all integer solutions. These constraints are called cutting planes (or
cuts), since they “cut off” the current fractional solution. In some cases,
cutting planes even forbid a subset of the integer solutions, e.g., in the context
of symmetry breaking. Then, they must keep at least one optimal primal
solution. We do not handle this type of separation in this chapter but restrict
ourselves to cutting planes whose only task is to strengthen the LP relaxation
and that do not cut off feasible primal solutions.

The algorithm that results from integrating cutting plane separation into
a branch-and-bound algorithm is called LP based branch-and-cut. For a sur-
vey of the theory of cutting planes, we refer to [54, 59]. A detailed description
of the cutting planes incorporated in SCIP and the underlying theory can be
found in [98, 6].

We just give a short explanation here of what we mean when we say
“cutting planes are derived or constructed using a specific set of constraints”.
The set S of points that satisfy this specific set of constraints as well as the
integrality restrictions is a superset of the solutions to the complete MIP
containing all constraints. Its convex hull, i.e., the polyhedron conv(S), is a
relaxation of the MIP. It is tighter than the polyhedron described by just
the set of constraints without regarding integrality restrictions. The solution
of the LP relaxation lies in this larger polyhedron. We try to cut it off by
constructing valid inequalities that are known to be valid for the tighter set
conv(S). Some cutting planes are constructed for a set containing just one
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type of constraints, i.e., knapsack constraints, using the special structure of
these constraints. General cutting plane separators regard an arbitrary subset
of constraints and construct valid inequalities for instance by aggregating
them and rounding the coefficients in a specified way.

For the branch-cut-and-price approach presented in this thesis, the re-
laxation is given by the master problem. So in order to strengthen this
relaxation, we have to add cutting planes to the master problem that cut
off solutions corresponding to fractional solutions of the original problem.
For the discretization approach, this corresponds to cutting off fractional
solutions of the master problem.

After cutting planes have been added, the master problem is reoptimized.
For this purpose, column generation has to be used again, since due to the
new constraints, the variables already contained in the RMP do not have
to be sufficient to construct an optimal solution of the new master problem.
Therfore, we have to make sure that the dual variables corresponding to the
cutting planes are also considered in the pricing procedure and newly created
variables get correct coefficients in the cuts.

When we derive cutting planes from the original formulation (see Sec-
tion 6.1), this can easily be assured. However, since we do not solve the LP
relaxation of the original problem by a simplex algorithm, we cannot use any
cutting plane separator that relies on information contained in the simplex
tableau, like the Gomoriy mixed integer cut separator.

For the discretization approach, we can also derive cutting planes from
the extended problem. These inequalities cannot necessarily be expressed in
terms of the original variables, so considering them in the pricing problem is
more sophisticated. We briefly discuss this issue in Section 6.2.

We implemented a separation method that derives cutting planes from
the original problem. and discuss implementational details in Section 6.3.
Computational results concerning the impact of cutting planes for the branch-
cut-and-price solver GCG are presented in Section 6.4.

6.1 Separation of Cutting Planes in the Original
Formulation

In this section, we describe the separation of solutions in the original for-
mulation. That means, we are given a solution to the master problem and
retransform it into the original variable space. If this solution does not sat-
isfy the integrality restrictions in the original problem, we look for a cutting
plane that separates it from the feasible region of the original problem. This
approach is widely used in practice, see for example [56, 33, 7].

Let us note that all valid inequalities that can be derived using only the
structural constraints are satisfied by all points and rays represented by vari-
ables of the master problem, since the integrality restrictions are respected
in the pricing problems. Hence, the current original solution which is given
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as a convex combination of these points satisfies all these inequalities, too.
Therefore, we only look for cutting planes that can be constructed using
linking constraints or a combination of linking and structural constraints.

In this context, we have to get along with a handicap that arises from
the Dantzig-Wolfe approach: We do not know an LP basis corresponding to
the current original solution because we do not solve the LP relaxation of
the original problem. In most cases, thw transferred solution is not even a
basic solution w. r. t. the LP relaxation of the original problem but an interior
point of the polyhedron decribed by the LP relaxation. It would only be a
basic solution if we would explicitly replace the structural constraints of each
block k by a complete description of the convex hull of solutions Xk of this
block. The master problem, however, implicitly optimizes over this tighter
polyhedron, due to the definition of the pricing problems. Having no basis is
the tradeoff for the better dual bound achieved by the master problem.

Since we do not have a basis at hand, we cannot use separation methods
that need the current basis or basis inverse like it is for instance the case for
Gomory mixed integer cuts and strong Chvátal-Gomory cuts.

Instead, we can use all kinds of cutting planes that do not need any
further information besides the problem and the current solution in their
separation routine. This applies, for example, to knapsack cover cuts, mixed
integer rounding cuts, and flow cover cuts.

Because the master problem provides a much tighter relaxation than the
LP relaxation and because of the absence of the LP basis, we expect cutting
planes derived from the original problem to be not as important for the
solving process as in the general LP based branch-and-cut method. Anyway,
limited but fast cutting plane separation in the original formulation could
still lead to a slightly improved dual bound and we want to benefit from this
possibility.

After finding valid cutting planes, we add them to the original problem.
We treat them as a linking constraints, so that they are transformed according
to the Dantzig-Wolfe decomposition and added to the extended formulation
and the master problem. Each constraint gives rise to an additional variable
in the dual of the master problem, that has to be respected in the pricing
problems. However, we can handle these additional dual variables in the same
way as the dual variables corresponding to the other linking constraints by
considering them in the objective function coefficients of the pricing problems.
The structure of the pricing problems does not change.

Again, we have to distinguish between the case that blocks are treated
independently on the one hand and the aggregation of blocks on the other
hand.

For the convexification approach or the discretization approach without
aggregation of blocks, the whole separation rountine works straightforward as
described previously.

For the discretization approach with aggregated blocks, it does not work
that well. We can transform the master problem’s solution into a solution to
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the original problem, even though this transformation is not unique. If we
find a cutting plane

∑
k∈[K] α

T
k x

k ≤ β that cuts off this solution, this linear
constraint damages with high probability the equality of the identical blocks,
i.e., αk1 6= αk2 for two identical blocks k1, k2 ∈ K`, ` ∈ [L].

Therefore, we have to disaggregate these blocks and reintroduce one pric-
ing problem for each of them. Furthermore, we need to differentiate variables
of different blocks representing the same point or ray of the pricing polyhe-
dron. Hence, we reintroduce the symmetry that we eliminated by using the
discretization approach and by aggregating identical blocks. Besides, due to
the symmetry, this single cutting plane will probably not tighten the dual
bound; it is likely that an equivalent solution can be constructed by permut-
ing the former identical blocks. Thus, a set of similar cutting planes has to
be added before the whole class of equivalent solutions is cut off.

For that reason, in case of a problem with identical blocks that are aggre-
gated by the discretization approach, computing cutting planes in the original
formulation seems to have more disadvantages than advantages. Therefore,
we do not consider the creation of these cutting planes in this case.

6.2 Separation of Cutting Planes in the Extended
Problem

When using the discretization approach, we have integrality restrictions on
the variables of the extended problem, too. Hence, we can also derive cutting
planes from the extended formulation.

Although only a subset of the variables is contained in the RMP, cutting
planes have to be defined in terms of all variables of the master problem.
Furthermore, the additional dual variable corresponding to the cut has to
be respected in the pricing problems. This is the crucial part about cutting
plane separation in the extended problem: Obtained cuts can typically not
be expressed in terms of the original variables. Hence, the dual variables
associated with these cuts cannot be respected in the pricing problems by
just changing the objective function coefficients as it is done for cuts derived
from the original problem (see Section 6.1). Instead, we typically need to
introduce one or more additional variable in the pricing problems for each
cutting plane. Together with some additional constraints, these variables are
used to model the decision whether a new variable is contained in the cut or
not. This can destroy the special structure of a pricing problem and increase
its complexity (see [87]).

Nevertheless, this approach was successfully applied to the vehicle routing
problem with time windows. A small subset of the Chvátal-Gomory cuts,
called subset-row inequalities, are separated in the extended problem [45].
Each cut implies a modification of the pricing problem, which is a resource
constrained shortest path problem: An additional resource is added to the
problem for each cut.
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In [74], this work is extended to include all Chvátal-Gomory rank-1 cuts,
but this also implies more modifications to the pricing problems and seems
to be computationally inferior.

For more details about deriving cutting planes from the extended formu-
lation, we refer to [87]. In particular, Chapter 6 presents a general framework
that allows to formulate cuts derived from the extended problem in the origi-
nal problem. However, this includes additional variables and constraints that
are added to the original problem.

In this thesis, we focused on separation of cutting planes in the original
formulation and will not regard separation in the extended problem in the
following.

6.3 Implementation Details

We included a separation routine into GCG that derives cutting planes from the
original problem. It is compatible with both the convexification as well as the
discretization approach. However, for the reasons described in Section 5.1, it
is not used in combination with an aggregation of blocks. We implemented
a separation plugin that is included into the SCIP instance representing the
extended problem. As the master problem is solved in this SCIP instance
and the separation routine is to be called during this process, the separator
has to be added here.

The separator is called by SCIP as soon as the master problem has been
solved to optimality using column generation. The computed optimal solu-
tion of the master problem is transferred into a (possibly fractional) solution
of the original problem.

In the original SCIP instance, all default separation plugins of SCIP are
activated. These plugins provide two essential callbacks: One for the separa-
tion of an LP solution (called SEPALP) and a second one that separates an
arbitrary solution (called SEPASOL). These two callbacks are distinguished,
since for the separation of an LP solution, the separator can access infor-
mation about the current basis of the LP. The SEPASOL callback can be
called without having solved the LP before so it must not access information
about the LP basis. Both types of callbacks can be provided by constraint
handlers, too, in order to separate constraint specific cutting planes. Some of
the default separators do not implement the SEPASOL callback since they
need information about the basis, e.g., the gomory and the strongcg sepa-
rators, that separate Gomory mixed integer cuts and strong Chvátal-Gomory
cuts, respectively.

When SCIP is used as an LP based branch-and-cut solver, it only uses
the SEPALP callback. The new separator that we included into the ex-
tended SCIP instance implements this callback, too, since it separates the
solution of the master problem, i.e., the LP relaxation of the extended prob-
lem. However, in order to separate the transferred master solution in the
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original SCIP instance, we just need the SEPASOL callbacks of the default
separators, since we separate an arbitrary solution that was not computed
by the LP relaxation of the original problem. The default separators that
implement this callback are the clique separator, the cmir separator, and
the flowcover separator, that construct clique cuts, mixed integer round-
ing cuts, and flow cover cuts. The mcf separator implements this callback,
too, and constructs cutting planes for problems with a multi-commodity flow
structure. Furthermore, the knapsack constraint handler, which generates
lifted cover inequalities, also provides this type of callback. For more details
about these separators, we refer to [98] and [6].

After transferring the master solution into the original variable space, we
let SCIP separate this solution by calling all supported SEPASOL callbacks.
If cuts are found, we transfer them into the variable space of the extended
problem as it is done for the linking constraints of the original formulation
(see Chapter 2).

The transferred cuts are added to the LP relaxation of the SCIP instance
representing the extended problem, which is the master problem. In fact, we
do not directly add them to the master problem, but we add them to the
separation storage. Since adding just one cut and resolving the LP after-
wards is rather ineffective, separation is performed in rounds. In each round,
the separators try to generate various cutting planes and add them to the
separation storage. However, by adding all of these cuts to the problem, the
LP size would increase too much. Therefore, SCIP selects only a subset of
the cutting planes contained in the separation storage and adds them to the
LP at the end of each separation round; remaining cuts are discarded. The
cuts to be added are automatically selected by SCIP with respect to their
strength and numerical stability. For more details, we refer to [1].

The new separator stores both the transferrd cut and the corresponding
original cut. This way, the dual variables of the latter can be respected in
the pricing problems. We have to distribute it among the variables of the
pricing problems in the same way as described in Section 4.2 for the original
linking constraints. Furthermore, we need the original counterparts in order
to determine the coefficients of the variables in the extended problem w. r. t.
the cutting planes.

If cutting planes were added, SCIP automatically solves the new master
problem using the implemented variable pricer plugin (see Section 4.3) and
the process is iterated.

6.4 Computational Results

In this section, we present computational results concerning the separation
of cutting planes in the original problem.

Unfortunately, for the four problems classes described in Appendix C, the
separators do not find any cutting planes in the original formulation. This
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can be explained by the structure of the problems, especially the structure
of the linking constraints, as we will describe in the following.

Since we respect the integrality constraints in the pricing problems, each
solution of the master problem corresponds to an original solution candidate
that already satisfies all valid inequalities that can be derived using only the
structural constraints (see Section 6.1). Hence, cutting planes have to be
derived using only linking constraints or by a combination of linking and
structural constraints.

Three of the problems—the bin packing problem, the vertex coloring
problem, and the capacitated p-median problem—have set partitioning link-
ing constraints. The RAP instances have another special structure in the
linking constraints, namely constraints forcing two variables to have the same
value, i.e., constraints of the form x− y = 0.

As mentioned in the last section, we can use five of the default separators
incorporated in SCIP. However, the structure of the problems does not fit for
three of them. First of all, the linking constraints do not contain knapsack
constraints, so the separation method of the knapsack constraint handler
is not able to derive cutting planes using these constraints. Furthermore,
the problems do not have a flow or multi-commodity flow structure, so the
flowcover separator and the mcf separator do not find cutting planes as
well.

For the last two separators, the clique separator and the cmir separator,
we have to take into account the relation between linking and structural
constraints, too. Each linking constraint contains at most one variable of
each block and each variable of a block is contained in at most one linking
constraint. We conjecture that this together with the integrality of the data
typically makes it impossible to create clique or cmir cuts that are not
satisfied by the transferred master solution.

In order to support this conjecture, we performed computations concern-
ing the dual bound at the root node. The results are summarized in Table 6.1,
further details can be found in Tables D.31 to D.40 in Appendix D.

We solved the master problem of the root node with GCG and list the
shifted geometric mean of the gap between the dual bound and the solution
value of the optimal (or best known) primal solution for each test set. Addi-
tionally, we also list shifted geometric mean of the time needed for the solving
process of the root node. Furthermore, we solved these instances with plain
SCIP, too, using either all cutting plane separators (columns “SCIP all cuts”)
or only those separators that can also be used by GCG (columns “SCIP no base
cuts”). For both SCIP settings, we list the shifted geometric mean of the gap
to the optimal or best known solution, the number of times, SCIP obtained
the better dual bound (column “b”) and the worse dual bound (column “w”)
as well as the shifted geometric mean of the solving time of the root node.
We disabled reliability branching and used most infeasible branching, since
otherwise, much time was spent by SCIP for the strong branching calls for
branching at the root node. Since the strong branching calls can further im-
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GCG SCIP all cuts SCIP no base cuts
test set gap time gap b w time gap b w time

cpmp50 2.15 2.6 2.51 12 24 1.7 2.91 0 35 0.5
cpmp100 2.63 9.4 2.89 13 27 6.3 3.24 0 39 2.7
cpmp150 1.83 27.6 2.09 12 28 16.8 2.48 0 40 7.7
cpmp200 3.19 63.1 3.88 12 28 42.7 4.44 0 40 16.1
rap32 0.04 224.9 1.17 0 70 23.5 1.92 0 70 16.0
rap64 0.02 366.0 1.17 0 70 23.5 1.92 0 70 16.0
coloring 3.55 11.4 24.81 0 24 35.7 25.42 0 23 28.5
bindata1-n1s 0.37 0.7 5.59 0 17 0.7 5.44 0 16 0.4
bindata1-n2s 0.57 3.5 2.91 0 15 3.0 2.91 0 15 2.1
bindata1-n3s 0.25 15.6 3.22 0 15 21.3 3.22 0 15 17.4
Table 6.1. Comparison of the dual bound obtained at the root node by GCG and SCIP

using either all separators, or only those separators that do not need basis information. We
list the shifted geometric means of the gap to the optimal or best known solution and the
solving time (in seconds) of the root node for each test set. Furthermore, for both SCIP

settings, we list the number of times, SCIP obtained a better dual bound (b) or a worse
dual bound (w).

prove the dual bound, but we just want to compare the dual bounds obtained
by solving the root node relaxation, we disabled this feature.

We can see that for all instances, the dual bound obtained by the master
problem is at least as tight as the dual bound obtained by the LP relaxation
when using just the cutting plane separators that are used by GCG, too. This
supports the conjecture that these cutting plane separators are not able to
forbid the transferred optimal solution of the master problem.

Besides, the master problem gives rise to the tighter lower bound in the
shifted geometric mean even when compared to SCIP with all cutting plane
separators. For the bin packing, vertex coloring and RAP instances, the dual
bound computed by SCIP is never better than the bound obtained by GCG.
For the CPMP instances, the dual bound computed by SCIP is in most cases
worse than the one computed by GCG but for some of the instances, SCIP
obtains better bounds than GCG.

This shows that the computed optimal solution of the master problem can
theoretically be cut off by the cutting plane separators incorporated in SCIP.
Since the cutting planes created by the gomory and strongcg separators are
special kinds of cmir cuts, the transferred master solution could theoretically
also be ruled out by the separators that are used by GCG. However, finding
these cuts without the guidance usually provided by the simplex tableau
seems unlikely. Furthermore, it is also not clear whether constructing the
cuts is possible with nothing but the constraints that are initially contained in
the original problem or whether those inequalities that cut off the transferred
master solution are created with the aid of other cutting planes that were
created in former separation rounds. For the branch-and-price approach, it
is possible that these cuts are implicitly treated in the master problem and
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would therefore not be violated by the transferred master solution. Hence,
they would not be generated in the separation process and thus, we cannot
derive stronger cuts with their help.

In order to enhance the separation capabilities of GCG, we could think
about adding valid inequalities to the original problem even if they do not cut
off the current transferred master solution. This way, we might support the
derivation of cutting planes from combinations of these inequalities and the
initial constraints. It should be studied whether this helps for the separation
process.

Finally, let us note that we also performed test runs for some general
MIPs taken from the MIPLIB 2003 [5]. Blocks were detected by a method
of the mcf separator that looks for a multi-commodity flow structure in the
model. Hence, blocks corresponded to minimum cost flow problems. Since
these problems were defined by integral data for the regarded instances, the
subproblems possessed the integrality property and the bound obtained by
the master problem equaled the LP bound (see Section 2.3). For these in-
stances, we were able to find cutting planes in the original problem.
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Chapter 7

Results

In the last three chapters, we presented the most important components of
the branch-cut-and-price solver GCG:

• The column generation—or pricing—process (Chapter 4), that is used
to solve a relaxation of the problem in order to obtain strong dual
bounds.

• Different branching schemes (Chapter 5), that split the current problem
into subproblems. Due to the integrality restrictions, this is needed to
solve the problem to optimality with a branch-and-price approach.

• The separation of cutting planes (Chapter 6), that allows to tighten the
relaxation by adding additional valid inequalities.

In each of these chapters, we presented the theoretical background and details
about the implementation in GCG. Furthermore, we presented “local” results,
i.e., computational experiments concerning just the specific part of the solver
treated in the respective chapter.

Now, we present further “global” computational results, i.e., we regard
the performance of GCG for the entire solving process.

We start with a comparison of some strategies for Farkas and reduced
cost pricing in Section 7.1. In Chapter 4, we did this only for the solving
process of the root node relaxation, now, we regard the effect for solving the
relaxations of all nodes of the branch-and-bound tree.

After that, in Section 7.2, we demonstrate the impact of using a problem
specific pricing problem solver rather than solving the pricing problems with
a general MIP solver.

In Section 7.3, we review some advanced features that should speed up
the solving process and present their impact on the performance of GCG.

Finally, in Section 7.4, we compare GCG to SCIP and evidence that the
generic branch-cut-and-price approach is competitive to an LP based branch-
and-cut MIP solver for the regarded problem classes.

The computational environment and the test sets used for all computa-
tions presented in this Chapter are described in Section 3.3.

109
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7.1 Impact of the Pricing Strategy

In Section 4.3, we compared different pricing strategies for Farkas and reduced
cost pricing with respect to the solving process of the master problem at the
root node. Now, we present results for the complete branch-and-price process
for some of these settings. Since we are not able to create cutting planes for
the regarded problem classes, it is just a branch-and-price and no branch-
cut-and-price process.

Farkas pricing

In Section 4.3.1, it turned out, that for the solving process of the master
problem at the root node, adding all variables of one problem, that cut off
the dual ray performed remarkably better than adding just one variable.
We performed computations to investigate whether this still holds for the
branch-and-price process. The results are summarized in Table 7.1. We
used the convexification approach for these computations, i.e., blocks were
not aggregated, and branching on original variables with pseudocost variable
selection rule was used.

We see that also for the branch-and-price process, adding all variables
of one problem that are found in the pricing process performs better than
adding just one of these variables. For the CPMP test sets, the solving time
is reduced by five to twelve percent, for the vertex coloring test set it is
decreased by four percent. The results for the RAP and bin packing test
sets essentially stay the same. Therefore, we will change the default Farkas
pricing settings in the next release of GCG.

Farkas pricing: one var Farkas pricing: one prob
test set nodes time nodes time ∆(%)

cpmp50s 44.9 12.8 42.7 12.1 −5
cpmp100s 587.1 184.7 529.1 165.5 −10
cpmp150s 847.6 493.5 801.4 464.6 −6
cpmp200s 1753.3 1243.9 1638.8 1094.8 −12
coloring 60.9 88.2 55.2 85.0 −4
rap32s 26.8 551.5 26.8 551.1 0
rap64s 9.4 559.3 9.4 560.5 0
bindata1-n1s 3.6 0.2 3.6 0.2 0
bindata1-n2s 7.1 1.1 7.1 1.1 0
bindata1-n3s 13.2 6.7 13.2 6.7 0
Table 7.1. Farkas pricing performance for the default settings (adding just one variable per
round) and when adding all variables found in one problem. We list the shifted geometric
means of the number of nodes and the solving time for each test set. Furthermore, in
column “∆(%)”, we state the percental change in the shifted geometric mean of the solving
time.
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Reduced cost pricing

We evaluated different reduced cost pricing strategies in Section 4.3.2. It
turned out that the performance of a setting depends on the problem struc-
ture, i.e., the type of the linking constraints, the size of the master problem,
the kind of pricing problems etc. In this thesis, we do not elaborate on “op-
timal” settings for single problem classes since we regard a generic approach.
We rather try to find reasonable settings that seem to perform well for most
types of problems. Anyway, GCG provides the parameters to adjust the pricing
settings for a specific class of problems, if needed.

First, let us notice that most of the solving time is spent for solving the
pricing problems. As a typical example we regard instance p50150-27 of
test set cpmp150s, that is solved by GCG in 1325.9 seconds. 94% of the time
(1248 seconds) is spent for pricing, most of this time is needed to solve the
pricing problems. In particular, 1082 and 447,545 pricing problems are solved
by Farkas and reduced cost pricing, respectively, consuming 5.9 and 1078.7
seconds, respectively. Besides verifying that reduced cost pricing is much
more important for the overall solving process, we can see that over 80%
of the total solving time is spent for solving the pricing problems. Similar
numbers hold for the other CPMP instances. For the RAP instances, the
pricing problem is harder and solving it consumes an even larger part of the
total solving time.

Therefore, it typically pays off to add all variables with negative reduced
cost that are found during the solving process of a pricing problem. This
way, we profit from the effort as far as possible. However, adding too many
variables may slow down the simplex method but for the problems we re-
garded in this thesis, this effect is very small compared to the time saved in
the pricing routine. Hence, we do not limit the number of variables created
per block in one pricing round.

The default settings impose a limit of 100 on the number of variables
created per pricing round. We also tested some lower and higher numbers,
but setting the limit to 100 performed best.

If we have just one pricing problem, like it is the case for the discretization
approach with aggregated blocks, this corresponds to limiting the number of
variables created for this pricing problem. In most cases, the number of 100
variables is not exceeded and all variables found by the pricing routine are
added. However, if a huge number of variables is found in one pricing round,
we limit the increase in the size of the RMP that way. Hence, the default
settings seem to be reasonable for problems with aggregated blocks.

For the convexification approach or the discretization approach without
aggregation of blocks, we additionally have to decide whether we solve all
pricing problems or just a subset of them. For the default settings, we solve
just as many pricing problems as needed to find 100 variables with negative
reduced cost.

Stopping the pricing round after one pricing problem with negative op-
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default all vars
test set nodes time (outs) nodes time (outs)

rap32s 26.8 551.5 (0) 32.1 609.7 (1)
rap64s 9.4 559.3 (1) 9.3 524.7 (1)
Table 7.2. Performance of setting “all vars” for the reduced cost pricing compared to the
default pricing settings on the RAP test sets for the branch-and-price process..

timum was solved and adding all variables with negative reduced cost com-
puted by this pricing problem performed best for the master problem at the
root node of the vertex coloring and bin packing instances, which have iden-
tical blocks. In Section 5.7, we showed that this pricing method performs
well for these instances also for the branch-and-price process. However, due
to the identity of the blocks, we suggest using the discretization approach
with aggregation of blocks for these instances, anyway. For the problems
with different blocks, these pricing settings performed much worse than the
default settings.

For the master problem at the root node, solving all pricing problems and
adding all variables found performed best for the RAP instances, but worse
for the other ones (see Section 4.4.2). We tested whether this still holds for
the branch-and-price process, the results are summarized in Table 7.2. For
test set rap64s, adding all variables is slightly superior, for test set rap32s,
it is slightly inferior. The time per node is decreased, in return, the number
of nodes is increased. Hence, we can conclude that these settings do not
dominate the default settings as well.

Anyhow, the question is whether the same pricing setting should be used
for the reduced cost pricing at the root node as at all other nodes of the
branch-and-bound tree. At the root node, when the reduced cost pricing pro-
cess is started, we just obtained feasibility of the RMP using Farkas pricing,
but the optimal solution to the RMP is far from being optimal for the mas-
ter problem. So we probably have to perform many pricing rounds, thereby
adding a big number of variables which then also serve as an adequate foun-
dation for the following solving process.

At subsequent nodes, we do not have to solve the master problem from
scratch, since we already solved the master problem at the father of the cur-
rent node. Although the branching restrictions forbid this former solution,
we probably have to perform just a few simplex iterations to restore opti-
mality. Furthermore, the RMP already contains many variables created at
the root node and other previously solved nodes, so we probably have to add
just a few variables to the RMP.

This conjecture is confirmed by the results obtained in the previous chap-
ters concerning Farkas and reduced cost pricing at the root node and the
complete branch-and-price process (see Tables D.1 to D.26). We only regard
the CPMP and RAP test sets, since for the other instances, the blocks should
be aggregated, anyway.
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Figure 7.1: Quota of the average number variables created by Farkas pricing
at the root node (�), reduced cost pricing at the root node (�), and after
the root node (�).

Figure 7.1 pictures the quota of the variables that were created at the
root node by Farkas and reduced cost pricing, respectively. Furthermore, we
picture the part of the variables that were created at subsequent nodes. For
the CPMP test sets, about 15% to 20% of the variables are created by Farkas
pricing at the root node. For the RAP test sets, this ratio is much smaller
since feasibility is obtained more easily (see Section 4.4.1).

For all test sets, the average number of variables created by reduced
cost pricing at the root node exceeds the number of variables created at
all subsequent nodes. In particular, several thousand variables are created
at the root node on average for each instance while the average number of
variables created per node in the following branch-and-price process ranges
from two to six variables (see Figures 7.2 and 7.3). Furthermore, the more
nodes are needed to solve the problems, the smaller is the average number
of variables created per node after the root node. This is an indication for
the decrease of the number of variables created at each node when going
deeper into the branch-and-bound tree. It is consequential since the number
of already created variables is higher for these nodes than for those treated
at the beginning of the branch-and-price process.

The number of pricing rounds per node is also rather small after the root
node, we need on average at most three pricing rounds per node, and, again,
the average number of rounds is smaller for test sets that need more nodes.
Hence, less than two variables are added per pricing round on average. In
comparison, let us note that the reduced cost pricing process at the root node
needs 20 to 70 rounds and in each of them, between 70 and 90 variables are
created on average.

Therefore, we have to solve more pricing problems at subsequent nodes
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Figure 7.2: Shifted geometric mean of the number of variables created by
Farkas pricing (�) and reduced cost pricing (�) at the root node.
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Figure 7.3: Shifted geometric mean of the number of variables created per
node after the root node.

in order to find an improving variable. At the root node, we find for the
CPMP instances about two variables per pricing problem that is solved in
the reduced cost pricing process. For the RAP instances, this number is
even higher. At subsequent nodes, we solve 8 to 150 times more pricing
problems than we find variables. Again, instances that need more nodes
need on average more problems to find one variable, which is of course also
caused by the higher number of pricing problems for these instances.

Since the pricing process at the root node obviously differs highly from
that at subsequent nodes, we decided to introduce additional parameters for
the pricing process. The limits on the number of variables added per pricing
round and the relative number of pricing problems solved per round can now
be specified independently for the root node and subsequent nodes. In the
following, the parameters Mr and Rr still represent the limits at the root
node. Furthermore, we denote by M̃r the limit on the number of variables
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test set default 20 vars 10% no limit
no

de
s

cpmp50s 44.9 −2 0 −5
cpmp100s 587.1 −1 −8 −10
cpmp150s 847.6 +2 +6 −15
cpmp200s 1753.3 −2 −3 +7
rap32s 26.8 −1 −4 +8
rap64s 9.4 0 −1 +3
mean 171.1 −1 −2 −3

ti
m

e

cpmp50s 12.8 −1 +9 −3
cpmp100s 184.7 +3 +8 −6
cpmp150s 493.5 +2 +12 −10
cpmp200s 1243.9 0 +16 +3
rap32s 551.5 0 −10 +7
rap64s 559.3 −1 −9 +6
mean 300.5 0 +3 −1

Table 7.3. Impact of different reduced cost pricing settings. At the root node, we use the
default reduced cost pricing setting. We list the shifted geometric mean of the number of
nodes and the solving time for using the same setting at subsequent nodes (first column).
The other columns denote the percental changes in the shifted geometric mean of the
values for the other settings. Positive values represent a deterioration, negative values an
improvement.

created per round at subsequent nodes and by R̃r the relative limit on the
number of pricing problems solved in each pricing round at subsequent nodes.
Again, if we do not find a single variable before this limit is exceeded, the
pricing round is continued until a problem with negative optimum was found
and all variables of this problem are added (if their number does not exceed
M̃r ). A listing of all parameters of GCG discussed in this thesis can be found
in Appendix B.

We performed computational experiments concerning different values of
the new parameters. They are summarized in Table 7.3. Further details can
be looked up in Tables D.41 to D.46.

In the default settings, we choose M̃r = 100 and R̃r = 1, i.e., we do not
distinguish between the pricing settings at the root node and those at all
other nodes.

First, we studied whether setting a smaller absolute limit for the number
of variables created in each round speeds up the solving process. Therefore,
for the results presented in column “20 vars” of the table, we set M̃r = 20 and
R̃r = 1. We mentioned that the average number of variables created per node
ranges from two to six, but this is just an average value. There exist nodes
where no further variable is found as well as nodes where more variables are
created, especially those nodes treated first in the solving process. However,
the “20 vars” setting does not change the average performance of GCG, we
only have slight variations for the single test sets. This shows that there is
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only a small number of nodes where many variables are created so that the
limit of 20 variables created per pricing round is hardly ever exceeded.

Column “10%” presents the results for defining R̃r = 0.1 and leaving
M̃r = 100 unchanged. The number of nodes is slightly decreased for the
CPMP instances as well as for the RAP instances. The time is increased
for the CPMP instances while being decreased for the RAP instances. For
M̃r =∞ and R̃r = 0.1 (column “no limit”), we obtain opposing results: The
number of nodes and the solving time for the CPMP instances is decreased
while these values are increased for the RAP instances.

This is a substantiation of our decision to introduce independent parame-
ters for the root node on the one hand and all other nodes on the other hand.
For the RAP instances, we have seen in Section 4.4, that adding all variables
at the root node performs better than the default settings, while adding just
a small number performs much worse. However, for the subsequent nodes,
the dominance is completely reverted: Adding a small number is remarkably
better than adding all variables. The CPMP instances profit from a higher
limit in the branch-and-price process while a higher limit at the root node
leads to a deterioration.

One reason for the aforementioned results might be the early termination
of the pricing process, which is enabled per default and was thus used for these
computations. By setting no limit on the number of variables we probably
intensify its impact, as described in the following.

Suppose we are at some node in the branch-and-bound tree and we have
to solve several pricing problems before finding a variable that can improve
the current solution. Without early termination, we have to perform another
pricing round after adding this variable, regardless of whether we continue
solving the current pricing round and potentially add further variables, or
not. In particular, even if there do not exist further variables, we have to
solve all pricing problems to prove this in the next pricing round.

When enabling early termination, this changes: If we stop the pricing
round, then we cannot compute a valid lower bound on the optimal objective
value of the master problem. In order to do this, we need the optimal solution
values of all pricing problems (see Section 4.2). Hence, we have to resolve the
RMP and perform another pricing round. On the other hand, if we continue
the current pricing round and solve all pricing problems to optimality, we can
profit from that, even if we do not find further variables, since we get a valid
lower bound. With this bound, we can possibly stop the pricing process at
the current node due to early termination. It seems that this pays off for the
CPMP instances since imposing no limit on the number of variables added
and therefore, solving all pricing problems in each round reduces the solving
time in the shifted geometric mean.

However, the RAP instances have rather high optimal objective function
values so that even a small relative gap between dual bound and objective
function value of the RMP does not necessarily correspond to a small absolute
gap that could allow the early termination of the pricing process. Hence, it



7.2. Problem Specific Pricing Solvers 117

often does not pay off to solve all pricing problems, especially since solving a
pricing problem takes much longer for the RAP instances than for the CPMP
instances. Therefore, the impact of early termination is smaller for the RAP
instances and is probably overweighted by the additional effort for solving all
pricing problems.

To sum up, we did not find a pricing strategy that dominates the default
settings for all problems classes or that performs at least considerably better
on average. We found strategies that are superior to the default settings
for one class of problems but in return, these strategies are inferior to the
default settings for the other class of problems. This shows again, that the
performance of reduced cost pricing settings are highly problem dependent.
The default settings, i.e., adding at most 100 variables per pricing round
seems to be reasonable at least for those problems that we regarded in this
thesis.

Finally, let us note that we would have expected that it is more efficient
to set the limit on the number of variables added in each round depending on
the size of the problem and the number of pricing problems. However, our
computational experiments—we listed only the most interesting ones here—
did not support this conjecture; an absolute limit of 100 performed rather well
on average. In some sense, this is actually consequential, since we look for
variables that can enter the basis in the next simplex iteration. The simplex
method, however, does not consider the size of the problem for one iteration,
it always substitutes just one basic variable by one nonbasic variable. The
size of the problem only affects the number of simplex iterations. Although
the simplex method can potentially perform multiple iterations between two
pricing rounds when we add multiple variables, the reduced costs of the
newly created variables change with each iteration. Therefore, variables that
are created because they have negative reduced costs with respect to the
current solution of the master problem will possibly not be able to improve
the solution after some simplex steps have been performed. Hence, when
adding a huge number of variables for a huge problem, the reduced costs
can have completely changed after a small number of simplex iterations and
the remaining variables do actually only slow down the simplex method.
Therefore an absolute limit on the number of variables added per round
seems to be reasonable.

7.2 Problem Specific Pricing Solvers

GCG provides the possibility to include problem specific solvers for solving
the pricing problems. Since most of the time is spent for the solving process
of the pricing problems, using a problem specific pricing solver can improve
the performance of GCG by far. We demonstrate this using the example
of a knapsack solver for the CPMP instances. Our implementation of the
knapsack solver uses a method provided by the knapsack constraint handler
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MIP solver knapsack solver
test set nodes time (outs) nodes time (outs)

cpmp50s 44.9 12.8 (0) 42.1 1.8 (0)
cpmp100s 587.1 184.7 (1) 491.6 37.8 (0)
cpmp150s 847.6 493.5 (5) 1228.6 253.8 (1)
cpmp200s 1753.3 1243.9 (3) 2338.0 519.3 (0)
mean 461.8 220.1 (9) 515.1 84.3 (1)
Table 7.4. Performance effect of using a knapsack solver to solve the pricing problems for
the CPMP test sets. We list the shifted geometric means of the number of nodes and the
total solving time for GCG when using the MIP pricing problem solver (first two columns)
and when using a specialized knapsack solver (last two columns).

of SCIP that solves a knapsack problem to proven optimality with a dynamic
programming method.

The results of our computations (see Table 7.4 and Tables D.47 to D.50
for more details) report a decrease of about 62% in the shifted geometric
mean of the solving time. Furthermore, when using the knapsack solver, GCG
was able to solve all instances but one, while nine instances could no be solved
within the time limit of one hour when using the the MIP pricing solver.

For the larger instances, however, the number of nodes is increased, which
can be explained by the fact that the pricing solver returns only one optimal
solution so that the number of variables created at one node is typically
smaller. Since certain variables are needed to construct an optimal solution,
the solving process cannot finish before these variables are added. In total,
the number of variables created per instance is similar for both pricing solvers,
the knapsack solver just needs more nodes to create these variables. If we
would run primal heuristics not only on the extended, but also on the original
problem, we could find an optimal solution without creating specific variables
in the master problem. Hence, a further subject of research should be to
design and implement primal heuristics that run on the original problem.

However, even without further heuristics, the knapsack pricing solver
reduces the computational effort by far.

7.3 Selected Accelaration Strategies

Apart from the pricing strategy, we mentioned several advanced features that
have an impact on the performance of the branch-cut-and-price solver GCG.
In this subsection we present computational results concerning their impact
on the solving process of the instances of the CPMP test sets. We used these
instances, since they are the ones that need the highest number of branch-
and-bound nodes to be solved to optimality. Therefore, the impact of these
features that are primarily used to speed up the solving process after the root
node is pictured best by these instances.

Table 7.5 summarizes the results: We list the change in the shifted geo-
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test set pseudo enfo.pric. proper early heurs all
no

de
s

cpmp50s +84 −1 +1 −5 −2 +93
cpmp100s +234 +2 −2 −8 −3 +224
cpmp150s +161 −2 +7 −6 +4 +104
cpmp200s +218 +10 −5 −15 +1 +130
mean +163 +2 0 −9 0 +129

ti
m

e

cpmp50s +62 −2 +1 +4 −1 +87
cpmp100s +154 −2 −1 +8 −1 +216
cpmp150s +86 +2 +7 +10 +5 +100
cpmp200s +139 +8 −4 +9 +2 +154
mean +100 +2 +1 +7 +1 +124

Table 7.5. Performance effect of disabling selected acceleration strategies incorporated in
GCG. The values denote the percental change in the shifted geometric mean of the number
of nodes (top) and the total solving time (bottom) compared to the default settings in
which all these features are activated. Positive values represent a deterioration, negative
values an improvement.

metric means of branch-and-bound nodes and total solving time for the four
small CPMP test sets when turning a single feature off. The columns are
labeled by the feature that is disabled. The results for the default settings,
where all these features are enabled, serve as reference values. More details
can be found in Tables D.47 to D.50.

First, we repeat the effect of the branching strategy, in particular the
impact of the variable selection rule and the impact of how branching re-
strictions are enforced (see Chapter 5). Using the most fractional variable
selection rule (column “pseudo”) doubles the average solving time. The en-
forcement of the branching restrictions has no big impact, enforcing them
in the master problem (column “enfo.pric.”) increases the shifted geomet-
ric means of the nodes and the running time by 2%, which is no significant
change and could also be due to random variations.

The same holds for the enforcement of proper variables, i.e., perform-
ing domain propagation in the original problem and enforcing the domain
changes in the pricing problem (see Section 5.6). When it is disabled (col-
umn “proper”) the average number of nodes does not change, the solving
time is increased by just one percent.

The early termination of the pricing process has a bigger impact. As
we have mentioned in Section 4.3.3, using early termination decreases the
effectiveness of pseudocosts, since the increase in the dual bound of a node is
not computed exactly. Therefore, the average number of nodes is decreased
when disabling early termination (column “early”) and computing the exact
lower bound of all nodes. Nevertheless, the increased time needed for the
pricing process outweights the savings due to the smaller number of nodes,
so the shifted geometric mean of the solving time is increased by 7% when
disabling early termination. Furthermore, if we would use the most fractional
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variable selection rule rather than the pseudocost rule (although the former
is inferior to the latter), the performance effect of early termination would
probably be higher. Disabling early termination and obtaining more reliable
pseudocosts would then not help the branching rule to decrease the number
of nodes, hence the time saved by early termination in the pricing process
would pay off even more.

Additionally, we tested the impact of using the convexification approach
instead of the discretization approach. Since the master problem essentially
stays the same, this actually just disables the use of primal heuristics in the
extended SCIP instance. The results are listed in column “heurs”. We can see
that the primal heuristics in the extended problem do not have a big impact
on the performance, most of the primal solutions are found as an integral
solution to the RMP, anyway. This shows that the default SCIP heuristics
are not very effective on the extended problem and we should think about
implementing further primal heuristics that take into account the branch-
cut-and-price approach and use information of both the original es well as
the extended problem.

Finally, turning all these features off (column “all”) results in an increase
of more than 120% for the shifted geometric means of both the number of
nodes as well as the total running time. The smaller increase in the number
of nodes compared to disabling just the pseudocost variable selection rule
follows from the slowdown due to disabling the other features so that a smaller
number of nodes could be solved in case the timelimit was hit.

To summarize, the pseudocost variable selection rule has by far the biggest
impact on the performance of GCG for the regarded test sets of CPMP in-
stances, followed by the early termination of the pricing process. The other
features have a rather small impact on the performance of GCG.

7.4 Comparison to SCIP

In the last sections, we just tuned the performance of GCG. In this section,
we finally answer the question whether the generic branch-cut-and-price ap-
proach is competitive to an LP based branch-and-cut MIP solver. Since we
based our implementation on the branch-cut-and-price framework SCIP, and
SCIP with default plugins is a state-of-the-art branch-and-cut based MIP
solver, we compare this MIP solver to GCG on the complete test sets of the
four problem classes that we regard in this thesis. For both GCG and SCIP, we
used the default settings. Like for all computations presented in this thesis,
we used GCG version 0.7.0 and SCIP version 1.2.0.5. Further information
about the test sets and the computational environment can be looked up in
Section 3.3.
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nodes time
test set items total mean total mean

bindata1-n1 50 520 1.7 196.5 1.2
bindata1-n2 100 1681 3.4 922.7 4.4
bindata1-n3 200 6222 11.3 4202.9 20.3
Table 7.6. Computational results for GCG on the 180 instances of each size in the complete
bin packing test sets.

Identical Blocks: Bin Packing and Vertex Coloring

Bin packing and vertex coloring instances have identical blocks and a set
partitioning master problem, so the variables were aggregated and Ryan and
Foster’s branching scheme was used. It is well-known that the Dantzig-Wolfe
decomposition of the bin packing problem leads to strong dual bounds [60],
so we were able to solve all 540 instances (180 instances with 50, 100, and 200
items, respectively) in less than 90 minutes altogether. For each number of
items, GCG solves the whole test set faster than SCIP solves the first instance
of the test set. The results for GCG are summarized in Table 7.6.

Also for our vertex coloring test set, GCG performs remarkably better than
SCIP which solved no more than twelve instances within the time limit of one
hour per instance. GCG was able to solve 33 of the 39 instances. Furthermore,
SCIP needs much more nodes than GCG and also the shifted geometric mean
of the solving time per instance is about six times higher for SCIP than for
GCG. These results are summarized in Table 7.7, more details can be found
in Table D.51.

SCIP GCG
gap nodes time (outs) gap nodes time (outs)

19.5 3256.9 1073.3 (27) 8.7 64.3 176.1 (6)
Table 7.7. Comparison of SCIP and GCG on the complete coloring test set (coloring-all).
We list the shifted geometric means of the final gap, the number of branch-and-bound nodes
and the solving time. Following the time, in brackets, we list the number of timeouts.

Different Blocks: The Capacited p-Median Problem

The capacitated p-median problem (CPMP) has multiple, different blocks,
so they cannot be aggregated and branching on original variables is used. In
the last sections, we already presented the impact of different settings on the
performance on GCG. Now, we want to compare it to SCIP, so we performed
computational tests on the complete CPMP test sets, each of which consists
of 40 instances. We used default settings for both GCG and SCIP and imposed
a time limit of one hour. Table 7.8 summarizes the results, more details can
be found in Tables D.52 to D.55.
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SCIP GCG
test set gap nodes time (outs) gap nodes time (outs)

cpmp50 0.1 1652.9 25.8 (1) 0.0 80.9 23.9 (0)
cpmp100 0.8 28557.8 436.9 (11) 0.5 929.5 298.0 (5)
cpmp150 2.6 22250.3 846.8 (19) 0.6 979.1 513.9 (8)
cpmp200 8.0 28550.0 2350.7 (28) 11.4 2248.2 1728.1 (23)
mean 2.8 13172.8 414.2 (59) 3.0 650.9 302.3 (36)
Table 7.8. Comparison of SCIP and GCG on the complete CPMP test sets. For each test
set, we list the shifted geometric means of the final gap, the number of branch-and-bound
nodes and the solving time. Following the time, in brackets, we list the number of timeouts.

The tighter dual bound obtained by the master problem results in a de-
crease of the number of nodes: In the shifted geometric mean, GCG needs just
the twentieth part of the nodes needed by SCIP. In return, the solving time
per node is much higher due to the column generation process. Nevertheless,
the average time needed by SCIP is more than one third higher than the time
spent by GCG. Furthermore, the number of instances that could not be solved
within the time limit is about two thirds higher for SCIP than for GCG.

On the other hand, the shifted geometric mean of the final gap is higher
for GCG than for SCIP. However, this is only caused by five instances of test
set cpmp200, for which GCG did not find a solution. In this case, we charged
a gap of 100%, which increased the average gap for this test set. We see this
as a motivation to develop better primal heuristics for the decomposition
approach. Currently, we just run the default SCIP heuristics on the extended
formulation; primal heuristics that exploit the original formulation or even
both formulations could further increase the performance of GCG.

Finally, let us clarify that we used the MIP pricing problem solver for
these computations. As mentioned in Section 7.2, we can improve the per-
formance of GCG by far for the CPMP instances by using the knapsack pricing
problem solver. Therefore, when using this solver, GCG would probably be
much faster and would outperform SCIP even more.

No Block Structure: The Resource Allocation Problem

The resource allocation problem (RAP) does not possess a block structure
from the beginning. However, it has a very special form (see Figure C.1), due
to which we can transfer it into a bordered block diagonal form by assigning
constraints to blocks and copying variables that are contained in constraints
of different blocks. Furthermore, we have to add constraints that force all
copies of a variable to have the same value. This results in a bordered block
diagonal structure of the constraint matrix. A detailed description of the
transformation process can be found in Appendix C.

We ran benchmarks to assess the effectiveness of the Dantzig-Wolfe ap-
proach for these problems. We studied two sizes of blocks, grouping either 32
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solver gap nodes time timeouts

SCIP 1.4 97564.0 2772.4 65
GCG (32) 0.0 32.2 727.4 14
GCG (64) 0.8 11.5 670.7 14
Table 7.9. Comparison of SCIP and GCG on the complete RMP test set. We grouped
32 (second row) and 64 (third row) constraints per block for solving the instances with
GCG. We list the shifted geometric means of the final gap, the number of branch-and-bound
nodes and the solving time. The timeouts are given in absolute numbers.

or 64 constraints per block. A summary of the results for both these alter-
natives is given in Table 7.9 as well as the results for solving these instances
with SCIP. A detailed listing of the results can be found in Table D.56. We
imposed a timelimit of one hour per instance.

Grouping more constraints per block results in less pricing problems that
are in return harder to solve. Therefore, the time needed to solve the master
problem is increased. This is weighted up by a tighter dual bound. Hence,
when grouping 64 constraints instead of 32, the shifted geometric mean of
the number of nodes is decreased by more than 60%, resulting in a slightly
decreased average solving time. For both variants, GCG is able to solve 56 of
70 instances within the time limit. The shifted geometric mean of the gap is
less than 0.05% when grouping 32 constraints, when grouping 64 constraints,
it accounts 0.8%. However, this is caused by one single instance for which
the master problem of the root node could not be solved within one hour, so
that no feasible dual bound was computed and the trivial dual bound was
used to compute the gap.

This is a difference between row generation (branch-and-cut) and column
generation (branch-and-price). While for a branch-and-cut based algorithm
the optimal LP value is a valid dual bound after each separation round, the
optimal value of the RMP is not a valid dual bound after each pricing round,
but only when the column generation process has finished. Hence, in case
we do not finish the solving process of the root node within the time limit,
we do not obtain a valid dual bound. Only if we were able to compute the
bound LBRMP (see Section 4.2) in one of the previous pricing rounds, this
gives us a valid dual bound but this bound is typically rather weak and gets
stronger only when the column generation process is nearly finished.

To sum up, GCG performs better than SCIP for both variants. SCIP was
not able to solve more than five instances to optimality, the shifted geometric
mean of the final gap accounts 1.4% and the number of nodes is far higher
than for both GCG variants. The total solving time is about four times higher
for SCIP than for GCG, and it would probably be even worse if we would not
have imposed the time limit.

This shows that the branch-and-price approach can successfully be ap-
plied even to problems that do not have a bordered block diagonal structure
from the beginning. When obtaining the block diagonal structure by a trans-
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formation, a further direction of research should be to investigate how many
constraints should be assigned to one block. As aforementioned, assigning
more constraints to one block makes the pricing problems harder to solve,
but leads to better dual bounds. These properties have to be weighted up
against each other.



Chapter 8

Summary, Conclusions and
Outlook

In this thesis, we presented the theoretical background, implementational de-
tails and computational results concerning the generic branch-cut-and-price
solver GCG which was developed by the author of this thesis.

The foundation for this is the Dantzig-Wolfe decomposition for MIPs
which we presented in Chapter 2. It allows us to reformulate a general MIP,
the original problem, into a problem with a huge number of variables, the
extended problem. A subset of the constraints is transferred to the extended
problem, the remaining constraints are implicitly treated and become part
of the definition of the variables of the extended problem. We described two
ways to perform this reformulation, the convexification and the discretization
approach. The former is the more general one while the latter can reduce
symmetry, if contained in the original problem. For both approaches, the
dual bound—obtained by solving the relaxation of the extended problem—
equals the Lagrangian dual bound and is typically stronger than the bound
obtained by the LP relaxation. This is one of the main motivations for using
the Dantzig-Wolfe decomposition and the branch-cut-and-price approach.

The branch-cut-and-price solver GCG is able to handle both approaches.
The user has to provide the original problem and to define its structure,
i.e., which of the constraints are treated implicitly and which of them are
transferred to the extended problem. GCG then performs the reformula-
tion and solves both problems—the original and the extended problem—
simultaneously. The general structure of GCG and the solving process was
presented in Chapter 3, as well as a short overview of the non-commercial
branch-cut-and-price framework SCIP on which our implementation is based.
SCIP with default plugins is a state-of-the-art non-commercial MIP solver
and was therefore also used to compare the branch-cut-and-price solver GCG
to an LP based branch-and-cut MIP solver.

Since the extended problem has a huge number of variables, we do not
solve its LP relaxation, the master problem, explicitly, but use the concept of

125
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column generation in order to do so. That is, we regard a restricted master
problem (RMP) which contains just a subset of the variables and add vari-
ables to the problem during the solving process whenever needed. Variables
which potentially improve the solution are computed by a pricing process.
For this, we solve one or more pricing problems which are given as MIPs and
contain the constraints that were not transferred to the extended problem.
The concept of column generation, its application to the presented approach,
and implementational details were presented in Chapter 4. Furthermore, we
performed computational experiments to assess the effectiveness of various
pricing strategies.

In order to compute an optimal integer solution, we use a branch-and-
bound process. In combination with column generation, we thus obtain a
branch-and-price algorithm. In Chapter 5, we described several branching
rules that fit into the branch-and-price approach. We implemented two of
them, a branching on variables of the original problem and Ryan and Foster’s
branching scheme. The former one is used by most LP based branch-and-
cut MIP solvers and can easily be transferred to the branch-cut-and-price
approach. Ryan and Foster’s scheme can only be used for problems with a
special structure in the extended problem; it can reduce symmetry when used
in combination with the discretization approach. Furthermore, we tested
whether the concept of pseudocosts, that is used by most state-of-the-art
branch-and-cut MIP solvers to select the variable on which branching is per-
formed, can successfully be transferred to the branch-cut-and-price approach.
It turned out that this is the case and using pseudocosts halves the shifted ge-
ometric mean of the solving time for the class of capacited p-median problems.
The other class of problems for which we tested the impact of pseudocosts,
the RAP instances, are solved after a very small number of nodes so that the
use of pseudocosts does not pay off.

In Chapter 6, we described how the branch-and-price method can be
turned into a branch-cut-and-price method by performing cutting plane sepa-
ration. Cutting planes can be derived from either the original or the extended
problem. We named pros and cons of both variants and described our imple-
mentation of the former one. For general MIPs, we were able to find cutting
planes this way, but the problems regarded in this thesis have a structure
which does not allow the employed cutting plane separators to find cutting
planes in the original problem. We used this as an occasion to compare the
dual bounds at the root node obtained by GCG and SCIP. Even though SCIP
tightened the dual bound by adding cutting planes, GCG obtained on average
a remarkably tighter dual bound for all regarded problems classes.

Finally, in Chapter 7, we presented some computational results concern-
ing the overall performance of GCG. We tested the performance of pricing
strategies for the branch-cut-and-price process instead of doing so just for
the column generation process at the root node as it was done in Chap-
ter 4. Additionally, we pictured the impact of using a problem specific solver
to solve the pricing problems rather than solving them with a general MIP
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solver. GCG provides the possibility to include such a solver and we did so for
a knapsack solver which reduced the shifted geometric mean of the solving
time by more than 60% for the class of capacited p-median problems. Fur-
thermore, we reviewed some acceleration strategies, e.g., pseudocosts, early
termination and the enforcement of proper variables, and their impact on the
performance of GCG.

Additionally, we compared the performance of GCG for the four problems
classes regarded in this thesis with the performance of SCIP. These problems
were previously known to fit well into the branch-cut-and-price approach.
However, former implementations for the problems classes were problem spe-
cific. They used knowledge about the problem such as specialized pricing
solvers that can improve the performance by far as aforementioned. There-
fore, one of the main goals of this thesis was to investigate whether the
branch-cut-and-price approach in the implemented generic form is still com-
petitive to a state-of-the-art branch-and-cut MIP solver for these problems.
It turned out that the generic branch-cut-and-price solver GCG still outper-
forms SCIP although it does not use any problem specific knowledge except
for the structure of the problem.

Our main contribution is the development of the generic branch-cut-and-
price solver GCG.

It provides the possibility to easily check whether a branch-cut-and-price
approach for a problem is promising. Instead implementing a branch-cut-and-
price solver form scratch or at least adding some problem specific plugins into
a branch-cut-and-price framework, one only needs to define the structure for
the decomposition in an additional file. The problem is then automatically
reformulated by GCG and solved; pricing, branching and cutting plane separa-
tion is performed in a generic way. If the approach turns out to be promising,
the performance of GCG can further be enhanced by replacing generic parts
of the solver by problem specific ones.

We studied how some concepts that are successfully used in LP based
branch-and-cut MIP solvers can be transferred to the branch-cut-and-price
approach, using the example of the capacited p-median problem. By perform-
ing domain propagation in the original problem and transferring its results
into the extended problem, we enforce proper variables [96]. This slightly
improved the performance of GCG. It turned out that using pseudocosts to
select the variable to branch on has a big impact: it essentially halved the
solving time. Furthermore, we tried to separate cutting planes in the original
problem, but did not find any for the problems classes regarded in this the-
sis. It seems that the reason for this is the special structure of the problems.
However, for more general problems, cutting planes were found and could
improve the solving capabilities of GCG.

For the RAP instances, we demonstrated that the branch-cut-and-price
approach can perform well even if the problem does not have a bordered block
diagonal structure right from the beginning. Since this problem has another
special structure, we see this as an encouragement that this approach should
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be tested for further problems with other special structures.
There are still many concepts that should be investigated and integrated

to further enhance the solving capabilities of GCG.
For the column generation process, apart from incorporating further prob-

lem specific pricing solvers, stabilization of the dual variables [64, 57] is one
of the most promising concepts. During the column generation process, the
dual variables may highly oscillate. Through stabilization techniques, e.g.,
penalizing big differences to the value of the dual variable in the last solution,
this is reduced which typically improves the column generation performance.

For the branching process, it remains to be investigated whether reliability
branching—one of the most effective branching rules in LP based branch-and-
cut—can successfully be transferred to the branch-cut-and-price approach.
Furthermore, some more of the branching rules described in Chapter 5 should
be incorporating in GCG in future releases.

Also the separation capabilities of GCG could be further enhanced by en-
abling separation of cutting planes in the extended problem and adding fur-
ther separators for the original problem that do not need any information
about the LP basis.

Finally, one of the primary targets for the future will be the development
of further primal heuristics. On the one hand, we need heuristics that work
on the original formulation and do not need to solve its LP relaxation. On
the other hand, further heuristics in the extended problem that consider
the branch-cut-and-price approach could be investigated. For example, after
finishing the column generation process at a node, one could try to solve the
corresponding extended problem, that contains just the subset of variables
also contained in the RMP, to optimality with a branch-and-cut approach
without further pricing of variables.

The most challenging question, however, is to investigate whether there
really is a significant share of problems for which the generic branch-cut-and-
price approach is more effective than an LP based branch-and-cut algorithm,
even when one does not know about a possibly contained structure. This
requires detecting whether it may pay off to reformulate the given MIP and
to decide on how the reformulation is done.



Appendix A

Zusammenfassung (German
Summary)

Viele Optimierungsprobleme lassen sich als gemischt-ganzzahlige Programme
(MIPs) fomulieren. Obwohl das Lösen von MIPs NP-schwer ist [86], lassen
sich viele dieser Probleme von aktuellen MIP-Lösern in angemessener Zeit
lösen (siehe z.B. Koch [55]). Die meisten dieser Löser basieren auf einem
Branch-and-Cut-Ansatz, der eine Kombination aus der exakten Branch-and-
Bound-Methode und Schnittebenenverfahren ist.

In dieser Arbeit haben wir eine andere Methode zum Lösen von MIPs
betrachtet, die Branch-Cut-and-Price-Methode. Genau wie der Branch-and-
Cut-Ansatz kombiniert sie Branch-and-Bound und Schnittebenenverfahren,
zusätzlich verwendet sie jedoch noch das Konzept der Spaltengenerierung.
Ihr Erfolg basiert auf einer Dekomposition des Problems in ein koordinieren-
des Problem und ein oder mehrere Subprobleme. Das koordinierende Prob-
lem enthält exponentiell viele Variablen, die jedoch nicht explizit behandelt
werden, sondern implizit betrachtet und nur dann per Spaltengenerierung
zum Problem hinzugefügt werden, wenn sie dessen aktuelle Lösung verbessern
können. Um solche Variablen zu finden, werden die Subprobleme gelöst,
was oft sehr effektiv mit einem Algorithmus erfolgen kann, der eine spezielle
Struktur der Probleme ausnutzt.

Diese Arbeit behandelt den vom Autor entwickelten generischen Branch-
Cut-and-Price-Löser GCG.

Nach grundlegenden Definitionen und einem kurzen Überblick über die
Geschichte des Branch-Cut-and-Price-Ansatzes in Kapitel 1 stellen wir in
Kapitel 2 die Dantzig-Wolfe-Dekomposition für MIPs vor, auf der unsere
Implementation beruht.

Im 3. Kapitel präsentieren wir zunächst das Branch-Cut-and-Price-
Framework SCIP, auf dem unser Branch-Cut-and-Price-Löser GCG aufbaut.
Danach beschreiben wir die Struktur und den allgemeinen Lösungsablauf des
Lösers GCG. Er benötigt neben dem originalen Problem weitere Informationen
bezüglich dessen Struktur, anhand derer eine automatische Dekomposition
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durchgeführt wird. Im Anschluß werden sowohl das originale als auch das
durch die Dekomposition erhaltene erweiterte Problem simultan gelöst.

Die folgenden drei Kapitel behandeln die wichtigsten Bestandteile des
Branch-Cut-and-Price-Lösers GCG. In Kapitel 4 widmen wir uns dem Lösungs-
prozess der LP-Relaxierung des erweiterten Problems mit Hilfe von Spalten-
generierung. Der Branching-Prozess ist Thema des 5. Kapitels, während wir
in Kapitel 6 die Generierung von Schnittebenen behandeln. In jedem dieser
Kapitel präsentieren wir zunächst einen Überblick der zugrunde liegenden
Theorie, legen dann implementatorische Entscheidungen dar und schließen
mit Ergebnissen unserer Testrechnungen sowie deren Auswertung.

Im 7. Kapitel präsentieren wir weitere Testergebnisse. Wir betrachten
verschiedene Strategien bezüglich des Spaltengenerierungsprozesses. Nach-
dem wir einige Varianten bereits im 4. Kapitel aufgrund ihrer schlechten Ef-
fektivität ausschließen konnten, zeigt sich, dass keine der anderen getesteten
Varianten eindeutig überlegen ist. Die standardmäßig verwendete Strategie
liefert im Allgemeinen gute Ergebnisse, es gibt jedoch auch Alternativen,
die auf einzelnen Klassen von Problemen überlegen, auf anderen dafür je-
doch unterlegen sind. Dies zeigt, dass die Effektivität dieser Strategien
sehr stark vom Problem und seiner Struktur abhängt. Um die Struktur
der Subprobleme auszunutzen, bietet GCG die Möglichkeit, problemspezifische
Lösungsmethoden einzubinden. Wird diese Möglichkeit nicht genutzt, werden
die Subprobleme für die Spaltengenerierung, aufgrund des von GCG verfolgten
generischen Ansatzes, standardmäßig als allgemeines MIP mit Hilfe von SCIP
gelöst. Wir testen den Einfluss einer problemspezifischen Lösungsmethode
auf die Rechenzeit für eine der betrachteten Klassen von Problem und erzie-
len dadurch eine Beschleunigung von ca. 160%.

Des Weiteren untersuchen wir den Effekt einiger weiterer Methoden, die
den Lösungsprozess beschleunigen sollen. Es ergibt sich, dass die Verwen-
dung von Pseudokosten im Zusammenhang mit dem Branching-Prozess eine
ähnliche Verbesserung der Leistung bewirkt, wie sie schon für Branch-and-
Cut-Löser gezeigt wurde: Die durchschnittliche Lösungszeit für die betrach-
tete Klasse von Problemen wird halbiert. Das frühzeitige Beenden des Spal-
tengenerierungsprozesses unter bestimmten Umständen führt immerhin noch
zu einer Reduzierung der durchschnittlichen Lösungszeit von ca. 7%. Die
weiteren getesteten Methoden haben wenig bis gar keinen Einfluss auf die
durchschnittliche Rechenzeit.

Abschließend ziehen wir einen Vergleich zwischen dem Branch-and-Cut-
Löser SCIP und dem Branch-Cut-and-Price-Löser GCG. Die Eignung der ver-
wendeten Probleme für den Branch-Cut-and-Price-Ansatz war schon vorher
aufgrund problemspezifischer Implementationen bekannt. Wir zeigen, dass
GCG für diese Probleme – trotz des generischen Ansatzes – bessere Ergebnisse
als ein aktueller Branch-and-Cut-basierter MIP Löser erzielt.

Wir sehen das als Motivation, diesen Ansatz in Zukunft weiter zu verfol-
gen und den generischen Branch-Cut-and-Price Löser GCG weiter auszubauen.
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Notation and List of
Parameters

We review the most important symbols used in this thesis. We start with
the most important general mathematical notation. After that, we list the
symbols used in the context of the Dantzig-Wolfe decomposition and their
meaning. Finally, we present the parameters that can be used to tune GCG,
the corresponding symbol used in the thesis and their effect.

General Mathematical Notation

Symbol Definition

N the natural numbers N = {1, 2, 3, . . . }
Z the integer numbers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Z+ the non-negative integer numbers Z+ = {0, 1, 2, 3, . . . }
Q the rational numbers
Q+ the non-negative rational numbers: Q+ = {x ∈ Q | x ≥ 0}
R the real numbers
R+ the non-negative real numbers: R+ = {x ∈ R | x ≥ 0}
[n] the set [n] := {1, . . . , n} for n ∈ N
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Symbols used in in the context of the Dantzig-Wolfe decomposition

Symbol Definition

K Number of blocks in the original problem.
xk Variable vector corresponding to block k ∈ [K].
nk Number of variables corresponding to block k ∈ [K].
n?

k Number of integer variables corresponding to block k ∈ [K].
ck Objective function coefficients corresponding to xk.
mA Number of linking constraints.
mk Number of structural constraints of block k ∈ [K].
Ak Coefficient matrix of xk w. r. t. the linking constraints.
b Right-hand side of the linking constraints.
Dk Coefficient matrix of xk w. r. t. the strcutural constraints of block

k ∈ [K].
dk Right-hand side of the strcutural constraints of block k ∈ [K].
Xk The set of solutions xk that fulfill the integrality restrictions as

well as the structural constraints of block k ∈ [K].
conv(Xk) The convex hull of Xk.
Pk Set of points represented by variables in the extended problem

(extreme points for the convexification approach, extreme points
and some inner points for the discretization approach).

Rk Set of rays represented by variables in the extended problem.
RMP The restricted master problem.
P̄k Set of points with corresponding variables contained in the RMP.
R̄k Set of rays with corresponding variables contained in the RMP.
λk Vector of variables corresponding to points and rays of block k ∈

[K] (or a subset of them for the RMP).
λk

p Variable corresponding to point p ∈ Pk (or p ∈ P̄k for the RMP).
λk

r Variable corresponding to ray r ∈ Rk (or r ∈ R̄k for the RMP).
ckp Coefficient of variable λk

p in the objective function.
ak

p Coefficient of variable λk
p in the linking constraints.

ckr Coefficient of variable λk
r in the objective function.

ak
r Coefficient of variable λk

r in the linking constraints.
L Number of identity classes (w.l.o.g. represented by the first L

blocks).
K` Set of blocks that are identical to block ` ∈ [L] (including `).
λ̃`

p Aggregated variable of identity class ` ∈ [L] corresponding to a
point p ∈ P`.

λ̃`
r Aggregated variable of identity class ` ∈ [L] corresponding to a

ray r ∈ R`.
π Dual variables corresponding to the linking constrains in the

RMP.
ρ Dual variables corresponding to the convexity constrains in the

RMP.
c̄?k Optimal objective value of the pricing problem corresponding to

block k ∈ [K].
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Pricing Parameters

Parameter Symbol Description

maxvarsroundfarkas Mf Maximum number of variables created in
one Farkas pricing round.

mipsrelfarkas Rf Relative number of pricing problems solved
in one Farkas pricing round. If this does
not suffice to find new variables, pricing is
continued until a problem was solved that
gives rise to new variables.

maxvarsroundredcostroot Mr Maximum number of variables created in
one reduced cost pricing round (at first for
all nodes, since Chapter 7 only for the root
node).

mipsrelredcostroot Rr Relative number of pricing problems solved
in one reduced cost pricing round (at first
for all nodes, since Chapter 7 only for the
root node). If this does not suffice to find
new variables, pricing is continued until a
problem was solved that gives rise to new
variables.

maxvarsroundredcost M̃r Maximum number of variables created in
one reduced cost pricing round at nodes
after the root node.

mipsrelredcost R̃r Relative number of pricing problems solved
in one reduced cost pricing round at nodes
after the root node. If this does not suffice
to find new variables, pricing is continued
until a problem was solved that gives rise
to new variables.

maxsolsprob Mp Maximum number of variables created per
pricing problem in a pricing round.

maxroundsredcost maxrounds Maximum number of reduced cost pricing
rounds at a node.

sorting sorting Defines the sequence in which pricing prob-
lems are solved.

onlybest onlybest Determines whether the best found vari-
ables (TRUE ) are added instead of the first
found ones (FALSE ).

useheur useheur Determines whether heuristic pricing
should be used (TRUE ).

In GCG, all these parameters are named “pricing/masterpricer/”, followed
by the parameter name listed in the table.
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Branching Parameters

Parameter Symbol Description

usepseudocost usepseudocosts Determines whether the pseudocost
(TRUE ) or the most fractional (FALSE )
variable selection rule should be used for
branching on original variables.

enforcebycons Determines whether the branching restric-
tions are enforced in the master prob-
lem (TRUE ) or in the pricing problems
(FALSE ).

In GCG, all these parameters are named “branching/orig/”, followed by
the parameter name listed in the table.

Relaxation Parameters

Parameter Symbol Description

discretization usedisc Determines whether the discretization ap-
proach is used, if possible.

aggregateblocks aggrblocks Determines whether identical blocks are
aggregated (TRUE ) or treated indepen-
dently (FALSE ) (only when discretization
approach used).

enforceproper enfoproper Determines whether proper variables are
enforced (TRUE ) or not (FALSE ).

In GCG, all these parameters are named “relaxing/gcg/”, followed by the
parameter name listed in the table.
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Problems

C.1 The Bin Packing Problem

In the (one-dimensional) bin packing problem (BPP), we are given a finite
number of items i ∈ I together with corresponding weights wi ≥ 0, i ∈ I .
The goal is to assign all items to bins in a way such that the capacity C of
each bin is not exceeded and the number of bins that are used is minimized.

The bin packing problem is known to be NP-hard [34]. Besides many
approximation algorithms that have been proposed for the BPP (for a survey,
see [19]), there are also some exact solving methods, see e.g., [62, 90]. We
will not go into further detail about these solution methods in this section,
we only present two different formulations for the BPP and the test sets used
for our computational experiments.

The BPP can be modeled as a MIP, using an assignment formulation.
Therefor, a finite number n of bins is needed. One possibility is to set
n = |I|, on the other hand, if we know a feasible solution to the problem,
e.g., computed by a heuristic, we can set n to the number of bins used in this
solution.
Model C.1 (BPP: assignment formulation)

z?
BPP = min

n∑
j=1

yj

s.t.
n∑

j=1

xi,j = 1 ∀i ∈ I (C.1)

∑
i∈I

wixi,j ≤ Cyj ∀j ∈ [n] (C.2)

xi,j ∈ {0, 1} ∀i ∈ I, j ∈ [n]
yj ∈ {0, 1}. ∀j ∈ [n]

The x variables represent the assignment of items to bins: xi,j = 1 corre-
sponds to assigning item i to bin j. The y variables model the usage of the
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bins: bin j is used if and only if yj = 1. Hence, in the assignment formula-
tion, we minimize the number of bins that are used, while constraints (C.1)
assure that each item is assigned to exactly one bin and constraints (C.2)
guarantee that items are only assigned to bins that are used and that the
bin’s capacity is not exceeded.

We distinguish the bins in this formulation although there actually is no
difference between two bins, so it is highly symmetric: For each solution, we
obtain a huge number of equivalent solutions by permuting the bins. This
typically leads to a poor performance when solving the BPP with a branch-
and-cut method.

An alternative formulation is the so-called set partitioning formulation.
It overcomes the symmetry and leads to a stronger dual bound [60], in return,
it contains an exponential number of variables.

Model C.2 (BPP: set partitioning formulation)

z?
BPP = min

∑
S∈S

λS

s.t.
∑
S∈S:
i∈S

λS = 1 ∀i ∈ I (C.3)

λS ∈ {0, 1} ∀S ∈ S

with S =
{
S ⊆ I |

∑
i∈S wi ≤ C

}
.

The set S contains all subsets of items that fit into one bin. In this for-
mulation, we choose a minimal number of subsets S ⊆ S and assure by
constraints (C.3) that each item is part of exactly one of the chosen subsets.

By applying the Dantzig-Wolfe decomposition presented in Chapter 2
to the assignment formulation of the bin packing problem, treating con-
straints (C.1) as linking constraints and constraints (C.2) as structural con-
straints, we can obtain to this formulation, too. Actually, we get the set
partitioning formulation mentioned above when we use the discretization ap-
proach, aggregate identical blocks and omit the convexity constraints, that
are redundant in this case. If we used the convexification approach, we would
get a slightly different model with n identical subsets Sj , one for each bin.

For our computational experiments, we used a part of the instances pro-
vided at [84], in particular all instances with 50, 100, and 200 items contained
in data set 1. We denote by bindata1-n1, bindata1-n2, and bindata1-n3
the sets of instances with 50, 100, and 200 items, respectively. Each set can
be devided into nine classes with 20 instances each. The classes are defined
by a capacity C ∈ {100, 120, 150} and the interval used to choose the weights.
These weights are uniformly distributed random integer numbers chosen from
one of the intervals [1, 100], [20, 100], and [30, 100]. Because of the large num-
ber of instances per test set, we also defined smaller test sets bindata1-n1s,
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bindata1-n2s, and bindata1-n3s with 18 instances per test set, two of each
class. We will primary use these small test sets for the computations, only
in Chapter 7, we present results for the complete test sets, too.

For the assignment formulation of an instance, we need a maximum num-
ber n of used bins. We set n = 1.5·OPT with OPT being the optimal solution
value of the instance (listed at [84]). Furthermore, we used a set covering
approach rather than a set partitioning approach, so the assignement con-
straints (C.1) change to

n∑
j=1

xi,j ≥ 1 ∀i ∈ I (C.4)

assuring that each item is assigned to at least one bin. For a given solution
to the set covering model, a solution to the Model C.1 can be constructed by
assigning each item to exactly one of the bins it is assigned to in the given
solution. The set covering formulation allows to construct feasible solutions
more easily and is numerically more stable.

We treat constraints (C.4) as linking constraints and constraints (C.2) as
structural constraints when solving the bin packing problems with GCG.

C.2 The Vertex Coloring Problem

The vertex coloring problem (VCP) resembles the bin packing problem. Given
an undirected graph G = (V,E), we want to color the nodes V such that ad-
jacent nodes get different colors and we use as few colors as possible. Instead
of assigning items to bins, we assign nodes to colors. In contrast to the bin
packing problem, the set of nodes that may be assigned to one color is not
limited by a capacity, but by the edges of the graph: the nodes that get the
same color have to form a stable set in the graph, i.e., no two nodes of the
set are adjacent.

The VCP is known to be NP-hard (see [34]). For a broader survey of
the VCP, its applications as well as algorithmic and computational results,
we refer to [72, 58]. In the following, we will present two formulations for
the VCP and the set of test instances that we used for our computational
experiments.

The first possible formulation of the VCP is the following assignment
formulation. It needs a limited number n of colors. For example, we can
always set n = |V |, which is an upper bound on the number of colors needed.
If we know a feasible solution to the problem, e.g., computed by a heuristic,
we can also set n to the number of colors needed for this solution.
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Model C.3 (VCP: assignment formulation)

z?
V CP = min

n∑
j=1

yj

s.t.
n∑

j=1

xv,j = 1 ∀v ∈ V (C.5)

xv,j ≤ yj ∀v ∈ V, j ∈ [n] (C.6)
xu,j + xv,j ≤ 1 ∀e = (u, v) ∈ E, j ∈ [n] (C.7)

xv,j ∈ {0, 1} ∀v ∈ V, j ∈ [n]
yj ∈ {0, 1} ∀j ∈ [n]

The x variables represent the assignment of nodes to colors: xv,j = 1 if and
only if node v gets color j. The y variables correspond to the usage of the
colors, color j is used if and only if yj = 1. Constraints (C.5) assure that
each node gets exactly one color and constraints (C.6) guarantee that the
y variables are set correctly. Finally, constraints (C.7) ensure that adjacent
nodes get different colors.

The assignment formulation has two essential drawbacks: There actually
is no difference between the colors, but we have to distinguish them in the
model, so it contains a high degree of symmetry. For each solution, by
permuting the colors, we get a huge set of equivalent solutions. On the
other hand, the LP relaxation of Model C.3 is extremely weak: By setting
y1 = y2 = 1 and xv,1 = xv,2 = 1

2 for each node v ∈ V , we can construct a
feasible solution of the relaxation with value 2 for each graph.

In order to overcome these drawbacks, we can formulate the VCP as a
set partitioning problem with an exponential number of variables.

Model C.4 (VCP: set partitioning formulation)

z?
V CP = min

∑
S∈S

λS

s.t.
∑
S∈S:
v∈S

λS = 1 ∀v ∈ V (C.8)

λS ∈ {0, 1} ∀S ∈ S

with S = {S ⊆ V | u /∈ S ∨ v /∈ S ∀e = (u, v) ∈ E}

A minimum number of subsets S ⊆ S is chosen in a way such that each node
is part of one of the subsets. In fact, this formulation looks quite similar to
the set partitioning formulation of the bin packing problem, except for the
definition of the set S, that contains only stable sets this time.
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name nodes edges name nodes edges

1-FullIns 3 30 100 miles500 128 2340
1-FullIns 4 93 593 miles750 128 4226
2-FullIns 3 52 201 mulsol.i.1 197 3925
2-Insertions 3 37 72 mulsol.i.2 188 3885
3-FullIns 3 80 346 mulsol.i.3 184 3916
4-FullIns 3 114 541 mulsol.i.4 185 3946
4-FullIns 4 690 6650 mulsol.i.5 186 3973
5-FullIns 3 154 792 myciel3 11 20
anna 138 986 myciel4 23 71
david 87 812 queen6 6 36 580
DSJC125.9 125 6961 queen7 7 49 952
fpsol2.i.1 496 11654 queen8 8 64 1456
games120 120 1276 queen9 9 81 2112
homer 561 3256 queen10 10 100 2940
huck 74 602 zeroin.i.1 211 4100
jean 80 508 zeroin.i.2 211 3541
miles1000 128 6432 zeroin.i.3 206 3540
miles1500 128 10396 will199GPIA 701 7065
miles250 128 774

Table C.1: Test set coloring-all of vertex coloring instances. Instances
printed in bold face are the ones contained in test set coloring, which was
used for all computations except for the comparison to SCIP

This formulation is also obtained by applying the Dantzig-Wolfe decom-
position presented in Chapter 2 to the assignment formulation of the vertex
coloring problem, treating constraints (C.5) as linking constraints and con-
straints (C.6) and (C.7) as structural constraints. Using the discretization
approach, we can aggregate the identical blocks, omit the convexity con-
straints and obtain Model C.4. For the convexification approach, we would
get a slightly different model with n identical subsets Sj , one for each color.

For our computational experiments, we used a subset of the set of vertex
coloring instances given at [46]. We list the instances contained in the com-
plete test set coloring-all in Table C.1 as well as the number of nodes and
edges for each instance. Instances printed in bold face are the ones contained
in the smaller test set coloring.

In order to obtain the assignment formulation of an instance, we set
n = 1.5 ·OPT with OPT being the optimum of the instance, previously com-
puted by a specialized branch-and-price solver. Furthermore, we used a set
covering approach rather than a set partitioning approach, so the assignement
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constraints (C.5) change to

n∑
j=1

xv,j ≥ 1 ∀v ∈ V (C.9)

assuring that each node gets at least one color. Given a solution to the set
covering model, a solution to the Model C.3 can be constructed by choosing
exactly one of the assigned colors. The set covering formulation allows to
construct feasible solutions more easily and is numerically more stable.

When solving the coloring instance with GCG, we treat constraints (C.9) as
linking constraints and constraints (C.6) and (C.7) as structural constraints.

C.3 The Capacitated p-Median Problem

The p-median problem (PMP) is a classical location problem. Let N be the
set of nodes of a graph, representing sites where users are placed, and M ⊆ N
be the set of potential location sites. The objective is to choose p medians
(facilities) of this set M in a way such that the sum of the distances from
each user to its nearest facility is minimized. The distance from user i ∈ N
to facility j ∈M is denoted by di,j ∈ Z+. The PMP is NP-hard [34].

The capacitated p-median problem (CPMP) is a generalization of the
PMP, where each user i ∈ N has a demand qi ∈ Z+ while for each node
j ∈M , a facility placed at this node would have a production capacity of at
most Qj ∈ Z+. Again, we have to choose p medians and assign users to the
medians in a way such that the sum of the distances from each user to the
assigned facility is minimized. Additionally, we have to respect the capacity
restrictions, i.e., the total demand of nodes assigned to one facility must not
exceed its capacity. For more details about the CPMP and solution methods,
we refer to [15, 17] and the references given there.

The assignment formulation for the CPMP is the following:

Model C.5 (CPMP: assignment formulation)

z?
CPMP = min

∑
i∈N

∑
j∈M

di,jxi,j

s.t.
∑
j∈M

xi,j = 1 ∀i ∈ N (C.10)

∑
j∈M

yj = p (C.11)

∑
i∈N

qixi,j ≤ Qjyj ∀j ∈M (C.12)

xi,j ∈ {0, 1} ∀i ∈ N, j ∈M
yj ∈ {0, 1}. ∀j ∈M
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The x variables represent the assignment of users to facilities: xi,j = 1
means that user i is served by facility j. The y variables correspond to the
opening of the facilities: yj = 1 if and only if facility j is opened. Con-
straint (C.11) ensures that exactly p facilities are opened. Again, the con-
straints (C.10) assure that each user is served by exactly one facility and
constraints (C.12) guarantee that users can only be served by opened facili-
ties and that the capacitys of the facilities is not exceeded.

This formulation contains not as much symmetry as the assignment for-
mulations of the bin packing problem and the vertex coloring problem. Fa-
cilities placed at different nodes may have different capacities so that a set
of users can be assigned to one facility but exceeds the capacity of a facility
placed at another node. Moreover, even if all facilities have the same capac-
ity, reassigning a set of users to a different facility or permuting the facilities
of two or more sets usually leads to significant changes in the objective func-
tion value since the distance between user and assigned facility is respected
in the objective function.

Nevertheless, we can formulate the capacitated p-median problem as a
set partitioning problem with an exponential number of variables in order to
get a tighter lower bound.

Model C.6 (CPMP: set partitioning formulation)

z?
CPMP = min

∑
j∈M

∑
S∈Sj

cjSλ
j
S

s.t.
∑
j∈M

∑
S∈Sj :
i∈S

λj
S = 1 ∀i ∈ N (C.13)

∑
S∈Sj

λj
S ≤ 1 ∀j ∈M (C.14)

∑
j∈M

∑
S∈S|

λj
S = p (C.15)

λj
S ∈ {0, 1} ∀S ∈ Sj , j ∈M

with Sj =
{
S ⊆ N |

∑
i∈S qi ≤ Qj

}
and cjS =

∑
i∈S di,j for S ∈ Sj.

For each possible location of a facility j ∈ M , the set Sj ⊆ 2N contains
all subsets of users that have a combined demand that does not exceed the
capacity of this facility. For each of these sets S ∈ Sj , we define a binary
variable λj

S that represents the decision of placing a facility at node j and
assigning all users in S to that facility. Its objective function coefficient is
equal to the sum of distances between the users in S and the facility placed
at node j. Constraints (C.13) assure that each user is served by one facility,
constraints (C.14) and constraints (C.15) ensure that exactly p facilities are
opened, but no more than one at each node.
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Model C.6 can be obtained by applying the Dantzig-Wolfe decomposition
(see Chapter 2) to the assignment formulation (Model C.5), treating con-
straints (C.10) and (C.11) as linking constraints and constraints (C.12) as
structural constraints. This is also the structure that we use when solving
the CPMP instances with GCG.

For our computational experiments, we used the set [14] of test instances
for the CPMP, that were previously used in [15, 17]. The instances are
named pFN − n, where N ∈ {50, 100, 150, 200} is the number of users,
F ∈

{
N
10 ,
⌈

N
4

⌉
,
⌈

N
3

⌉
, 2N

5

}
is the number of facilities that must be opened,

i.e., the value p of the problem definition, and n is a consecutive numbering
of the ten instances for each combination of N and F . For each instance, all
facilities have the same capacity C =

⌈
12N

p

⌉
.

We defined four testsets cpmp50, cpmp100, cpmp150, and cpmp200
containing the instances with 50, 100, 150, and 200 users, respectively. In or-
der to reduce the computational effort, we also defined small testsets
cpmp50s, cpmp100s, cpmp150s, and cpmp200s.

For each number of users N up to 150, we removed every second instance
from the corresponding complete test set and obtained a small test set with
20 instances, five instances for each number of facilities F . The instances
with 200 users are the hardest ones, especially those with 50, 66, and 80
facilities hit the time limit in most of the cases. Therefore, we chose only
three instances for each number of facilities, and we chose primarily those
instances that could be solved within the time limit.

C.4 A Resource Allocation Problem

Finally, we regard a generalized knapsack problem [13] that does not have a
bordered block diagonal structure. Given a number of periods 1 ≤ n ≤ N
and items i ∈ I, each item has a profit pi, a weight wi, and a starting and
ending period. The periods are implicitly given by the sets I(n) ⊆ I, n ∈ [N ],
that contain all items that are alive in period n. In each period, the knapsack
has capacity C and items consume capacity only during their life time. The
goal is to maximize the sum of profits of the selected items in such a way that
for each period, the capacity is not exceeded. The problem can be modelled
in the following way:

Model C.7 (RAP)

z?
RAP = max

∑
i∈I

pixi

s.t.
∑

i∈I(n)

wixi ≤ C ∀n ∈ [N ] (C.16)

xi ∈ {0, 1} ∀i ∈ I.
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...

Figure C.1: Structure of the constraint maxtrix of RAP problems. Each
rectangle represents the non zero entries of one constraint.

An item i is selected if and only if the corresponding variable xi has value
1. Constraints C.16 assure that for each period, the capacity is respected.

By ordering the columns, we can obtain a special structure of the con-
straint matrix for the RAP problems which is pictured in Figure C.1.

The matrix can be transformed into block structure by splitting the pe-
riods [N ] into groups of size M (see [13]). We set G =

⌈
N
M

⌉
, and define

N(g) = {(g − 1)M + 1, . . . , gM} ∩ [N ] for g ∈ [G].
Additionally, let G(i) be the set of groups in which item i is alive and

I(g) be the items that are alive in at least one period of group g ∈ [G].
Furthermore, we denote by g(i) the first group in which item i is active, i.e.,
g(i) = min{g ∈ G(i)}.

For each item i ∈ I and group g ∈ G(i), we create a copy xg
i of the variable

corresponding to that item and ensure that all these copies get the same value
in each solution by additional constraints. Furthermore, we substitute the
original variables xi by xg(i)

i in the objective function.
This leads to the following model that has a bordered block diagonal

structure.

Model C.8 (RAP: block diagonal)

z?
RAP = max

∑
i∈I

pix
g(i)
i

s.t. xg
i = x

g(i)
i ∀i ∈ I, g ∈ G(i) \ {g(i)} (C.17)∑

i∈I(n)

wix
g
i ≤ C ∀g ∈ G,n ∈ N(g) (C.18)

xg
i ∈ {0, 1} ∀i ∈ I, g ∈ G(i)

Constraints (C.17) assure that all copies corresponding to the same item
get the same value. An item i is chosen if and only if all copies xg

i , g ∈ G(i),
have value 1. Constraints (C.18) are equivalent to constraints (C.16) and
enforce that the capacities are respected for each period.

When solving the RAP problems with GCG, we use Model C.8 and perform
the Dantzig-Wolfe decomposition on it. Constraints (C.17) are treated as
linking constraints and transferred to the master problem, constraints (C.18)



144 Appendix C. Problems

go into the blocks. For the discretization approach, we obtain the following
extended problem:

Model C.9 (RAP: extended problem)

z?
RAP = max

∑
i∈I

pixi

s.t.
∑

S∈Sg :
i∈S

λg
S =

∑
S∈Sg(i):

i∈S

λ
g(i)
S ∀i ∈ I, g ∈ G(i) \ {g(i)} (C.19)

∑
S∈Sg

λg
S = 1 ∀g ∈ [G] (C.20)

λg
S ∈ {0, 1} ∀g ∈ [G], S ∈ Sg

with Sg =
{
S ⊆ I(g) |

∑
i∈I(n)∩S wi ≤ C ∀n ∈ N(g)

}
.

The set Sg contains all subsets of active items of group g that do not
violate the capacity constraints corresponding to the periods of this group.
Constraints (C.20) ensure that for each group, exactly one of these sets is
chosen, and constraints (C.19) enforce that items are either chosen in each
group in which they are active or in none of them.

For this type of problems, we used the test set described in [13], which
contains seven classes, each of which contains ten instances. In the same way
as it is done there, we consider grouping 32 and 64 periods and defined the
corresponding test sets rap32 and rap64, respectively. In order to reduce
the computational effort, we also defined small test sets rap32s and rap64s,
that contain both the same 21 instances, three instances of each class. As
far as possible, we chose instances that could be solved within a time limit
of one hour. The complete test set is presented in Table C.2, the instances
printed in bold face are the ones contained in the smaller test sets. They
were used for most computations except for the comparison with SCIP where
we used the complete test set. For each instance, we list the number of items
(column “|I|”) and the number of periods (column “N”).
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name |I| N name |I| N

new1 1 2071 768 new4 6 3774 1408
new1 2 2422 896 new4 7 4164 1536
new1 3 2756 1024 new4 8 4488 1664
new1 4 3104 1152 new4 9 4786 1792
new1 5 3433 1280 new4 10 5142 1920
new1 6 3789 1408 new5 1 2916 768
new1 7 4154 1536 new5 2 3424 896
new1 8 4476 1664 new5 3 3832 1024
new1 9 4797 1792 new5 4 4316 1152
new1 10 5129 1920 new5 5 4771 1280
new2 1 2071 768 new5 6 5403 1408
new2 2 2422 896 new5 7 5793 1536
new2 3 2756 1024 new5 8 6167 1664
new2 4 3104 1152 new5 9 6800 1792
new2 5 3433 1280 new5 10 7241 1920
new2 6 3789 1408 new6 1 5210 768
new2 7 4154 1536 new6 2 6057 896
new2 8 4476 1664 new6 3 6901 1024
new2 9 4797 1792 new6 4 7737 1152
new2 10 5129 1920 new6 5 8656 1280
new3 1 4948 768 new6 6 9370 1408
new3 2 5769 896 new6 7 10271 1536
new3 3 6721 1024 new6 8 11057 1664
new3 4 7382 1152 new6 9 11992 1792
new3 5 8266 1280 new6 10 13025 1920
new3 6 9002 1408 new7 1 3117 768
new3 7 9865 1536 new7 2 3594 896
new3 8 10661 1664 new7 3 4176 1024
new3 9 11448 1792 new7 4 4671 1152
new3 10 12498 1920 new7 5 5209 1280
new4 1 2071 768 new7 6 5628 1408
new4 2 2422 896 new7 7 6215 1536
new4 3 2763 1024 new7 8 6730 1664
new4 4 3103 1152 new7 9 7172 1792
new4 5 3434 1280 new7 10 7709 1920

Table C.2: Test set of RAP instances. Instances printed in bold face are
the ones contained in the small test sets rap32s and rap64s, which were
used for all computations except for the comparison to SCIP
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Appendix D

Tables

In this chapter, we present the results of our test runs in detail. The tables
all organized as follows. Let us clarify that all time measurements are given
in seconds.

Tables D.1 to D.10 provide information about the Farkas pricing process
at the root node, Tables D.11 to D.20 list details about the reduced cost pric-
ing process at the root node. Each table pictures the results for one test set,
the rows belong to different settings that are described in the corresponding
section. The columns list the number of pricing rounds, the number of pric-
ing problems that were solved, the number of variables that were created, the
pricing time, the LP solving time, the total time and the number of time outs.
Except for the number of time outs, all values are shifted geometric means
of the values of the individual instances of the test set. In the tables corre-
sponding to reduced cost pricing, the first five columns list just the values
corresponding to reduced cost pricing, i.e., we substracted for each instance
the values belonging to Farkas pricing. The total time listed, however, is the
total solving time of the master problem.

Tables D.21 to D.30 provide details about the branch-and-price process
for the single test sets. They are constructed in the same way as the previous
tables, except for two additional columns that list the number of branch-and-
bound nodes and the final gap.

Tables D.31 to D.40 present detailed results about the dual bound ob-
tained at the root node. These results are summarized in Section 6.4. We
list for each instance the optimal objective function value, if it is not known,
we list the objective function value of the best known solution and indicate
this with a star (*) behind the value. In the next columns, the dual bound,
the gap to the optimal or best known solution and the solving time of the
root node are listed for GCG as well as for SCIP with two different settings.
Setting “SCIP all cuts” corresponds to SCIP with default separation settings,
setting “SCIP no base” to SCIP without using cuts that need information
about the current LP basis. The dual bound and the gap obtained by SCIP
is colored red for an instance if GCG computed the tighter dual bound. If
SCIP obtained the tighter dual bound, it is colored blue. For both SCIP
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settings, we disabled strong branching and used most infeasible branching.
Strong branching increased the solving time of the root node and can lead to
stronger dual bounds which would distort the results since we just want to
compare the dual bounds after the relaxation is solved.

Tables D.41 to D.46 provide details about the computational experiments
concerning reduced cost pricing that are summarized in Section 7.1 Each
Table corresponds to one test set, the rows correspond to the single instances
of the test set. For each of the settings listed in the head row, we present
the number of variables created during the solving process, the final gap, the
number of branch-and-bound nodes and the total solving time in seconds. A
solving time of 3.600 denotes that the time limit of one hour was hit.

Tables D.47 to D.50 present details about the computational experiments
summarized in Sections 7.2 and 7.3. Each Table corresponds to one test set,
the rows correspond to the single instances of the test set. For each of the
settings listed in the head row, we present the final gap, the number of
branch-and-bound nodes and the total solving time in seconds. A solving
time of 3.600 denotes that the time limit of one hour was hit.

Finally, Tables D.51 to D.56 present detailed comparisons of GCG and
SCIP for the complete vertex coloring and CPMP test sets as well as for the
complete RAP test set, with both variants described in Section C.4, assigning
either 32 or 64 constraints to one block. These results are summarized and
interpreted in Section 7.4.
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pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 238.4 238.4 238.4 0.4 0.1 0.8 0/20
all vars 95.2 4756.7 12776.9 7.2 2.1 9.7 0/20
no sorting 2056.4 4858.7 2056.4 21.1 4.5 26.9 0/20
two vars 178.9 2079.9 319.6 1.2 0.1 1.5 0/20
2% 161.4 161.4 384.3 0.2 0.1 0.4 0/20
one prob 161.4 161.4 384.3 0.2 0.1 0.4 0/20

Table D.1: Computational results for Farkas pricing at the root node on test
set cpmp50s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 571.3 571.3 571.3 2.6 1.0 4.4 0/20
all vars 189.1 18904.4 64103.2 53.2 121.5 181.2 6/20
no sorting 6503.7 20301.2 6503.7 128.7 121.8 288.7 14/20
two vars 402.3 7512.5 731.9 6.2 0.7 7.8 0/20
2% 293.3 586.5 1526.1 1.1 1.0 2.8 0/20
one prob 337.9 337.9 1064.4 0.9 0.6 2.2 0/20

Table D.2: Computational results for Farkas pricing at the root node on test
set cpmp100s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 1011.4 1011.4 1011.4 9.7 5.4 17.2 0/20
all vars 237.4 35685.3 103094.7 92.9 217.6 300.0 20/20
no sorting 5303.5 24424.6 5303.5 110.5 174.0 299.6 20/20
two vars 660.5 16719.2 1211.0 19.9 3.3 25.2 0/20
2% 436.7 1309.8 3663.7 3.9 6.1 12.6 0/20
one prob 525.4 525.4 1841.7 2.7 3.0 7.7 0/20

Table D.3: Computational results for Farkas pricing at the root node on test
set cpmp150s



150 Appendix D. Tables

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 1457.7 1457.7 1457.7 30.4 17.6 57.6 0/12
all vars 266.7 53404.0 127254.4 134.8 158.7 299.9 12/12
no sorting 3301.2 28155.6 3301.2 156.9 70.1 299.3 12/12
two vars 898.4 28869.0 1649.2 51.5 8.7 68.2 1/12
2% 582.7 2330.5 6791.0 8.9 25.2 44.7 0/12
one prob 700.8 700.8 2676.9 5.4 8.4 20.1 0/12

Table D.4: Computational results for Farkas pricing at the root node on test
set cpmp200s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 241.1 241.1 241.1 3.8 0.1 6.8 0/28
all vars 145.4 3256.9 4507.9 38.4 0.6 40.5 0/28
no sorting 2240.2 3723.0 2240.2 168.9 14.7 243.8 11/28
two vars 216.7 634.6 411.3 8.3 0.1 10.6 0/28
2% 222.9 263.1 424.6 4.2 0.1 7.0 0/28
one prob 232.4 232.4 394.2 3.7 0.1 6.7 0/28
disc all 172.3 172.3 256.0 2.8 0.1 6.2 0/28
disc best 176.0 176.0 176.0 3.0 0.0 6.4 0/28

Table D.5: Computational results for Farkas pricing at the root node on test
set coloring

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 37.7 37.7 37.7 0.1 0.0 0.4 0/21
all vars 37.7 1336.9 37.7 2.0 0.0 2.3 0/21
no sorting 37.7 695.7 37.7 1.0 0.0 1.4 0/21
two vars 37.7 1336.9 37.7 2.0 0.0 2.3 0/21
2% 37.7 46.3 37.7 0.1 0.0 0.4 0/21
one prob 37.7 37.7 37.7 0.1 0.0 0.4 0/21

Table D.6: Computational results for Farkas pricing at the root node on test
set rap32s
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pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 19.0 19.0 19.0 0.0 -0.0 0.2 0/21
all vars 19.0 345.5 19.0 0.8 -0.0 1.0 0/21
no sorting 19.0 186.9 19.0 0.4 -0.0 0.6 0/21
two vars 19.0 345.5 19.0 0.8 -0.0 1.0 0/21
2% 19.0 19.0 19.0 0.0 -0.0 0.2 0/21
one prob 19.0 19.0 19.0 0.0 -0.0 0.2 0/21

Table D.7: Computational results for Farkas pricing at the root node on test
set rap64s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 227.3 227.3 227.3 0.2 0.0 0.4 0/18
all vars 60.4 2287.7 2725.0 1.6 0.1 1.9 0/18
no sorting 1979.9 13984.2 1979.9 107.4 1.2 109.0 2/18
two vars 172.1 952.8 324.9 0.6 0.0 0.8 0/18
2% 201.8 220.0 311.9 0.2 0.0 0.4 0/18
one prob 219.1 219.1 312.2 0.2 0.0 0.4 0/18
disc all 61.0 61.0 71.4 0.0 0.0 0.3 0/18
disc best 63.2 63.2 63.2 0.0 0.0 0.3 0/18

Table D.8: Computational results for Farkas pricing at the root node on test
set bindata1-n1s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 545.6 545.6 545.6 1.0 0.1 2.1 0/18
all vars 120.0 8825.0 12047.5 9.8 0.5 11.4 0/18
no sorting 4278.9 29857.4 4278.9 294.8 3.6 299.9 18/18
two vars 415.3 3302.7 790.6 2.9 0.1 4.0 0/18
2% 344.8 695.2 968.6 0.8 0.1 1.9 0/18
one prob 462.1 462.1 775.6 0.7 0.1 1.8 0/18
disc all 122.0 122.0 166.0 0.1 0.0 1.1 0/18
disc best 131.4 131.4 131.4 0.2 0.0 1.2 0/18

Table D.9: Computational results for Farkas pricing at the root node on test
set bindata1-n2s
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pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 1463.0 1463.0 1463.0 7.9 0.6 15.8 0/18
all vars 229.1 34721.0 54843.6 60.7 6.7 77.0 0/18
no sorting 4927.5 25133.5 4927.5 278.9 8.4 299.4 18/18
two vars 1118.9 13299.3 2152.0 19.3 0.7 27.2 0/18
2% 644.2 2301.5 3278.6 5.5 0.4 13.3 0/18
one prob 1352.8 1352.8 2539.6 7.7 0.9 15.8 0/18
disc all 230.8 230.8 362.5 0.4 0.0 8.0 0/18
disc best 256.6 256.6 256.6 0.7 0.0 8.4 0/18

Table D.10: Computational results for Farkas pricing at the root node on
test set bindata1-n3s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 21.7 753.3 1502.5 1.7 0.1 2.6 0/20
only best 307.4 15185.6 307.4 30.2 0.5 31.4 0/20
all vars 18.4 906.1 2414.9 2.2 0.1 3.1 0/20
100 best 22.2 1073.2 1554.0 2.7 0.1 3.5 0/20
one prob 508.1 3258.9 1110.1 9.6 1.3 11.6 0/20

Table D.11: Computational results for reduced cost pricing at the root node
on test set cpmp50s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 35.8 1539.0 2869.8 4.0 0.6 8.9 0/20
only best 665.7 66392.4 665.7 163.0 3.7 171.3 5/20
all vars 23.7 2320.0 7556.0 7.3 1.1 12.8 0/20
100 best 37.6 3628.3 3144.5 11.1 0.7 16.2 0/20
one prob 1070.0 12503.0 2533.4 34.6 6.7 47.0 1/20

Table D.12: Computational results for reduced cost pricing at the root node
on test set cpmp100s
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pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 51.3 2515.1 4339.5 7.7 1.7 27.2 0/20
only best 391.2 58091.2 391.2 276.0 5.2 299.6 20/20
all vars 27.9 4078.4 14925.7 16.4 3.6 38.3 0/20
100 best 53.8 7835.2 4766.0 29.5 2.2 49.9 0/20
one prob 1579.9 19389.8 4009.0 64.3 17.1 107.7 5/20

Table D.13: Computational results for reduced cost pricing at the root node
on test set cpmp150s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 69.6 3534.6 6073.8 12.6 4.2 73.4 0/12
only best 151.5 29303.2 151.5 221.9 4.3 299.2 12/12
all vars 31.1 6114.7 25224.5 29.6 8.2 95.2 1/12
100 best 67.1 13175.2 6234.3 58.2 4.9 120.7 1/12
one prob 1571.9 17727.2 4818.3 79.2 28.4 185.5 3/12

Table D.14: Computational results for reduced cost pricing at the root node
on test set cpmp200s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 40.5 487.3 1695.5 33.6 0.5 40.9 0/28
only best 45.4 834.7 45.4 51.3 0.2 58.3 0/28
all vars 31.8 603.2 2487.1 41.3 0.5 47.8 0/28
100 best 31.7 604.4 1397.9 40.7 0.3 47.1 0/28
one prob 49.0 82.8 231.1 5.8 0.2 12.2 0/28
disc all 70.2 71.3 292.0 6.2 0.2 11.4 0/28
disc best 79.0 80.0 79.0 7.2 0.2 12.4 0/28

Table D.15: Computational results for reduced cost pricing at the root node
on test set coloring
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pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 48.4 792.2 3646.1 177.5 0.6 178.8 0/21
only best 209.1 7376.6 208.7 1395.9 0.3 1396.9 13/21
all vars 17.9 680.8 4343.5 149.3 0.4 150.3 0/21
100 best 23.5 884.3 1443.9 185.1 0.2 185.9 0/21
one prob 340.0 3877.7 4121.1 934.6 4.4 940.2 8/21

Table D.16: Computational results for reduced cost pricing at the root node
on test set rap32s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 35.3 321.9 2539.0 289.6 0.2 290.2 0/21
only best 102.3 1779.2 102.2 1280.7 0.1 1281.2 14/21
all vars 15.7 302.6 2998.4 260.8 0.1 261.3 0/21
100 best 19.2 367.1 1142.0 309.8 0.1 310.1 0/21
one prob 149.6 832.4 2675.6 861.8 0.7 863.2 9/21

Table D.17: Computational results for reduced cost pricing at the root node
on test set rap64s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 34.2 937.4 1812.6 6.7 0.1 7.3 0/18
only best 53.1 1656.9 53.1 17.0 0.1 17.6 0/18
all vars 35.9 1146.4 2582.2 8.4 0.2 9.0 0/18
100 best 36.6 1175.9 1933.1 8.4 0.1 9.0 0/18
one prob 36.7 77.1 165.8 0.6 0.0 1.1 0/18
disc all 73.9 74.9 168.9 0.4 0.0 0.7 0/18
disc best 97.1 98.1 97.1 0.6 0.0 0.9 0/18

Table D.18: Computational results for reduced cost pricing at the root node
on test set bindata1-n1s
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pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 79.1 3370.1 6618.5 50.3 0.8 54.3 0/18
only best 129.8 8978.7 129.8 148.0 0.5 152.0 5/18
all vars 77.2 5225.8 15971.5 82.3 1.9 88.0 2/18
100 best 93.4 6354.1 7846.7 92.1 1.3 97.1 2/18
one prob 74.3 152.3 480.5 5.8 0.3 8.6 0/18
disc all 150.2 151.3 508.7 2.1 0.1 3.5 0/18
disc best 222.8 223.8 222.8 3.9 0.2 5.4 0/18

Table D.19: Computational results for reduced cost pricing at the root node
on test set bindata1-n2s

pricing problems variables pricing lp total time
setting rounds solved created time time time outs

default 132.6 6902.7 12848.5 101.8 4.2 126.6 2/18
only best 108.0 15728.1 108.0 276.5 1.4 295.2 16/18
all vars 98.6 13664.9 52565.7 236.1 13.5 274.2 14/18
100 best 113.7 16725.2 11885.3 237.1 4.4 261.5 11/18
one prob 114.0 276.5 839.3 9.1 1.9 31.3 0/18
disc all 283.4 284.4 1159.4 5.9 0.8 15.6 0/18
disc best 469.5 470.5 469.5 11.7 0.9 22.0 0/18

Table D.20: Computational results for reduced cost pricing at the root node
on test set bindata1-n3s
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pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

default 398.6 4771.1 1970.3 11.9 0.4 44.9 0.0 12.8 0/20
most frac. 564.7 7375.3 2078.1 19.4 1.0 82.5 0.0 20.7 0/20
master 395.3 4684.3 1965.2 11.6 0.5 44.6 0.0 12.5 0/20

Table D.21: Computational results for the branch-and-price process on test
set cpmp50s

pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

default 2052.9 81141.9 4700.2 170.1 6.0 587.1 0.1 184.7 1/20
most frac. 4646.5 218552.0 4878.4 433.3 12.5 1962.6 0.8 469.5 6/20
master 2001.8 79623.0 4641.4 166.4 6.5 596.2 0.2 181.7 1/20

Table D.22: Computational results for the branch-and-price process on test
set cpmp100s

pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

default 3519.4 168804.7 7417.9 428.8 21.0 847.6 0.7 493.5 5/20
most frac. 5861.6 346729.2 7210.4 802.9 28.9 2211.7 1.6 920.3 10/20
master 3516.4 168278.9 7559.2 429.1 24.2 830.4 1.0 501.0 5/20

Table D.23: Computational results for the branch-and-price process on test
set cpmp150s

pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

default 4545.1 405458.0 10307.3 1101.6 46.0 1753.3 0.2 1243.9 3/12
most frac. 9761.0 1023719.3 10925.2 2605.2 78.9 5577.7 2.2 2978.0 10/12
master 4737.6 427010.4 10021.6 1177.9 49.8 1926.6 0.3 1343.6 3/12

Table D.24: Computational results for the branch-and-price process on test
set cpmp200s
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pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

default 139.0 2361.6 3752.8 547.0 1.2 26.8 0.0 549.0 0/21
most frac. 155.3 2643.1 3768.7 613.6 1.3 32.9 0.0 615.8 1/21
master 142.1 2445.9 3764.6 567.8 1.3 27.3 0.0 569.8 0/21

Table D.25: Computational results for the branch-and-price process on test
set rap32s

pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

default 74.6 617.8 2592.5 556.9 0.3 9.5 0.0 557.5 1/21
most frac. 73.5 607.2 2586.6 547.1 0.2 9.4 0.0 547.7 1/21
master 72.7 604.3 2590.9 547.6 0.2 8.8 0.0 548.1 1/21

Table D.26: Computational results for the branch-and-price process on test
set rap64s

pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

conv. def. 299.1 1590.7 2931.5 13.9 0.3 8.6 0.0 14.4 0/18
conv. 315.6 366.7 522.0 1.8 0.1 11.0 0.0 2.1 0/18
disc. 143.4 142.0 243.5 0.9 0.0 2.2 0.0 1.1 0/18

Table D.27: Computational results for the branch-and-price process on test
set bindata1-n1s

pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

conv. def. 744.1 4947.8 9649.5 98.2 2.4 24.7 0.0 102.3 0/18
conv. 771.6 873.5 1415.0 13.2 1.0 20.8 0.0 15.1 0/18
disc. 308.6 294.5 660.4 4.7 0.3 10.9 0.0 5.6 0/18

Table D.28: Computational results for the branch-and-price process on test
set bindata1-n2s
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pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

conv. def. 2095.1 13438.4 22867.7 311.9 17.0 30.8 0.0 343.1 0/18
conv. 2245.7 2989.2 3932.0 48.3 7.8 31.4 0.0 61.2 0/18
disc. 595.7 581.9 1492.4 12.6 1.6 8.9 0.0 17.3 0/18

Table D.29: Computational results for the branch-and-price process on test
set bindata1-n3s

pricing problems variables pricing lp B&B total time
setting rounds solved created time time nodes gap time outs

conv. def. 584.5 2047.4 4578.7 129.7 6.5 84.4 1.6 151.2 1/28
conv. 1084.3 1397.7 1500.7 41.7 7.5 78.2 1.6 60.6 1/28
disc. 645.2 596.2 1791.9 57.0 3.6 52.3 0.0 65.9 0/28
disc. no aggr. 1038.0 1411.2 1451.1 39.6 6.4 69.3 1.6 56.0 1/28

Table D.30: Computational results for the branch-and-price process on test
set coloring
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

p550-1 713 705.00 1.13 3.70 702.55 1.49 1.50 703.33 1.38 0.40
p550-2 740 740.00 0.00 3.50 740.00 0.00 0.90 740.00 0.00 0.30
p550-3 751 749.00 0.27 5.20 748.88 0.28 1.60 748.88 0.28 0.40
p550-4 651 651.00 0.00 5.70 651.00 0.00 0.90 651.00 0.00 0.30
p550-5 664 664.00 0.00 6.60 664.00 0.00 1.40 664.00 0.00 0.40
p550-6 778 778.00 0.00 3.70 778.00 0.00 1.50 778.00 0.00 0.40
p550-7 787 778.25 1.12 4.10 775.38 1.50 1.50 775.61 1.47 0.40
p550-8 820 771.67 6.26 4.30 769.30 6.59 1.60 769.30 6.59 0.40
p550-9 715 712.40 0.36 3.60 710.93 0.57 2.50 710.93 0.57 0.60
p550-10 829 817.87 1.36 4.80 805.32 2.94 2.60 805.41 2.93 0.60
p1250-1 383 373.33 2.59 1.90 373.65 2.50 1.00 373.25 2.61 0.30
p1250-2 412 408.21 0.93 1.90 409.52 0.60 1.60 407.72 1.05 0.30
p1250-3 405 398.25 1.69 1.90 398.93 1.52 1.90 397.40 1.91 0.40
p1250-4 384 364.93 5.23 2.10 362.57 5.91 1.60 362.19 6.02 0.40
p1250-5 429 418.80 2.44 2.40 418.34 2.55 1.90 417.55 2.74 0.50
p1250-6 482 466.21 3.39 2.40 463.27 4.04 2.10 462.69 4.17 0.70
p1250-7 445 424.33 4.87 2.20 421.82 5.50 1.60 422.51 5.32 0.60
p1250-8 403 392.73 2.61 2.40 390.20 3.28 2.00 389.28 3.52 0.60
p1250-9 436 422.46 3.20 2.60 420.18 3.77 2.50 417.04 4.55 0.50
p1250-10 461 442.17 4.26 2.70 436.02 5.73 2.10 435.52 5.85 0.50
p1650-1 298 296.00 0.68 1.80 296.88 0.38 1.20 295.50 0.85 0.30
p1650-2 336 328.00 2.44 1.70 333.13 0.86 2.20 326.69 2.85 0.40
p1650-3 314 309.00 1.62 1.80 313.45 0.18 1.20 308.59 1.75 0.30
p1650-4 303 296.07 2.34 1.90 297.63 1.81 1.50 295.67 2.48 0.40
p1650-5 351 346.00 1.45 1.90 345.12 1.70 1.30 345.43 1.61 0.40
p1650-6 390 386.50 0.91 2.00 383.46 1.71 1.90 383.24 1.76 0.60
p1650-7 361 357.00 1.12 2.00 353.85 2.02 2.00 353.85 2.02 0.50
p1650-8 353 322.64 9.41 2.00 328.03 7.61 1.80 318.33 10.89 0.40
p1650-9 373 366.00 1.91 2.00 365.40 2.08 1.90 363.22 2.69 0.60
p1650-10 390 375.21 3.94 2.50 369.52 5.54 1.90 369.94 5.42 0.50
p2050-1 266 258.70 2.82 1.70 260.55 2.09 1.20 258.50 2.90 0.40
p2050-2 298 292.50 1.88 1.70 293.52 1.53 1.50 291.43 2.25 0.50
p2050-3 311 307.00 1.30 2.00 307.54 1.12 2.20 304.41 2.16 0.50
p2050-4 277 275.50 0.54 1.90 275.60 0.51 1.60 275.50 0.54 0.50
p2050-5 356 354.50 0.42 2.20 349.93 1.74 2.00 346.32 2.79 0.60
p2050-6 370 367.00 0.82 2.10 366.69 0.90 1.70 366.63 0.92 0.60
p2050-7 358 357.00 0.28 2.20 353.22 1.35 1.70 354.11 1.10 0.80
p2050-8 312 297.07 5.03 2.00 294.41 5.97 1.80 291.34 7.09 0.50
p2050-9 412 403.40 2.13 2.60 394.57 4.42 2.40 391.34 5.28 0.90
p2050-10 458 441.17 3.82 2.30 418.96 9.32 2.20 418.63 9.40 0.60

mean 441.49 2.15 2.65 439.80 2.51 1.73 438.35 2.91 0.48

Table D.31: Comparison of the dual bound obtained by SCIP and GCG on
test set cpmp50
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

p10100-11 1006 1001.07 0.49 30.10 998.98 0.70 3.90 998.98 0.70 2.70
p10100-12 966 958.49 0.78 12.30 955.72 1.08 4.40 955.82 1.07 2.70
p10100-13 1026 1021.55 0.44 13.70 1020.02 0.59 3.40 1020.00 0.59 2.00
p10100-14 982 971.75 1.05 15.10 968.10 1.44 3.90 968.71 1.37 2.70
p10100-15 1091 1080.41 0.98 15.40 1076.40 1.36 4.80 1076.40 1.36 3.10
p10100-16 954 951.33 0.28 18.90 948.19 0.61 4.20 948.49 0.58 2.80
p10100-17 1034 1025.28 0.85 13.30 1020.96 1.28 4.30 1022.51 1.12 3.30
p10100-18 1043 1031.90 1.08 13.40 1029.33 1.33 3.90 1029.38 1.32 2.50
p10100-19 1031 1026.26 0.46 13.80 1022.22 0.86 4.90 1022.19 0.86 3.30
p10100-20 1005 973.65 3.22 14.40 965.43 4.10 6.30 967.90 3.83 2.90
p25100-11 544 528.92 2.85 8.60 526.15 3.39 6.30 525.92 3.44 2.70
p25100-12 504 496.00 1.61 7.90 495.34 1.75 6.30 494.50 1.92 2.20
p25100-13 555 534.04 3.92 6.70 535.51 3.64 6.70 532.92 4.14 2.50
p25100-14 544 529.50 2.74 8.60 531.14 2.42 7.50 528.23 2.99 2.40
p25100-15 583 572.68 1.80 8.30 570.58 2.18 6.20 568.22 2.60 2.40
p25100-16 534 520.11 2.67 8.00 516.19 3.45 7.20 514.91 3.71 3.30
p25100-17 542 535.84 1.15 9.00 534.92 1.32 8.10 533.53 1.59 2.50
p25100-18 508 501.00 1.40 7.90 500.29 1.54 5.00 500.20 1.56 2.10
p25100-19 551 530.67 3.83 7.20 531.03 3.76 5.40 530.45 3.87 2.40
p25100-20 653* 522.63 24.95 10.00 510.24 27.98 8.90 510.24 27.98 2.80
p33100-11 414 405.83 2.01 7.60 406.66 1.80 5.80 404.43 2.37 2.50
p33100-12 391 374.75 4.34 6.80 375.05 4.25 3.90 373.43 4.71 2.00
p33100-13 446 440.50 1.25 6.10 441.89 0.93 5.40 439.26 1.53 2.10
p33100-14 447 434.00 3.00 7.20 431.94 3.49 6.40 431.80 3.52 2.60
p33100-15 474 469.38 0.99 7.30 471.47 0.54 6.60 468.96 1.07 2.50
p33100-16 447 430.43 3.85 7.30 432.25 3.41 7.50 428.96 4.20 2.80
p33100-17 431 423.33 1.81 7.20 423.66 1.73 3.80 423.33 1.81 2.10
p33100-18 456 430.69 5.88 8.00 438.64 3.96 9.80 429.14 6.26 2.40
p33100-19 445 430.67 3.33 7.50 431.77 3.06 5.20 429.26 3.67 2.30
p33100-20 460 450.96 2.00 8.40 448.69 2.52 10.80 442.70 3.91 3.20
p40100-11 415 405.83 2.26 7.90 404.90 2.49 8.00 397.27 4.46 2.30
p40100-12 377 364.25 3.50 7.00 363.00 3.86 6.60 360.94 4.45 2.90
p40100-13 412 404.83 1.77 6.50 406.67 1.31 6.30 404.35 1.89 2.70
p40100-14 421 412.69 2.01 6.40 411.53 2.30 6.50 410.64 2.52 2.90
p40100-15 496 488.83 1.47 7.70 487.38 1.77 10.50 481.40 3.03 3.70
p40100-16 428 424.30 0.87 7.00 421.04 1.65 9.20 420.30 1.83 3.20
p40100-17 440 430.00 2.33 8.40 428.31 2.73 8.80 428.08 2.78 3.50
p40100-18 450 433.40 3.83 10.10 431.82 4.21 8.30 431.33 4.33 2.90
p40100-19 450 439.05 2.49 6.80 439.37 2.42 8.30 434.99 3.45 2.90
p40100-20 486 475.33 2.24 8.10 460.52 5.53 9.20 466.17 4.25 3.30

mean 573.86 2.63 9.42 572.34 2.89 6.35 570.67 3.24 2.70

Table D.32: Comparison of the dual bound obtained by SCIP and GCG on
test set cpmp100
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

p15150-21 1288 1281.83 0.48 35.90 1279.79 0.64 9.80 1279.36 0.68 7.00
p15150-22 1256 1247.81 0.66 52.00 1244.08 0.96 9.10 1243.73 0.99 7.50
p15150-23 1279 1277.86 0.09 38.00 1274.54 0.35 9.30 1274.62 0.34 6.00
p15150-24 1220 1218.38 0.13 40.10 1214.99 0.41 8.60 1215.04 0.41 5.90
p15150-25 1193 1188.86 0.35 31.70 1187.02 0.50 8.80 1187.02 0.50 5.80
p15150-26 1264 1258.83 0.41 53.00 1256.61 0.59 7.90 1256.11 0.63 6.00
p15150-27 1323 1311.81 0.85 74.90 1304.63 1.41 13.70 1303.16 1.52 9.00
p15150-28 1233 1230.50 0.20 35.50 1228.35 0.38 7.90 1228.35 0.38 5.20
p15150-29 1219 1219.00 0.00 36.50 1218.44 0.05 7.50 1218.44 0.05 4.90
p15150-30 1201 1200.33 0.06 35.00 1198.29 0.23 11.00 1198.60 0.20 6.70
p37150-21 681 674.32 0.99 23.20 672.89 1.21 17.70 672.50 1.26 6.90
p37150-22 660 645.27 2.28 29.10 643.65 2.54 19.10 641.36 2.91 6.60
p37150-23 704* 642.07 9.65 26.20 633.80 11.08 19.60 634.23 11.00 7.40
p37150-24 594 586.83 1.22 21.60 584.55 1.62 15.70 584.02 1.71 7.20
p37150-25 629 627.17 0.29 25.40 626.85 0.34 16.90 626.16 0.45 6.00
p37150-26 653 646.06 1.07 24.30 645.60 1.15 16.50 644.16 1.37 7.80
p37150-27 736 713.36 3.17 23.90 703.63 4.60 19.40 702.99 4.70 8.10
p37150-28 644 632.12 1.88 25.80 634.03 1.57 18.80 631.24 2.02 7.40
p37150-29 649 640.64 1.31 23.40 640.38 1.35 14.90 639.29 1.52 6.40
p37150-30 630 619.00 1.78 24.10 618.89 1.80 19.80 617.71 1.99 7.50
p50150-21 599 580.61 3.17 19.60 585.63 2.28 25.80 576.98 3.82 8.30
p50150-22 561 539.85 3.92 19.80 542.90 3.33 28.10 536.92 4.48 8.90
p50150-23 564 550.86 2.38 19.90 542.79 3.91 19.60 544.17 3.64 7.80
p50150-24 505 495.17 1.99 23.30 496.01 1.81 18.60 493.33 2.37 7.30
p50150-25 488 485.17 0.58 20.40 485.91 0.43 11.80 484.71 0.68 7.10
p50150-26 540 525.67 2.73 24.10 532.31 1.45 14.20 525.09 2.84 6.50
p50150-27 579 567.35 2.05 21.30 563.69 2.72 19.20 564.11 2.64 8.80
p50150-28 503 499.00 0.80 24.40 498.67 0.87 16.50 498.65 0.87 7.80
p50150-29 545 529.31 2.96 21.40 532.63 2.32 24.60 527.13 3.39 8.60
p50150-30 502 487.33 3.01 20.60 488.30 2.81 18.40 486.17 3.26 6.90
p60150-21 552 544.92 1.30 23.70 542.30 1.79 23.10 541.01 2.03 11.20
p60150-22 601 587.73 2.26 29.30 577.47 4.08 32.80 570.57 5.33 13.40
p60150-23 555 539.64 2.85 28.00 528.40 5.04 27.90 523.82 5.95 9.20
p60150-24 487 474.10 2.72 22.30 472.31 3.11 24.40 471.14 3.37 9.90
p60150-25 436 427.71 1.94 24.10 432.66 0.77 21.20 427.23 2.05 8.00
p60150-26 512 505.50 1.29 23.30 508.31 0.73 21.70 503.29 1.73 9.30
p60150-27 757 714.50 5.95 28.50 689.86 9.73 30.90 679.43 11.42 11.80
p60150-28 471 462.40 1.86 25.60 461.35 2.09 15.30 460.46 2.29 8.60
p60150-29 494 488.00 1.23 26.70 488.77 1.07 17.40 487.67 1.30 9.20
p60150-30 444 434.83 2.11 21.00 437.34 1.52 18.10 434.03 2.30 8.00

mean 699.81 1.83 27.57 697.95 2.09 16.79 695.57 2.48 7.72

Table D.33: Comparison of the dual bound obtained by SCIP and GCG on
test set cpmp150
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

p20200-31 1378 1372.09 0.43 89.30 1369.89 0.59 21.10 1369.94 0.59 11.30
p20200-32 1424 1409.92 1.00 260.20 1403.15 1.49 22.50 1403.88 1.43 15.50
p20200-33 1367 1361.85 0.38 73.60 1357.70 0.68 23.10 1358.93 0.59 12.30
p20200-34 1385 1374.55 0.76 114.00 1372.29 0.93 28.80 1371.99 0.95 10.90
p20200-35 1437 1430.73 0.44 72.90 1427.44 0.67 25.10 1427.81 0.64 12.70
p20200-36 1382 1378.33 0.27 183.90 1376.21 0.42 25.20 1376.38 0.41 11.20
p20200-37 1458 1454.25 0.26 83.80 1453.09 0.34 23.60 1452.69 0.37 12.90
p20200-38 1382 1372.31 0.71 106.10 1368.66 0.97 21.70 1368.66 0.97 11.90
p20200-39 1374 1369.69 0.31 72.90 1367.85 0.45 24.30 1367.70 0.46 10.90
p20200-40 1416 1413.19 0.20 84.30 1411.54 0.32 28.10 1412.29 0.26 13.10
p50200-31 728* 711.75 2.28 62.50 711.44 2.33 46.70 707.85 2.85 15.10
p50200-32 878* 799.28 9.85 52.20 777.23 12.96 51.50 772.09 13.72 12.10
p50200-33 760* 693.65 9.57 52.40 695.31 9.30 46.20 688.19 10.43 10.60
p50200-34 858* 778.73 10.18 64.00 758.73 13.08 43.80 759.95 12.90 17.30
p50200-35 752* 727.11 3.42 66.00 724.07 3.86 50.00 718.48 4.67 12.10
p50200-36 701 692.22 1.27 64.50 693.09 1.14 53.30 687.40 1.98 15.20
p50200-37 753 743.40 1.29 46.30 744.28 1.17 28.30 740.92 1.63 12.10
p50200-38 749* 729.96 2.61 67.10 724.57 3.37 42.60 723.89 3.47 14.30
p50200-39 722 712.62 1.32 67.90 715.60 0.89 33.20 711.60 1.46 12.80
p50200-40 779* 737.54 5.62 52.70 731.76 6.46 59.80 726.92 7.16 12.40
p66200-31 575 571.08 0.69 59.50 571.12 0.68 35.50 569.49 0.97 17.00
p66200-32 860* 699.15 23.01 41.80 682.61 25.99 77.60 673.05 27.78 18.70
p66200-33 648* 599.12 8.16 50.10 599.07 8.17 74.40 593.67 9.15 18.60
p66200-34 729* 683.50 6.66 54.90 672.28 8.44 46.10 664.06 9.78 16.30
p66200-35 615* 592.43 3.81 38.60 593.21 3.67 33.20 590.51 4.15 17.50
p66200-36 580 569.51 1.84 47.60 569.21 1.90 52.30 565.48 2.57 15.30
p66200-37 636* 616.50 3.16 46.60 616.49 3.16 34.10 614.93 3.43 15.20
p66200-38 608 595.35 2.12 44.00 592.81 2.56 50.20 591.62 2.77 21.50
p66200-39 589* 573.57 2.69 60.10 576.89 2.10 37.50 572.68 2.85 15.70
p66200-40 632* 607.90 3.96 50.20 613.99 2.93 62.20 603.89 4.66 20.70
p80200-31 541* 527.83 2.49 58.70 529.51 2.17 50.50 526.55 2.74 22.90
p80200-32 802* 780.48 2.76 50.60 725.41 10.56 73.60 714.55 12.24 23.30
p80200-33 557 547.83 1.67 46.70 546.28 1.96 62.30 543.62 2.46 25.90
p80200-34 845 834.14 1.30 63.00 789.29 7.06 75.00 779.52 8.40 24.70
p80200-35 552 542.00 1.85 44.00 544.98 1.29 57.30 537.68 2.66 18.80
p80200-36 551 537.92 2.43 55.00 537.79 2.46 61.50 536.06 2.79 25.30
p80200-37 594* 579.67 2.47 49.10 582.67 1.94 51.20 576.92 2.96 23.90
p80200-38 592 586.97 0.86 56.40 573.15 3.29 62.80 573.99 3.14 27.40
p80200-39 541* 527.94 2.47 44.00 530.07 2.06 47.30 524.19 3.21 15.30
p80200-40 595* 570.95 4.21 47.90 563.59 5.57 69.20 558.05 6.62 19.40

mean 798.87 3.19 63.09 793.63 3.88 42.72 789.77 4.44 16.11

Table D.34: Comparison of the dual bound obtained by SCIP and GCG on
test set cpmp200
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

new1 1 30866 30883.00 0.06 51.60 31354.39 1.56 9.60 31788.39 2.90 5.20
new1 2 35771 35805.25 0.10 113.30 36446.63 1.85 11.60 36929.10 3.14 7.60
new1 3 40934 40963.00 0.07 140.50 41624.31 1.66 13.70 42055.83 2.67 8.40
new1 4 46180 46223.24 0.09 136.40 46972.04 1.69 13.70 47429.83 2.64 9.00
new1 5 50324 50340.17 0.03 184.70 51239.34 1.79 18.30 51905.05 3.05 11.80
new1 6 55495 55519.17 0.04 141.00 56361.14 1.54 18.80 56880.96 2.44 13.30
new1 7 59255 59274.00 0.03 161.90 60072.09 1.36 21.60 60663.66 2.32 13.60
new1 8 65465 65480.00 0.02 256.70 66470.83 1.51 25.30 67331.98 2.77 16.30
new1 9 69530 69573.62 0.06 262.50 70734.82 1.70 26.20 71481.88 2.73 19.40
new1 10 75756 75773.50 0.02 529.80 77119.39 1.77 33.10 77905.96 2.76 20.80
new2 1 3109 3110.50 0.05 65.00 3172.34 2.00 9.60 3210.66 3.17 5.30
new2 2 3725 3730.28 0.14 77.90 3789.92 1.71 11.60 3833.86 2.84 7.00
new2 3 4202 4206.50 0.11 118.80 4258.75 1.33 13.10 4291.74 2.09 8.40
new2 4 4703 4703.00 0.00 115.30 4770.61 1.42 16.90 4814.15 2.31 10.00
new2 5 5206 5210.83 0.09 187.60 5309.34 1.95 17.20 5365.89 2.98 11.30
new2 6 5616 5618.17 0.04 179.60 5715.27 1.74 21.30 5776.56 2.78 12.50
new2 7 6148 6151.25 0.05 176.60 6239.62 1.47 19.30 6291.32 2.28 15.80
new2 8 6630 6632.50 0.04 238.90 6745.41 1.71 25.70 6816.80 2.74 14.50
new2 9 7039 7042.75 0.05 265.40 7157.21 1.65 26.20 7227.81 2.61 16.90
new2 10 7811 7817.00 0.08 222.40 7931.14 1.51 30.20 8008.00 2.46 18.60
new3 1 71998 72017.17 0.03 245.40 72766.23 1.06 20.40 73297.00 1.77 12.30
new3 2 81898 81931.00 0.04 351.60 82718.49 0.99 22.50 83466.28 1.88 16.20
new3 3 97056 97069.83 0.01 626.60 98045.55 1.01 29.70 98714.67 1.68 20.90
new3 4 107491 107530.00 0.04 534.90 108824.10 1.23 39.80 109677.30 1.99 25.90
new3 5 120504 120519.00 0.01 605.40 122018.76 1.24 49.40 122734.65 1.82 35.00
new3 6 129039* 129145.33 0.08 864.00 130759.99 1.32 58.20 131653.05 1.99 37.30
new3 7 142486 142524.90 0.03 800.30 144297.33 1.26 68.30 145289.18 1.93 46.70
new3 8 151489 151517.50 0.02 784.60 153598.92 1.37 75.30 154891.20 2.20 58.60
new3 9 165038 165156.50 0.07 1034.30 167484.83 1.46 82.70 168855.03 2.26 60.50
new3 10 182813 182850.67 0.02 1416.30 185167.80 1.27 100.90 186651.68 2.06 75.90
new4 1 22044 22044.00 0.00 25.50 22086.15 0.19 3.30 22115.35 0.32 2.50
new4 2 26115 26115.00 0.00 17.60 26133.52 0.07 3.40 26163.61 0.19 2.90
new4 3 29110 29110.00 0.00 24.40 29141.13 0.11 4.40 29209.22 0.34 3.40
new4 4 32692 32692.00 0.00 71.60 32729.63 0.11 5.70 32785.22 0.28 4.10
new4 5 37016 37021.50 0.01 35.10 37071.88 0.15 6.10 37130.54 0.31 4.80
new4 6 39593 39593.00 0.00 57.30 39664.98 0.18 7.40 39720.35 0.32 5.80
new4 7 44735 44735.00 0.00 56.10 44781.16 0.10 7.90 44866.21 0.29 5.30
new4 8 48182 48184.00 0.00 72.30 48242.90 0.13 8.40 48289.78 0.22 6.20
new4 9 50559 50562.00 0.01 80.00 50642.44 0.16 10.90 50724.41 0.33 7.90
new4 10 54842 54851.00 0.02 52.10 54931.44 0.16 11.20 55020.05 0.32 8.50
new5 1 40982 40994.33 0.03 90.30 41388.98 0.98 10.60 41758.97 1.86 6.70
new5 2 47914 47921.50 0.02 116.60 48537.58 1.28 13.10 48941.31 2.10 8.60
new5 3 52447 52451.50 0.01 122.10 53022.17 1.08 15.40 53432.66 1.84 9.80
new5 4 59790 59818.00 0.05 195.40 60506.58 1.18 18.10 60992.72 1.97 10.80
new5 5 66179 66217.83 0.06 225.00 66989.14 1.21 19.90 67641.67 2.16 13.60
new5 6 75070 75130.67 0.08 367.50 75860.52 1.04 24.60 76421.70 1.77 15.20
new5 7 81982 82033.00 0.06 266.30 82842.52 1.04 29.20 83579.19 1.91 16.30
new5 8 85314 85338.00 0.03 252.20 86414.34 1.27 29.00 87034.59 1.98 18.90
new5 9 95037 95098.50 0.06 295.60 96102.56 1.11 33.20 96944.04 1.97 21.20
new5 10 100031 100059.83 0.03 352.70 101306.61 1.26 36.40 102112.50 2.04 23.60
new6 1 71426 71443.17 0.02 178.70 72153.55 1.01 20.50 72701.87 1.75 12.80
new6 2 82942 82947.50 0.01 325.70 83768.28 0.99 31.10 84265.22 1.57 15.70
new6 3 96115 96129.00 0.01 280.00 96887.04 0.80 26.90 97420.90 1.34 18.30
new6 4 110102 110116.00 0.01 531.10 111028.74 0.83 32.80 111747.42 1.47 20.60
new6 5 119233 119260.50 0.02 528.00 120206.51 0.81 40.30 120956.35 1.42 26.80
new6 6 128178 128186.17 0.01 599.40 129492.28 1.01 50.00 130364.96 1.68 30.80
new6 7 142056 142089.33 0.02 1252.90 143439.19 0.96 51.00 144392.78 1.62 35.70
new6 8 154745* 154840.75 0.06 759.60 156347.21 1.02 64.00 157514.09 1.76 44.60
new6 9 167916 167962.00 0.03 1001.40 169757.71 1.08 66.40 170749.89 1.66 52.80
new6 10 176884* 176929.20 0.03 1252.70 178998.94 1.18 95.20 180321.30 1.91 70.90
new7 1 42685 42706.67 0.05 97.50 43260.62 1.33 11.50 43809.70 2.57 7.90
new7 2 46526 46534.50 0.02 130.20 47176.94 1.38 13.80 47512.70 2.08 8.70
new7 3 54437 54452.50 0.03 180.30 55129.12 1.26 15.70 55509.58 1.93 13.60
new7 4 60719 60729.75 0.02 236.30 61713.70 1.61 19.40 62392.09 2.68 14.00
new7 5 68432 68449.50 0.03 291.00 69271.84 1.21 25.90 69794.23 1.95 16.00
new7 6 72337 72371.30 0.05 421.40 73353.34 1.39 28.10 73892.10 2.10 16.70
new7 7 80122 80177.33 0.07 370.50 81250.31 1.39 30.40 81853.27 2.12 19.50
new7 8 88460 88509.42 0.06 545.00 89899.36 1.60 35.50 90550.46 2.31 24.30
new7 9 92380 92389.50 0.01 428.60 93723.58 1.43 38.60 94561.84 2.31 26.00
new7 10 100915 100980.83 0.07 647.00 102611.43 1.65 44.60 103454.43 2.45 28.70

mean 49281.99 0.04 224.89 49839.63 1.17 23.54 50216.98 1.92 16.04

Table D.35: Comparison of the dual bound obtained by SCIP and GCG (32
constraints per block) on test set rap
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

new1 1 30866 30869.00 0.01 85.80 31354.39 1.56 9.60 31788.39 2.90 5.20
new1 2 35771 35781.50 0.03 155.70 36446.63 1.85 11.60 36929.10 3.14 7.60
new1 3 40934 40942.83 0.02 267.10 41624.31 1.66 13.70 42055.83 2.67 8.40
new1 4 46180 46190.67 0.02 228.80 46972.04 1.69 13.70 47429.83 2.64 9.00
new1 5 50324 50334.50 0.02 234.10 51239.34 1.79 18.30 51905.05 3.05 11.80
new1 6 55495 55519.17 0.04 216.40 56361.14 1.54 18.80 56880.96 2.44 13.30
new1 7 59255 59255.00 0.00 463.10 60072.09 1.36 21.60 60663.66 2.32 13.60
new1 8 65465 65469.00 0.01 300.20 66470.83 1.51 25.30 67331.98 2.77 16.30
new1 9 69530 69530.00 0.00 384.90 70734.82 1.70 26.20 71481.88 2.73 19.40
new1 10 75756 75766.00 0.01 539.70 77119.39 1.77 33.10 77905.96 2.76 20.80
new2 1 3109 3110.50 0.05 96.30 3172.34 2.00 9.60 3210.66 3.17 5.30
new2 2 3725 3728.83 0.10 133.10 3789.92 1.71 11.60 3833.86 2.84 7.00
new2 3 4202 4202.50 0.01 130.60 4258.75 1.33 13.10 4291.74 2.09 8.40
new2 4 4703 4703.00 0.00 353.90 4770.61 1.42 16.90 4814.15 2.31 10.00
new2 5 5206 5210.83 0.09 396.90 5309.34 1.95 17.20 5365.89 2.98 11.30
new2 6 5616 5617.50 0.03 209.30 5715.27 1.74 21.30 5776.56 2.78 12.50
new2 7 6148 6149.50 0.02 225.30 6239.62 1.47 19.30 6291.32 2.28 15.80
new2 8 6630 6631.00 0.02 218.10 6745.41 1.71 25.70 6816.80 2.74 14.50
new2 9 7039 7039.00 0.00 283.10 7157.21 1.65 26.20 7227.81 2.61 16.90
new2 10 7811 7815.00 0.05 310.20 7931.14 1.51 30.20 8008.00 2.46 18.60
new3 1 71998 71998.00 0.00 1176.20 72766.23 1.06 20.40 73297.00 1.77 12.30
new3 2 81898 81923.00 0.03 1133.30 82718.49 0.99 22.50 83466.28 1.88 16.20
new3 3 97056 97060.00 0.00 3646.00 98045.55 1.01 29.70 98714.67 1.68 20.90
new3 4 107491 107506.50 0.01 816.00 108824.10 1.23 39.80 109677.30 1.99 25.90
new3 5 120504 120513.50 0.01 896.70 122018.76 1.24 49.40 122734.65 1.82 35.00
new3 6 129039* 129092.00 0.04 2489.50 130759.99 1.32 58.20 131653.05 1.99 37.30
new3 7 142486 142514.90 0.02 993.50 144297.33 1.26 68.30 145289.18 1.93 46.70
new3 8 151489 151502.33 0.01 1830.90 153598.92 1.37 75.30 154891.20 2.20 58.60
new3 9 165038 165097.50 0.04 6269.80 167484.83 1.46 82.70 168855.03 2.26 60.50
new3 10 182813 182815.83 0.00 6279.60 185167.80 1.27 100.90 186651.68 2.06 75.90
new4 1 22044 22044.00 0.00 15.30 22086.15 0.19 3.30 22115.35 0.32 2.50
new4 2 26115 26115.00 0.00 16.80 26133.52 0.07 3.40 26163.61 0.19 2.90
new4 3 29110 29110.00 0.00 27.90 29141.13 0.11 4.40 29209.22 0.34 3.40
new4 4 32692 32692.00 0.00 43.40 32729.63 0.11 5.70 32785.22 0.28 4.10
new4 5 37016 37021.50 0.01 36.10 37071.88 0.15 6.10 37130.54 0.31 4.80
new4 6 39593 39593.00 0.00 64.60 39664.98 0.18 7.40 39720.35 0.32 5.80
new4 7 44735 44735.00 0.00 52.80 44781.16 0.10 7.90 44866.21 0.29 5.30
new4 8 48182 48183.50 0.00 37.20 48242.90 0.13 8.40 48289.78 0.22 6.20
new4 9 50559 50562.00 0.01 77.50 50642.44 0.16 10.90 50724.41 0.33 7.90
new4 10 54842 54851.00 0.02 124.20 54931.44 0.16 11.20 55020.05 0.32 8.50
new5 1 40982 40982.00 0.00 125.50 41388.98 0.98 10.60 41758.97 1.86 6.70
new5 2 47914 47914.00 0.00 222.80 48537.58 1.28 13.10 48941.31 2.10 8.60
new5 3 52447 52451.50 0.01 219.70 53022.17 1.08 15.40 53432.66 1.84 9.80
new5 4 59790 59794.00 0.01 187.50 60506.58 1.18 18.10 60992.72 1.97 10.80
new5 5 66179 66209.33 0.05 278.40 66989.14 1.21 19.90 67641.67 2.16 13.60
new5 6 75070 75110.17 0.05 463.40 75860.52 1.04 24.60 76421.70 1.77 15.20
new5 7 81982 82000.00 0.02 306.40 82842.52 1.04 29.20 83579.19 1.91 16.30
new5 8 85314 85314.00 0.00 545.30 86414.34 1.27 29.00 87034.59 1.98 18.90
new5 9 95037 95073.00 0.04 740.50 96102.56 1.11 33.20 96944.04 1.97 21.20
new5 10 100031 100053.00 0.02 412.80 101306.61 1.26 36.40 102112.50 2.04 23.60
new6 1 71426 71438.67 0.02 267.00 72153.55 1.01 20.50 72701.87 1.75 12.80
new6 2 82942 82946.50 0.01 506.10 83768.28 0.99 31.10 84265.22 1.57 15.70
new6 3 96115 96120.00 0.01 258.10 96887.04 0.80 26.90 97420.90 1.34 18.30
new6 4 110102 110102.00 0.00 613.00 111028.74 0.83 32.80 111747.42 1.47 20.60
new6 5 119233 119247.50 0.01 704.20 120206.51 0.81 40.30 120956.35 1.42 26.80
new6 6 128178 128182.67 0.00 1104.00 129492.28 1.01 50.00 130364.96 1.68 30.80
new6 7 142056 142074.33 0.01 793.60 143439.19 0.96 51.00 144392.78 1.62 35.70
new6 8 154745* 154793.25 0.03 1539.90 156347.21 1.02 64.00 157514.09 1.76 44.60
new6 9 167916 167930.50 0.01 1715.00 169757.71 1.08 66.40 170749.89 1.66 52.80
new6 10 176884* 176916.20 0.02 3062.60 178998.94 1.18 95.20 180321.30 1.91 70.90
new7 1 42685 42686.50 0.00 178.10 43260.62 1.33 11.50 43809.70 2.57 7.90
new7 2 46526 46533.50 0.02 196.80 47176.94 1.38 13.80 47512.70 2.08 8.70
new7 3 54437 54445.00 0.01 323.90 55129.12 1.26 15.70 55509.58 1.93 13.60
new7 4 60719 60729.75 0.02 1783.70 61713.70 1.61 19.40 62392.09 2.68 14.00
new7 5 68432 68449.50 0.03 448.80 69271.84 1.21 25.90 69794.23 1.95 16.00
new7 6 72337 72346.50 0.01 994.10 73353.34 1.39 28.10 73892.10 2.10 16.70
new7 7 80122 80154.33 0.04 551.70 81250.31 1.39 30.40 81853.27 2.12 19.50
new7 8 88460 88478.00 0.02 1052.30 89899.36 1.60 35.50 90550.46 2.31 24.30
new7 9 92380 92385.50 0.01 1171.00 93723.58 1.43 38.60 94561.84 2.31 26.00
new7 10 100915 100969.50 0.05 2459.90 102611.43 1.65 44.60 103454.43 2.45 28.70

mean 49272.67 0.02 366.01 49839.63 1.17 23.54 50216.98 1.92 16.04

Table D.36: Comparison of the dual bound obtained by SCIP and GCG (64
constraints per block) on test set rap
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

1-FullIns 3 4 4.00 0.00 1.00 3.00 33.33 0.20 3.00 33.33 0.10
2-FullIns 3 5 4.25 17.65 2.00 3.00 66.67 0.50 3.00 66.67 0.20
3-FullIns 3 6 5.20 15.38 1.60 3.00 100.00 1.70 3.00 100.00 0.60
4-FullIns 3 7 6.17 13.51 3.50 6.00 16.67 9.60 5.00 40.00 1.40
5-FullIns 3 8 7.14 12.00 4.50 3.00 166.67 5.50 3.00 166.67 1.80
anna 11 11.00 0.00 1.10 11.00 0.00 2.40 11.00 0.00 1.60
david 11 11.00 0.00 0.60 11.00 0.00 0.20 11.00 0.00 0.20
fpsol2.i.1 65 65.00 0.00 182.80 51.00 27.45 3600.00 51.00 27.45 3600.00
games120 9 9.00 0.00 0.90 9.00 0.00 1.60 9.00 0.00 1.00
homer 13 13.00 0.00 10.10 10.00 30.00 18.00 10.00 30.00 15.80
huck 11 11.00 0.00 0.40 8.00 37.50 0.90 11.00 0.00 0.50
jean 10 10.00 0.00 0.30 4.00 150.00 2.90 4.00 150.00 0.60
miles1000 42 42.00 0.00 17.40 37.00 13.51 115.70 37.00 13.51 80.90
miles1500 73 73.00 0.00 46.20 69.00 5.80 724.90 69.00 5.80 363.80
miles250 8 8.00 0.00 0.80 6.00 33.33 2.70 6.00 33.33 1.10
miles500 20 20.00 0.00 2.20 19.00 5.26 10.30 19.00 5.26 5.70
miles750 31 31.00 0.00 7.30 24.00 29.17 55.10 24.00 29.17 41.20
mulsol.i.1 49 49.00 0.00 28.70 47.00 4.26 121.20 47.00 4.26 64.40
mulsol.i.2 31 31.00 0.00 36.60 30.00 3.33 69.90 30.00 3.33 54.20
mulsol.i.3 31 31.00 0.00 37.70 30.00 3.33 234.70 30.00 3.33 177.00
mulsol.i.4 31 31.00 0.00 43.70 30.00 3.33 320.20 30.00 3.33 267.40
mulsol.i.5 31 31.00 0.00 39.30 30.00 3.33 325.10 30.00 3.33 286.00
myciel4 5 3.24 54.09 2.10 3.00 66.67 0.20 2.29 118.75 0.10
queen6 6 7 7.00 0.00 3.50 6.00 16.67 1.20 6.00 16.67 0.50
queen7 7 7 7.00 0.00 4.50 7.00 0.00 3.10 7.00 0.00 1.40
zeroin.i.1 49 49.00 0.00 28.70 45.00 8.89 196.50 45.00 8.89 180.90
zeroin.i.2 30 30.00 0.00 28.60 28.00 7.14 156.50 28.00 7.14 144.10
zeroin.i.3 30 30.00 0.00 28.40 28.00 7.14 153.30 28.00 7.14 147.60

mean 22.17 3.55 11.38 19.75 24.81 35.66 19.79 25.42 28.50

Table D.37: Comparison of the dual bound obtained by SCIP and GCG on
test set coloring



166 Appendix D. Tables

GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

N1C1W1 A 25 25.00 0.00 0.70 24.36 2.63 0.70 24.36 2.63 0.30
N1C1W1 K 26 26.00 0.00 0.40 23.97 8.47 0.70 23.97 8.47 0.40
N1C1W2 B 30 30.00 0.00 0.70 29.49 1.73 0.50 29.49 1.73 0.30
N1C1W2 L 31 31.00 0.00 0.60 30.44 1.84 0.80 30.44 1.84 0.50
N1C1W4 C 36 36.00 0.00 0.60 35.07 2.65 0.70 36.00 0.00 0.50
N1C1W4 M 41 41.00 0.00 0.60 36.09 13.60 0.90 36.09 13.60 0.60
N1C2W1 D 21 21.00 0.00 0.50 20.52 2.36 0.50 20.52 2.36 0.30
N1C2W1 N 21 21.00 0.00 1.10 19.93 5.40 0.60 19.93 5.40 0.30
N1C2W2 E 33 33.00 0.00 0.50 28.07 17.54 0.80 28.07 17.54 0.50
N1C2W2 O 29 29.00 0.00 0.40 25.80 12.40 0.90 25.80 12.40 0.40
N1C2W4 F 32 32.00 0.00 0.50 28.67 11.63 0.70 28.67 11.63 0.40
N1C2W4 P 28 28.00 0.00 0.70 27.07 3.42 0.80 27.07 3.42 0.40
N1C3W1 G 15 14.71 1.99 0.80 14.71 1.99 0.30 14.71 1.99 0.20
N1C3W1 Q 20 20.00 0.00 0.90 19.65 1.76 0.70 19.65 1.76 0.20
N1C3W2 H 23 23.00 0.00 0.90 21.86 5.22 0.60 21.86 5.22 0.30
N1C3W2 R 19 18.82 0.94 1.20 18.81 0.99 0.60 18.81 0.99 0.20
N1C3W4 I 23 22.17 3.76 0.60 21.78 5.60 0.90 21.78 5.60 0.30
N1C3W4 S 22 22.00 0.00 0.60 21.29 3.32 0.70 21.29 3.32 0.30

mean 26.28 0.37 0.68 24.84 5.59 0.69 24.89 5.44 0.35

Table D.38: Comparison of the dual bound obtained by SCIP and GCG on
test set bindata1-n1s
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

N2C1W1 A 48 47.33 1.41 2.90 46.72 2.74 2.80 46.72 2.74 2.10
N2C1W1 K 55 55.00 0.00 2.20 52.79 4.19 4.10 52.79 4.19 2.80
N2C1W2 B 61 61.00 0.00 2.70 59.82 1.97 3.50 59.82 1.97 2.50
N2C1W2 L 62 62.00 0.00 2.60 60.13 3.11 4.20 60.13 3.11 2.50
N2C1W4 C 77 77.00 0.00 2.40 73.54 4.70 3.30 73.54 4.70 2.70
N2C1W4 M 72 72.00 0.00 2.40 69.97 2.90 3.50 69.97 2.90 2.70
N2C2W1 D 42 42.00 0.00 7.30 41.55 1.08 2.50 41.55 1.08 1.80
N2C2W1 N 43 43.00 0.00 4.20 42.00 2.38 2.50 42.00 2.38 1.70
N2C2W2 E 54 54.00 0.00 2.10 50.01 7.98 3.90 50.01 7.98 2.70
N2C2W2 O 50 49.75 0.50 3.20 48.41 3.29 3.30 48.41 3.29 2.50
N2C2W4 F 57 57.00 0.00 3.70 56.49 0.90 3.50 56.49 0.90 2.50
N2C2W4 P 60 60.00 0.00 3.00 56.64 5.93 3.60 56.64 5.93 2.50
N2C3W1 G 33 32.51 1.52 2.80 32.51 1.52 1.70 32.51 1.52 1.20
N2C3W1 Q 34 33.67 0.99 2.80 33.67 0.99 1.80 33.67 0.99 1.20
N2C3W2 H 38 37.11 2.39 3.30 37.11 2.39 2.60 37.11 2.39 1.20
N2C3W2 R 40 40.00 0.00 3.30 39.06 2.41 2.20 39.06 2.41 1.80
N2C3W4 I 44 43.39 1.41 4.80 43.19 1.87 3.00 43.19 1.87 1.80
N2C3W4 S 42 41.15 2.06 10.10 41.08 2.24 2.60 41.08 2.24 2.10

mean 50.30 0.57 3.54 49.03 2.91 3.01 49.03 2.91 2.12

Table D.39: Comparison of the dual bound obtained by SCIP and GCG on
test set bindata1-n2s
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GCG SCIP all cuts SCIP no base
instance opt db gap time db gap time db gap time

N3C1W1 A 105 105.00 0.00 12.40 100.88 4.08 22.50 100.88 4.08 18.10
N3C1W1 K 102 102.00 0.00 13.10 99.51 2.50 20.20 99.51 2.50 17.10
N3C1W2 B 126 126.00 0.00 13.20 118.37 6.45 29.00 118.37 6.45 24.50
N3C1W2 L 136 136.00 0.00 15.40 131.23 3.63 30.90 131.23 3.63 26.50
N3C1W4 C 146 146.00 0.00 18.10 142.66 2.34 31.40 142.66 2.34 25.10
N3C1W4 M 149 149.00 0.00 17.90 144.27 3.28 31.40 144.27 3.28 26.20
N3C2W1 D 85 85.00 0.00 9.60 83.19 2.17 14.90 83.19 2.17 12.10
N3C2W1 N 91 91.00 0.00 10.40 86.70 4.96 19.60 86.70 4.96 16.00
N3C2W2 E 116 116.00 0.00 13.50 107.22 8.18 26.90 107.22 8.18 21.20
N3C2W2 O 107 107.00 0.00 13.30 101.40 5.52 23.90 101.40 5.52 20.60
N3C2W4 F 115 115.00 0.00 20.90 110.63 3.95 25.30 110.63 3.95 20.60
N3C2W4 P 122 122.00 0.00 18.50 115.76 5.39 27.60 115.76 5.39 22.70
N3C3W1 G 65 64.16 1.31 10.30 64.16 1.31 9.70 64.16 1.31 8.40
N3C3W1 Q 73 72.61 0.54 11.80 72.61 0.54 13.20 72.61 0.54 10.30
N3C3W2 H 82 81.85 0.19 33.80 81.82 0.22 17.90 81.82 0.22 12.50
N3C3W2 R 79 78.51 0.63 14.20 78.51 0.63 14.60 78.51 0.63 12.40
N3C3W4 I 92 91.25 0.82 14.00 90.09 2.12 20.60 90.09 2.12 16.90
N3C3W4 S 84 83.08 1.11 32.70 83.03 1.16 16.50 83.03 1.16 13.00

mean 103.48 0.25 15.59 100.25 3.22 21.31 100.25 3.22 17.44

Table D.40: Comparison of the dual bound obtained by SCIP and GCG on
test set bindata1-n3s
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default 20 vars 10% no limit
instance vars gap nodes time vars gap nodes time vars gap nodes time vars gap nodes time

p550-1 3491 0.0 32 11.9 4009 0.0 24 13.0 3274 0.0 21 14.6 3117 0.0 23 10.8
p550-3 3526 0.0 3 6.5 3526 0.0 3 6.5 3531 0.0 3 8.8 4030 0.0 3 6.6
p550-5 3876 0.0 1 7.2 3876 0.0 1 7.2 3876 0.0 1 7.1 3639 0.0 1 5.6
p550-7 3735 0.0 15 13.2 3737 0.0 16 14.0 3844 0.0 21 30.6 3933 0.0 15 13.7
p550-9 2925 0.0 9 6.1 2925 0.0 9 6.1 2929 0.0 5 6.6 3118 0.0 7 6.7
p1250-1 2168 0.0 173 18.8 2090 0.0 157 17.0 1956 0.0 141 14.2 2044 0.0 178 17.7
p1250-3 1825 0.0 155 18.7 1824 0.0 155 18.8 1810 0.0 137 17.2 1802 0.0 69 10.2
p1250-5 2204 0.0 68 11.7 2199 0.0 68 11.5 2324 0.0 134 21.2 2340 0.0 87 15.8
p1250-7 3019 0.0 1514 174.3 2714 0.0 1332 167.7 2677 0.0 1676 188.4 4041 0.0 1921 215.6
p1250-9 2085 0.0 138 36.9 2030 0.0 143 31.4 1982 0.0 123 29.1 2092 0.0 97 24.0
p1650-1 1484 0.0 8 2.6 1487 0.0 8 2.7 1469 0.0 8 2.6 1526 0.0 5 2.3
p1650-3 1418 0.0 13 2.8 1418 0.0 13 2.8 1434 0.0 10 3.3 1403 0.0 9 2.6
p1650-5 1752 0.0 59 8.5 1761 0.0 59 8.7 1705 0.0 78 9.8 1766 0.0 99 14.4
p1650-7 1325 0.0 75 9.8 1325 0.0 75 9.8 1334 0.0 81 10.2 1390 0.0 53 7.8
p1650-9 1567 0.0 198 26.7 1567 0.0 198 26.7 1552 0.0 195 25.9 1847 0.0 150 22.1
p2050-1 1285 0.0 38 4.5 1285 0.0 38 4.5 1272 0.0 36 4.6 1231 0.0 57 5.3
p2050-3 1282 0.0 11 3.5 1282 0.0 11 3.5 1288 0.0 11 3.6 1221 0.0 12 3.2
p2050-5 1262 0.0 5 2.9 1262 0.0 5 2.9 1262 0.0 5 2.8 1259 0.0 6 3.4
p2050-7 1166 0.0 5 3.0 1166 0.0 5 3.0 1166 0.0 5 2.9 1181 0.0 7 3.3
p2050-9 1356 0.0 343 46.3 1356 0.0 343 46.3 1320 0.0 331 44.8 1364 0.0 355 46.7

total 42k 0.0 2863 415.9 42k 0.0 2663 404.1 42k 0.0 3022 448.3 44k 0.0 3154 437.8
timeouts 0/20 0/20 0/20 0/20
mean 2016.4 0.0 44.9 12.8 2014.9 0.0 43.9 12.7 1983.0 0.0 45.0 13.9 2075.0 0.0 42.7 12.4

Table D.41. Impact of the reduced cost pricing setting at subsequent nodes on the performance of GCG (test set cpmp50s)
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default 20 vars 10% no limit
instance vars gap nodes time vars gap nodes time vars gap nodes time vars gap nodes time

p10100-11 7892 0.0 35 62.6 9079 0.0 52 105.9 7452 0.0 15 74.5 10527 0.0 44 86.8
p10100-13 6771 0.0 7 19.5 7272 0.0 9 25.6 7691 0.0 12 83.8 8766 0.0 11 37.8
p10100-15 11050 0.0 235 244.3 10960 0.0 239 286.7 11490 0.0 228 527.0 11460 0.0 212 257.5
p10100-17 9977 0.0 134 144.8 8218 0.0 96 114.0 8796 0.0 141 214.5 10052 0.0 96 117.9
p10100-19 6958 0.0 19 32.7 7126 0.0 25 42.6 7009 0.0 26 86.6 8160 0.0 31 48.7
p25100-11 5465 0.0 5202 862.4 5558 0.0 4785 831.8 5440 0.0 3771 649.2 5054 0.0 4017 656.2
p25100-13 6879 1.4 26451 3600.0 6671 0.9 27786 3600.0 5659 0.3 29760 3600.0 7375 0.7 26999 3600.0
p25100-15 4333 0.0 778 201.9 4349 0.0 754 193.9 4065 0.0 717 189.6 3833 0.0 407 107.1
p25100-17 4155 0.0 47 28.3 3953 0.0 44 26.9 3971 0.0 55 41.7 3731 0.0 55 27.6
p25100-19 6413 0.0 8501 1623.1 6302 0.0 9621 1830.1 6124 0.0 7772 1352.5 6203 0.0 8194 1551.9
p33100-11 3072 0.0 558 83.6 3151 0.0 521 84.4 2890 0.0 566 82.2 3168 0.0 659 100.5
p33100-13 3028 0.0 185 36.8 2899 0.0 130 30.4 2846 0.0 249 47.0 3112 0.0 157 35.7
p33100-15 3604 0.0 250 56.2 3646 0.0 392 72.6 3395 0.0 298 55.2 3687 0.0 179 41.2
p33100-17 3064 0.0 218 47.6 3054 0.0 196 46.6 3023 0.0 152 39.7 3195 0.0 331 64.5
p33100-19 4066 0.0 4076 603.2 4130 0.0 4940 738.9 4237 0.0 4478 670.0 4480 0.0 5026 787.7
p40100-11 3257 0.0 7957 1114.1 3260 0.0 6973 981.8 2989 0.0 1848 271.2 3250 0.0 3159 452.8
p40100-13 2706 0.0 623 82.3 2688 0.0 623 82.2 2652 0.0 749 88.6 2786 0.0 815 98.5
p40100-15 3132 0.0 828 153.2 3132 0.0 828 153.1 2948 0.0 878 143.4 3102 0.0 607 113.9
p40100-17 3807 0.0 2218 422.1 3712 0.0 1799 357.9 3525 0.0 2079 377.6 3459 0.0 1179 249.1
p40100-19 3424 0.0 3173 531.6 3373 0.0 2543 422.4 3353 0.0 2552 438.1 3467 0.0 2515 448.0

total 103k 1.4 61k 9950.3 102k 0.9 62k 10027.8 99k 0.3 56k 9032.4 108k 0.7 54k 8883.4
timeouts 1/20 1/20 1/20 1/20
mean 4762.0 0.1 587.1 184.7 4742.5 0.0 584.1 190.1 4584.1 0.0 540.8 199.5 4928.7 0.0 531.2 172.8

Table D.42. Impact of the reduced cost pricing setting at subsequent nodes on the performance of GCG (test set cpmp100s)
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default 20 vars 10% no limit
instance vars gap nodes time vars gap nodes time vars gap nodes time vars gap nodes time

p15150-21 12150 0.0 84 162.6 12057 0.0 89 165.2 10958 0.0 94 290.7 14470 0.0 127 175.0
p15150-23 9818 0.0 3 43.0 9818 0.0 3 42.8 9817 0.0 3 42.9 9502 0.0 3 41.7
p15150-25 11392 0.0 116 125.3 12690 0.0 153 169.7 13536 0.0 184 459.1 13578 0.0 138 167.2
p15150-27 28300 0.0 1688 2251.4 27620 0.2 2980 3600.0 28151 0.5 1765 3600.0 26332 0.0 906 1545.2
p15150-29 9734 0.0 1 39.2 9734 0.0 1 39.3 9734 0.0 1 39.2 9913 0.0 1 38.6
p37150-21 6005 0.0 207 105.1 6005 0.0 218 108.0 5934 0.0 210 118.6 6838 0.0 206 122.8
p37150-23 12307 3.0 8303 3600.0 13501 16.0 7422 3600.0 11371 6.3 9274 3600.0 11647 2.5 8574 3600.0
p37150-25 5426 0.0 55 41.5 5457 0.0 65 41.0 5349 0.0 58 43.6 5599 0.0 45 45.3
p37150-27 10412 0.9 7682 3600.0 10127 1.9 7642 3600.0 9978 1.6 8206 3600.0 12273 1.7 6991 3600.0
p37150-29 5876 0.0 650 215.9 5762 0.0 702 225.2 5701 0.0 754 241.2 6535 0.0 702 223.1
p50150-21 6543 1.9 12817 3600.0 7427 9.5 13163 3600.0 6416 1.6 13643 3600.0 6859 3.6 13234 3600.0
p50150-23 5779 0.0 3408 1154.2 6195 0.0 3692 1340.1 5231 0.0 3639 1157.2 6067 0.0 4129 1266.4
p50150-25 4418 0.0 56 37.5 4418 0.0 56 37.9 4450 0.0 100 52.3 4699 0.0 37 34.1
p50150-27 6510 0.0 3284 1314.7 6099 0.0 1789 729.2 5569 0.0 1739 671.5 7115 0.0 2717 1164.2
p50150-29 6386 1.0 15713 3600.0 6198 1.8 15253 3600.0 5936 0.9 16493 3600.0 6433 1.3 15821 3600.0
p60150-21 4273 0.0 463 175.3 4268 0.0 463 175.4 3989 0.0 315 118.2 4349 0.0 290 121.7
p60150-23 5635 0.0 5148 1648.0 5364 0.0 5852 1999.3 5036 0.0 6541 2040.3 5260 0.0 6791 2285.0
p60150-25 5475 0.0 18501 2985.0 5409 0.0 14488 2329.6 5202 0.4 23953 3600.0 5173 0.0 1371 326.2
p60150-27 6688 6.5 7646 3600.0 7307 12.2 7068 3600.0 6220 6.6 7225 3600.0 7061 12.7 7104 3600.0
p60150-29 4418 0.0 512 133.9 4430 0.0 523 138.6 4395 0.0 504 137.6 4718 0.0 544 139.2

total 167k 13.3 86k 28432.6 169k 41.6 81k 29141.3 162k 17.9 94k 30612.4 174k 21.8 69k 25695.7
timeouts 5/20 6/20 7/20 5/20
mean 7489.2 0.7 847.6 493.5 7588.6 2.0 861.6 502.9 7216.7 0.9 894.4 551.7 7835.5 1.1 716.3 443.4

Table D.43. Impact of the reduced cost pricing setting at subsequent nodes on the performance of GCG (test set cpmp150s)
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default 20 vars 10% no limit
instance vars gap nodes time vars gap nodes time vars gap nodes time vars gap nodes time

p20200-32 30084 0.0 889 2482.8 22349 0.0 831 1905.4 30470 0.6 480 3600.0 26660 0.0 794 1925.0
p20200-34 22962 0.0 508 1187.2 23010 0.0 502 1326.1 24716 0.0 547 2789.8 25236 0.0 551 1216.5
p20200-36 14833 0.0 62 293.0 14318 0.0 30 256.0 15643 0.0 84 589.8 15986 0.0 38 288.3
p50200-36 9841 0.0 2488 1234.3 10003 0.0 1988 1054.2 9408 0.0 2824 1376.9 8851 0.0 2356 1012.0
p50200-37 9149 0.0 2650 1067.9 9218 0.0 2868 1169.6 8746 0.0 3026 1178.9 9460 0.0 3644 1314.9
p50200-39 8610 0.0 1176 589.7 8445 0.0 1253 561.6 8056 0.0 973 532.4 8710 0.0 1087 547.3
p66200-31 6769 0.0 1148 377.0 6841 0.0 1024 358.1 6543 0.0 1098 358.6 7575 0.0 3135 750.7
p66200-36 8097 0.0 4533 1606.2 8252 0.0 5009 1877.2 7580 0.0 3858 1364.9 8327 0.0 5169 1833.5
p66200-38 9096 0.6 8346 3600.0 8828 2.5 8622 3600.0 8894 3.8 8594 3600.0 9295 1.9 8587 3600.0
p80200-33 6706 0.8 10218 3600.0 6301 0.7 11252 3600.0 6361 1.0 10938 3600.0 6664 0.3 11043 3600.0
p80200-34 8063 0.9 4554 3600.0 7645 0.7 4988 3600.0 7697 1.7 4671 3600.0 7530 0.8 4660 3600.0
p80200-38 6642 0.0 1656 695.6 6813 0.0 2187 950.0 6449 0.0 1438 682.1 6502 0.0 1308 608.8

total 140k 2.3 38k 20333.7 132k 3.9 40k 20258.2 140k 7.1 38k 23273.4 140k 3.0 42k 20297.0
timeouts 3/12 3/12 4/12 3/12
mean 10386.2 0.2 1753.3 1243.9 10019.6 0.3 1714.7 1245.4 10171.4 0.6 1692.7 1444.2 10431.5 0.2 1870.5 1282.9

Table D.44. Impact of the reduced cost pricing setting at subsequent nodes on the performance of GCG (test set cpmp200s)
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default 20 vars 10% no limit
instance vars gap nodes time vars gap nodes time vars gap nodes time vars gap nodes time

new1 2 32 3073 0.0 119 979.6 3073 0.0 119 975.8 3094 0.0 119 838.8 3766 0.0 119 973.6
new1 6 32 3690 0.0 17 468.5 3690 0.0 17 467.3 3693 0.0 21 424.3 4570 0.0 17 410.0
new1 10 32 6344 0.0 35 1085.1 6344 0.0 35 1079.5 6342 0.0 35 1025.9 7437 0.0 39 912.5
new2 1 32 2102 0.0 7 109.5 2102 0.0 7 109.2 2104 0.0 7 105.7 2370 0.0 7 81.5
new2 3 32 2365 0.0 23 299.5 2365 0.0 23 298.4 2375 0.0 23 261.8 2706 0.0 23 243.9
new2 7 32 3576 0.0 36 642.2 3576 0.0 36 640.8 3552 0.0 21 445.3 4149 0.0 97 1415.3
new3 1 32 3875 0.0 31 1205.1 3747 0.0 27 1163.5 3890 0.0 27 996.7 4151 0.0 35 1447.3
new3 4 32 5235 0.0 39 2596.2 5235 0.0 39 2586.8 5237 0.0 37 2487.1 5915 0.0 37 2229.7
new3 5 32 6261 0.0 33 1937.4 6257 0.0 33 1946.3 6262 0.0 33 1747.4 7315 0.0 29 1852.4
new4 1 32 833 0.0 1 26.1 833 0.0 1 26.0 833 0.0 1 26.1 952 0.0 1 26.1
new4 5 32 1502 0.0 13 86.4 1502 0.0 13 85.6 1502 0.0 13 74.7 1662 0.0 13 90.2
new4 10 32 2474 0.0 3 61.0 2474 0.0 3 60.5 2474 0.0 3 60.7 2696 0.0 5 92.9
new5 2 32 3182 0.0 11 248.6 3182 0.0 11 247.6 3179 0.0 11 225.1 3906 0.0 11 290.2
new5 7 32 5601 0.0 133 2008.2 5601 0.0 133 1998.6 5638 0.0 135 2027.1 6865 0.0 193 2916.1
new5 10 32 6982 0.0 85 2109.2 6982 0.0 85 2103.0 6989 0.0 74 1682.2 8466 0.0 37 1207.5
new6 1 32 3604 0.0 25 692.2 3604 0.0 25 689.6 3595 0.0 25 576.7 4046 0.0 21 630.1
new6 2 32 4983 0.0 7 518.3 4983 0.0 7 516.9 4991 0.0 7 482.1 5996 0.0 7 569.9
new6 5 32 6962 0.0 29 1546.7 6957 0.0 29 1541.1 6956 0.0 29 1405.6 8368 0.0 47 2377.4
new7 1 32 3300 0.0 58 614.3 3300 0.0 58 613.7 3312 0.0 55 519.4 4124 0.0 52 632.6
new7 4 32 5582 0.0 25 665.2 5582 0.0 25 663.3 5582 0.0 25 614.0 6702 0.0 62 1235.0
new7 9 32 7228 0.0 31 1051.1 7228 0.0 31 1050.4 7229 0.0 31 1048.2 8776 0.0 19 1004.3

total 88k 0.0 761 18950.4 88k 0.0 757 18863.9 88k 0.0 732 17074.9 104k 0.0 871 20638.5
timeouts 0/21 0/21 0/21 0/21
mean 3862.2 0.0 26.8 551.5 3855.8 0.0 26.6 548.9 3865.6 0.0 25.8 495.7 4520.7 0.0 28.9 590.0

Table D.45. Impact of the reduced cost pricing setting at subsequent nodes on the performance of GCG (test set rap32s)
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default 20 vars 10% no limit
instance vars gap nodes time vars gap nodes time vars gap nodes time vars gap nodes time

new1 2 64 2723 0.0 13 350.5 2723 0.0 13 350.4 2724 0.0 13 307.7 3137 0.0 15 332.6
new1 6 64 3197 0.0 39 1143.4 3171 0.0 33 1002.8 3200 0.0 38 913.0 3592 0.0 29 1027.6
new1 10 64 4750 0.0 7 896.1 4748 0.0 7 893.3 4743 0.0 7 892.3 5569 0.0 7 874.7
new2 1 64 1401 0.0 3 140.0 1401 0.0 3 139.9 1401 0.0 3 121.8 1628 0.0 3 149.0
new2 3 64 1804 0.0 2 135.9 1804 0.0 2 135.1 1804 0.0 2 136.1 2160 0.0 3 141.9
new2 7 64 2803 0.0 13 740.3 2803 0.0 13 738.6 2788 0.0 11 570.3 3493 0.0 11 669.4
new3 1 64 2521 0.0 1 1205.8 2521 0.0 1 1204.3 2521 0.0 1 1207.3 2798 0.0 1 1004.3
new3 4 64 3154 0.0 9 1688.5 3154 0.0 9 1686.2 3150 0.0 9 1590.8 3435 0.0 9 2089.1
new3 5 64 3600 0.0 9 3039.5 3595 0.0 9 3002.1 3606 0.0 7 2354.9 3971 0.0 15 3420.5
new4 1 64 565 0.0 1 15.6 565 0.0 1 15.6 565 0.0 1 15.7 685 0.0 1 19.0
new4 5 64 1166 0.0 13 106.3 1166 0.0 13 105.8 1166 0.0 13 96.0 1421 0.0 13 108.7
new4 10 64 2247 0.0 5 154.4 2247 0.0 5 153.9 2247 0.0 5 152.9 2505 0.0 3 129.6
new5 2 64 2143 0.0 1 230.7 2143 0.0 1 230.6 2143 0.0 1 230.5 2359 0.0 1 219.2
new5 7 64 3455 0.0 13 730.5 3455 0.0 13 728.9 3455 0.0 13 662.0 3966 0.0 13 934.7
new5 10 64 4843 0.0 25 1799.1 4804 0.0 25 1786.2 4826 0.0 25 1303.5 5643 0.0 37 2819.9
new6 1 64 1920 0.0 7 484.2 1920 0.0 7 483.1 1919 0.0 7 451.3 2017 0.0 9 590.1
new6 2 64 2846 0.0 3 686.3 2846 0.0 3 685.3 2846 0.0 3 620.0 3174 0.0 3 946.0
new6 5 64 3296 0.0 21 1826.8 3287 0.0 21 1797.5 3296 0.0 21 1656.3 3578 0.0 13 1896.4
new7 1 64 2117 0.0 7 276.9 2117 0.0 7 276.3 2117 0.0 7 270.9 2422 0.0 7 286.2
new7 4 64 4190 0.0 37 3600.0 4190 0.0 41 3600.0 4178 0.0 44 3600.0 4443 0.0 57 3600.0
new7 9 64 6002 0.0 11 1800.4 6002 0.0 11 1796.5 6020 0.0 11 1665.1 7025 0.0 9 1750.9

total 60k 0.0 240 21051.2 60k 0.0 238 20812.4 60k 0.0 242 18818.4 69k 0.0 259 23009.8
timeouts 1/21 1/21 1/21 1/21
mean 2679.6 0.0 9.4 559.3 2676.7 0.0 9.3 554.0 2678.4 0.0 9.3 509.3 3036.5 0.0 9.7 591.2

Table D.46. Impact of the reduced cost pricing setting at subsequent nodes on the performance of GCG (test set rap64s)
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default no pseudocosts enforce in master no proper variables no early termination convexification all off knapsack
instance gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time

p550-1 0.0 32 11.9 0.0 33 15.7 0.0 23 10.1 0.0 25 11.6 0.0 29 13.1 0.0 29 15.9 0.0 33 15.6 0.0 26 3.9
p550-3 0.0 3 6.5 0.0 3 6.5 0.0 3 6.8 0.0 3 6.9 0.0 3 6.5 0.0 3 6.5 0.0 3 6.8 0.0 3 2.3
p550-5 0.0 1 7.2 0.0 1 7.1 0.0 1 7.1 0.0 1 7.2 0.0 1 7.1 0.0 1 7.2 0.0 1 7.2 0.0 1 2.3
p550-7 0.0 15 13.2 0.0 19 14.2 0.0 15 11.2 0.0 21 14.1 0.0 15 14.1 0.0 15 12.0 0.0 31 19.6 0.0 15 1.4
p550-9 0.0 9 6.1 0.0 5 5.2 0.0 5 5.9 0.0 5 5.6 0.0 7 6.0 0.0 5 5.8 0.0 5 5.6 0.0 5 1.2
p1250-1 0.0 173 18.8 0.0 81 8.6 0.0 113 12.3 0.0 108 11.6 0.0 117 14.4 0.0 115 13.6 0.0 82 9.0 0.0 138 1.9
p1250-3 0.0 155 18.7 0.0 155 16.0 0.0 125 15.8 0.0 139 15.7 0.0 150 20.1 0.0 164 19.6 0.0 185 21.2 0.0 93 1.6
p1250-5 0.0 68 11.7 0.0 535 60.5 0.0 150 19.1 0.0 85 14.8 0.0 68 12.5 0.0 68 11.8 0.0 482 62.0 0.0 80 1.8
p1250-7 0.0 1514 174.3 0.0 14286 1093.0 0.0 1616 192.0 0.0 1447 186.5 0.0 1559 210.3 0.0 2283 263.1 0.0 14071 1400.7 0.0 1261 8.3
p1250-9 0.0 138 36.9 0.0 442 82.8 0.0 162 33.4 0.0 129 31.6 0.0 144 37.9 0.0 116 23.9 0.0 433 89.1 0.0 141 1.9
p1650-1 0.0 8 2.6 0.0 14 2.9 0.0 8 2.5 0.0 8 2.6 0.0 8 2.7 0.0 8 2.6 0.0 14 3.1 0.0 5 0.9
p1650-3 0.0 13 2.8 0.0 68 6.8 0.0 13 2.8 0.0 13 2.8 0.0 13 2.9 0.0 13 2.8 0.0 90 8.7 0.0 11 1.0
p1650-5 0.0 59 8.5 0.0 144 14.6 0.0 60 8.3 0.0 136 15.9 0.0 66 10.1 0.0 75 10.2 0.0 148 16.6 0.0 54 1.1
p1650-7 0.0 75 9.8 0.0 109 11.6 0.0 81 10.4 0.0 79 9.9 0.0 75 11.5 0.0 75 9.8 0.0 109 14.1 0.0 82 1.2
p1650-9 0.0 198 26.7 0.0 354 32.8 0.0 228 31.3 0.0 174 24.4 0.0 186 29.6 0.0 198 26.8 0.0 455 60.6 0.0 249 1.9
p2050-1 0.0 38 4.5 0.0 45 5.8 0.0 38 4.5 0.0 38 4.5 0.0 38 4.6 0.0 42 4.7 0.0 47 5.8 0.0 40 1.0
p2050-3 0.0 11 3.5 0.0 11 3.5 0.0 11 3.4 0.0 11 3.5 0.0 11 3.8 0.0 11 3.5 0.0 11 3.7 0.0 11 1.0
p2050-5 0.0 5 2.9 0.0 5 2.9 0.0 5 3.0 0.0 5 3.0 0.0 5 3.0 0.0 5 2.9 0.0 5 3.2 0.0 6 0.8
p2050-7 0.0 5 3.0 0.0 3 2.7 0.0 5 3.0 0.0 5 3.1 0.0 5 3.1 0.0 5 2.9 0.0 3 2.8 0.0 7 0.9
p2050-9 0.0 343 46.3 0.0 5222 332.6 0.0 288 39.7 0.0 380 50.6 0.0 258 43.3 0.0 249 34.4 0.0 4924 488.4 0.0 303 2.1

total 0.0 2863.0 415.9 0.0 21k 1725.8 0.0 2950.0 422.6 0.0 2812.0 425.9 0.0 2758.0 456.6 0.0 3480.0 480.0 0.0 21k 2243.8 0.0 2531.0 38.5
timeouts 0/20 0/20 0/20 0/20 0/20 0/20 0/20 0/20
mean 0.0 44.9 12.8 0.0 82.5 20.7 0.0 44.6 12.5 0.0 45.2 12.9 0.0 42.9 13.3 0.0 43.8 12.6 0.0 86.6 23.9 0.0 42.1 1.8

Table D.47. Impact of selected advanced features and problem specific pricing solvers on the performance of GCG (test set cpmp50)
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default no pseudocosts enforce in master no proper variables no early termination convexification all off knapsack
instance gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time

p10100-11 0.0 35 62.6 0.0 88 115.2 0.0 39 66.5 0.0 25 64.6 0.0 25 59.5 0.0 52 95.5 0.0 96 117.3 0.0 20 37.3
p10100-13 0.0 7 19.5 0.0 11 30.1 0.0 5 19.6 0.0 5 29.1 0.0 7 19.8 0.0 14 37.9 0.0 12 39.7 0.0 23 35.2
p10100-15 0.0 235 244.3 0.0 220 296.9 0.0 192 193.2 0.0 187 214.6 0.0 232 252.5 0.0 228 250.0 0.0 300 383.5 0.0 189 55.7
p10100-17 0.0 134 144.8 0.0 331 196.7 0.0 79 89.2 0.0 126 109.7 0.0 155 139.0 0.0 84 85.0 0.0 365 259.4 0.0 69 40.9
p10100-19 0.0 19 32.7 0.0 41 44.3 0.0 36 45.5 0.0 29 45.3 0.0 17 33.2 0.0 32 56.4 0.0 59 69.5 0.0 25 31.2
p25100-11 0.0 5202 862.4 1.0 27299 3600.0 0.0 4516 766.3 0.0 4479 797.5 0.0 5614 1155.6 0.0 4080 741.7 3.4 17045 3600.0 0.0 3181 73.0
p25100-13 1.4 26451 3600.0 8.7 33898 3600.0 3.8 23613 3600.0 0.8 28804 3600.0 2.8 21395 3600.0 1.0 27666 3600.0 7.6 24157 3600.0 0.0 55676 981.9
p25100-15 0.0 778 201.9 0.0 2138 405.2 0.0 598 144.6 0.0 622 169.6 0.0 566 185.1 0.0 490 142.3 0.0 2067 514.2 0.0 493 23.7
p25100-17 0.0 47 28.3 0.0 141 47.5 0.0 52 27.9 0.0 56 31.7 0.0 53 30.7 0.0 34 19.7 0.0 129 45.2 0.0 48 12.4
p25100-19 0.0 8501 1623.1 1.3 25488 3600.0 0.0 10819 2099.1 0.0 11996 2343.6 0.0 8647 1880.1 0.0 7963 1592.1 3.4 18371 3600.0 0.0 9272 183.1
p33100-11 0.0 558 83.6 0.0 1140 145.8 0.0 530 79.8 0.0 765 100.9 0.0 435 82.7 0.0 596 90.0 0.0 2309 367.3 0.0 568 18.9
p33100-13 0.0 185 36.8 0.0 959 119.8 0.0 131 29.8 0.0 131 27.2 0.0 145 38.7 0.0 118 26.0 0.0 1031 180.0 0.0 120 6.5
p33100-15 0.0 250 56.2 0.0 8578 945.4 0.0 450 87.8 0.0 306 61.5 0.0 516 116.8 0.0 306 73.3 0.0 4114 679.4 0.0 300 14.6
p33100-17 0.0 218 47.6 0.0 231 47.0 0.0 428 70.2 0.0 482 81.5 0.0 188 48.8 0.0 284 55.4 0.0 704 127.6 0.0 149 11.0
p33100-19 0.0 4076 603.2 0.6 28604 3600.0 0.0 4323 654.8 0.0 6147 957.6 0.0 4109 851.5 0.0 3041 471.1 0.3 19800 3600.0 0.0 2743 49.7
p40100-11 0.0 7957 1114.1 0.0 19350 2245.3 0.0 4629 646.2 0.0 7129 1044.8 0.0 4486 824.8 0.0 5175 698.5 0.0 16204 2870.0 0.0 4691 65.8
p40100-13 0.0 623 82.3 0.0 3751 373.5 0.0 1050 111.3 0.0 302 42.4 0.0 593 103.3 0.0 1027 120.9 0.0 3720 518.5 0.0 824 16.5
p40100-15 0.0 828 153.2 0.0 3812 464.0 0.0 789 141.0 0.0 1143 179.6 0.0 705 170.6 0.0 869 162.9 0.0 4147 815.5 0.0 622 18.7
p40100-17 0.0 2218 422.1 3.6 26740 3600.0 0.0 2221 429.8 0.0 1416 282.3 0.0 1554 380.4 0.0 1633 313.3 3.5 17055 3600.0 0.0 671 17.1
p40100-19 0.0 3173 531.6 1.2 25681 3600.0 0.0 2891 511.1 0.0 1605 295.3 0.0 2694 612.1 0.0 3602 619.0 4.9 16913 3600.0 0.0 2243 36.8

total 1.4 61k 9950.3 16.4 208k 27076.7 3.8 57k 9813.7 0.8 65k 10478.8 2.8 52k 10585.2 1.0 57k 9251.0 23.1 148k 28587.1 0.0 81k 1730.0
timeouts 1/20 6/20 1/20 1/20 1/20 1/20 6/20 0/20
mean 0.1 587.1 184.7 0.8 1962.6 469.5 0.2 596.2 181.7 0.0 574.9 183.5 0.1 537.6 199.5 0.0 567.7 182.8 1.1 1900.2 583.3 0.0 491.6 37.8

Table D.48. Impact of selected advanced features and problem specific pricing solvers on the performance of GCG (test set cpmp100)
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default no pseudocosts enforce in master no proper variables no early termination convexification all off knapsack
instance gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time

p15150-21 0.0 84 162.6 0.0 186 278.7 0.0 103 187.3 0.0 119 159.4 0.0 89 154.6 0.0 78 171.9 0.0 91 172.5 0.0 74 140.9
p15150-23 0.0 3 43.0 0.0 7 46.2 0.0 3 42.6 0.0 3 43.3 0.0 3 42.9 0.0 3 42.0 0.0 7 45.1 0.0 11 182.9
p15150-25 0.0 116 125.3 0.0 231 196.6 0.0 85 144.2 0.0 167 242.3 0.0 162 184.6 0.0 155 174.7 0.0 233 249.1 0.0 119 130.9
p15150-27 0.0 1688 2251.4 1.3 2799 3600.0 0.0 2931 3325.0 0.3 2613 3600.0 0.1 2925 3600.0 0.0 2436 3288.2 1.6 2512 3600.0 0.0 2707 660.8
p15150-29 0.0 1 39.2 0.0 1 39.2 0.0 1 39.2 0.0 1 39.2 0.0 1 38.9 0.0 1 39.2 0.0 1 39.1 0.0 1 171.9
p37150-21 0.0 207 105.1 0.0 4078 908.6 0.0 159 87.0 0.0 234 118.6 0.0 129 87.9 0.0 155 95.1 0.0 3603 1239.5 0.0 130 62.8
p37150-23 3.0 8303 3600.0 5.5 11748 3600.0 3.1 8417 3600.0 2.7 8489 3600.0 4.5 7012 3600.0 1.8 8447 3600.0 11.4 8210 3600.0 0.0 76642 3173.1
p37150-25 0.0 55 41.5 0.0 869 152.7 0.0 40 36.8 0.0 49 39.1 0.0 97 63.1 0.0 55 41.3 0.0 305 117.4 0.0 105 67.0
p37150-27 0.9 7682 3600.0 – 10485 3600.0 1.5 6777 3600.0 4.4 6417 3600.0 2.0 6159 3600.0 1.2 7655 3600.0 7.4 7569 3600.0 0.0 44139 1673.5
p37150-29 0.0 650 215.9 0.0 2704 606.8 0.0 648 236.8 0.0 626 202.1 0.0 576 242.0 0.0 785 277.5 0.0 2921 917.0 0.0 582 79.9
p50150-21 1.9 12817 3600.0 6.4 15829 3600.0 2.9 12332 3600.0 12.1 13460 3600.0 3.2 10688 3600.0 2.9 12799 3600.0 8.5 11189 3600.0 0.0 40201 1456.1
p50150-23 0.0 3408 1154.2 1.8 14700 3600.0 0.0 3437 1097.8 0.0 2881 988.6 0.0 3799 1663.7 0.0 3408 1152.3 1.8 9721 3600.0 0.0 4322 182.0
p50150-25 0.0 56 37.5 0.0 63 40.3 0.0 81 44.5 0.0 79 43.2 0.0 45 40.4 0.0 56 37.8 0.0 69 48.6 0.0 42 49.5
p50150-27 0.0 3284 1314.7 1.3 11633 3600.0 0.0 2536 988.2 0.0 3427 1386.7 0.0 1592 790.7 0.0 3632 1345.3 1.7 7966 3600.0 0.0 3326 154.3
p50150-29 1.0 15713 3600.0 6.0 20546 3600.0 2.2 15385 3600.0 1.7 15801 3600.0 4.1 12337 3600.0 1.0 16039 3600.0 5.6 13573 3600.0 0.0 75091 2366.3
p60150-21 0.0 463 175.3 0.0 7172 1354.4 0.0 389 149.3 0.0 434 166.2 0.0 373 165.0 0.0 378 138.2 0.0 7107 2226.8 0.0 452 46.5
p60150-23 0.0 5148 1648.0 10.0 13466 3600.0 0.0 9157 3076.7 0.0 6365 2032.1 0.0 6469 2660.5 0.0 5547 1813.5 10.0 9637 3600.0 0.0 6551 242.5
p60150-25 0.0 18501 2985.0 1.0 21964 3600.0 0.0 11484 1880.5 0.3 23367 3600.0 0.6 13489 3600.0 0.5 22426 3600.0 1.0 13682 3600.0 0.0 1831 91.6
p60150-27 6.5 7646 3600.0 – 10614 3600.0 11.1 6814 3600.0 6.8 7173 3600.0 10.8 5986 3600.0 6.5 7632 3600.0 – 7090 3600.0 3.5 92880 3600.0
p60150-29 0.0 512 133.9 0.0 3117 591.4 0.0 484 135.6 0.0 470 127.0 0.0 517 166.0 0.0 512 134.2 0.0 4101 1030.7 0.0 270 47.6

total 13.3 86k 28432.6 33.3 152k 40214.9 20.8 81k 29471.5 28.3 92k 30787.8 25.3 72k 31500.3 13.9 92k 30351.2 49.0 109k 42085.8 3.5 349k 14580.1
timeouts 5/20 10/20 5/20 7/20 7/20 6/20 10/20 1/20
mean 0.7 847.6 493.5 1.8 2211.7 920.3 1.0 830.4 501.0 1.4 908.9 529.6 1.2 793.8 540.9 0.7 877.3 518.2 2.5 1725.7 988.4 0.2 1228.6 253.8

Table D.49. Impact of selected advanced features and problem specific pricing solvers on the performance of GCG (test set cpmp150)
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default no pseudocosts enforce in master no proper variables no early termination convexification all off knapsack
instance gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time gap nodes time

p20200-32 0.0 889 2482.8 4.2 973 3600.0 0.0 944 2110.2 0.0 738 1884.9 0.0 863 2241.8 0.0 789 1971.8 – 902 3600.0 0.0 1168 772.4
p20200-34 0.0 508 1187.2 2.4 1800 3600.0 0.0 684 1367.3 0.0 388 1024.9 0.0 524 1427.0 0.0 492 1296.8 0.9 1505 3600.0 0.0 495 918.1
p20200-36 0.0 62 293.0 0.0 173 465.6 0.0 36 274.9 0.0 52 328.0 0.0 39 279.6 0.0 33 269.1 0.0 273 756.8 0.0 48 650.7
p50200-36 0.0 2488 1234.3 3.3 10835 3600.0 0.0 1927 1085.1 0.0 2943 1263.1 0.0 2014 1287.7 0.0 889 532.6 3.3 6576 3600.0 0.0 1741 282.7
p50200-37 0.0 2650 1067.9 3.6 11594 3600.0 0.0 3133 1237.4 0.0 2438 999.8 0.0 2284 1126.1 0.0 5811 1950.5 2.5 7897 3600.0 0.0 4203 478.4
p50200-39 0.0 1176 589.7 1.2 11374 3600.0 0.0 2301 972.2 0.0 1029 500.9 0.0 1122 669.1 0.0 1850 822.6 0.9 7386 3600.0 0.0 1324 284.0
p66200-31 0.0 1148 377.0 0.0 14290 2823.5 0.0 2120 563.1 0.0 1133 345.3 0.0 677 336.1 0.0 1524 451.4 0.2 9874 3600.0 0.0 1753 230.7
p66200-36 0.0 4533 1606.2 2.9 13653 3600.0 0.0 5149 1886.4 0.0 5243 1902.5 0.0 6404 3151.3 0.0 5171 1878.0 2.0 7947 3600.0 0.0 6510 500.8
p66200-38 0.6 8346 3600.0 3.2 12556 3600.0 1.8 8663 3600.0 2.0 8677 3600.0 1.5 6709 3600.0 4.4 9066 3600.0 2.7 7156 3600.0 0.0 22744 1403.8
p80200-33 0.8 10218 3600.0 5.4 11499 3600.0 1.4 10176 3600.0 0.9 10834 3600.0 0.8 7802 3600.0 1.3 10768 3600.0 5.4 7875 3600.0 0.0 15458 788.7
p80200-34 0.9 4554 3600.0 – 6542 3600.0 1.0 4530 3600.0 2.7 4614 3600.0 0.7 3602 3600.0 0.7 4861 3600.0 – 4116 3600.0 0.0 15096 891.9
p80200-38 0.0 1656 695.6 0.6 10717 3600.0 0.0 1464 652.7 0.0 1345 643.3 0.0 1246 839.1 0.0 1656 693.4 0.8 6747 3600.0 0.0 1343 181.3

total 2.3 38k 20333.7 26.8 106k 39289.1 4.2 41k 20949.3 5.6 39k 19692.7 3.0 33k 22157.8 6.4 42k 20666.2 18.7 68k 40356.8 0.0 71k 7383.5
timeouts 3/12 10/12 3/12 3/12 3/12 3/12 11/12 0/12
mean 0.2 1753.3 1243.9 2.4 5577.7 2978.0 0.3 1926.6 1343.6 0.5 1666.0 1192.0 0.2 1486.3 1352.7 0.5 1776.8 1265.0 1.7 4025.6 3162.8 0.0 2338.0 519.3

Table D.50. Impact of selected advanced features and problem specific pricing solvers on the performance of GCG (test set cpmp200)
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SCIP GCG
instance gap nodes time gap nodes time

1-FullIns 3 0.0 36 2.3 0.0 1 1.9
1-FullIns 4 0.0 177173 1366.2 – 220 3600.0
2-FullIns 3 0.0 2296 18.9 0.0 27 9.0
2-Insertions 3 0.0 39374 62.2 65.1 1384 3600.0
3-FullIns 3 0.0 42827 378.7 0.0 41 15.4
4-FullIns 3 16.7 265396 3600.0 0.0 74 20.3
4-FullIns 4 166.7 1109 3600.0 – 15 3600.0
5-FullIns 3 43.3 135921 3600.0 0.0 111 57.3
anna 0.0 79 14.9 0.0 52 8.2
david 0.0 1 0.4 0.0 26 3.3
DSJC125.9 – 4 3600.0 0.0 1 3573.1
fpsol2.i.1 – 1 3600.0 0.0 250 2589.1
games120 0.0 51 16.1 0.0 68 25.7
homer 30.0 42722 3600.0 0.0 458 1487.7
huck 0.0 242852 1589.1 0.0 25 2.0
jean 42.9 774653 3600.0 0.0 37 2.6
le450 25a 118.8 156 3600.0 0.0 405 3592.4
le450 25b 44.0 507 3600.0 0.0 439 3594.5
miles1000 16.2 1525 3600.0 0.0 16 41.4
miles1500 13.0 104 3600.0 0.0 1 77.1
miles250 14.3 562291 3600.0 0.0 92 22.6
miles500 5.3 80400 3600.0 0.0 55 15.3
miles750 37.5 5626 3600.0 0.0 18 22.1
mulsol.i.1 4.3 4793 3600.0 0.0 40 97.8
mulsol.i.2 3.3 2914 3600.0 0.0 93 354.6
mulsol.i.3 3.3 1236 3600.0 0.0 92 384.9
mulsol.i.4 6.7 532 3600.0 0.0 84 368.9
mulsol.i.5 10.0 202 3600.0 0.0 105 416.2
myciel3 0.0 174 0.5 0.0 7 0.3
myciel4 0.0 147961 255.8 0.0 617 183.0
queen6 6 16.7 368387 3600.0 0.0 5 16.7
queen7 7 0.0 763 38.4 0.0 1 8.7
queen8 8 12.5 58121 3600.0 0.0 105 692.1
queen9 9 22.2 18615 3600.0 22.2 541 3600.0
queen10 10 30.0 2365 3600.0 59.7 262 3600.0
will199GPIA 33.3 615 3600.0 – 1 3600.0
zeroin.i.1 8.9 1811 3600.0 0.0 66 237.8
zeroin.i.2 7.1 2138 3600.0 0.0 82 314.5
zeroin.i.3 7.1 3161 3600.0 0.0 100 311.4

total 914.1 2988k 100943.5 447.0 6017.0 40147.9
timeouts 27/39 6/39
mean 19.5 3256.9 1073.3 8.7 64.3 176.1

Table D.51: Comparison of SCIP and GCG on test set coloring-all
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SCIP GCG
instance gap nodes time gap nodes time

p550-1 0.0 163 8.0 0.0 32 12.2
p550-2 0.0 1 1.0 0.0 1 3.8
p550-3 0.0 2 1.9 0.0 3 6.6
p550-4 0.0 2 1.1 0.0 1 6.2
p550-5 0.0 1 1.6 0.0 1 7.3
p550-6 0.0 1 1.7 0.0 1 4.0
p550-7 0.0 154 8.7 0.0 15 13.4
p550-8 0.0 9043 33.6 0.0 1561 599.0
p550-9 0.0 10 3.6 0.0 9 6.2
p550-10 0.0 3294 19.6 0.0 43 40.8
p1250-1 0.0 114 2.9 0.0 173 19.3
p1250-2 0.0 4 2.0 0.0 17 4.3
p1250-3 0.0 1193 8.4 0.0 155 19.2
p1250-4 0.0 168567 192.0 0.0 2406 275.4
p1250-5 0.0 1526 10.4 0.0 68 11.9
p1250-6 0.0 47464 100.5 0.0 472 57.1
p1250-7 0.0 170655 328.1 0.0 1514 177.7
p1250-8 0.0 20866 46.4 0.0 117 17.9
p1250-9 0.0 88223 119.6 0.0 138 37.2
p1250-10 0.0 219478 455.9 0.0 1175 179.9
p1650-1 0.0 160 2.5 0.0 8 2.6
p1650-2 0.0 4985 9.3 0.0 78 9.2
p1650-3 0.0 32 2.5 0.0 13 2.9
p1650-4 0.0 8313 12.8 0.0 53 8.3
p1650-5 0.0 1625 5.0 0.0 59 8.7
p1650-6 0.0 879 9.6 0.0 13 3.6
p1650-7 0.0 2132 14.4 0.0 75 10.1
p1650-8 0.0 293989 484.0 0.0 12679 1256.0
p1650-9 0.0 4616 20.6 0.0 198 27.2
p1650-10 0.0 64647 136.7 0.0 2367 294.9
p2050-1 0.0 5157 6.8 0.0 38 4.7
p2050-2 0.0 1138 3.8 0.0 86 9.9
p2050-3 0.0 598 9.3 0.0 11 3.5
p2050-4 0.0 57 2.8 0.0 20 3.2
p2050-5 0.0 1969 14.2 0.0 5 2.9
p2050-6 0.0 2 2.0 0.0 4 2.8
p2050-7 0.0 15742 17.7 0.0 5 3.0
p2050-8 0.0 209862 368.0 0.0 630 79.5
p2050-9 0.0 47674 113.6 0.0 343 47.3
p2050-10 4.8 1612769 3600.0 0.0 692 110.5

total 4.8 3007k 6182.6 0.0 25k 3390.2
timeouts 1/40 0/40
mean 0.1 1652.9 25.8 0.0 80.9 23.9

Table D.52: Comparison of SCIP and GCG on test set cpmp50
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SCIP GCG
instance gap nodes time gap nodes time

p10100-11 0.0 3746 36.9 0.0 35 63.1
p10100-12 0.0 2156 73.4 0.0 45 78.0
p10100-13 0.0 840 40.6 0.0 7 20.1
p10100-14 0.0 12118 194.0 0.0 279 261.6
p10100-15 0.0 11975 164.6 0.0 235 245.6
p10100-16 0.0 478 30.3 0.0 19 45.7
p10100-17 0.0 3163 77.8 0.0 134 147.1
p10100-18 0.0 11269 173.1 0.0 325 259.1
p10100-19 0.0 2102 59.4 0.0 19 33.4
p10100-20 1.4 305944 3600.0 0.8 4165 3600.0
p25100-11 0.0 161357 1492.2 0.0 5202 881.0
p25100-12 0.0 5428 90.9 0.0 2060 315.5
p25100-13 1.3 428360 3600.0 1.4 25947 3600.0
p25100-14 0.0 69642 701.5 0.0 3252 660.1
p25100-15 0.0 28588 301.5 0.0 778 205.9
p25100-16 2.1 345276 3600.0 0.0 11592 2180.9
p25100-17 0.0 1765 64.5 0.0 47 29.2
p25100-18 0.0 12876 247.6 0.0 149 72.7
p25100-19 1.9 408594 3600.0 0.0 8501 1644.4
p25100-20 16.1 130000 3600.0 17.2 9342 3600.0
p33100-11 0.0 6679 97.7 0.0 558 86.1
p33100-12 1.1 461239 3600.0 0.5 30731 3600.0
p33100-13 0.0 602 33.9 0.0 185 37.6
p33100-14 1.2 438288 3600.0 0.0 4447 643.6
p33100-15 0.0 3056 72.4 0.0 250 56.6
p33100-16 0.0 307493 2689.4 0.0 12470 2079.5
p33100-17 0.0 29666 341.5 0.0 218 48.4
p33100-18 0.0 68763 754.7 1.3 23614 3600.0
p33100-19 0.0 43911 421.4 0.0 4076 619.2
p33100-20 1.2 354820 3600.0 0.0 959 264.3
p40100-11 0.0 24484 255.0 0.0 7957 1140.7
p40100-12 1.3 435786 3600.0 0.0 16184 2035.2
p40100-13 0.0 2038 54.8 0.0 623 83.6
p40100-14 0.0 30323 352.9 0.0 329 82.0
p40100-15 0.0 14780 183.4 0.0 828 156.2
p40100-16 0.0 6621 121.1 0.0 283 57.6
p40100-17 1.1 429574 3600.0 0.0 2218 426.8
p40100-18 0.0 291995 2584.2 0.0 1732 351.4
p40100-19 0.0 61675 726.2 0.0 3173 540.5
p40100-20 3.7 386116 3600.0 0.0 297 90.8

total 32.4 5343k 52036.9 21.2 183k 33943.5
timeouts 11/40 5/40
mean 0.8 28557.8 436.9 0.5 929.5 298.0

Table D.53: Comparison of SCIP and GCG on test set cpmp100
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SCIP GCG
instance gap nodes time gap nodes time

p15150-21 0.0 3313 165.4 0.0 84 163.0
p15150-22 0.7 103476 3600.0 0.0 363 503.8
p15150-23 0.0 1155 122.7 0.0 3 43.2
p15150-24 0.0 52924 687.3 0.0 10 68.9
p15150-25 0.0 12174 401.1 0.0 116 125.8
p15150-26 0.0 3358 175.2 0.0 47 130.3
p15150-27 0.0 63122 1993.3 0.0 1688 2278.4
p15150-28 0.0 434 22.3 0.0 11 49.9
p15150-29 0.0 11 12.1 0.0 1 39.5
p15150-30 0.0 984 90.6 0.0 3 39.3
p37150-21 0.0 17054 587.8 0.0 207 107.2
p37150-22 2.0 148746 3600.0 0.0 6685 2261.6
p37150-23 14.4 65070 3600.0 3.0 8220 3600.0
p37150-24 0.0 89401 2242.1 0.0 2332 584.6
p37150-25 0.0 2364 160.9 0.0 55 42.0
p37150-26 0.0 10991 326.5 0.0 156 79.4
p37150-27 12.7 57700 3600.0 0.9 7613 3600.0
p37150-28 0.0 33572 767.7 0.0 7164 1600.0
p37150-29 0.0 15015 392.0 0.0 650 218.4
p37150-30 0.6 167437 3600.0 0.0 6819 1621.8
p50150-21 1.4 156359 3600.0 1.9 12666 3600.0
p50150-22 10.0 68778 3600.0 9.0 11479 3600.0
p50150-23 3.9 98421 3600.0 0.0 3408 1165.9
p50150-24 1.5 128420 3600.0 0.0 3487 886.8
p50150-25 0.0 32871 91.5 0.0 56 38.6
p50150-26 0.0 11194 379.3 0.0 4071 927.0
p50150-27 1.1 129987 3600.0 0.0 3284 1325.9
p50150-28 0.0 2604 138.8 0.0 435 115.4
p50150-29 1.4 148682 3600.0 1.0 15627 3600.0
p50150-30 2.1 151174 3600.0 0.5 16284 3600.0
p60150-21 1.1 153650 3600.0 0.0 463 177.3
p60150-22 6.5 84866 3600.0 0.0 5143 1816.3
p60150-23 14.7 40000 3600.0 0.0 5148 1670.7
p60150-24 2.6 121739 3600.0 0.4 15024 3600.0
p60150-25 0.0 987 88.0 0.0 18501 3048.5
p60150-26 4.4 551447 3600.0 0.0 1637 337.3
p60150-27 25.7 52747 3600.0 6.5 7593 3600.0
p60150-28 1.0 177083 3600.0 0.0 6364 1160.3
p60150-29 0.0 874 78.1 0.0 512 135.8
p60150-30 0.0 7525 231.8 0.0 1007 221.4

total 107.8 2967k 77554.5 23.2 174k 51784.3
timeouts 19/40 8/40
mean 2.6 22250.3 846.8 0.6 979.1 513.9

Table D.54: Comparison of SCIP and GCG on test set cpmp150
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SCIP GCG
instance gap nodes time gap nodes time

p20200-31 0.0 20534 1554.8 0.0 181 369.4
p20200-32 2.0 53487 3600.0 0.0 889 2493.0
p20200-33 0.0 36409 2330.0 0.0 203 504.7
p20200-34 0.5 67579 3600.0 0.0 508 1191.7
p20200-35 0.0 16443 1283.1 0.0 302 563.9
p20200-36 0.0 2457 313.1 0.0 62 294.0
p20200-37 0.0 2843 297.9 0.0 55 256.4
p20200-38 0.4 69953 3600.0 0.0 344 697.3
p20200-39 0.0 1511 287.0 0.0 25 128.4
p20200-40 0.0 1355 345.7 0.0 82 222.5
p50200-31 2.6 60667 3600.0 2.1 8282 3600.0
p50200-32 41.6 33990 3600.0 – 2737 3600.0
p50200-33 6.1 33156 3600.0 12.1 6335 3600.0
p50200-34 35.6 37520 3600.0 – 3305 3600.0
p50200-35 4.1 41552 3600.0 7.2 7008 3600.0
p50200-36 0.0 27590 1812.3 0.0 2488 1241.7
p50200-37 0.0 24845 1549.2 0.0 2650 1093.8
p50200-38 17.5 33824 3600.0 – 5253 3600.0
p50200-39 0.0 37494 1907.9 0.0 1176 592.1
p50200-40 13.5 34586 3600.0 12.6 4880 3600.0
p66200-31 0.0 1548 219.4 0.0 1148 380.2
p66200-32 72.3 38044 3600.0 – 3660 3600.0
p66200-33 12.6 33080 3600.0 – 6788 3600.0
p66200-34 21.1 33302 3600.0 7.0 5297 3600.0
p66200-35 6.9 41225 3600.0 5.5 8129 3600.0
p66200-36 2.6 64980 3600.0 0.0 4533 1615.8
p66200-37 3.2 54983 3600.0 10.3 10271 3600.0
p66200-38 2.4 62625 3600.0 0.6 8250 3600.0
p66200-39 2.1 66666 3600.0 2.2 10485 3600.0
p66200-40 5.4 44502 3600.0 9.4 8142 3600.0
p80200-31 1.5 83648 3600.0 3.8 11408 3600.0
p80200-32 56.2 26806 3600.0 3.9 3669 3600.0
p80200-33 2.8 63911 3600.0 0.8 10146 3600.0
p80200-34 21.6 22430 3600.0 0.9 4555 3600.0
p80200-35 0.0 68676 3283.8 0.0 7078 2585.3
p80200-36 3.6 52193 3600.0 1.1 8944 3600.0
p80200-37 1.6 70721 3600.0 1.3 10038 3600.0
p80200-38 3.9 51824 3600.0 0.0 1656 698.1
p80200-39 1.7 79323 3600.0 1.1 10841 3600.0
p80200-40 13.7 19330 3600.0 5.9 7104 3600.0

total 359.1 1617k 115984.2 587.8 188k 97728.3
timeouts 28/40 23/40
mean 8.0 28550.0 2350.7 11.4 2248.2 1728.1

Table D.55: Comparison of SCIP and GCG on test set cpmp200
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SCIP GCG (32) GCG (64)
instance gap nodes time gap nodes time gap nodes time

new1 1 1.3 757186 3600.0 0.0 29 201.2 0.0 3 111.4
new1 2 1.7 589833 3600.0 0.0 119 979.6 0.0 13 350.5
new1 3 1.6 408635 3600.0 0.0 23 359.7 0.0 9 529.5
new1 4 1.7 296254 3600.0 0.0 187 1888.9 0.0 7 473.3
new1 5 2.0 262849 3600.0 0.0 41 828.6 0.0 11 562.3
new1 6 1.4 194120 3600.0 0.0 17 468.5 0.0 39 1143.4
new1 7 1.5 163145 3600.0 0.0 27 460.6 0.0 1 478.7
new1 8 1.7 161800 3600.0 0.0 13 583.6 0.0 3 350.6
new1 9 1.8 108307 3600.0 0.0 87 1687.5 0.0 2 453.4
new1 10 2.2 84190 3600.0 0.0 35 1085.1 0.0 7 896.1
new2 1 2.0 750775 3600.0 0.0 7 109.5 0.0 3 140.0
new2 2 1.4 580746 3600.0 0.0 136 898.0 0.0 44 744.7
new2 3 1.1 415357 3600.0 0.0 23 299.5 0.0 2 135.9
new2 4 1.2 428950 3600.0 0.0 1 118.9 0.0 1 367.1
new2 5 1.9 207493 3600.0 0.0 161 1622.6 0.1 154 3600.0
new2 6 2.0 198288 3600.0 0.0 11 425.6 0.0 4 326.9
new2 7 1.6 188555 3600.0 0.0 36 642.2 0.0 13 740.3
new2 8 1.7 142970 3600.0 0.0 13 399.6 0.0 14 782.2
new2 9 1.8 75900 3600.0 0.0 31 702.4 0.0 1 293.5
new2 10 1.9 131284 3600.0 0.0 151 1489.0 0.0 41 1274.4
new3 1 1.3 233708 3600.0 0.0 31 1205.1 0.0 1 1205.8
new3 2 1.2 89037 3600.0 0.0 119 3600.0 0.0 49 3600.0
new3 3 1.3 75770 3600.0 0.0 13 1227.5 0.0 7 3599.9
new3 4 1.4 84830 3600.0 0.0 39 2596.2 0.0 9 1688.5
new3 5 1.7 19150 3600.0 0.0 33 1937.4 0.0 9 3039.5

continue next page
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SCIP GCG (32) GCG (64)
instance gap nodes time gap nodes time gap nodes time

new3 6 2.2 8632 3600.0 0.1 55 3600.0 0.0 39 3600.0
new3 7 1.8 35455 3600.0 0.0 88 3600.0 0.0 62 3600.0
new3 8 1.8 30130 3600.0 0.0 53 3535.1 0.0 5 3172.4
new3 9 2.4 25500 3600.0 0.1 40 3600.0 73.8 1 3600.0
new3 10 2.6 864 3600.0 0.0 45 3600.0 0.2 27 3600.0
new4 1 0.0 4907 16.1 0.0 1 26.1 0.0 1 15.6
new4 2 0.0 187 4.8 0.0 1 17.9 0.0 1 17.1
new4 3 0.0 132 6.0 0.0 1 24.6 0.0 1 28.4
new4 4 0.1 1571331 3600.0 0.0 1 73.0 0.0 1 44.5
new4 5 0.0 70140 342.6 0.0 13 86.4 0.0 13 106.3
new4 6 0.2 792713 3600.0 0.0 1 58.8 0.0 1 66.1
new4 7 0.0 670545 3406.9 0.0 1 57.0 0.0 1 54.1
new4 8 0.2 535592 3600.0 0.0 4 99.3 0.0 3 59.0
new4 9 0.2 546140 3600.0 0.0 3 92.6 0.0 3 93.6
new4 10 0.2 507737 3600.0 0.0 3 61.0 0.0 5 154.4
new5 1 0.7 640409 3600.0 0.0 23 254.4 0.0 1 130.1
new5 2 1.3 317663 3600.0 0.0 11 248.6 0.0 1 230.7
new5 3 0.9 318430 3600.0 0.0 3 177.1 0.0 3 282.4
new5 4 1.4 247945 3600.0 0.0 75 1445.6 0.0 3 265.3
new5 5 1.4 120474 3600.0 0.0 42 871.3 0.0 17 887.4
new5 6 1.3 147990 3600.0 0.0 161 3570.1 0.0 129 3600.0
new5 7 1.0 135050 3600.0 0.0 133 2008.2 0.0 13 730.5
new5 8 1.3 114213 3600.0 0.0 15 554.7 0.0 1 564.4
new5 9 1.2 78548 3600.0 0.0 124 3600.0 0.0 87 3600.0
new5 10 1.7 22990 3600.0 0.0 85 2109.2 0.0 25 1799.1

continue next page
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SCIP GCG (32) GCG (64)
instance gap nodes time gap nodes time gap nodes time

new6 1 1.0 215663 3600.0 0.0 25 692.2 0.0 7 484.2
new6 2 1.2 159970 3600.0 0.0 7 518.3 0.0 3 686.3
new6 3 1.0 92896 3600.0 0.0 27 975.0 0.0 11 559.0
new6 4 1.0 93850 3600.0 0.0 17 1091.2 0.0 1 628.5
new6 5 1.1 69570 3600.0 0.0 29 1546.7 0.0 21 1826.8
new6 6 1.8 14540 3600.0 0.0 13 1094.0 0.0 7 1714.0
new6 7 2.3 10384 3600.0 0.0 51 3600.0 0.0 3 1368.9
new6 8 1.6 6209 3600.0 0.1 77 3600.0 0.0 38 3600.0
new6 9 1.7 38634 3600.0 0.0 37 3600.0 0.0 3 2030.4
new6 10 3.0 772 3600.0 0.0 55 3600.0 0.0 35 3600.0
new7 1 1.4 537230 3600.0 0.0 58 614.3 0.0 7 276.9
new7 2 1.5 373513 3600.0 0.0 31 624.5 0.0 41 1263.9
new7 3 1.4 230756 3600.0 0.0 46 823.1 0.0 11 545.2
new7 4 1.8 164797 3600.0 0.0 25 665.2 0.0 37 3600.0
new7 5 1.3 147376 3600.0 0.0 9 486.2 0.0 9 791.8
new7 6 1.7 158523 3600.0 0.0 186 3600.0 0.0 34 3032.1
new7 7 1.7 95711 3600.0 0.0 140 3600.0 0.1 74 3600.0
new7 8 2.2 96525 3600.0 0.1 148 3600.0 0.0 19 3205.4
new7 9 1.7 80942 3600.0 0.0 31 1051.1 0.0 11 1800.4
new7 10 2.4 78398 3600.0 0.0 107 3600.0 0.1 42 3600.0

total 97.1 16259k 237776.4 0.4 3484.0 98169.6 74.3 1305.0 95403.1
timeouts 65/70 14/70 14/70
mean 1.4 97564.0 2772.4 0.0 32.2 727.4 0.8 11.5 670.7

Table D.56. Comparison of SCIP and GCG on test set rap
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[57] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007–1023, 2005.

[58] E. Malaguti and P. Toth. A survey on vertex coloring problems. Inter-
national Transactions in Operational Research, 17(1):1–34, 2010.

[59] H. Marchand, A. Martin, R. Weismantel, and L. A. Wolsey. Cutting
planes in integer and mixed integer programming. Discrete Applied
Mathematics, 123:397–446, 2002.

[60] O. Marcotte. The cutting stock problem and integer rounding. Mathe-
matical Programming, 33:82–92, 1985.

[61] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical
Programming, 94(1):71–90, 2002.

[62] S. Martello and P. Toth. Knapsack Problems: Algorithms and computer
Implementations. Wiley-Interscience Series in Discrete Mathematics and
Optimization, New York, 1990.

[63] A. Mehrotra and M. A. Trick. A column generation approach for graph
coloring. INFORMS JOURNAL ON COMPUTING, 8(4):344–354, 1996.

[64] O. D. Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized
column generation. Discrete Math, 194:229–237, 1997.

[65] R. R. Meyer. On the existence of optimal solutions to integer and mixed-
integer programming problems. Mathematical Programming, 7(1):223–
235, 1974.

[66] M. Minoux. A class of combinatorial optimization problems with polyno-
mially solvable large scale set-covering/partitioning relaxations. RAIRO,
21:105–136, 1987.

[67] H. Mittelmann. Decision tree for optimization software: Benchmarks
for optimization software, 2009. http://plato.asu.edu/bench.html.

[68] G. L. Nemhauser, M. W. P. Savelsbergh, and G. S. Sigismondi. MINTO,
a Mixed INTeger Optimizer. Oper. Res. Lett., 15:47–58, 1994.

http://plato.asu.edu/bench.html


198 Bibliography

[69] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Opti-
mization. Wiley, New York, 1988.

[70] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio. Orbital branching.
Lecture Notes in Computer Science, 4513:104–118, 2007.

[71] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio. Constraint orbital
branching. Lecture Notes in Computer Science, 5035:225–239, 2008.

[72] P. M. Pardalos, T. Mavridou, and J. Xue. The graph coloring problem:
A bibiographic survey. In D.-Z. Due and P. M. Pardalos, editors, Hand-
book of Combinatorial Optimization, volume 2, pages 331–395. Kluwer
Academic Publishers, 1998.

[73] M. Parker and J. Ryan. A column generation algorithm for bandwidth
packing. Telecommunication Systems, 2(1):185–195, 1993.

[74] B. Petersen, D. Pisinger, and S. Spoorendonk. Chvátal-gomory rank-1
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