
Dynamical Configuration Of Transparent Optical
Telecommunication Networks

Diplomarbeit
bei Prof. Dr. Martin Grötschel

vorgelegt von Andreas Tuchscherer
am Fachbereich Mathematik der
Technischen Universität Berlin

Berlin, den 31. März 2003

Acknowledgements

The research presented in this thesis is motivated by a joint project of T-Systems Nova
GmbH Technologiezentrum and the Konrad-Zuse-Zentrum für Informationstechnik
Berlin, financed by Deutsches Forschungsnetz e.V.

Working on this project was very instructive for me. The cooperation with Jörg
Rambau, Diana Poensgen and Sven O. Krumke was very pleasant. I wish to thank
them for their support as well as Monika Jäger and Ralf Hülsermann from T-Systems
Nova, who informed us about the technical background.

Relating to this thesis I especially thank Jörg Rambau, Diana Poensgen and Sven
O. Krumke for reading the preliminary versions, their professional advice, their help-
ful suggestions and their encouragement.

Berlin, den 31.März 2003

Andreas Tuchscherer

i

Contents

1 Introduction 1

1.1 Technology of Optical Telecommunication Networks 1

1.1.1 Optical Fibers . 2

1.1.2 Optical Switches . 4

1.1.3 Wavelength Conversion . 6

1.2 Management of Optical Telecommunication Networks 7

1.2.1 Basic Planning Decisions . 8

1.2.2 Optimization Problems . 9

1.2.3 Dynamic Call Admission . 9

1.2.4 Distributed Algorithms vs. Centralized Algorithms 11

1.3 Related Work . 11

1.4 Contribution and Outline . 13

2 Modeling of Dynamic Call Admission in Optical Networks 14

2.1 Online Optimization and Competitive Analysis 14

2.2 Notation . 17

2.3 Problem Definition: Dynamic Multiclass Call Admission (DMCA) . . 19

2.3.1 Scope of the Model . 20

2.3.2 Restriction: Dynamic Singleclass Call Admission (DSCA) . . 21

2.3.3 Previous Work on DSCA . 21

2.3.4 Motivation for the Use of a Simulation Based Evaluation . . . 24

ii

iii

3 Online Algorithms for DSCA 25

3.1 Greedy-Type Algorithms . 26

3.1.1 Partial Wavelength Search 27

3.1.2 Total Wavelength Search . 29

3.1.3 Analysis of Greedy-Type Algorithms 30

3.2 Network Fitness Algorithms . 33

3.2.1 Introduction . 33

3.2.2 The Algorithm ALR . 34

3.2.3 The Algorithm SFR . 44

3.2.4 The Algorithm NFR . 51

3.2.5 Reduction to k Shortest Lightpaths Routings 55

4 An Algorithm for Finding the k Shortest Paths 56

4.1 Introduction . 56

4.2 Preliminaries . 57

4.3 The Algorithm . 59

4.4 Proof of Correctness . 62

4.5 Runnning Time Complexity . 66

5 Experimental Results 68

5.1 Four Real-World Optical Networks 68

5.2 Traffic Model and Request Sequences 70

5.3 Simulation Model . 71

5.4 Results . 72

5.4.1 Greedy-Type Algorithms . 72

5.4.2 Versions of ALR . 75

5.4.3 Versions of SFR . 80

5.4.4 Best Algorithms Revisited 80

6 Conclusions and Outlook 86

A Table of Notations 88

B Basic Definitions 89

iv

C Deutsche Zusammenfassung 90

List of Algorithms 92

Bibliography 96

Chapter 1

Introduction

In this diploma thesis, we investigate methods for online call admission and routing
and wavelength assignment in transparent optical telecommunication networks. We
formulate a corresponding online optimization problem, present algorithms for it, and
evaluate the performance of the algorithms by extensive simulation studies. The re-
search is based on a joint project with T-Systems Nova GmbH, financed by the DFN.

The outline of this chaper is as follows. In Section 1.1, we present the underlying
network technology and real-world applications for optical networks. General plan-
ning decisions in optical networks, as well as the online problem under consideration
are introduced in Section 1.2. After a brief overview on previous work in Section 1.3,
we give a review of the structure of this thesis in Section 1.4.

1.1 Technology of Optical Telecommunication Networks

In telecommunication networks, electronics have been the predominant operating tech-
nology for a long time. Network links were provided with copper cables for transmis-
sion of electronic signals. By electronic switching devices in network nodes, connec-
tions along paths of several links were established. However, electronic networks no
longer provide enough capacity for today’s high bandwidth applications, such as data
browsing on the World Wide Web or video conferencing. Since the installation of cop-
per cables is very expensive and a suitable increase of the transmission bit rate by a
speed up of electronics is impossible due to physical restrictions, the development of
new technology was required.

A promising approach are optical networks because of the immense capabilities
which are provided by optical fibers. On the one hand, a huge bandwidth of nearly
50 Tb/s (terabits per second) per fiber is possible in theory, whereas only around
10 Gb/s (gigabits per second) could currently be achieved by copper cables. On the
other hand, optical fibers feature small space requirement, low material usage, and low
cost. Moreover, transmission on fibers affects only low signal attenuation and low dis-
tortion, is less susceptible to electromagnetic interference and provides more security
because tapping optical signals is difficult.

1

CHAPTER 1. INTRODUCTION 2

In the following, we will present the main components of all-optical networks
which are besides optical fibers, the optical switches and the optical wavelength con-
verters. For more details on optical telecommunication networks, we refer to the
books [Muk97, RS98, SB99].

1.1.1 Optical Fibers

In optical networks, each link consists of a cable containing several optical fibers,
sometimes more than 100. Every fiber is composed of a cylindrical highly transparent
core surrounded by a cladding which are both made mainly of silica (SiO2), the basis
of glass. Depending on the type of fiber, the diameter of its core is either about 10 µm
or 50 µm, and that of the cladding is usually 125 µm.

Instead of electronic signals, in optical fibers, lightwaves propagate due to a series
of total internal reflections that occur at the core-cladding interface. In order to send
such signals, the digital information data is converted into short light pulses using a
laser device. This takes place in a transmitter which is installed on one end node of
the fiber. Upon arrival at its other end node, a receiver converts this optical signal back
into its usable electronic form using photodetectors or photodiodes. Such an optical
connection along a fiber is called an optical channel. Optical fibers have been used in
telecommunication networks for over two decades.

Wavelength Division Multiplexing

The most important techniques that allows for expanding the inherent great capacity
of optical fibers even more is wavelength division multiplexing (WDM). The idea of
WDM is to use several independent lightwaves of different wavelengths on one fiber
at the same time, each carrying data at the original bit rate that depends on the fiber
quality. However, due to signal attenuation the usable spectral window of wavelengths
is restricted to two ranges of about 200 nm each (1200–1400 nm and 1450–1650 nm),
where loss is small. In this spectrum, all wavelengths have very similar propagation
properties and deviate little when used for transmitting optical signals. Hence, the us-
able spectrum can be divided into separate wavelength ranges which may be used si-
multaneously since they do not affect each other. Note that it is not possible to use one
wavelength on a fiber more than once since the corresponding optical signals would
become useless. In order to use WDM on an optical fiber connecting two network
nodes, each optical channel is set up on one wavelength by an appropriate tuned laser
at the transmitter. Afterwards, all wavelengths of used channels are combined on the
fiber by a multiplexer. At the other end of the fiber, a demultiplexer again decomposes
the lightwaves and transfers them to corresponding receivers. Figure 1.1(a) depicts the
described technical view of an optical fiber connecting two nodes, together with the
necessary equipment to apply WDM. In contrast, Figure 1.1(b) shows the logical per-
ception of a WDM fiber, which illustrates the different available wavelength channels
on the fiber.

This way, the total capacity of a single WDM fiber is the number of available wave-
lengths times the capacity of one channel on the fiber. Together with the high bit rates

CHAPTER 1. INTRODUCTION 3

DemultiplexerMultiplexer

(a)

DemultiplexerMultiplexer

(b)

Figure 1.1: A WDM system with four wavelengths. (a) Technical view; (b) Presenta-
tion of the channels on the fiber.

of recent fiber qualities, this results in large bandwidths. In the late nineties, WDM sys-
tems with up to 32 wavelengths at bit rates of 1–10 Gb/s were commercially available,
resulting in a total bandwidth per fiber of several hundred Gb/s. However, research
laboratories already demonstrated transmission experiments with 160 wavelengths at
40 Gb/s each. Recall that the total capacity of one network link is accumulated from
the capacities of up to 100 fibers.

Typically, optical channels can be established on a fiber in both directions, and
one distinguishes between bidirectional and unidirectional WDM systems. A simplex
fiber (bidirectional WDM system) realizes both directions on a single glass core, and
often uses half the wavelengths for transmitting data in one direction and the other half
for transmitting data in the opposite direction on the same fiber. In contrast, a duplex
fiber (unidirectional WDM system) consists of two glass cores, one for each direction
of traffic. Therefore, the capacity is totally doubled, but cannot be shared arbitrarily
between both directions.

Regeneration

While transmitting optical signals over fibers, the light propagation is disturbed by
some undesired effects, such as attenuation, dispersion, material impairments, and
others. Even though these effects are small, especially when fibers of high quality are
used, they disturb the light propagation, which results in signal loss. In order to coun-
teract this, amplifiers are placed on the fibers in a distance of about 100 kilometers,
regenerating optical signals. However, these devices are not able to restore the loss
completely. In theory, the complete regeneration consists of several steps, but only the
amplification of lightwaves can currently be performed on the optical signal directly.
Unfortunately, it is not expected that sufficient optical regeneration devices will be
available in the near future. Therefore, the lengths of optical channels stay limited,
which must be considered in planning optical networks.

CHAPTER 1. INTRODUCTION 4

First-Generation Optical Networks

Telecommunication networks in which each link consists of one or more optical fibers
on which WDM is applied are called first-generation optical networks. Note that the
network nodes still use totally electronic devices. Hence, in order to establish con-
nections over several fibers, switching and processing of data at intermediate nodes is
performed by converting the optical signal back into its electronic form. As a conse-
quence, realizing a connection along several network links requires a lot of so-called
opto-electronic conversions.

Nowadays, most networks employ such electronic processing at nodes and use
optical fibers as transmission medium. However, the speed of electronics is unable
to match the high bandwidth of optical fibers. Therefore, network nodes must be
equipped with a lot of expensive electronic devices, in order to provide sufficient
switching capabilities. Moreover, conversions introduce significant delays. These
drawbacks motivated the development of optical devices which inherit some of the
switching and routing functions that were previously performed by electronics into the
optical part of the network, thus avoiding opto-electronic conversion. Such devices are
called optical switches. Since these network components have only been commercially
available for a short time and are still very expensive, they are currently rarely used.

1.1.2 Optical Switches

In today’s telecommunication networks, data connections need to be established and
closed within milliseconds, which requires software-controlled reconfigurable switch-
ing equipment on network nodes. There are mainly two different all-optical switching
devices: optical cross connects (OXCs) and optical add drop multiplexers (OADMs).
Both switches provide a specific number of input ports and output ports which are
linked with several optical fibers and can be connected in different ways. The es-
tablished assignment of input ports to output ports is called the configuration of the
switch.

An OXC is able to connect its input and output ports arbitrarily. The processing
of optical signals at such a switch is handled as follows. After demultiplexing the
different wavelengths that arrive on a fiber, each optical signal enters its own input
port. Depending on the configuration of the OXC, each lightwave is guided to some
output port without changing its wavelength. To this end, the switch uses for example
fields of tiny mirrors whose adjustment determines the configuration. Leaving the
output port, a lightwave is again multiplexed at the linked optical fiber and sent on.

In contrast to OXCs, which allow for guiding each optical channel individually, an
OADM only provides restricted switching capability. The idea that restricted switching
might suffice is due to the observation that a lot of channels usually follow similar paths
in the network. Hence, these channels can be considered as a bundled data stream from
which only a few channels are dropped or added at each network node. The main part
of the stream stays together.

CHAPTER 1. INTRODUCTION 5

Second-Generation Optical Networks

The integration of optical switches completes the optical layer of the network since
optical channels can now be transmitted in optical form over whole paths from source
to destination and not only along single fibers. That is, no opto-electronic conversions
are performed anymore since signals are directly processed on the optical channels.
Optical networks which are equipped with optical switches in addition to optical fibers
are called second-generation optical networks or simply all-optical networks. Due
to the character of signal switching, the transmission of data in all-optical network
is referred to as transparent routing, whereas one speaks of opaque routing in first-
generation optical networks.

Further advantages of all-optical networks result from the substantial reduction of
interfaces between optics and electronics: Unnecessary manipulations, bottlenecks,
and costs are avoided. Moreover, this yields a better combination of both transmission
and switching media and their main advantages (recall that the control of the switches
is of course still handled by electronics).

For both, first-generation and second-generation optical networks, the graph or
digraph, respectively, that represents the connections of network links and nodes is
called the physical topology of the network. Naturally, a simplex fiber is represented
by an edge, and a duplex fiber is represented by two opposite directed arcs. Notice
that the physical topology may have parallel edges or arcs, respectively, if there are
several fibers contained in one network link. Figure 1.2 shows the physical topology
of a simple all-optical network with one simplex fiber on each link.

v1 v2 v3

v4 v5

Figure 1.2: Physical topology of an optical network.

Lightpaths

By using optical switching devices in a network, an optical signal may be transmit-
ted along several fibers without leaving the optical layer, i.e., no opto-electronic con-
version is performed at intermediate nodes. The resulting optical channel from its
transmitter to its receiver is called a lightpath. The concept of lightpaths is the main
characteristic of all-optical networks.

Since optical switches maintain the wavelengths of processed lightwaves, each
lightpath operates on exactly one wavelength. This wavelength is used on all optical
fibers the signal traverses. Assume that in our exemplary all-optical network whose
physical topology is depicted in Figure 1.2, each fiber is equipped with an identic
WDM system that provides two wavelengths. Figure 1.3(a) shows four realized light-
paths in this network. The different line styles indicate different wavelengths.

CHAPTER 1. INTRODUCTION 6

v1 v2 v3

v4 v5

(a)

v1 v2 v3

v4 v5

(b)

Figure 1.3: (a) Lightpaths in an optical network; (b) The virtual topology that results
from the established lightpaths.

Note that the end nodes of a lightpath are its only interface to the electronic layer
of an all-optical network. Hence, it is particularly interesting between which network
nodes lightpath connections are established. This information is represented by the
virtual topology, also called logical topology. The virtual topology is a digraph that
contains for each realized lightpath one arc from its source to its destination node. The
virtual topology for the set of lightpaths in Figure 1.3(a) is shown in Figure 1.3(b),
the different line styles again reflect the different wavelengths which are used for the
connections.

Even though lightpaths are directed optical signals, nearly in all telecommunication
applications, data is transmitted bidirectionally. Therefore, each unit demand requires
two lightpaths that connect the specified network nodes in opposite directions. In
doing so, it is suitable and simple to realize both lightpath along the same network
links. Moreover, such proceeding is even more simplified by providing the network
links with duplex fibers. Then, both opposite directed lightpaths may also operate on
the same wavelength.

1.1.3 Wavelength Conversion

As mentioned above, each lightpath must use the same wavelength on all fibers it
uses. Due to this condition, an efficient capacity utilization is sometimes impossi-
ble: Instead of using all wavelengths on a fiber, the installation of additional fibers
might be necessary to satisfy some given demands. For instance, it is impossible to
establish an additional lightpath from node v4 to node v2 in the situation depicted in
Figure 1.3(a) since the first wavelength is already being used on the fiber connecting
v4 and v1, the second wavelength on the fiber between v1 and v2. Furthermore, addi-
tional wavelengths are not available. However, if it were possible to realize a lightpath
using different wavelengths on the two fibers, a connection from v4 to v2 could still be
established.

This disadvantage can be overcome by using optical wavelength converters. A
wavelength converter is another optional component of all-optical networks that is in-
stalled on network nodes and is able to change the wavelength of passing lightpaths
during the switching process. Wavelength converters can improve the capacity effi-
ciency in the network by resolving wavelength conflicts of lightpaths. Notice that a

CHAPTER 1. INTRODUCTION 7

single lightpath in an all-optical network which provides wavelength conversion ca-
pabilities can use different wavelengths on the fibers in its path. Although optical
wavelength converters are not commercially available yet and the features they will
have are not yet completely clear, the following properties are of interest.

The most important characteristic of wavelength converters is the possible conver-
sion range. As the name suggests, full wavelength conversion is able to transform a
given wavelength into any other wavelength. Using an optical converter that provides
limited conversion, each wavelength is assigned a subset of wavelengths into which
it may be changed. Finally, with fixed conversion, a signal entering the node on one
wavelength must always leave it at one specific wavelength that depends on the in-
put, i.e., fixed conversion corresponds to a limited conversion where each set of output
wavelengths contains exactly one element.

A second interesting aspect is the total number of wavelengths that can be trans-
formed by one converter at the same time. Although most approaches aspire to perform
only a single wavelength conversion, one techniques is being developed that may al-
low for several conversions simultaneously. It is expected that optical wavelengths
converters will provide full wavelength conversion for single optical channels in the
near future.

1.2 Management of Optical Telecommunication Networks

From the mathematical point of view, first-generation optical networks can be modeled
in the same way as the former fully electronic networks, but with different link capac-
ities and costs, since optical fibers merely serve as replacement for copper cables. The
only difference is that the bandwidth of any connection results from an integer num-
ber of optical channels, since each wavelength on a fiber is used as a whole. Hence,
each demand is specified as the number of required channels, i.e., an integer value.
Nevertheless, there is no need to develop new optimization models for first-generation
optical networks because even in electronic networks the cost structures on links re-
quire integral units.

As for electronic networks, the physical topology is modeled as a graph (or di-
graph) with capacitated edges (or arcs, respectively). Note that for first-generation
optical networks these edge capacities are integer. Each connection is represented as
a path in the graph and needs a specific amount of bandwidth. That is, the essential
restriction requires that for each edge, the total bandwidth demand of all established
connections whose paths contain this edge is bounded from above by the correspond-
ing edge capacity.

However, such modeling is insufficient for all-optical networks. Based on the con-
cept of a lightpath, the different available wavelengths must be distinguished unless
arbitrary wavelength conversion is possible in the network nodes. Even if such con-
verters will eventually be available, they are expected to be expensive and will most
likely not be installed in all network nodes. If no converters exist in the network, each
lightpath must use the same wavelength on all optical fibers the signal traverses. In the

CHAPTER 1. INTRODUCTION 8

mathematical model, the condition that reflects this characteristic is called the wave-
length continuity constraint. Furthermore, another substantial restriction results from
the available fiber capacities: Any two lightpaths which share one fiber must not use
the same wavelength. In other words, each wavelength can be used on a fiber by only
one lightpath (in each direction for duplex fibers). This condition is called the wave-
length conflict constraint. As a consequence, the assignment of wavelengths to optical
channels becomes an important task, further complicating the design of all-optical net-
works. The actual modeling of these networks is presented in the next chapter.

In this thesis, we are concerned with all-optical networks without any wavelength
conversion capabilities. From now on, we will refer to these networks simply as op-
tical networks. Transferred from electronic networks, a lot of different problems im-
mediately emerge in the design and control of optical networks. Before we turn to the
problem considered in this work, let us look at some general planning decisions.

1.2.1 Basic Planning Decisions

In order to satisfy a set of traffic demands each of which specifies two network nodes
to be connected by some number of lightpaths, the first planning decision concerned
with optical networks is obviously the construction of the network itself. That is,
its dimensioning has to be defined. For this task, we are given a network topology
consisting of network nodes and links, and have to specify which optical switches and
fibers (and other devices) are installed on the nodes and links, respectively. We aim
at providing enough capacities to meet the requirements. Each specification of those
optical components to be installed yields a dimensioning of the network. For each link,
the number of fibers as well as their kinds, qualities, and used WDM systems has to be
chosen. Moreover, the types of optical switches must be specified. In constructing the
dimensioning of the network, already existing devices have to be taken into account.
In this case, we deal with the redimensioning problem. Along with the dimensioning
of an optical network, its physical topology and the corresponding network capacities
for lightpaths are defined.

Once a dimensioning has been fixed, the subsequent task is the assignment of light-
paths to the given demands. This second problem is called the virtual topology design
and includes all decisions that are made to configure a virtual topology on a given
physical topology. For each demand, the remaining problem of realizing correspond-
ing lightpaths consists of assigning a path and a wavelength. Therefore, this part is
also called routing and wavelength assignment. Sometimes, wavelength converters
are available to be placed on the network nodes. There are many different strategies
for both problems described above. For example, routing and wavelength assignment
can be performed consecutively, or jointly. That is, wavelengths are assigned after the
paths for the connections have been chosen, or lightpaths are determined in one step.
Moreover, the delimitation between dimensioning and virtual topology design is not
consistently defined. For instance, the specification where wavelength converters are
placed can also be viewed as a part of the dimensioning.

CHAPTER 1. INTRODUCTION 9

1.2.2 Optimization Problems

One basic problem emerges from the combination of the two subproblems of network
dimensioning and virtual topology design. Given a set of traffic demands, the task is
to determine a network dimensioning and the design of a virtual topology such that all
given demands are satisfied and the total costs for electronic devices, optical fibers, op-
tical switches, and wavelength converters is minimized. Many special variants of this
basic problem can be considered. For instance, one is given an existing dimensioning
that has to be extended (redimensioning), or the demands include backup connections
that have to be provided for the case of node or link failures.

In real-world applications, however, traffic demands of course change over time.
This leads to the network reconfiguration problem. Given are traffic demands which
differ from previous ones that were satisfied earlier. The task is to meet the new re-
quirements by reconfiguring the network at a minimum cost. Since it is cheaper and
faster to change the virtual topology design, this adaption is particularly done in the
optical layer of the network, and it is desirable to find a solution which yields as few
lightpath changes as possible. However, it may also be necessary to extend the physical
topology.

In addition to such optimization problems that aim at minimizing the cost of equip-
ment and operation, some problems aiming at configuration quality are of interest, too.

First, given an optical network with a fixed dimensioning and a lot of traffic de-
mands which could possibly not be satisfied altogether, one would like to maximize
the throughput, i.e., the total number of satisfied demands, or the total profit made by
them, respectively.

In a second problem, we are given a network whose dimensioning always provides
enough capacity to meet the given requirements. The task is to accept all demands in
such a way that the maximum congestion on a link is minimized, where the congestion
of a link is defined as the number of lightpaths using it. This problem is also referred
to as load balancing. In doing so, the resulting load of lightpaths is uniformly divided
in the network.

A similar task is to minimize the total number of wavelengths needed in order to
satisfy the given demands. Here, it is possible to use homogeneous WDM systems on
the fibers which provide only few wavelengths.

1.2.3 Dynamic Call Admission

In this thesis, we consider a completely different problem related to optical networks.
In all problems above, traffic demands are considered as being static. That is, the cor-
responding connections are established permanently. In many real-world applications
like telephone networks, however, demands change in a highly dynamic way since
customers do not require the offered services all the time. Hence, connections are used
only for short durations, e.g., hours. As a consequence, new lightpath connections
must be established and already existing ones must be closed in a continuous process,

CHAPTER 1. INTRODUCTION 10

resulting in a dynamic virtual topology. The concept that connections are set up and
taken down upon demand is called circuit switching. Even though OXCs and OADMs
allow to establish lightpaths very fast, circuit switching is not yet performed in optical
networks, but is expected for the near future.

Another aspect of dynamic traffic is that the demands are naturally not known in
advance. Each of them gets known only very shortly before it is actually needed. We
refer to these special demands which require lightpath connections for a short time
and are not known in advance as connection requests or calls. Obviously, the type of
planning problems that result from previously unknown demands is totally different
compared to the problems above. In mathematical terms, these two different classes of
optimization problems are called offline problems and online problems. While the in-
put data of each instance of an offline problem is given completely in advance, this not
the case for the instances of online problems. A formal definition of online problems
is presented in the next chapter.

The above mentioned features lead to the online problem which is considered in
this work. We are given an optical network with fixed dimensioning that does not pro-
vide wavelength converters. Calls arrive over time, each of which specifies basically
two network nodes to be connected by some constant number of lightpaths for a given
time period. As usual in most applications, the specified number of lightpaths has to be
routed in both directions between the end nodes. We assume that the optical network
is equipped exclusively with duplex fibers and require that for each established light-
path the corresponding opposite directed lightpath which has the same wavelength is
also realized. For each newly arriving connection request, the network operator has to
decide whether he accepts or rejects the call. This first decision is referred to as call
admission. Moreover, for each accepted connection request, corresponding lightpaths
has to be provided. In the standard operating state, these lightpaths must be fixed for
the total holding time of the connection, i.e., the network operator must not suspend
any established connection before its expiration time nor exchange the used lightpaths.
As mentioned before, the problem of selecting lightpaths for an accepted connection
request is called routing and wavelength assignment. Each accepted call yields a spe-
cific profit. The task of the problem is to maximize the total profit gained by accepted
connection requests.

Depending on the provided capacities of the optical network, the customers may
suffer service blocking, especially in situations of demand peaks. That is, unless the
dimensioning of the network is immoderate, some connection requests must be re-
jected. From this observation results the need to develop reasonable algorithms for
the described problem. The difficulty in the design of algorithms emerges from the
uncertainty of future calls.

In real-world applications, the following more detailed parameters of connection
requests are imaginable: the network nodes to be connected, the number of required
lightpaths between the nodes in each direction, the time at which the call arrives, the
time at which the decision must be made whether the call is accepted or not, the de-
sired start time of the connection, the expiration time of the connection, a customer
class, a required service class, and the profit gained by accepting the call. Using differ-
ent customer classes allows to distinguish between more or less important customers.

CHAPTER 1. INTRODUCTION 11

In doing so, special constraints can be reflected, e.g., calls of important customers
must always be accepted if possible. Moreover, each service class represents further
requirements, e.g., rerouting priorities in the case of network failures.

The profit of a connection request usually depends on its other parameters, in par-
ticular on the number of required lightpaths, the duration of the connection, the cus-
tomer, and the service class. Note that for connection requests that yield identic profits,
the aim of maximizing the total profit gained is equivalent to minimize the probability
that a connection request is rejected. This stochastic value is called blocking probabil-
ity. Due to the consideration of several classes of customers and services, we refer to
this special problem of online call admission and routing and wavelength assignment
as the Dynamic Multiclass Call Admission Problem, briefly called DMCA in the fol-
lowing. The special version of DMCA with only one customer class and one service
class, which is particularly considered in this thesis, is called Dynamic Singleclass Call
Admission Problem (DSCA).

For the technical equipment of the given optical network, we assume the follow-
ing: Each network node provides a sufficient number of electronic devices, especially
transmitters and receivers, such that it is able to be the end node of arbitrarily many
lightpaths. Moreover, the nodes contain OXCs that allow for arbitrary switching ca-
pabilities. Recall that no wavelength converters are installed on the network nodes.
As mentioned above, each network link consists of one or several duplex fibers with
some installed WDM systems. As a consequence, the only bottleneck for realizing
lightpaths results from the fiber capacities, i.e., the numbers of provided wavelengths.

1.2.4 Distributed Algorithms vs. Centralized Algorithms

For dynamic tasks concerned with optical networks, e.g., the problems DMCA and
DSCA, one distinguishes between centralized and distributed algorithms. While the
first have full and consistent information about the network status and arriving con-
nection request at any time, distributed algorithms consist of a collection of interacting
processes each of which only has local informations. In this work, we exclusively
consider centralized algorithms.

1.3 Related Work

In previous work for DSCA, the following simplifying assumptions are usually made
for the problem parameters: Each network link consists only of one optical fiber, and
each fiber is equipped with the same set of wavelengths. Furthermore, each call re-
quires only one lightpath and yields the same profit. That is, the goal is to minimize
the blocking probability.

Also motivated by the need for distributed implementations, particularly simple
algorithms for the considered version of DSCA have previously been proposed, e.g.,
the so-called fixed routing and fixed-alternate routing algorithms. In fixed routing
methods, one connecting path (usually a shortest path) is assigned to each pair of

CHAPTER 1. INTRODUCTION 12

network nodes. For a corresponding call, only lightpaths along the predefined path
are taken into account. In fixed-alternate routing, a fixed set of a few paths is allowed
to be chosen in some priority order instead of only a single path. In both variants, a
connection request is rejected if it cannot be routed on any of the specified lightpaths.
Otherwise, one of the possible wavelengths must be assigned to the connection.

First approaches used fixed and random wavelength search orders (see [CGK92,
BK95]). That is, the first possible wavelength in the given order is used. In [BSSB95],
Bala, Stern, Simchi, and Bala proposed adaptive search orders that incorporate net-
work status information, namely the current utilizations of different wavelengths (the
utilization of a wavelength was defined as the current number of established lightpath
connections using it). Using the classification of Mokhtar and Azizoglu in [MA98], the
above mentioned algorithms are counted among constraint routing schemes because
of their restrictive use of lightpaths.

As a counterpart, Mokhtar and Azizoglu propose five adaptive unconstraint rout-
ing schemes, also called greedy-type algorithms, where any lightpath connecting two
nodes can potentially be chosen. In particular, these algorithms completely omit the
call admission part since connection requests are always accepted if possible. Greedy-
type algorithms are based on shortest path computation and different sorting mech-
anisms of the wavelength set. Experimental results, using Poisson traffic and expo-
nential distributed call holding times, showed the superiority of adaptive unconstraint
routing over constraint routing with respect to the blocking probability. Moreover, the
authors reveal that taking into account network status information like the wavelength
utilization can improve the behaviour of algorithms (different as in [BSSB95], the uti-
lization is here defined as the number of fibers on which the corresponding wavelength
is currently used by some connection).

In joint work with Hülsermann, Jäger, Krumke, Poensgen, and Rambau, we pro-
posed adapted versions of the greedy-type algorithms of Mokhtar and Azizoglu, in-
cluding the specification of tie-breaking rules, see [HJK+03]. In our model, still one
fiber is installed per link but the wavelengths provided by the fibers may differ. Using
extensive experimental studies that are based on a well-founded traffic model, which
is also applied in this thesis, we show that the choice of breaking ties can affect the
blocking probability of a greedy-type algorithm significantly.

Another algorithmic approach, which is not followed up in this work, is proposed
by Zhang and Acampora ([ZA95]). They consider two algorithms that take into ac-
count the current load of a fiber which is defined as the total number of wavelengths
currently used on it. The first of their algorithms selects such a path for a required con-
nection that has a minimum load, where the load of a path is defined as the maximum
load on its fibers. The second algorithm routes a given call on a shortest possible path
and uses the load of paths for breaking ties. Unfortunately, the authors did not specify
how to select the wavelength to use for the lightpath.

To the best of our knowledge, no rejection criteria for the call admission part have
yet been proposed, except for the restriction to few lightpaths due to constraint rout-
ing. That is, all algorithms proposed so far concentrate on the routing and wavelength
assignment problem. We consider further related work on DSCA in Section 2.3.3 after
the mathematical model for the problem has been defined.

CHAPTER 1. INTRODUCTION 13

1.4 Contribution and Outline

The contribution of this thesis is the following. We propose a mathematical problem
formulation for DMCA and DSCA, and present new centralized algorithms for the
latter problem, briefly called DSCA-algorithms.

On the one hand, these include adapted versions of the greedy-type algorithms
([MA98, HJK+03]). The purpose of reviewing the greedy-type algorithms here is
to look at their ideas in more detail. Moreover, the serve as benchmark for further
algorithm.

On the other hand, we propose new DSCA-algorithms. Our intention in the review
of the greedy-type algorithms is that they are very easy to implement and may serve
as a benchmark. The main part of our work, however, is concerned with the new
algorithms. In their design, we attached great importance to their practicability, not
to their theorectial qualities. In order to evaluate the behaviour of the algorithms, we
provide extensive experimental studies that allow us to relate the blocking probability
of an algorithm to the offered traffic. These studies were carried using the simulation
tool CARWA we developed within our project with T-Systems Nova.

We will see that the concept of the proposed new algorithms requires some com-
putational effort. Therefore, we also look at methods to improve the performance of
the DSCA-algorithms. To this end, we particularly consider the problem of finding the
k shortest paths in a graph or digraph. We present a revised description of an algorithm
of Martins, Pascoal, and Santos (see [MPS99]) that serves this purpose. In doing so,
we state a new proof of the algorithm’s correctness since the proof given in [MPS99] is
insufficient, as we will show. Furthermore, we are able to answer the previously open
question about the worst-case running time complexity of the algorithm.

Chapter 2 is devoted to the mathematical problem formulation of DMCA and
DSCA. It includes a short introduction in that field of optimization which deals with
problems of such kind, namely online optimization. Furthermore, the necessary no-
tation used in this work is introduced. In Chapter 3, we present the new DSCA-
algorithms. This chapter is subdivided into three sections that are concerned with
the greedy-type algorithms, our new algorithms, and computational improvements of
the latter. Chapter 4 yields the tools for this third part. One can view this chapter
as an independent parenthesis that deals with the problem of finding the k shortest
paths in a digraph. In Chapter 5, we present the experimental studies of the presented
algorithms. To this end, we report on the considered networks, the used traffic and
simulation model, and the obtained results. Chapter 6 is devoted to conclusions and an
outlook. Finally, the appendix contains a table of notation, the used basic definitions
on graph theory, and a short summary in German.

Chapter 2

Modeling of Dynamic Call
Admission in Optical Networks

As described in the previous chapter, the Dynamic Multiclass Call Admission Problem
(DMCA) and the Dynamic Singleclass Call Admission Problem (DSCA) consist of the
following. So-called connection requests arrive over time, each of which specifies a
pair of nodes in a given optical telecommunication network to be connected by a set
of lightpaths for some time span. We will also refer to connection requests as calls.
The network operator must process arriving calls dynamically, i.e., without knowledge
of possible future connection requests. His first task is to decide whether some newly
arriving call is accepted or rejected (call admission). Second, if the connection request
is accepted, the operator must provide the specified number of lightpaths in order to
connect the given end nodes for the required time interval (routing and wavelength
assignment). Consequently, it is only possible to accept a given call if corresponding
lightpaths can be established for that period of time.

In this chapter, we establish the mathematical model for DMCA and DSCA. Recall
that the the first problem is suitable to reflect detailed requirements of real-world appli-
cations, while the latter is the simplified version for which we will propose algorithms
later. The outline of the chapter is as follows. In Section 2.1, we give an introduction
to the mathematical background of the considered problems, namely online optimiza-
tion. Moreover, the standard instruments to evaluate the quality of online algorithms
is explained. In Section 2.2, we introduce some special notations in order to specify
the problem definitions, which are given in Section 2.3.

2.1 Online Optimization and Competitive Analysis

As mentioned before, DMCA and DSCA belong to a special class of optimization
problems where the input data of an instance is not given completely in advance and
becomes only known stepwise. In our context, the connection requests constitute this
part of initially unknown data. Such problems must be solved online, i.e., decisions
must be made without knowledge of future events by which further data is obtained.

14

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 15

These kinds of problems are called online optimization problems, or briefly online
problems. The field of optimization that deals with online problems and the develop-
ment and evaluation of corresponding online algorithms is consequently called online
optimization. In the following, we will introduce the concepts of online optimization
in more detail. Usually, the objective in an online problem is to maximize the gained
profit or to minimize the cost. An online problem can be defined as a request-answer
game, cf. [BEY98, Chapter 7]. For maximization problems, the definition is as fol-
lows.

Definition 2.1. An online problem is given by a triple (R ,A ,C), where

• R is a set of requests r1,r2, . . .,

• A is a sequence of answer sets A1,A2, . . ., where A j is the set of feasible answers
for the jth request, and

• C is a sequence of profit functions C1,C2, . . ., where Ci : R i×A1× . . .×Ai →R+

and Ci(r1, . . . ,ri,a1, . . . ,ai) is the total profit gained by giving answers a1, . . . ,ai
to requests r1, . . . ,ri (the set R i := {(r1, . . . ,ri) | r1, . . . ,ri ∈ R } denotes the
Cartesian product) .

For minimization problems, C is a sequence of cost functions. Online algorithms
are defined as follows.

Definition 2.2. Let (R ,A ,C) be an online problem. An online algorithm for (R ,A ,C)
is a sequence of functions g1,g2, . . ., where gi : R i → Ai.

Note that this definition points out that an online algorithm must make decisions
only based on the informations obtained by previous requests. For examples of well-
investigated online problems and corresponding online algorithm, see [BEY98]. In
contrast to online optimization, we also refer to classical optimization as offline op-
timization, where offline problems are solved using offline algorithms. Obviously, an
online algorithm is no better than an optimal offline algorithm which knows the request
sequence in advance. In order to evaluate the performance of an online algorithm ALG,
the standard tool is the so-called competitive analysis (see [BEY98]). It is based on
the idea to compare the profit made by ALG with the profit made by an optimal offline
algorithm OPT that knows the sequence in advance and can process it at maximum
profit. By ALG(σ) and OPT(σ), we denote the profit gained by ALG and OPT on a
given sequence σ, respectively.

Definition 2.3. A deterministic online algorithm ALG is said to be c-competitive if

ALG(σ) ≥ 1
c
·OPT(σ)

holds for each sequence of requests σ. The competitive ratio of algorithm ALG is
defined to be the infimum of all c ≥ 1 such that ALG is c-competitive. ALG is called
competitive if ALG is c-competitive for some c ≥ 1.

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 16

Note that by definition, the total profit of a competitive algorithm must at least be
a constant fraction of the profit that is achievable offline. As this must hold for all
input sequences, competitive analysis is a type of worst-case analysis. Hence, in order
to show that the competitive ratio of an online algorithm is bad, it suffices to find one
sequence of requests on which the online algorithm looses too much compared with
the optimal offline algorithm. For a given problem it is not clear in the beginning,
whether there exists a competitive algorithm or not.

From another point of view, the competitive analysis of online algorithms may be
considered as a game between the online player and a malicious adversary. The adver-
sary yields an input sequence on which the online player applies an online algorithm.
The adversary has complete knowledge of the algorithm’s strategy, and he intends to
construct a sequence such that the ratio of profit made by the online algorithm and
the optimum offline profit is minimized. One possibility to reduce the power of the
adversary is randomization. A randomized online algorithm is allowed to use random
decisions for processing requests. The profit of a randomized algorithm is a random
variable, and we are interested in its expectation. Normally, the malicious adversary
knows the distribution used by the online player but cannot see the actual outcome of
the random experiments. As a consequence, he must choose the complete input se-
quence in advance. This type of adversary is called oblivious adversary (see [BEY98]
on different types of adversaries). For randomized online algorithms, we have the
following definition of competitiveness.

Definition 2.4. A randomized online algorithm ALG is said to be c-competitive against
the oblivious adversary if

E [ALG(σ)] ≥ 1
c
·OPT(σ)

holds for each sequence of requests σ. The terms competitive ratio and competitive for
randomized online algorithms are defined analogously to those for deterministic ones
in Definition 2.3.

In this work, we only consider deterministic online algorithms. Finally, let us
discuss the significance of competitiveness results for practical applications. As men-
tioned before, the competitive ratio of an online algorithm is a very pessimistic mea-
sure for the total profit the algorithm might gain compared to an optimal offline algo-
rithm, since the competitive ratio is determined by worst-case scenarios. Therefore,
the corresponding request sequences often represent pathological situations which are
extremely unlikely to occur in reality. If this is the case, it is not possible to draw
good conclusions from competitiveness results concerning the average behavior of an
algorithm. On the one hand, if an online algorithm can be shown to be competitive
with a good competitive ratio, this guarantees that the algorithm will perform well in
any scenario. Its average case performace might even be better.

However, a competitive algorithm need not be usable for practice, since no re-
quirements are made on its computational complexity. On the other hand, an online
algorithm whose competitive ratio is bad or which is not competitive at all need not to
perform bad on realistic instances. However, taking into account worst-case sequences

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 17

helps to characterize those scenarios that are dangerous for a good performace of the
algorithm. In order to investigate the average-case behavior of an online algorithm, we
rely on evaluation by simulation, as used in this work later on.

2.2 Notation

In this section, we focus on the necessary notations in order to formulate DMCA and
DSCA, as well as algorithms for the latter, called DSCA-algorithms in the sequel. First
of all, an optical network is modeled as follows.

Definition 2.5. An optical network is a triple (G,Λ,W), where

• G = (V,E) is a simple and undirected graph,

• Λ = {λ1, . . . ,λχ} is a set of wavelengths, and

• W : E → 2Λ is a map from E to the power set of Λ with
S

e∈E W (e) = Λ, which
we call the wavelength set function of the optical network. If W (e) = Λ for each
edge e ∈ E , we say the optical network possesses uniform edge equipment.

The network nodes and the optical fibers of the physical topology are modeled as
nodes and edges of the graph G. The wavelength set function indicates for each edge
e ∈ E which subset of wavelengths W (e) is available on that edge. In this way, dif-
ferent fiber types and WDM systems can be modeled. Note that we can indeed model
the underlying network topology as an undirected graph since although each signal is
transmitted along a directed lightpath from the technical point of view, a correspond-
ing backward channel using the same path must always be realized, too. This model
captures optical networks with exactly one fiber per link on which an arbitrary WDM
system may be installed. In order to allow for parallel fibers on one link, such that
some wavelengths can be used on that link more than once, we would only need to
neglect the property of G to be simple. Assuming that wavelength converters do not
exist in the network, we represent a lightpath as a path in G together with a wavelength
in Λ.

Definition 2.6. Let (G,Λ,W) be an optical network with graph G = (V,E), let p be a
path in G, and let λ ∈ Λ be a wavelength. The pair (p,λ) is called a lightpath in the
optical network (G,Λ,W) if λ ∈ W (e) for each edge e ∈ E(p). Its length is defined
as the number of path edges |E(p)|. If p has end nodes u,v ∈ V , we call (p,λ) a
[u,v]-lightpath or a lightpath with end nodes u and v.

Each lightpath satisfies the wavelength continuity constraint by definition, and thus
the essential remaining restriction is the wavelength conflict constraint. It reads as
follows.

Wavelength conflict constraint: On every edge, each wavelength can
be used by at most one lightpath. That is, for every two distinct simul-
taneously routed lightpaths (p1,λ) and (p2,λ) in the optical network
that use the same wavelength, it must hold that E(p1)∩E(p2) = /0.

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 18

Since we will often be concerned with lightpaths whose routing would violate the
wavelength conflict constraint, we also use the following terms.

Definition 2.7. Let (p1,λ) and (p2,λ) be two distinct lightpaths in an optical network
(G,Λ,W) which use the same wavelength. We say that (p1,λ) and (p2,λ) block, inter-
sect, or overlap with each other if E(p1)∩E(p2) 6= /0. Furthermore, a set of lightpaths
in the network is called conflict-free if any two distinct lightpaths do not block each
other.

Hence, all lightpaths contained in a conflict-free set can be routed simultaneously.
Neglecting the possibility of failure situations, a wavelength which is installed on some
edge e ∈ E is either used on e by some lightpath or still unused. This time depending
information defines the current network status. At each point in time, the network
status is defined by the currently established lightpaths. It is usually stored by a so-
called link-status matrix, where each row corresponds to an edge, and each column
represents a wavelength.

Definition 2.8. Let (G,Λ,W) be an optical network with graph G = (V,E) and wave-
length set Λ = {λ1, . . . ,λχ}. Let m := |E| be the total number of edges in G, and let
E := {e1, . . . ,em}. For a given network status S, let RS be the set of currently realized
lightpaths. If RS = /0, the optical network is called empty.

The link-status matrix of (G,Λ,W) in (network) status S is the (m× χ)-matrix
MS = (m(S)

i j)1≤i≤m,1≤ j≤χ with components defined as follows:

m(S)
i j :=

{

1, if λ j /∈W (ei) or there is a lightpath (p,λ j) ∈ RS with ei ∈ p,
0, otherwise.

For i = 1, . . . ,m and j = 1, . . . ,χ, we say that wavelength λ j is available on edge ei in
(network) status S if the corresponding matrix entry satisfies m(S)

i j = 0. If λ j ∈W (ei)
but m(S)

i j = 1, we say that wavelength λ j is utilized on ei. Moreover, a lightpath (p,λ)
in the optical network is called free or available in status S if λ is available on every
edge e ∈ E(p) in status S. Otherwise, the lightpath (p,λ) is called blocked in status S.
If it is obvious which network status is considered, we also use the terms currently free,
currently available, and currently blocked. If the network status changes by realizing
an available lightpath (p,λ), we denote the resulting network status by S+(p,λ).

Since each routing request requires that a connection between two appointed nodes
u,v ∈V is established by some fixed [u,v]-lightpaths, it makes sense to classify light-
paths according to their end nodes. To this end, we use the following notations.

Definition 2.9. Let (G,Λ,W) be an optical network, where G = (V,E). By L(u,v,λ)
we denote the set of lightpaths in (G,Λ,W) which connect the two nodes u,v ∈V and
whose wavelength is λ. Furthermore, the set of all [u,v]-lightpaths is denoted by

L(u,v) :=
[

λ∈W

L(u,v,λ),

and the set of all potential lightpaths in the optical network is denoted by

L :=
[

u,v∈V :
u6=v

L(u,v).

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 19

For a given network status S, we denote by LS the set of all available lightpaths in
status S and by LS(u,v) := LS ∩L(u,v) the set of the currently free [u,v]-lightpaths for
distinct nodes u,v ∈V .

2.3 Problem Definition: Dynamic Multiclass Call Admission
(DMCA)

We first state the general problem DMCA using a model that allows to represent many
different real-world specifications. Simplifying assumptions which lead to the special
problem considered in this work will be made later on. In the following, whenever we
are given an optical network (G,Λ,W), the sets of nodes and edges of G are denoted
by V and E , respectively.

A problem instance of DMCA is given by an optical network (G,Λ,W), a plan-
ning time interval [T1,T2], an upper bound B on the number of lightpaths that can be
requested, a set of customer classes C, a set of service classes Q, and a sequence of
connection requests σ := (σ1,σ2, . . .), where each call σ j, j ∈N specifies the following
parameters.

u j,v j ∈V : End nodes of the connection

b j ∈ {1, . . . ,B} : Number of lightpaths required (amount of demand)

tarrj ∈ [T1,T2] : Arrival time of the call

tansj ∈ [tarrj ,T2] : Latest answer time (time by which the operator has to have

made his decision whether to accept or to reject the request)

tstartj ∈ [tansj ,T2] : Start time of the connection

tstopj ∈ [tstartj ,T2] : Expiration time of the connection

c j ∈C : Customer class

q j ∈ Q : Service class

p j ∈ N : Profit of the connection

As a consequence, the duration of a call σ j is d j := tstartj − tstopj . The profit p j usually
depends on the end nodes u j and v j (in particular on their distance in the network, i.e.,
the minimum length of a [u j,v j]-lightpath), the demand b j , the time tansj − tarrj to
perform the call admission part of the problem, the duration d j, the customer class c j,
and the service class q j . We assume that for the arrival times of any two connection
requests σ j1 and σ j2 it holds that tarrj1 ≤ tarrj2 if and only if j1 < j2. That is, the sequence
is given in non-decreasing order of arrival times.

The task is to maximize the total profit gained by accepted calls such that valid
answers are given to all connection requests. Let St be the planned network status at
time t ∈ [T1,T2] which results from decisions of previous answers. A valid answer to
call σ j consists of a pair (adm j,L j), where adm j ∈ {“accepted”,“rejected”} specifies
whether call σ j is accepted or rejected, and L j is a conflict-free set of [u j,v j]-lightpaths

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 20

which are available in the planned network status St for each time t ∈ [tstartj , tstopj],
such that the cardinality of L j is

|L j| :=

{

0, if adm j = “rejected”,
b j, if adm j = “accepted”.

Note that the subdivision of each answer in two separate components reflects the call
admission part and the routing and wavelength assignment part. The call admission
part adm j of the answer is given latest at time tansj without knowledge of calls with
later arrival times, the routing and wavelength assignment part L j latest at time tstartj
without knowledge of calls which arrive after tstartj . If call σ j is accepted, it con-
tributes profit p j to the total profit and its service requires that all lightpaths in L j are
established from tstartj until tstopj . As a consequence, the status St must be updated for
each time t ∈ [tstartj , tstopj] by taking into account that the lightpaths in L j are realized
in this time interval. We refer to each lightpath that is contained in L j as a routing
lightpath for the call σ j.

Notice that subsequent valid answers ensure valid routings for the planning horizon
[T1,T2], i.e., the wavelength conflict constraint will always be satisfied. For each ac-
cepted connection request, at most the two new network statuses Ststartj

and Ststopj
have

to be considered in addition to the updated ones. Hence, there is only a finite number
of different network statuses to be stored if the sequence of requests σ is finite, and it
takes finite time to determine whether a lightpath will be available in [t startj , tstopj] or
not. Obviously, DMCA is an online problem, as introduced in Definition 2.1.

2.3.1 Scope of the Model

The described model allows to represent many different settings. First, note that be-
yond the normal operating state where connection requests arrive and have to be pro-
cessed, the formulation above can also reflect failure situations. Since a failure of an
edge causes all established lightpaths using that edge to be suspended, and as a failing
node corresponds to failures on all of its incident edges, the concerned connections
have to be rerouted on lightpaths in the still operative part of the network, if possible.
As a consequence, each planned network status up to the maximum original expiration
time of the lightpaths is affected. Moreover, the failures imply a temporary change of
the physical topology. For the link-status matrices which store the statuses, the impact
is the following: All entries in the row of the matrix which corresponds to an edge that
is either broken itself or incident to a broken node are set to one. This must be kept up
until the failure is repaired.

The special task of rerouting connections in the case of a failure can be modeled
as the arrival of a cumulative set of new requests, each of which corresponds to an
original call σ j and arrives at the time when the failure occurs tfail. For each new
request, we set its latest answer time as well as its start time to tfail. The remaining
parameters of the connection request are defined as those of the original call, except
for the service class, which may additionally indicate that the call is to be rerouted
due to failure, and the profit. The profit is set to zero since the customer has already

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 21

paid, and each rejected call yields a penalty cost that reflects the compensation which
must be paid to the customer for the suspended connection. By recognizing the special
service class, the task of call processing can be transferred to a special algorithm which
can handle a large set of connection requests arriving simultaneously. Since such an
algorithm disposes of more information, completely different routing procedures can
be used, i.e., offline planning.

Furthermore, the request parameters model a variety of features. Different service
classes enable the network operator to distinguish the diverse services he offers. For
example, the service class of a call may indicate the priority of rerouting in case of net-
work failures. A high priority may also force the network operator to reserve backup
lightpaths that could be used immediately if necessary. Different customer classes
may be treated differently, e.g., important customers might get a discount. This is
easily modeled by a profit depending on the customer class. Note that the profit func-
tion has to be defined by the network operator in order to reflect his special business
objectives. Its definition will affect the decisions of an algorithm substantially.

2.3.2 Restriction: Dynamic Singleclass Call Admission (DSCA)

From now on, we restrict ourselves to the problem DSCA. This problem is a restricted
version of DMCA with the following assumptions.

1. tarrj = tansj = tstartj for each connection request σ j.

2. There is only one customer class.

3. There is only one service class.

4. No failure situations occur.

Consequently, each connection request σ j is defined by six components:

σ j = (u j,v j,b j, tstartj , tstopj , p j).

With only one customer class, one service class, and identical decision times, the profit
of a call now only depends on the nodes u j and v j to be connected, the requested num-
ber of lightpaths b j , and the duration of the connection d j . Taking also into account the
distance between the end nodes, the profit function p j can be defined as the product
of three functions that reflect the mentioned dependencies. Since a connection request
must be handled immediatly at the time of its arrival, we assume that computations
can be made in zero time.

2.3.3 Previous Work on DSCA

Let us review some competitiveness results for special versions of the problem DSCA.
Let (G,Λ,W) be the given optical network and σ = (σ1,σ2, . . .), the request sequence.
We assume the following restrictions to hold in any instance of DSCA:

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 22

1. Each call σ j is permanent, i.e., d j = ∞.

2. Each call σ j requires only one lightpath: b j = 1.

3. Each accepted call σ j yields a profit p j = 1.

4. The optical network possesses uniform edge equipment.

We refer to the resulting problem version as the Dynamic Permanent Call Admis-
sion Problem (DPCA) with single demands. If additionally only one wavelength is
available in the network, i.e., |Λ| = 1, the wavelength conflict constraint implies that
each edge can at most be used in one routing lightpath. Therefore, the routing and
wavelength assignment part of DPCA with single demands reduces to the problem of
finding edge-disjoint paths for the connection requests. The resulting call admission
problem is called Edge-Disjoint Paths Allocation (EDPA). Via this problem, the fol-
lowing result about the complexity of the offline version of DSCA is obtained. Recall
that in the offline version of an online problem, complete information about the request
sequence σ is known in advance. Consider the decision variant of the offline version of
EDPA with only two calls: Are there two edge-disjoint paths between two given pairs
of end nodes in a graph? [GJ79] states that already this decision problem (a special
Undirected Two-Commodity Intergral Flow Problem) is NP-complete.

Theorem 2.10. The corresponding offline problems of DSCA and DPCA with single
demands are NP-hard.

For the problem DPCA with single demands, Awerbuch, Bartal, Fiat, and Rosén
proposed an algorithm called First-fit-coloring (FFC) that uses an algorithm for EDPA
as subroutine, called SLAVE in the sequel. FFC is based on the idea to view the opti-
cal network with χ wavelengths per edge as χ copies of the graph G, each of which
represents one wavelength. The code of FFC for handling a single call that requires a
connection between the nodes u,v ∈V is shown in Algorithm 1.

Input : An optical network (G,Λ,W) with G = (V,E), Λ = {λ1, . . . ,λχ},
uniform edge equipment, and any network status; two nodes u,v∈V
between which a connection should be routed.

Output : An available [u,v]-lightpath or a message “rejected”.

1 For each wavelength λ ∈ Λ, let SLAVEλ be a copy of SLAVE, and let Gλ be the
graph G restricted to all edges where λ is currently available;

2 If existing, choose the minimum index 1 ≤ i ≤ χ such that SLAVEλi accepts the
connection request in graph Gλi , and return the lightpath (p,λi), where p is the
path SLAVEλi selects in Gλi for routing the connection;

3 If there is no algorithm SLAVEλ for λ ∈ Λ that accepts the request, return the
message “rejected”.

Algorithm 1: FFC

The following has been proved about the competitiveness of FFC.

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 23

Theorem 2.11 ([ABFR94]). Let SLAVE be a c-competitive algorithm for EDPA. Then
the algorithm FFC is (c+1)-competitive for DPCA with single demands.

Striking about this result is that the competitive ratio of FFC does not depend on the
number of wavelengths in the network and furthermore hardly differs from the com-
petitive ratio of SLAVE. That is, if the competitive ratio of SLAVE is good, the one of
FFC is good, too. Note that each algorithm for EDPA which accepts the first call is m-
competitive, since the optimal offline algorithm OPT can at most accept m calls (one
for each edge in the graph), where m := |E|. Unfortunately, competitive algorithms
with better competitive ratio are only known for special graphs like lines, trees, and
grid graphs. More precisely, the currently best competitive ratios of randomized algo-
rithms are dlog ne for the line with n nodes ([ABFR94, AAF+96]), 2 log n for the tree
with n nodes ([ABFR94, AAF+96, LMSPR98]), and O(log n) for the n×n grid graph
([KT95, LMSPR98]). For arbitrary graphs, a lower bound for the competitiveness of
any randomized algorithm for EDPA is n1−log3 2/1+log3 2 ([BFL96]).

In [KP02], Krumke and Poensgen consider another version of DSCA which is less
restrictive than DPCA with single demands. It allows for calls each of which requires
up to χ lightpaths and yields a profit corresponding to the demands if it is accepted.
We call the resulting problem DPCA with changing demands. It is easily shown that
all deterministic competitive algorithms for this problem demands have the same com-
petitive ratio.

Theorem 2.12. For DPCA with changing demands, each deterministic algorithm is
either not competitive or has a competitive ratio of χm, where m denotes the total
number of edges and χ the number of wavelengths in the optical network.

Proof. Let ALG be an arbitrary deterministic algorithm for DPCA. If ALG rejects the
first given call, it is not competitive: For a request sequence σ = (σ1) consisting of one
request, ALG makes zero profit, while OPT achieves at least a profit of one (depending
on the demand of σ1).

If ALG accepts the first call of a request sequence σ, we have ALG(σ) ≥ 1. More-
over, OPT can at most gain a profit of one for each edge and wavelength, yielding χm
in total. This implies that ALG is χm-competitive.

It is shown in [KP02] that no deterministic algorithm can be better. Denote each
call by (u j,v j,b j) specifying the end nodes u j,v j for the connection and the number b j
of required lightpaths. Consider the line graph with nodes denoted by v1, . . . ,vn from
left to right and the following request sequence:

σ1 = (v1,vn,1),σ2 = (v1,v2,χ),σ3 = (v2,v3,χ), . . . ,σn = (vn−1,vn,χ).

Since ALG accepts σ1, it must reject all subsequent calls, achieving a total profit of
ALG(σ) = 1. In contrast, OPT accepts the calls σ2, . . . ,σn at a total profit of χm.

In [KP02], Krumke and Poensgen propose the first randomized competitive algo-
rithms for DPCA with changing demands. They show that the bound of χm does not

CHAPTER 2. MODELING OF DYNAMIC CALL ADMISSION 24

hold for the competitive ratio of randomized algorithms. Their algorithm called First-
fit-coloring-scaled (FFCS) uses FFC as subroutine and achieves a competitive ratio
of 8(c+1)(dlog χe)+1) for the line and 12(c + 1)(dlog χe) + 1) for the tree, again
given a c-competitive algorithm for EDPA. However, the algorithm FFCS is only of
theoretical interest. It will perform bad in practice.

2.3.4 Motivation for the Use of a Simulation Based Evaluation

Theorem 2.12 reveals that competitive analysis is not an appropriate method to eval-
uate the quality of deterministic online algorithms for DPCA with changing demands.
Although all deterministic competitive algorithm perform equally bad with respect to
their competitive ratios, their practical quality can differ significantly. The more gen-
eral DSCA with limited durations and with uniform edge equipment might in principle
yield different results, but it is too complex to be evaluated by competitive analysis.
Note that Theorem 2.12 also yields a bound on the competitve ratio of an determin-
istic DSCA-algorithm from which follows that there are no DSCA-algorithms which
achieve a better competitive ratio. This motivates the use of simulation for the evalua-
tion of online algorithms for DSCA.

Chapter 3

Online Algorithms for DSCA

In this chapter, we present existing and new online DSCA-algorithms which are de-
veloped in order to perform well in practical applications within our joint project with
T-Systems Nova.

The basic versions of each algorithm gets as input an optical network (G,Λ,W), its
current network status S, and two node between which a connection of one lightpath
should be established. That is, an algorithm receives the connection requests of the
sequence σ consecutively, and each call σ j only requires one lightpath, i.e., b j = 1.
Note the algorithms can be easily adapted for calls of higher demands: We simply
treat a call σ j that requires b j lightpaths as a collection of b j similar calls with demand
one each, also referred to as call fragments. The collection of calls is referred to as a
call packet of size b j . The only difference is that the original call σ j must is rejected if
any of its corresponding call fragments is rejected. Furthermore, all presented DSCA-
algorithms does not make use of optional call rejection. That is, a connection request
is always accepted if possible.

The structure of this chapter is as follows. In Section 3.1, we present algorithms
that are based on shortest path routing with varying wavelength selecting strategies.
Most of these so-called greedy-type algorithms have been proposed by Mokhtar and
Azizoglu in [MA98]. Furthermore, we consider adapted versions that incorporate,
among other things, special tie-breaking rules whose impact on the performance of
the greedy-type algorithms will turn out to be substantial in the experimental results in
Chapter 5. Most of these greedy-type algorithms have been proposed in a joint work
with Hülsermann, Jäger, Krumke, Poensgen, and Rambau, see [HJK+03]. However,
in the main part of the chaper (Section 3.2), we propose new DSCA-algorithms that
are based on the concept of the network fitness. In order to reduce the substantial
computational effort of most of these algorithms, we propose (among others) one easy
method, whereby the decisions of the adapted algorithms will change only little.

Throughout this chaper, whenever we are given an optical network (G,Λ,W), the
set of nodes is denoted by V , and the set of edges of G is denoted by E . Furthermore,
let Λ = {λ1, . . . ,λχ} be the set of wavelengths unless something else is stated.

25

CHAPTER 3.1. GREEDY-TYPE ALGORITHMS 26

3.1 Greedy-Type Algorithms

In nowadays networking applications, many routing algorithm are based on routing
along shortest paths. This also applies to the presented greedy-type algorithms for the
problem DSCA. They accept given connection requests whenever it is somehow pos-
sible to provide corresponding lightpaths, thus omitting the call admission part of the
problem. Among each other, the greedy-type algorithms vary only in their wavelength
selection strategy. For the routing choice, the strategy applied by all greedy-type al-
gorithms is to establish a shortest lightpath among all currently availalble lightpaths
in the chosen wavelength. Recall that the length of a lightpath is defined to be the
number of its edges. If no lightpath of any wavelength connecting the start and end
node is available, the call is rejected.

Many of the greedy-type algorithms in this section are defined in terms of the
following quantities which depend on the network status.

Definition 3.1. Let (G,Λ,W) be an optical network with network status S. Moreover,
let MS = (m(S)

i j)1≤i≤m,1≤ j≤χ be the corresponding link-status matrix, where m := |E| is
the total number of edges in the network. For each j = 1, . . . ,χ, we call

utilS(λ j) :=
m

∑
i=1:

λ j∈W (ei)

m(S)
i j

the edge utilization of wavelength λ j in (network) status S and

availS(λ j) :=
m

∑
i=1

(1−m(S)
i j)

the edge availability of wavelength λ j in (network) status S.

The classification of greedy-type algorithms in this chapter follows the work of
Mokhtar and Azizoglu [MA98], who proposed the variants called FIXED, RANDOM,
PACK1, SPREAD1, and a version of EXHAUSTIVE in the following. In their paper, only
the optical networks with uniform edge equipment were considered. However, if the
edges provide different sets of wavelengths, the algorithms PACK1 and SPREAD1 have
to be adapted by incorporating the current edge availability of wavelengths instead of
the current edge utilization in order to implement their underlying ideas. Furthermore,
especially for EXHAUSTIVE, the description in the paper leaves the tie-breaking de-
cision open, which can considerably affect the performance of the algorithm. By the
specification of a reasonable tie-breaking rule, we could improve this algorithm sig-
nificantly compared to the version breaking ties randomly. Most of the new versions
have already been proposed together with the co-authors Hülsermann, Jäger, Krumke,
Poensgen, and Rambau in [HJK+03].

We distinguish between two classes of greedy-type algorithms, which differ in their
way of wavelength selection.

CHAPTER 3.1. GREEDY-TYPE ALGORITHMS 27

3.1.1 Partial Wavelength Search

Upon arrival of a connection request, the algorithms of the first class partially search
the wavelengths in a certain order until they find the first wavelength λ in which a
connection can be established. Therefore, they are called greedy-type algorithms with
partial wavelengths search. The given call is routed on a shortest lightpath using
wavelength λ. All of these algorithms are based on the generic greedy approach of
Algorithm 2 and differ in the way how the order of wavelengths in Step 1 is chosen.

Input : An optical network (G,Λ,W) with any network status; two nodes
u,v ∈ V in the network between which a connection should be
routed.

Output : An available [u,v]-lightpath if there is any or a message “rejected”
otherwise.

1 Let λi1 , . . . ,λiχ be some order on the set of all wavelengths Λ;
{The way how the order of the wavelengths is chosen leads to different versions
of the algorithm, see text.}

2 For each wavelength λ ∈ Λ, let Gλ be the graph G restricted to all edges where
λ is currently available;

3 Choose the first wavelength λ in the order where there is still a path in Gλ con-
necting u and v. If no such wavelength exists, return the message “rejected”;

4 Compute a shortest [u,v]-path p in Gλ and return the lightpath (p,λ).

Algorithm 2: Generic greedy-type algorithm with partial wavelengths search.

The variants we summarize under the name greedy-type algorithms with partial
wavelengths search use the following wavelength orders (cf. Definition 3.1 for the
quantities edge utilization and edge availability).

• FIXED: The wavelength search order is fixed a priori.

• RANDOM: Wavelengths are searched in a randomly varying order (using a uni-
form distribution).

• PACK1: Wavelengths are searched in order of decreasing edge utilization.

• PACK2: Wavelengths are searched in order of increasing edge availability.

• SPREAD1: Wavelengths are searched in order of increasing edge utilization.

• SPREAD2: Wavelengths are searched in order of decreasing edge availability.

Notice that, except for FIXED, the wavelength orders change over time. Further-
more, the two versions of PACK and SPREAD, respectively, are equivalent if the net-
work possesses unifrom edge equipment. This can formally be shown as follows.

CHAPTER 3.1. GREEDY-TYPE ALGORITHMS 28

Theorem 3.2. Let (G,Λ,W) be an optical network with uniform edge equipment.
Moreover, let S be the network status and MS = (m(S)

i j)1≤i≤m,1≤ j≤χ be the correspond-
ing link-status matrix, where m := |E| is the total number of edges in the network.
Then, PACK1 and PACK2 as well as SPREAD1 and SPREAD2 are equivalent con-
cerning their routing decisions, that is, both algorithms choose the same lightpath for
a given connection request if they use identical rules for tie-breaking.

Proof. Note that by definition of the wavelength set function, W (e) = Λ for each
edge e ∈ E . It suffices to show for each j,k = 1, . . . ,m that

utilS(λ j) < utilS(λk) ⇐⇒ availS(λ j) > availS(λk).

By definition of the edge utilization and edge availability, we obtain:

utilS(λ j)−utilS(λk) =
m

∑
i=1:

λ j∈W (ei)

m(S)
i j −

m

∑
i=1:

λk∈W (ei)

m(S)
ik

=
m

∑
i=1

(m(S)
i j −m(S)

ik)

=
m

∑
i=1

(

(1−m(S)
ik)− (1−m(S)

i j)
)

= availS(λk)−availS(λ j).

The idea of PACK1 is to route given calls on a lightpath using the most utilized
wavelength λi1 as long as possible. Further wavelengths are not taken into account
unless no potential routing lightpath (p,λi1) is currently available for the given con-
nection request. For this reason, if the network is initially empty, all wavelengths
except λi1 remain unused until arrival of the first call that cannot be routed using λ i1
anymore. Applying this strategy in an optical network with uniform edge equipment,
the probability that for a path p the lightpath (p,λik) is currently available tends to
decrease with decreasing k. That is, PACK1 intends to fill up the network load in such
wavelengths for which it is less likely to find possible lightpaths.

This strategy seems reasonable since the little remaining capacities of currently
frequently utilized wavelengths can rarely be used, and therefore one should try to use
them whenever it is possible. If one refrain from routing on heavily utilized wave-
lengths until the network load gets high, it is unlikely that one arriving call can be
routed using such a wavelength, which might lead to its rejection. Moreover, other
wavelengths in which a call can more likely be routed are prevented from being uti-
lized if not necessary.

However, PACK1 might route some connection requests on long lightpaths even
though there are much shorter free lightpaths using less utilized wavelengths. This
looks disadvantageous since much network capacity is required. As shown in the prove
of Theorem 3.2, the most utilized wavelength is also the less available wavelength for
uniform edge equipment. But obviously, this must not necessarily hold if the edges

CHAPTER 3.1. GREEDY-TYPE ALGORITHMS 29

provide different sets of wavelengths. Hence, the idea described above is no longer
realized by PACK1 in this case. We can maintain the idea of PACK1, if wavelengths
are searched in order of increasing edge availability. This is done by the greedy-type
algorithm PACK2.

Obviously, the concept of both SPREAD versions are completely opposite to those
of PACK. Instead of filling up the network in some wavelengths, SPREAD1 attempts
to distribute the total network load uniformly among all wavelengths, which also bal-
ances the remaining capacities in the different wavelengths but only if the network has
uniform edge equipment. That is, SPREAD1 achieves similar edge utilizations and
similar edge availablities for the different wavelengths.

If the optical network is equipped with different sets of wavelengths on the edges
and the network load is higher, the edge utilization of those wavelengths which exist
on many edges will be greater than the utilization of less often installed wavelengths.
Therefore, the latter will be continuously preferred by SPREAD1. Furthermore, the
edge availablilities of the different wavelengths will no longer be similar anymore.
This is still achieved by SPREAD2 which searches the wavelengths in order of de-
creasing edge availability.

Moreover, we consider two version of FIXED. The first one, FIXED1, searches the
wavelengths in order of increasing index while the second, FIXED2, searches in order
of decreasing index. If the network has uniform edge equipment, both FIXED1 and
FIXED2 perform equally with interchanged wavelengths. By the used procedure of
network dimensioning in this work, an edge e ∈ E is equipped with the wavelengths
λ1, . . . ,λχe , where χe := |W (e)|. Hence, both FIXED variants are opposite in this case.
While FIXED1 tends to select more frequently installed wavelengths, FIXED2 chooses
frequently installed wavelengths. Note that the edge availability of a wavelength λ in
a network with medium load tends to be larger the more λ is installed in the network.
That is, edge availability of a wavelength λi tend to decrease with increasing index.
Hence, the wavelength selection strategies are similar for FIXED1 and SPREAD2 and
for as FIXED2 and PACK2 for the used way of network dimensioning. This tendency
will be confirmed by the experimental results in Chapter 5.

3.1.2 Total Wavelength Search

In contrast to the greedy-type algorithms with partial wavelengths search, the algo-
rithms of the second class always take into account the total set of wavelengths by
computing shortest available lightpaths for all wavelengths. Among them, a globally
shortest one is chosen. Hence, we call these algorithms greedy-type algorithms with
total wavelengths search or shortening exhaustive. They only differ in their rule for tie-
breaking if there are several wavelengths which yield globally shortest lightpaths. The
proceeding of the greedy-type algorithms with total wavelengths search is depicted in
Algorithm 3.

The tie-breaking orders to be considered correspond to the wavelengths search
orders of the greedy-type algorithms with partial wavelengths search.

• EXHAUSTIVE f : The wavelength tie-breaking order is fixed a priori.

CHAPTER 3.1. GREEDY-TYPE ALGORITHMS 30

Input : An optical network (G,Λ,W) with G = (V,E), Λ = {λ1, . . . ,λχ},
and any network status; two nodes u,v ∈ V between which a con-
nection should be routed.

Output : An available [u,v]-lighpaths if there is any or a message “rejected”
otherwise.

1 Let λi1 , . . . ,λiχ be some order on the set of all wavelengths Λ;
{The above order is used as a tie-breaking rule which leads to different ver-
sions of the algorithm, see text.}

2 For each wavelength λ ∈ Λ, let Gλ be the graph G restricted to all edges where
λ is currently available;

3 For each wavelength λ ∈ Λ compute a shortest [u,v]-path pλ in Gλ. If no path
is found at all, return the message “rejected”;

4 Let λ′ ∈ Λ be the first wavelengths in the order such that |E(pλ′)| ≤ |E(pλ)|
for all wavelength λ ∈ Λ\{λ′}. Return pλ′ .

Algorithm 3: Generic greedy-type algorithm with total wavelengths search.

• EXHAUSTIVEr : Wavelengths are ordered randomly varying (using a uniform
distribution).

• EXHAUSTIVEp1: Wavelengths are ordered by decreasing edge utilization.

• EXHAUSTIVEp2: Wavelengths are ordered by increasing edge availability.

• EXHAUSTIVEs1: Wavelengths are ordered by increasing edge utilization.

• EXHAUSTIVEs2: Wavelengths are ordered by decreasing edge availability.

Compared to the greedy-type algorithms with partial wavelength search, it seems to
be advantageous to choose globally shortest lightpaths because less network capacity
is required in order to realize them. Since there are often many globally shortest light-
paths (particularly if the network load is small), additional tie-breaking rules should
significantly affect the behaviour of the greedy-type algorithms with total wavelength
search. The ideas of different tie-breaking rules are the same as before. As for FIXED,
we also consider two versions for EXHAUSTIVE f that are equivalent if the network has
uniform edge equipment: EXHAUSTIVE f 1 orders the wavelengths by increasing index
and EXHAUSTIVE f 2 by decreasing index.

3.1.3 Analysis of Greedy-Type Algorithms

In this section, we look at the properties of the greedy-type algorithms. First, all
greedy-type algorithms are very easy to implement. Their main ingredient is the com-
putation of shortest paths. Since all edge lengths are one in our length model, this
subproblem can be solved in linear time O(n + m) using breadth-first search, where
n := |V | and m := |E| denote the number of nodes and edges in the network, respec-
tively (cf. [KV00, Chapter 2]). Moreover, the restriction of the graph G to Gλ as

CHAPTER 3.1. GREEDY-TYPE ALGORITHMS 31

well as the computation of utilS(λ) or availS(λ) is done in O(m) time for each wave-
length λ∈Λ, and network status S. Since the optical network is equipped with χ wave-
lengths, the worst case complexity of all greedy-type algorithms is O(χ(n+m)). How-
ever, their average case complexity differs as follows. While the exhaustive versions
always have to determine a shortest [u,v]-lightpath in each wavelength, the greedy-
type algorithms with partial wavelengths search compute shortest lightpaths at most χ
times. In particular, if the network load is not very high, the latter will only need few
shortest path computations. Moreover, this number is also affected by the different
wavelengths search orders. Above all SPREAD2, but also RANDOM, may find a free
[u,v]-lightpath quickly, whereas FIXED, and naturally PACK2, need longer to find an
available connection. For a stochastic analysis on the number of shortest path compu-
tations of the greedy-type algorithms with partial wavelengths search, see [MA98].

Even though the greedy-type algorithms have efficient running times, it is crucial
for each DSCA-algorithm that ignores the call admission part how decisions concering
routing and wavelength assignment are made. Such decisions are reasonable if as much
network capacity as possible stays available in order to accept potential future calls.
The motivation of the greedy-type algorithms for this is the following: The shorter
a lightpaths (p,λ), the less network capacity is required by realizing it. However,
this only holds for the number of edges where λ is available, but we are interested in
available lightpaths instead of edges.

The following example illustrates a scenario in which the greedy type algorithms
fail, because a single decision already proves to be bad: It leads to an allocation which
makes the routing of many further calls impossible.

2 4 6 8

1 3 5 7

Figure 3.1: First example graph G1.

Example 3.3. Consider the optical network (G1,Λ,W) with G1 as depicted in Fig-
ure 3.1, Λ = {λ}, and W (e) = Λ for each edge e ∈ V (G1). Suppose that each call
requires a connection between nodes 3 and 6 and yields a profit of one if it is ac-
cepted. Upon arrival of a first call, each greedy-type algorithm routes it on the light-
path ((3,5,4,6),λ) since this lightpath has the minimum length of 3 while both other
alternative lightpaths have length 4. Its path, however, is a [3,6]-cut in the network
separating the nodes 1,2,3,4 from the remaining nodes 5,6,7,8. Hence, only one call
can be routed at each point in time. But since the two lightpaths ((3,1,4,6),λ)) and
((3,5,7,8,6),λ)) are edge-disjoint, two connection request could be realized simul-
taneously. In doing so, twice as much profit could be made if the frequency of call
arrivals is sufficiently high. What was the mistake of the greedy-type algorithm? The
problem is that it simply maximized the number of arcs on which λ stays available after
the routing. If we instead realize such a lightpath that the number of lightpaths which
remain available is maximum, another decision will be made (this approach leads to

CHAPTER 3.1. GREEDY-TYPE ALGORITHMS 32

the first algorithm proposed by us in Section 3.2). While the realized lightpath keeps
available the 12 lightpaths with paths

(3,1),(3,1,2),(3,1,2,4),(1,2),(1,2,4), (2,4),

(5,7),(5,7,8),(5,7,8,6),(7,8),(7,8,6), (8,6),

both other routing alternatives yield 14 available lightpaths: For ((3,5,7,8,6),λ)), the
corresponding paths are

(3,1),(3,1,2),(3,1,2,4),(3,1,2,4,5),(3,1,2,4,6),

(1,2),(1,2,4),(1,2,4,5),(1,2,4,6),

(2,4),(2,4,5),(2,4,6),

(4,5),(4,6).

Furthermore, if it is know that there is only traffic between the nodes 3 and 6, lightpaths
connecting these nodes are obviously much more important than others. In this case,
realizing the lightpath ((3,5,4,6),λ) is obviously bad since each other [3,6]-lightpath
is blocked afterwards. If instead of G1, the graph G2 which is shown in Figure 3.2
forms the underlying topology of the optical network and if all calls need connections
between node 7 and node 12, the profit made by each greedy-algorithm is only 1/3
of the optimal profit: In this network, all greedy-type algorithms route the lightpath
((7,10,8,11,9,12),λ), and now there are even three edge-disjoint [7,9]-lightpaths.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 3.2: Example graph G2.

Without specification of the lightpaths that remain available if another routing
lightpath is selected, we state that mentioned strategy will realize another lightpath
and achieve the optimal profit. Furthermore, beginning with G1 and G2, we can con-
struct a sequence of graphs such that the greedy-type algorithms become arbitrarily
bad against the optimal DSCA-algorithm which must accept calls if possible. The
general idea is that the shortest path is a cut in these networks.

Although Example 3.3 represents a worst-case scenario for the greedy-type algo-
rithms, it shows that always choosing a shortest lightpaths can be very bad. Moreover,
it motivates the development of more intelligent algorithms.

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 33

3.2 Network Fitness Algorithms

In this section we present new DSCA-algorithms in order to overcome the discussed
drawbacks of greedy-type algorithms.

3.2.1 Introduction

All DSCA-algorithms that we propose are based on the concept of the network fitness.
This corresponds to an approach often used in online optimization. For a given system,
one aspires to evaluate its different possible statuses resulting in a fitness function. Us-
ing such a fitness function, one intends to draw conclusions concerning the decisions
to make. For DSCA, the idea is to route a given connection request, if accepted, in
such a way that the resulting network status allows for a maximum potential profit of
future calls. Since we do not know the calls to come, we can only relate potential
future profit at any point in time to the current network status. Hence, we would like
to assign a fitness level to each network status that reflects the network’s capability to
accept further calls. Obviously, it is desirable to maintain the status of the network as
fit as possible. To this end, we route an accepted call in such a way that the resulting
decrease in network fitness is minimized, or equivalently, the remaining network fit-
ness after lightpath realization is maximized. After expiration of a routed connection,
the fitness value increases again. The crucial task is to define a proper measure for the
network fitness.

Probably the most reasonable definition of the term network fitness is the expected
maximum future profit which can be obtained for a coming sequence. Recall that the
offline version of the DSCA is NP-hard, as shown in Theorem 2.10. Hence, the com-
putation of the expected value of maximum future profitit is completely out of reach
since solving the corresponding stochastic program is even harder. In this section, we
will propose different simplified measures for the current fitness of a network which
can be computed more easily.

The proposed DSCA-algorithms only differ in their fitness functions. This function
maps a network status S of a given optical network to a non-negative real number
f it(S), which shall measure the corresponding fitness of the network. Omitting the
call admission part of the problem, all network fitness algorithms are based on the
scheme of Algorithm 3.2.1. However, the selection of the returned lightpath in Step 5
may include a tie-breaking rule, and the cost definition in Step 4 may vary a little when
additional weight functions are used.

Note that also the greedy-type algorithms with total wavelengths search (see 3.1)
belong to this class of algorithms. Given a network status, its fitness value is defined
as the sum of the edge availabilities for all wavelengths. Even the greedy-type algo-
rithms with partial wavelengths search can be regarded as network fitness algorithms:
They attempt to maintain as much edge availability as possible but the wavelengths are
weighted corresponding to the wavelength order.

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 34

Input : An optical network (G,Λ,W) with any network status S; two nodes
u,v ∈V between which a connection should be routed;

Output : An available [u,v]-lighpaths if there is any or a message “rejected”
otherwise.

1 Let f it : S → R+ be some network fitness function, where S denotes the set of
all possible network statuses of (G,Λ,W);
{The exact definition of this function leads to different versions of the algo-
rithm.}

2 Let LS(u,v) ⊆ L(u,v) be the set of currently free [u,v]-lightpaths in status S;
3 If LS(u,v) = /0, return the message “rejected”;
4 For each lightpath (p,λ) ∈ LS(u,v), let c(S,(p,λ)) := f it(S)− f it(S +(p,λ))

be its cost, which is defined as the difference of the network fitness before and
after routing of the lightpath (p,λ);

5 Return a lightpath (p,λ) ∈ LS(u,v) whose cost c(S,(p,λ)) is minimum.

Algorithm 4: Generic network fitness algorithm.

3.2.2 The Algorithm ALR

In contrast to the greedy-type algorithms, the first proposed network fitness algorithm
available-lightpaths-reduction (ALR) keeps a view on the impact of all lightpaths in
the optical network. Let (G,Λ,W) be an optical network with network status S.

Recall that for each pair of distinct nodes u,v ∈ V , the set of currently available
[u,v]-lightpaths is denoted by LS(u,v) ⊆ L(u,v). The fitness function of ALR is defined
as

f itALR(S) := ∑
u,v∈V :

u6=v

|LS(u,v)|.

That is, the network fitness is the total number of lightpaths which are currently free
with respect to the network status S. Consequently, the corresponding cost of an avail-
able lightpath (p,λ) is

cALR(S,(p,λ)) = ∑
u,v∈V :

u6=v

|LS(u,v)|− |LS+(p,λ)(u,v)|.

Hence, ALR routes a given call on such a lightpath for which the decrease of available
lightpaths caused by its routing is minimized, i.e., the algorithm maintains as many
lightpaths as possible.

Compared to the greedy-type algorithms, it seems advantageous that ALR directly
takes into account the availability of whole lightpaths, because these are the necessary
utilities in order to establish connections. Only to consider the edge availabilities, as
done by greedy-type algorithms, certainly affects the availability of lightpaths, but the
impact may be very different. For example, let G be a line graph with n succeeding
nodes v1, . . . ,vn, where n is even, and let λ ∈W (e) for each edge e ∈ E . Realizing a
first single-edge lightpath ((vi,vi+1),λ) in the empty network, where i ∈ {1, . . . ,n−1},

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 35

leads to the same decrease of edge availability of the utilized wavelength independent
of the position of edge vivi+1 on the line. For the decrease of available lightpaths using
wavelength λ, however, the impact of that position is significant. If i = 1, that is, the
edge lies at the boundary of the graph, only the n−1 lightpaths which connect v1 with
the other nodes become blocked. But if the edge is located in the middle of the graph,
i.e., i = n/2, the graph is cut into two parts each of which contain n/2 nodes. Hence, for
each two nodes vi and v j with 1 ≤ i ≤ n/2 < j ≤ n, the only lightpath connecting them
become blocked. The total number of those lightpaths is (n/2)2, which is for large n
much more than in the first case. As shown by this example, the number of edges of a
lightpath does not correlate with the number of lightpaths blocked by it. Therefore, the
measure of the greedy-type algorithms may lead to bad routing decisions if the edges
differ in their importance for routing of calls. As already shown, this is the case in
Example 3.3, where ALR performs optimally.

A major drawback of ALR is concerned with its computational complexity: It is
very unlikely that the cost computation of ALR can be implemented efficiently. Given
two nodes u and v in a graph, it is shown in [Val79] that the problem of counting
the number of [u,v]-paths is #P-complete. In Section 3.2.2, we present a Branch-and-
Bound method for ALR which turned out to be very fast in practice compared to our
first implementation.

For a given path p in G, the set of all other paths which share an edge with p could
theoretically be calculated in a preliminary step of the algorithm. One way to store this
information is to encode it as a graph which we call the path graph GP of G. Formally,
GP = (VP ,EP) is defined by

VP := {p | p is a path in G },

and
EP := {p1 p2 ∈V (2)

P | E(p1)∩E(p2) 6= /0},

where V (2)
P denotes the set of unordered pairs of elements in VP . However, the actual

determination of the path graph GP of a graph G might be computationally too expen-
sive and too memory consuming, since the size of the path graph GP is exponential in
the size of G. Indeed, the path graph of the 17-nodes network (see Section 5) contains
13641 nodes (where each node in GP corresponds to an undirected path in G). In the
computation of its path graph on a state-of-the-art PC, a memory overflow occurred.
At that time, 12663 nodes and 59,373,015 edges of the path graph were determined.

Once we have the path graph, we simply obtain for each path p in G the number
of other paths which intersect p as the degree of p in GP . Obviously, the path graph
would be useful for ALR. For each wavelength λ, we store a path graph GP (λ) =
(VP (λ),EP (λ)) of the graph G restricted to all edges e ∈ E where λ is installed, i.e.,
λ∈W (e). Upon arrival of a connection request between nodes u,v∈V , the cost of each
[u,v]-lightpath using wavelength λ can be accessed in constant time if each node in
GP (λ) stores its degree. After a lightpath (p,λ) has been established it is necessary to
update GP (λ). However, the computational effort of this update is again considerable.
Each adjacent node p′ ∈VP (λ) of p as well as p itself has to be removed from GP (λ)
temporarily which includes to reduce the degree of each neighbor node of p ′ by 1. A

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 36

similar update has to be made once a routed connection using a lightpath (p,λ) expires:
The temporarily removed adjacent nodes of p in GP (λ) have to be restored if their
other neighbors also correspond to currently free lightpaths. Furthermore, the degrees
of all these nodes have to be updated. In an application where routing decisions have
to be made very fast after arrival of a call and where is much time between the arrival
of two calls, the above implementation could indeed work if the considered network is
small.

One conceptual disadvantage of the above definition of network fitness is that all
lightpaths are considered to be equally important. However, there are different reasons
why a lightpath should be more important to be available than another.

First of all, the average demands between the network nodes may be given, i.e., we
know calls which arrive more frequently than others. Obviously, corresponding light-
paths are of particular importance: Lightpaths connecting nodes u1,v1 ∈ V are more
important than lightpaths which connect the nodes u2,v2 ∈ V if the average demand
between u1 and v1 is greater than that between u2 and v2. For a pair of nodes which
are never required to be connected, lightpaths connecting them are of no importance.

Second, we would like to protect specially those lightpaths whose end nodes can
currently be connected only by few free lightpaths. For example, if arrivals of requests
for connections between network nodes u1,v1 ∈ V and u2,v2 ∈ V are equally likely
but there are more free lightpaths left which connect u1 and v1, we would like to pro-
tect [u2,v2]-lightpaths more than [u1,v1]-lightpaths. Therefore, if two possible routing
lightpaths for the same call might block the same set of lightpaths except that the first
intersects one [u1,v1]-lightpath, whereas the second intersects one [u2,v2]-lightpath,
the first routing should be chosen.

The last criterion is the length of a lightpath. Obviously, a lightpath which contains
almost all nodes in the network (nearly Hamiltonian) will hardly be established since it
blocks a huge number of other lightpaths. Such a lightpath is completely unimportant,
whereas short lightpaths which connect the same nodes will be realized often and are
therefore more valuable to be protected.

In the next section, we will extend our basic version of ALR by a weight function
which takes into account the different importances of lightpaths.

ALR with Generalized Weight Functions

As already mentioned, the lightpaths in an optical network (G,Λ,W) are not equally
important. In this section we will define a weight function in order to take into account
their different importances. Given a certain network status S, the weight w of a light-
path (p,λ) in the network whose end node are u and v depends on three factors. We
set

w(S,(p,λ)) := w1(u,v) ·w2(S,u,v) ·w3(p),

where w1 is a function that depends only on the end nodes of the path p, w2 also de-
pends on the current network status, while w3 takes into account the structure of p
itself. These three weight functions reflect the three ways the importance of the

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 37

[u,v]-lightpaths (p,λ) may be affected (see last section): the average traffic demand
between u and v, the number of currently available [u,v]-lightpaths, and the length
of p. Note that the weight function does not depend on the wavelength of the light-
paths. We propose the following variants for the three functions.

For the first function w1, which reflects the importance of a lightpath resulting from
the relative average demand between its end nodes, we distinguish two options C (=
constant) and T (= traffic):

(C) w1(u,v) := 1,

(T) w1(u,v) := demand(u,v),

where demand(u,v) denotes the average arrival frequency of calls which require con-
nections between the nodes u,v ∈ V in any period of time. If call arrivals between
different pairs of nodes are different likely, the option T seems reasonable since the
higher the demand between the nodes u and v compared to other node pairs, the higher
is the probability that the next arriving call requires a [u,v]-lightpath, and the more
important it is to protect these lightpaths.

As before, let LS(u,v) ⊆ L(u,v) be the set of available [u,v]-lightpaths with respect
to network status S. For the second function w2 that considers the number of available
lightpaths, we propose the following variants C (= constant), L (= linear), and E (=
exponential):

(C) w2(S,u,v) := 1,

(L) w2(S,u,v) := |LS(u,v)|−1,

(E) w2(S,u,v) := µ|LS(u,v)|−1 −1,

where µ > 1 is some parameter. Both options L and E take into account the distribution
of still available lightpaths. More precisely, the fewer available [u,v]-lightpaths are
left in comparison to their initial number, the more important they are. This aims at
preventing the algorithm from making a routing choice which decreases the relative
connectivity between two nodes too much. Rather than routing a given call in such
a way that the last available lightpath between two nodes becomes blocked, the algo-
rithm chooses a routing lightpath which might block more free lightpaths, but only
those whose end nodes are still easily connectable. This is achieved by relating the
weight inversely to the number of available lightpaths with the same end nodes. No-
tice that the versions (L) and (E) of w2(S,u,v) are only well defined if not all lightpaths
connecting u and v are blocked yet. However, the weight w2(S,u,v) will only be cal-
culated by ALR if this is the case.

In order to take into account the lengths of the lightpaths, we consider the follow-
ing versions for the last function w3 labeled C (= constant), L (= linear), and E (=
exponential):

(C) w3(p) := 1,

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 38

(L) w3(p) := n−|E(p)|,

(E) w3(p) := ν
n−|E(p)|

n−1 .

Here, n := |V | again denotes the total number of nodes in the network and ν > 1 is
some parameter. The linear (L) and exponential (E) versions of function w2 make
it more expensive to block short lightpaths. As already mentioned, this realizes the
following idea. The longer a lightpath, the more network capacity tends to be required
by realizing it. Therefore, long routing lightpaths are usually not chosen as long as
there are available lightpaths left. Hence, they may be allowed to become blocked
anyway, while short lightpaths are worth to be protected.

The exponential weight function in the third versions of w2 and w3 aims at in-
creasing the corresponding weight more than linearly when the number of available
[u,v]-lightpaths decreases or the length of p increases linearly, respectively. Hence,
the effect is strengthened compared to each linear second version.

In using exponential weight functions, we adopt the main feature of the algo-
rithm AAP for online call admission and routing in electronic networks which was
proposed by Awerbuch, Azar, and Plotkin [AAP93]. However, it is to be doubted
whether the exponential function in SALR is as effective as it proved to be for AAP

which is good in theory (competitive analysis) and (in an adapted version) also in
practice.

Having introduced the weight function, we define the cost of a lightpath (p,λ) in
some network status S for the weighted version of ALR by

cALR(S,(p,λ)) := ∑
(q,λ)∈B

w(S,(q,λ)),

where B := LS \ LS+(p,λ) is the set of lightpaths which are available with respect to
network status S and which overlap with (p,λ). That is, instead of taking into account
the number of currently free lightpaths which become blocked as before, the cost con-
tribution of each of those lightpaths is now its weight. Note that unless w ≡ 1, this
definition does not correspond directly to the general fitness algorithm cost function
since it cannot be expressed to be the change in some network fitness.

However, there are still situations in which the usage of w2 with option L or E
is not as effective as desired. These may occur if at least two lightpaths with the
same end nodes become blocked. For example, if a first routing lightpath would in
total block two of four available [u1,v1]-lightpaths and two of four available [u2,v2]-
lightpaths, it has the same cost value as another lightpath which would block all four
available [u1,v1]-lightpaths since the weight of each of the four newly blocked light-
paths is the same, respectively (w2(S,u1,v1) = w2(S,u2,v2)). In particular, if connec-
tion requests between u1 and v1 are at least as likely to arrive as those between u2 and
v2, the first choice seems better since the number of available lightpaths between one
pair of nodes is not decreased too much. By realizing the second lightpaths, u1 and v1
may soon be not connectable anymore.

We will refer to the different combination of the three weight function by their
corresponding letters, e.g., the combination with (T) for w1, (L) for w2, and (E) for w3

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 39

is denoted by TLE. As mentioned before, the original unweighted version of ALR fits
into this scheme: it is equal to version CCC. Experimental results were carried out for
all 8 combinations of the three weight functions that result from (C) or (T) for w1 and
(C) or (E) for w2 and w3. These are reported in Chapter 5.

An Implementation of ALR Using Branch and Bound

Upon the arrival of a connection request between nodes s and t in an optical net-
work (G,Λ,W), the network fitness algorithm ALR has to determine all currently
available lightpaths connecting s and t and calculate for each of these its cost in or-
der to determine a cheapest one. Moreover, each cost value is computed as the sum
of weights of newly blocked lightpaths. In doing so, again a huge number of light-
paths has to be taken into account. In this section, we describe a Branch-and-Bound
method which determines a cheapest routing lightpath fast and can be applied to all
weighted versions of ALR. As a subroutine for the computation of the newly blocked
lightpaths, it uses a recursive method which is also described below. Together, these
new techniques resulted in a speed up of factor 40 in comparison to the previously
implemented procedures that consider for each edge of a possible routing lightpath all
lightpaths intersected by this edge.

We want to prevent, if possible, the cost of a lightpath from being computed com-
pletely and independently from the cost of other lightpaths. To this end, we construct
in a preprocessing step for any pair of distinct nodes s, t ∈ V , a so-called (s, t)-prefix
tree. The (s, t)-prefix tree is a unique way of representing all paths in G which con-
nect s and t. It is a rooted tree with the following set of nodes. Given a node v ∈V , it
contains one node for each [s,v]-path p1 in G which can be extended to an [s, t]-path,
i.e., there is a path p2 from v to t such that the concatenation p1 p2 does not contain
a cycle. In other words, given an [s, t]-path p = (s,u1, . . . ,ui, t) in G, the tree has one
corresponding node for each of the paths (s),(s,u1), . . . ,(s,u1, . . . ,ui), p. Note that a
path can be specified by the sequence of its nodes since G is required to be simple.
All nodes in depth i ∈ N0 represent paths of length i: The root node corresponds to
the empty path (s), and its children are those single-edge paths whose edges are in-
cident to s and contained in any [s, t]-path. Given a node in the tree which represents
a subpath (s,v1, . . . ,v j) of a [s, t]-path, its children are obtained by attaching those
edges v jv j+1 ∈ E for which there exists a path from v j+1 to t whose attachment to
(s,v1, . . . ,v j,v j+1) does not yield a cycle. Hence, the leafs of the tree are exactly the
[s, t]-paths in the network.

In the following, we present a recursive algorithm which determines for a given
node s ∈ V the (s, t)-prefix trees for all nodes t ∈V \{s}. Starting with the empty
path (s), we process all paths in G with end node s by successively attaching edges
v jv j+1 ∈ E to the currently considered path p := (s,v1, . . . ,v j), where v1, . . . ,v j ∈V ,
and 0 ≤ j ≤ n− 1 such that q := (s,v1, . . . ,v j,v j+1) does not contain a cycle. Then,
the path q is inserted into the (s,v j+1)-prefix tree under construction along with all its
subpaths (s),(s,v1), . . . ,(s,v1, . . . ,v j−1), p which have not yet a corresponding node in
the tree. Hence, for each constructed path, O(n) nodes are inserted in some prefix tree.

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 40

This is done best by starting the construction with the node for path q followed by that
for p, that for (s,v1, . . . ,v j−1), and so on.

Notice that a path from s to some node v ∈V \{s} may have corresponding nodes
in many (s, t)-prefix trees. For each previously found path and each prefix tree, if the
tree contains a node which corresponds to the path, we store a pointer to it. Hence, for
storing q and its subpaths in the (s,v j+1)-prefix tree, it can be determined in constant
time whether there is already a node for a subpath of q in the (s,v j+1)-prefix tree.
Note that for the first subpath q′ which has already a node in the tree, all its ancestors
correspond to the remaining shorter subpaths of q such that the construction of nodes
in the tree terminates with path q′. All together, it takes O(n) time to insert the nodes
for these paths. Afterwards, similar to depth-first search ([KV00, Chapter 2]), this
method is iteratively applied to q.

Once there is no edge left which is allowed to be attached to the current path q, the
procedure continues at its predecessor p by considering the remaining edges. Since it
can be determined in constant time whether the attachment of an edge yields a cycle
by using an array that stores for each node in V the information whether it is already
contained in the current path, we can detect in O(n) time whether no more edges can
be attached to path q. Therefore, using this algorithm, we can construct all prefix trees
in O(kn) time, where k is the total number of paths in G. Next, we will prove that
this running time is optimum. For the 17-nodes network (see Section 5) this algorithm
constructs all prefix trees in less than one second on a state-of-the-art PC.

Theorem 3.4. Let G = (V,E) be a graph, and let k be the total number of paths in G.
Then the running time complexity to construct all prefix trees in G is Θ(kn), where
n := |V | is the total number of nodes in G.

Proof. In order to proof that the computation can not be performed faster, consider the
line graph with succeeding nodes v1, . . . ,vn. Since there is exactly one [vi,v j]-path for
i, j ∈ {1, . . . ,n} with i 6= j, the total number of paths is

(n
2

)

= n(n− 1)/2. Hence, it
suffices to show that the total number of nodes in the n(n−1)/2 prefix trees is Θ(n3).
Note that for i, j ∈ {1, . . . ,n} with i < j the (vi,v j)-prefix tree has j− i+1 nodes since
the path from vi to v j has j− i nodes, resulting in j− i + 1 subpaths (the [vi,v j]-path

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 41

inclusive). Therefore, the total number of nodes in all trees is

n−1

∑
i=1

n

∑
j=i+1

(j− i+1) =
n−1

∑
i=1

(

(n− i)+
n

∑
j=i+1

(j− i)

)

=
n−1

∑
i=1

(

(n− i)+
n−i

∑
l=1

l

)

=
n−1

∑
i=1

(

(n− i)+
(n− i)(n− i+1)

2

)

=
n−1

∑
i=1

n−
n−1

∑
i=1

i+
n−1

∑
i=1

(n− i)(n− i+1)

2

= n(n−1)− n(n−1)

2
+

1
2
·

n−1

∑
i=1

(n2 −2ni+n+ i2 − i)

=
n(n−1)

2
+

1
2
·

n−1

∑
i=1

(n2 − (2n+1)i+n+ i2)

=
n(n−1)

2
+

n2(n−1)

2
− (2n+1)

n(n−1)

4
+

n(n−1)

2

+
(n−1)n(2n−1)

12

= n(n−1)+
2n2(n−1)

4
− 2n2(n−1)+(n−1)

4
+

n(n−1)

2

+
(n−1)n(2n−1)

12

= n(n−1)− n(n−1)

4
+

n(n−1)(2n−1)

12
= Θ(n3).

Given the (s, t)-prefix tree, a cheapest lightpath with respect to the cost function of
ALR connecting nodes s and t can be computed fast as follows. For each wavelength,
the tree is traversed in a depth-first manner, starting at the root node. A child and all
its descendants need not be taken into account if its newly attached edge, i.e., that
one which is not contained in the path of the parent node, is not available anymore in
the considered wavelength. For each node which is passed in the process, its cost is
computed, that is, the cost of the corresponding lightpath. This can be done easily by
incrementing the cost of its parent node by the cost of the attached edge. The cost of
an edge in turn is calculated by the recursive procedure described below.

The first advantage of using the prefix tree is that we usually do not need to com-
pute the costs of all [s, t]-lightpaths in order to determine a cheapest one: Once the first
leaf of the tree is reached during the process, we obtain an upper bound on the cost
of the cheapest [s, t]-lightpath. Obviously, the cost of a node is less or equal than the
cost of each of its children. Hence, when processing a node whose cost is not smaller
than the currently best upper bound, we can prune the tree at this node since it will

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 42

never lead to a leaf which is cheaper than the cheapest one known yet. That is, in this
case we can discard the node and all its descendants and continue with the procedure
at its parent node. This Branch-and-Bound method results in the pruning of many sub-
trees, and therefore, it avoids computing the cost of a lot of lightpaths which cannot
be cheapest. However, in the worst case where we can never prune the tree, the cost
of all contained paths is computed. The smallest bound on the total number of nodes
in the (s, t)-prefix tree is the number of paths in G which have s as one end node. The
worst case example is again the line graph as defined above, where the degenerated
(v1,vn)-prefix tree has n nodes which equals the number of paths with end node v1.

Furthermore, the computing efficiency is affected by the determination of the cost
of a node in the prefix tree for the considered wavelength. As mentioned before, the
cost of a node is the sum of the cost of its parent node and the cost of the attached
edge. Let q be the path that corresponds to any node in the tree different from the root,
let p be the path that corresponds to the parent node, and let e ∈ E be the edge whose
attachment to p yields q. The cost of e depends on p and the considered wavelength
λ ∈ Λ, and it is obtained as the sum of the weights of all lightpaths which

a) are currently available in wavelength λ,

b) contain the edge e, and

c) do not contain any edge in p.

Constraint c) prevents us from adding the weight of a lightpath, becoming newly
blocked by routing the considered lightpath (q,λ), more than once to the cost of the
node. Obviously, by adding the weights of those lightpaths to the cost of the parent
node we obtain exactly the cost which was defined in the last section.

The set of the lightpaths whose weights we have to sum up can again be represented
by a tree which is constructed by the following recursive procedure. Different than the
prefix trees it cannot be stored in advance since it depends on many things, e.g., the
network status and the path p. Hence, it also makes no sense to store it. Instead
of the two end nodes of a lightpath, we will refer to a tail node and a head node
in the further description. The root of the tree is the lightpath using wavelength λ
which only consists of the edge e whose cost we wish to compute. Its tail and head
nodes may be chosen arbitrarily. Then, we construct the tail children of a tree node by
attaching a suitable edge to the tail node of the corresponding lightpath, and the other
end node of that edge becomes the tail node of the resulting lightpath. An edge is
suitable if the constructed lightpath satisfies conditions a) and c) above. Analogously,
the head children are constructed, and their head nodes are defined. The children of
these tail and head children themselves are then obtained in the same way, except for
one additional rule: A node constructed as a head child is not allowed to have tail
children. This restriction ensures that no lightpath appears twice in the tree.

The leaves of the tree obtained in this way are those lightpaths which cannot be
extended anymore. In this tree, the weights of all nodes have to be computed and
added up. This is done during the construction of the tree. Since the number of nodes

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 43

in the tree equals in the worst-case the number of paths which contain the consid-
ered edge, the size of the tree can be exponential in the size of the graph, even if the
graph is planar (for an example, see Section 4.5). But note that the number of nodes
reduces significantly if the considered wavelength is not available anymore on every
edge (condition a)), and particularly if the path p in condition c) is not the empty path.

Additionally to the pruning of subtrees, the described procedure has a second ad-
vantage in the computation of a cheapest lightpath compared with the possiblity to
determine the cost of each potential routing lightpath for a given call directly. Let
s, t ∈V be the nodes to be connected. Note that the paths corresponding to most inte-
rior nodes in the (s, t)-prefix tree can usually be extended to many different [s, t]-paths,
i.e., the subtrees rooted at these nodes are large. By computing the costs of these nodes
with respect to a given wavelength, we can reuse these partial calculations for the cost
computation of their descendants. If the costs of the [s, t]-lightpaths, i.e., the leaves
in the tree, are determined directly, the cost of joint ancestors have to be counted sev-
eral times. For example, let p be the path of an interior node, and let p1, . . . , pk for
some k ∈ N be the leaves of the subtree rooted at p. That is, p is a joint subpath of
p1, . . . , pk. If the costs of the lightpaths (p1,λ), . . . ,(pk,λ) had been determined in-
dependent of each other, all free lightpaths which would become blocked by routing
(p,λ) would have been counted k times. Since the set of those lightpaths may be huge,
the computation time can reduced significantly by the proposed data structure.

The improvement in computing time for the determination of a cheapest routing
lightpath achieved by the described Branch-and-Bound method is substantial. In com-
parison with calculating the costs of all possible routing lightpaths independent of each
other, the described procedure results in a speed up by a factor of 40.

Selective ALR

The variants we summarize under the name Selective ALR (SALR) are specializations
of the weighted versions CEC and TEC. Only these versions are considered since we
propose another way to take into account the lengths of lightpaths becoming blocked.
The idea of SALR is the following. So far, in calculating the cost of a routing lightpath,
both versions consider all lightpaths which would be become blocked by it. In our
opinion, the strategy has two disadvantages: first, it is time-consuming because of the
huge number of lightpaths, and second, as already told, those lightpaths which are long
and use edges in the outskirts of the network are less important for routings than short
and central lightpaths. In order to overcome these drawbacks, we restrict the lightpaths
SALR takes into account as follows. In calculating the cost of a routing choice, only
the weights of those affected lightpaths are counted which belong to the l shortest ones
between their two end nodes for some l ∈ N. Therefore, the total number of lightpaths
in the optical network which can contribute to the cost when they become blocked is
at most

l · n(n−1)

2
,

which is polynomial in the size of the graph. Hence, the cost of a given lightpath can
now be efficienty computed. If the set of considered routing choices is also restricted to

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 44

a polynomial number, as described in Section 3.2.5, we can also efficiently determine
a cheapest routing lightpath. Depending on l, we will denote the versions of this
algorithm by SALRl .

3.2.3 The Algorithm SFR

As described in the last section, the algorithm ALR in its basic version uses the number
of currently available lightpaths as measure for the fitness of the network. Hence, for
each lightpath on which a given call can be routed, ALR computes the total number
of lightpaths which are currently free but would become blocked if this lightpath was
realized. Then, it chooses a routing lightpath whose realization yields the smallest
number of newly blocked lightpaths.

However, the currently available lightpaths in the optical network are obviously
in general all not edge-disjoint, i.e., some of them may have an edge in common. In
particular, if the actual load in the network is small, a huge number of lightpaths will be
free and many of them will intersect. Therefore, it would not be possible to establish
all of them simultaneously, due to the wavelength conflict constraint. Hence, counting
all available lightpaths might not be the best of measures for the potential future profit
since this definition of network fitness usually overestimates the profit substantially.

This drawback motivated the definition of another network fitness algorithm for
DSCA which we call single-flow-reduction (SFR). The reason for this name will be-
come apparent later. Again, we are given an optical network (G,Λ,W) with G = (V,E)
and a network status S. Instead of taking into account all available lightpaths in the
network, SFR computes for each pair of distinct nodes s, t ∈V the maximum number
of edge-disjoint [s, t]-lightpaths which are still available. More precisely, we denote by
dS(s, t,λ) the maximum number of edge-disjoint [s, t]-lightpaths which use wavelength
λ ∈ Λ and which are available in status S. Furthermore, we define for each wavelength
λ ∈ Λ the current network fitness in this wavelength by

dS(λ) := ∑
s,t∈V :

s6=t

dS(s, t,λ).

Consequently, the total fitness function of SFR is defined as

f itSFR(S) := ∑
λ∈Λ

dS(λ).

Since realizing a lightpath (p,λ) only affects the network fitness in wavelength λ, the
cost of such a lightpath can be computed by

cSFR(S,(p,λ)) = f itSFR(S)− f itSFR(S+(p,λ))

= dS(λ)−dS+(p,λ)(λ).

Before we turn to the question how the values dS can be computed efficiently, let us
mention that, in general, not all of those lightpaths counted in d(λ) are edge-disjoint,

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 45

since lightpaths connecting different nodes may still overlap. But much fewer light-
path than counted by ALR will intersect, since the considered [s, t]-lightpaths are edge-
disjoint for two distinct nodes s, t ∈V . In the Section 3.2.4, we describe an approach in
which the network fitness is measured by the maximum cardinality of a set of available
lightpaths such that any two lightpaths in that set are edge-disjoint, that is, all of them
could be routed simultaneously.

In addition, we also consider a weighted version of SFR, called SFR(T), which
takes into account the different average traffic demands for different connections, sim-
ilar to the version (T) of the weight function w1 for ALR in Section 3.2.2. To this end,
we adapt the definition of the value dS(λ) for the network status S and a wavelength
λ ∈ Λ as follows:

d̄S(λ) := ∑
s,t∈V :

s6=t

demand(s, t) ·dS(s, t,λ),

where demand(s, t) denotes the average arrival frequency of calls which require con-
nections between the nodes s, t ∈V in any period of time. The cost function of SFR(T)
is analogously defined to that of SFR, but in terms of the values d̄S(λ). Using this cost
function, a decrease of the number of available edge-disjoint lightpaths which connect
important end nodes causes a higher cost contributions than a decrease between rarely
connected end nodes. In doing so, one aspires to protect particularly lightpaths for
important connections.

Implementation of SFR

The implementation of the algorithm SFR works as follows. At any time, SFR stores
for each pair of distinct nodes s, t ∈ V and each wavelength λ ∈ Λ the maximum
number of currently available edge-disjoint [s, t]-lightpaths using wavelength λ. Fur-
thermore, upon arrival of a connection request, the algorithm needs to compute for
each possible routing lightpath the same values that would result from realizing it.
Given a network status S, two distinct nodes s, t ∈ V , and a wavelength λ ∈ Λ, the
value dS(s, t,λ) can be determined efficiently via solving the instance (D,s, t,κ(λ)

S)
of the well-known maximum flow problem, where parameters are defined as follows.
D emerges from G by replacing each edge in E by two opposite directed arcs, i.e.,
D = (V,A), where

A := {(u,v),(v,u) | uv ∈ E}, (3.1)

and s is set to be the source and t the sink. For each arc (u,v)∈A, let e((u,v)) := uv∈E
be the corresponding edge in G whose end nodes are u and v. Finally, the arc capacities
of the instance are defined as

κ(λ)
S (a) :=

{

1, if λ is available on arc e(a) in status S,
0, otherwise.

The maximum flow problem is defined as follows. A function x : A → R is called an
(s, t)-flow if it fulfills the capacity constraints

0 ≤ x(a) ≤ κ(λ)
S (a) for all a ∈ A,

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 46

and the flow conservation constraints

∑
a∈δ−(v)

x(a) = ∑
a∈δ+(v)

x(a) for all v ∈V \{s, t},

where δ−(v) := {(u,v) ∈A} and δ+(v) := {(v,u) ∈ A}. The value of a flow x is defined
by

val(x) := ∑
a∈δ+(s)

x(a)− ∑
a∈δ−(s)

x(a).

The task of the maximum flow problem is to find an (s, t)-flow whose value is maxi-
mum.

In the following, we show that the value d(s, t,λ) can indeed be derived as the
optimal solution of the instance defined as above.

Theorem 3.5. Let (G,Λ,W) be an optical network with graph G = (V,E) and network
status S, let s, t ∈ V be two distinct nodes, and let λ ∈ Λ be an arbitrary wavelength.
Then, the maximum number of available edge-disjoint [s, t]-lightpaths dS(s, t,λ) in the
network equals the maximum value of an (s, t)-flow in the digraph D = (V,A) with arc
capacities κ(λ)

S (a) for each a ∈ A as defined above.

Proof. As stated by the max-flow min-cut theorem ([AMO93, Chapter 6]), the max-
imum value of an (s, t)-flow equals the minimum capacity of an (s, t)-cut. Let D ′ be
the subgraph of D which is restricted to the arcs with capacity one, i.e., D ′ := (V,A′),
where A′ := {a ∈ A | κ(λ)

S (a) = 1}. Obviously, the minimum capacity of an (s, t)-cut
in (D,κ(λ)

S) equals the minimum cardinality of an (s, t)-cut in D′. The book [AMO93,
Chapter 6] also contains a proof that the latter is the same as the maximum number
of arc-disjoint (s, t)-paths in D′, denote it by h. Hence, it remains to be shown that h
equals dS(s, t,λ). Obviously, dS(s, t,λ) ≤ h since given a set of free edge-disjoint [s, t]-
lighpaths, for each such lightpath (p,λ), we can construct a corresponding directed
(s, t)-path in D′ since for each edge in E(p) both corresponding arcs in D′ exist. In
order to prove dS(s, t,λ) ≥ h, note that we can construct for a given set of arc-disjoint
(s, t)-paths in D′ a corresponding set of available edge-disjoint [s, t]-lightpaths if for
any two adjacent nodes u,v ∈ V not both opposite directed arcs (u,v),(v,u) ∈ A ′ are
contained in these paths. However, if this is the case, we can construct another set of
arc-disjoint (s, t)-paths in D′ as follows. Let

p = p1(u,(u,v),v)p2 and q = q1(v,(v,u),u)q2

be two such paths (the concatenation of two paths p and q is denoted by pq). Then,
we define

p′ := p1q2 and q′ := q1 p2.

Obviously, these paths may contain cycles. Let p′′ and q′′ be the corresponding paths
after removing all cycles, respectively. Notice that replacing p and q by p ′′ and q′′ still
yields a maximum set of arc-disjoint paths in D′, but the number of pairs of opposite
directed arcs which are both used is reduced by at least one (by removing cycles more
such pairs may be eliminated). Repeating this replacement, we obtain a valid set of
arc-disjoint (s, t)-paths in D′ which is still maximum, and in which only one of the arcs
(u,v) and (v,u) is contained for each u,v ∈V .

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 47

That is, we have shown that the cost of a possible routing lightpath can be com-
puted as the decrease in flow values for single commodities, which motivates the name
Single-flow-reduction for the considered DSCA-algorithm. Finally, let us consider the
running time of the cost computation for SFR. Denote by n := |V | the total number of
nodes and by m := |E| = |A|/2 the total number of edges in G. Efficient algorithms
to solve the maximum flow problem are known: For arbitrary capacities, the Goldberg-
Tarjan algorithm solves the problem with running time O(n3) and even faster, using
sophisticated data structures [AMO93, Chapter 7]. If all arc capacities are either 0 or 1,
the running time can be improved to O(min{n2/3m,m3/2}) (cf. [AMO93, Chapter 8]).

This shows that the numbers dS(s, t,λ) can be computed efficiently. In order to
obtain for each possible routing lightpath (p,λ) its cost cSFR(S,(p,λ)), SFR needs to
compute the values dS+(p,λ)(s, t,λ) for any pair of distinct nodes s, t ∈ V by solving
the corresponding instance of the maximum flow problem. Hence, for each routing
choice, SFR has to solve n · (n−1)/2 instances. That is, the total running time for this
task is O(n2 ·min{n2/3m,m3/2}). Another possibility in order to obtain the maximum
number of edge-disjoint lightpaths for each pair of nodes in G is to use the Gomory-
Hu algorithm [KV00, Chapter 8] which requires only n−1 flow computations in total.
However, since the capacities change during that procedure due to node contractions,
solving each instance of the maximum flow problem takes O(n3) time. In total, we
obtain a running time of O(n4), which is faster than the procedure above for networks
with m = Ω(n4/3).

The Algorithm ASFR

So far, all of the proposed routing algorithms only distinguish between lightpaths
which are currently available at the point in time when a new connection request arrives
and which are not. Consequently, a lightpath (p,λ) not available at arrival of a call σ j
will not be accounted for when computing the cost of a routing lightpath for σ j. How-
ever, all previously routed lightpaths which currently block (p,λ) might expire soon,
whereupon the lightpath would become available again. But some possible routing
lightpaths for σ j could also intersect (p,λ) and it would not become available again if
such a lightpath was established. In this case, it may be preferable to realize a different
lightpath. Therefore, it makes sense to take into account also those lightpaths which
are currently blocked at arrival of σ j but become available very soon thereafter.

In order to identify them, however, we need that each given connection request σ j
also specifies its start and expiration times tstartj and tstopj , which is assumed from
now on. Hence, it is known for each edge and each wavelength currently utilized on
it, at which point in time the wavelength will be available again. The following simple
example illustrates a concrete situation in which it makes sense to take into account
the start and expiration times of calls, too.

Example 3.6. Consider the optical network defined by the three-node circle shown in
Figure 3.3, together with two wavelengths λ1 and λ2 installed on each edge. The given
network is 2-edge-connected, i.e., there are two edge-disjoint paths connecting each
pair of nodes. Moreover, there are no further [s, t]-paths for any two distinct nodes s

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 48

and t. Therefore, SFR and ALR are equivalent if applied to this network. Assume that
the algorithm is given a sequence of calls, beginning with σ1 and σ2, each of which
requires a connection between the node 1 and 2. Let tstopi = tstarti + 1 for i = 1,2,
and tstart2 = tstop1 − ε. That is, both call have duration one, and the first call ends very
shortly after the beginning of the second call.

3

1 2

Figure 3.3: Circle with three nodes.

Upon arrival of the first call σ1, it can be routed on the path (1,2) or the path
(1,3,2) using either wavelength λ1 or λ2. While the first path intersects (1,2), (1,2,3),
and (2,1,3), the second intersects (1,3), (2,3), (1,2,3), (1,3,2), and (2,1,3). Hence,
the costs are

cSFR((1,2),λ1) = cSFR((1,2),λ2) = 3

and
cSFR((1,3,2),λ1) = cSFR((1,3,2),λ2) = 5.

Consequently, SFR realizes for instance the lightpath ((1,2),λ1). As the second call σ2
arrives, the first connection is still active. Therefore, the cost of lightpath ((1,3,2),λ1)
has decreased. It is now

cSFR((1,3,2),λ1) = 3

since ((2,1,3),λ1) and ((1,2,3),λ1) are not available anymore due to the first routing.
Obviously, SFR may either establish lightpath ((1,2),λ2) or ((1,3,2),λ1). However,
((1,2),λ2)S with cost 3 is clearly the better choice: Call σ1 will expire soon (within
the next ε time units), and then, routing lightpath ((1,3,2),λ1) will also block the
two lightpaths ((1,2,3),λ1) and ((3,1,2),λ1) until σ2 expires. Furthermore, in this
symmetric optical network, it is obviously better to use a single-edge lightpath instead
of a lightpath with two edges if no other lightpaths are established.

There are similar examples in which SFR has only a unique cheapest routing light-
path which is obviously inferior to a more costly lightpath when durations of the calls
are given.

The following variant of SFR, called Anticipating SFR (ASFR), aims at taking into
account to which extent a possible routing choice blocks some lightpath during its
whole existence. Again, let (G,Λ,W) be an optical network. Furthermore, let S be the
current network status at arrival of a connection request σ j whose start and expiration
times are tstartj and tstopj .

As SFR before, ASFR aspires to measure for any two distinct nodes s, t ∈ V the
availability of edge-disjoint [s, t]-lightpaths in each wavelength λ ∈ Λ. Since this mea-
sure now also depends on tstartj and tstopj , it is denoted by d(j)

S (s, t,λ). It considers

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 49

those lightpaths which are newly blocked as well as those which would become avail-
able again before tstopj if no other connections were established. The latter lightpaths
are taken into account according to their fraction of availability during (t startj , tstopj).
To this end, a modified instance of the maximum flow problem is defined in which
fractional capacities are assigned to those arcs on whose corresponding edges in G a
considered wavelength is currently not available at tstartj but would become available
again before tstopj . More precisely, for each edge e ∈ E and each wavelength λ ∈ Λ
currently utilized on e, let tfree(e,λ) be the time when λ will become available again
on e. Given a request σ j with start and stop time tstartj and tstopj , respecitvely, we
define d(j)

S (s, t,λ) as the maximum value of an (s, t)-flow in the digraph D = (V,A)
with arc capacities

κ(λ)
S, j (a) :=















1, if λ is available on e(a) in status S,

max{0,1− tfree(e(a),λ)−tstartj
tstopj −tstartj

}, if λ is currently utilized on arc e(a),

0, if λ /∈W (e(a)),

where the set of arcs A is defined as in 3.1, and for each arc (u,v) ∈ A, the correspond-
ing edge in G is again denoted by e((u,v)) := uv ∈ E . Obviously,

0 ≤ κ(λ)
S, j (a) ≤ 1

for each arc a∈A. Furthermore, given an arc a∈A such that a wavelength λ∈W (e(a))
is currently utilized on e(a), its capacity κ(λ)

S, j (a) is decreasing for increasing tfree(a,λ).
Eventually, if tfree(e(a),λ) ≥ tstopj , the capacity is zero. The idea is that the capacity
of a is the greater, the longer λ is available on e(a) in the interval (t startj , tstopj) unless
further connections were realized.

Compared to SFR, note that d(j)
S (s, t,λ) ≥ dS(s, t,λ) since κ(λ)

S, j (a) ≥ κ(λ)
S (a) for

each arc a ∈ A. As for SFR, we define with respect to each wavelength λ ∈ Λ the
current network fitness by

d(j)
S (λ) := ∑

s,t∈V :
s6=t

d(j)
S (s, t,λ).

Hence, the total fitness function of ASFR is defined as

f itASFR(S, j) := ∑
λ∈Λ

d(j)
S (λ)

yielding for each available routing lightpath (p,λ) the cost

cASFR(S, j,(p,λ)) = f itASFR(S, j)− f itASFR(S+(p,λ), j)

= d(j)
S (λ)−d(j)

S+(p,λ))(λ).

This cost function reflects that the routing decision depends on how many lightpaths
become blocked at tstartj and how much lightpaths are prevented from becoming avail-
able again later on.

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 50

Similar to SFR(T), we also consider a weighted version of ASFR, called ASFR(T),
which takes into account the different average traffic demands for different connec-
tions. That is, we redefine dS(λ) for the network status S and a wavelength λ ∈ Λ
as:

d̄(j)
S (λ) := ∑

s,t∈V :
s6=t

demand(s, t) ·d(j)
S (s, t,λ).

where demand(s, t) denotes the average arrival frequency of calls which require con-
nections between the nodes s, t ∈ V in any period of time. The cost function of
ASFR(T) is analogously defined to that of ASFR, but in terms of the values d̄(j)

S (λ).

Let us look at the running time of ASFR and ASFR(T). Denote again by n := |V |
the total number of nodes in G. In order to determine the cost of an available routing
lightpath, just as for SFR, one way is to solve n · (n− 1) instances of the maximum
flow problem as defined above. However, due to the arc capacities which are no longer
either 0 or 1, solving each instance takes more time than in the integer case, namely
it cannot be done in O(n2). Hence, we can take advantage in using the Gomory-Hu
algorithm here, and obtain a total running time of O(n4).

Finally, let us reconsider Example 3.6 and see what decisions ASFR would make.
For the first call σ1, ASFR and SFR compute the same costs, since the network is still
empty. Recall that tstop1 = tstart2 + ε and tstopi − tstarti = 1 for i = 1,2. Upon arrival
of σ2, denote the current network status by S. The capacity of the arcs (1,2) and (2,1)
in the corresponding digraph with respect to λ1 now is

κ(λ1)
S,2 ((1,2)) = κ(λ1)

S,2 ((2,1)) = 1− tstop1 − tstart2
tstop2 − tstart2

= 1− ε,

while all other arcs have capacity 1. At that time, we have d (2)
S (s, t,λ1) = 2− ε and

d(2)
S (s, t,λ2) = 2 for any two distinct nodes s, t ∈ V . Denote by L1 := ((1,3,2),λ1)

and L2 := ((1,2),λ2) the two lightpaths whose costs are identic for SFR. In Table 3.1
the cost defining values d(2)

S+L1
(s, t,λ1), and d(2)

S+L2
(s, t,λ2) are depicted for any pair of

distinct nodes s, t ∈V .

(s, t) d(2)
S+L1

(s, t,λ1) d(2)
S+L2

(s, t,λ2)

(1,2) 1− ε 1
(1,3) 0 1
(2,3) 0 1

Table 3.1: Computation of the cost cASFR.

Hence, the costs of the possible lightpaths are

cASFR(S,2,L1) = (6−3 · ε)− (1− ε) = 5−2 · ε

and
cASFR(S,2,L2) = 6−3 = 3.

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 51

Obviously, the lightpath with minimum cost is L2. Note also that a more general form
of the cost of L1 is

cASFR(S,2,L1) = 5−2 · tstop1 − tstart2
tstop2 − tstart2

,

which shows that it increases with increasing duration of σ2 and decreasing overlap-
ping time of the two calls, as desired. On the other hand, the cost cASFR(S,2,L2)
remains constant.

3.2.4 The Algorithm NFR

In this section, we look at an approach which intends to define the fitness of an opti-
cal network as a number of currently available lightpaths such that any two are either
edge-disjoint or use different wavelengths. That is, all counted lightpaths together sat-
isfy the wavelength conflict constraint and can therefore be routed simultaneously in
the current network status. By avoiding the problem of overlapping lightpaths, which
occurred for the routing algorithms ALR and SFR, the resulting network fitness actu-
ally corresponds to a number lightpaths that could in principle be realized toghether.
However, due to the uncertainty of the calls to come, the counted lightpaths can only
correspond to one sample of future connection requests, which would very rarely oc-
cur. Again, the fitness value will be derived as the optimum solution of a flow problem.

Obviously, we cannot consider any pair of two distinct nodes in the network inde-
pendently of the others, as done by SFR, since the fitness defining set is now allowed to
contain in any wavelength edge-disjoint lightpaths having different end nodes. Hence,
the current network fitness can not be obtained by computing single flows in the cor-
responding digraph. Instead, it must be represented by a set of flows between different
pairs of source and sink nodes (commodities) in the optical network which compete
for the network resources simultaneously. This leads to the idea to define the set of
free edge-disjoint lightpaths via a multicommodity flow.

The input of the corresponding maximum multicommodity flow problem is a di-
graph D = (V,A) with arc capacities κ(a) ∈ R+ for each a ∈ A and a set B ⊆V ×V of
pairs of nodes from V . The task is to find a vector (xb)b∈B, where xb is an (s, t)-flow
in D for each pair b = (s, t) ∈ B, such that in addition to the flow conservation con-
straints for each flow the joint capacity constraints ∑b∈B xb(a) ≤ κ(a) for all a ∈ A
hold, and the total flow value ∑b∈B val(xb) is maximum.

In our application, we will slightly modify the problem along with its parameters
such that each feasible solution can be transformed into a set of lightpaths in the opti-
cal network. Based on the idea to compute the network fitness as the optimum value
of a special maximum multicommodity flow problem, the proposed routing algorithm
is called network-flow-reduction or NFR. As before, we are given an optical network
(G,Λ,W) with network status S. In opposition to all algorithms presented so far, which
used a decomposition of the problem in different wavelengths, NFR considers a cou-
pled system. We first define for each wavelength λ ∈ Λ, one digraph as follows. Let
Vλ be a copy of the set of nodes V , and denote for each node v ∈V the corresponding
copied node in Vλ by vλ and vice versa. Furthermore, define the set of arcs Aλ as

Aλ := {(uλ,vλ) ∈Vλ ×Vλ | uv ∈ E and λ ∈W (uv)},

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 52

i.e., for each edge in G which is equipped with λ, set Aλ contains the two corresponding
opposite directed arcs. For each λ∈Λ, let Dλ := (Vλ,Aλ) be the corresponding digraph.

Moreover, similar to SFR, for each wavelength λ ∈Λ, the arc capacities in Dλ with
respect to network status S are defined by

κS((uλ,vλ)) :=

{

1, if λ is available on edge uv in status S,
0, otherwise.

for each (uλ,vλ) ∈ Aλ.

Before we discuss the selection of the set of commodities B, let us define the struc-
ture of flows. Although we consider one joint flow system, for each b = (s, t)∈B, there
is one (s, t)-flow xb,λ for each wavelength λ ∈ Λ. Since we would like to obtain undi-
rected lightpaths but solve a directed flow problem, we require that for each flow also
the corresponding so-called backward flow exists. That is, for each b = (s, t) ∈ B and
each wavelength λ ∈ Λ, a second (t,s)-flow yb,λ in Dλ is defined which must satisfy
the condition

xb,λ((uλ,vλ)) = yb,λ((vλ,uλ)) for each arc (uλ,vλ) ∈ Aλ. (3.2)

In doing so, it is ensured that no two different flows share the capacities of two arcs
(uλ,vλ),(vλ,uλ) ∈ Aλ, as long as the value of all flows on each arc is 0 or 1. Since
for each backward flow the flow conservation constraints are obviously satisfied by the
corresponding constraints for the forward flow, the backward flow must only be taken
into account for the joint capacity constraints, i.e.,

∑
b∈B

xb,λ(a)+ yb,λ(a) ≤ κS(a) for each λ ∈ Λ,a ∈ Aλ.

However, since the backward flow is defined in terms of the original one (3.2), the
corresponding variables can be replaced. Together with the other flow constraints the
following integer program is obtained:

max ∑
λ∈Λ

∑
b=(s,t)∈B

(

∑
a∈δ+(sλ)

xb,λ(a)− ∑
a∈δ−(sλ)

xb,λ(a)

)

∑
a∈δ−(vλ)

xb,λ(a) = ∑
a∈δ+(vλ)

xb,λ(a) for each λ ∈ Λ,b = (s, t) ∈ B,

vλ ∈Vλ \{sλ, tλ}

∑
b∈B

xb,λ((uλ,vλ))+ xb,λ((vλ,uλ)) ≤ κS((uλ,vλ)) for each λ ∈ Λ,(uλ,vλ) ∈ Aλ

xb,λ(a) ∈ {0,1} for each λ ∈ Λ,b ∈ B,a ∈ Aλ

Since this integer program depends on the network status S, we will denote it by IPS.
Notice that IPS indeed represents a special maximum integral multicommodity flow
problem, since the objective function is the sum of the values of all flows xb,λ for
b ∈ B and λ ∈ Λ, and along with the joint capacity constraints also flow conservation
constraints are established. Hence, the only modifications compared to the standard

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 53

problem are the implicit backward flows and the consideration of flows in |Λ| digraphs.
The number of binary variables of IPS is

b · ∑
λ∈Λ

|Aλ| ≤ b · |Λ| ·2|E|.

In the following, we will look at the relationship between solutions of IPS and
lightpaths in the optical network. Let L be a set of currently available lightpaths in
the optical network any two of which are edge-disjoint, or have different wavelengths
and whose end nodes correspond to a pair of nodes in B. Define for each λ ∈ Λ,
b = (s, t) ∈ B, and each (uλ,vλ) ∈ Aλ the value xb,λ((uλ,vλ)) by

xb,λ((uλ,vλ)) :=

{

1, if there is an [s, t]-lightpath (p,λ) ∈ L with uv ∈ E(p),
0, otherwise.

Then, this assignment of variables is obviously a feasible solution of IPS. The other
way round, given a feasible solution of IPS, we can derive a set of lightpaths in the op-
tical network with the same properties as those in L by decomposing for each b∈B and
each λ ∈ Λ the flow xb,λ into its paths. Furthermore, for both transformations, the car-
dinality of the set of lightpaths equals the objective value of IPS of the corresponding
solution. Hence, we have proven the following.

Theorem 3.7. Each optimum solution of the IPS yields a set L of currently available
lightpaths with the following properties: Any two are edge-disjoint, or have different
wavelengths, their end nodes correspond to any commodity in B, and its cardinality
|L| is maximum, i.e., there is no such set that contains more elements.

Proof. Assume there is a set L′ of lightpaths which together satisfy the wavelength
conflict constraint such that |L′| > |L|. Then, the objective value of IPS of the feasible
solution which corresponds to L′ is greater than the optimum value. This yields a
contradiction.

By Theorem 3.7, the optimum value of IPS represents an appropriate fitness func-
tion for the algorithm NFR. Therefore, the cost of a routing lightpath (p,λ) is defined
as the difference of the optimum value of IPS and the optimum value of IPS+(p,λ).
That is, NFR selects such a lightpath which maintains as many available lightpaths as
can be routed simultaneously and whose end nodes correspond to a pair in B.

Unfortunately, due to the integrality constraints, the problem of solving the IPS is
NP-hard [GJ79]. Hence, we will work with its LP-relaxation which allows

xb,λ(a) ≥ 0 for each λ ∈ Λ,b ∈ B,a ∈ Aλ.

Then, the resulting linear program can be solved efficiently in theory. Good in practice
are standard LP-solver such as CPLEX. Note that the resulting solution cannot neces-
sarily be transformed into a set of lightpaths. Nevertheless, using the relaxation which
ignores flow integrality constraints might achieve good routing decisions if the solu-
tions do not contain too many fractional flow values. Since we are only approximating
network fitness the LP-relaxation might still yield useful information for the fitness
function.

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 54

Selection of Commodities

Finally, we focus on the definition of the the set of commodities B which defines the
source and sink nodes of the possible flows, or the end nodes of the corresponding
allowed lightpaths, respectively. First, note that for any two distinct nodes s, t ∈ V it
suffices that either (s, t) or (t,s) is contained in B since due to the existence of forward
and backward flows, flow is always established in both directions. In the following,
let <V be any order on the set of nodes V . Choosing for B the set

B1 := {(u,v) ∈V ×V | u <V v},

containing all distinct pairs of nodes in V will always yield an optimum value that is
equal to the sum of all current edge availabilities. This is due to the fact that all free
single-edge lightpaths in each wavelength are allowed, clearly pairwise edge-disjoint,
and their number must be maximum. Hence, the cost of a routing lightpath is minimum
if and only if it is a shortest lightpath, i.e., by this definition of B the algorithm NFR

is equivalent to the greedy-type algorithms with total wavelength search up to special
tie-breaking. Notice that it is a very interesting result that this very advanced fitness
model of NFR, which was developed in order to overcome the drawbacks of ALR and
SFR, again corresponds to the most simple idea for lightpath routing. However, this is
only the case if the end nodes of given calls can be arbitrary and if all end nodes appear
equally likely. In this case, the approach of NFR yields nothing new. Obviously, the
set of single-edge lightpaths is also valid if B contains for each edge in G one pair of
its end nodes, i.e., B equals

B2 := {(u,v) ∈V ×V | uv ∈ E and u <V v}.

Hence, the set of commodities B2 has to be restricted such that the routing decisions of
NFR differ from those of EXHAUSTIVE. Of course, in the case of a non-uniform traffic
distribution, it seems reasonable to reduce B to the connection pairs with positive traffic
demand, or even to such pairs whose traffic demand is not too small. Then, we can
choose B as

B3(δ) := {(u,v) ∈V ×V | demand(u,v) > δ and u < v},

where δ ≥ 0 is some threshold value for the demand. If the average demand between
different nodes in the optical network varies, one would like to bound for two distinct
nodes u,v ∈V the number of [u,v]-lightpaths in the computed solution from above if
their traffic demand is relatively small. Furthermore, if there is a known upper bound
on the number of lightpaths with the same end nodes that can ever be requested si-
multaneously, the solution should never contain more of them than this upper bound.
However, choosing a smaller upper bound may also be reasonable if there is less net-
work capacity left. To this end, we can add constraints of the form

∑
λ∈Λ

(

∑
a∈δ+(sλ)

xb,λ(a)− ∑
a∈δ−(sλ)

xb,λ(a)

)

≤ u(b) for each b = (s, t) ∈ B

to the integer program which bound the total flow for each commodity b = (s, t) ∈ B
or the number of [s, t]-lightpaths in the corresponding set of lightpaths, respectively,
by some value u(b).

CHAPTER 3.2. NETWORK FITNESS ALGORITHMS 55

However, it is not easy to select upper bounds in a helping way. If they are too
restrictive, the set of computed lightpaths, denote it by L, will not require the whole
remaining network capacity. Hence, for many or even all routing lightpaths (p,λ),
the network fitness after their realization will not decrease since all lightpaths in L are
still available, which yields the cost cNFR((p,λ)) = 0. This is obviously bad since a
lot of different routing lightpaths may be chosen, even those which are very long and
require much capacity. On the contrary, if the flow value bounding constraints are
not restrictive enough, there may be many commodities in B whose total flow value is
large, and others having less or no corresponding flow at all. The latter will usually be
those commodities b = (s, t) ∈ B for which the distance between nodes s and t is large.
Nevertheless, corresponding calls may often arrive, and therefore, it need to be taken
into account whether free routing lightpaths for these calls exist or not.

Obviously, the upper bounds must depend on the current network status. The more
network capacity is still available, the larger the bounds should be in order to avoid
the first effect described above. And for increasing network load the bounds should
decrease, otherwise the second problem will occur.

However, using these an type of these boundary constraints in the LP-relaxation
requires much more computational effort. Therefore the version of NFR applied for
the experimental studies in Chapter 5 does not use such additional constraints. We
selected B3(0) to define the set of commodities, i.e., the pairs of nodes with positive
average demands.

3.2.5 Reduction to k Shortest Lightpaths Routings

As mentioned befor, the number of all currently available lightpaths connecting the
start node and the end node of a given connection request may be exponential in the
number of edges of the graph. Hence, especially for large networks, the presented
network fitness algorithms may require too much computational effort. Then we can
restrict the set of evaluated lightpaths by taking into account only the k shortest light-
paths which are currently available in each wavelength for some constant k ∈ N. Of
course, those lightpaths has to be computed at arrival of each connection request de-
pending on the current network status. This can be done by the algorithm which is
presented in Chapter 4. Since the problem of finding the k-shortest paths in a graph or
digraph can be solved efficiently, the reduction to k shortest lightpaths routings yields
polynomial running times if the used network fitness algorithm can compute the cost
for one lightpath in polynomial time. Note that this applies to SFR, ASFR, and SALR.

Notice that this proceeding need not to be disadvantageous. First, there are usually
a lot of available long lightpaths which will never be chosen since they require very
much network capacity, and thus make no sense to be considered at all. Therefore,
only lightpaths which are short or of medium length provide reasonable routings. This
tendency can also be observed by our routing algorithms which prefer shorter light-
paths. Hence, the routing decisions will not differ much if only a subset of shorter
lightpaths is considered instead of all free lightpaths.

Chapter 4

An Algorithm for Finding the k
Shortest Paths

We have seen that it is neither beneficial nor computationally efficient for the DSCA-
algorithms presented in Section 3.2 to consider all possible routing choices. Therefore,
especially when dealing with large networks, the set of evaluated lightpaths should be
restricted to those more likely to be chosen, i.e., short lightpaths. To this end, we
consider the problem of finding the k shortest paths between a pair of nodes, which is
introduced in Section 4.1. In the following of this chapter, we present a revised full
description of an algorithm that serves this purpose (Sections 4.2 and Section 4.3). It
has been proposed by Martins, Pascoal, and Santos [MPS99]. Furthermore, we state a
new proof of the correctness of the algorithms in Section 4.4 since the proof given by
the authors turned out to be deficient. Finally, we answered the previous open question
about the running time of the algorithm to be polynomial in the negative.

4.1 Introduction

An instance of the k Shortest Walks Problem (k-SW) is given by a digraph D = (V,A)
that is not necessarily simple, a length function c : A → R such that no negative cycle
exists, two nodes s, t ∈V , and a number k ∈N. The task is to find a set of k (s, t)-walks
P = {p1, . . . , pk} of total minimum length, or all such walks if fewer than k exist. We
speak about the k Shortest Paths Problem (k-SP) if the found walks shall be paths,
i.e., they must not contain cycles1 . As usual, let n := |V | be the number of nodes and
m := |A| be the number of arcs in the digraph.

The special case of k = 1 is the well-known Shortest Path Problem. Note that
there is always a shortest walk which is a path if the digraph does not contain negative
cycles. The algorithm of Moore, Bellman, and Ford (cf. [KV00, Chapter 7]) yields the

1In the literature, the two problems k-SW and k-SP are usually referred to as the k shortest paths
problem and the k shortest simple (or loopless) paths problem. That is, our term walk corresponds to a
path, and out term path corresponds to a simple or loopless path.

56

CHAPTER 4. THE ALGORITHM MPS 57

best known running time of O(nm) for solving this problem. If all arc lengths are non-
negative, the complexity can be reduced to O(m + n logn) using the implementation
of Dijkstra’s algorithm with Fibonacci heaps [KV00, Chapter 7]. Both algorithms do
not only return a shortest (s, t)-path but a single source shortest path tree (Dijkstra’s
algorithm may terminate previously after the shortest (s, t)-path has been found). The
root of this tree is s, and it yields for each node v ∈V that is reachable from s a shortest
(s,v)-path. While k-SW can be solved efficiently in O(m + n logn + k) time by the
algorithm of Eppstein [Epp98], k-SP seems to be more difficult. For directed graphs,
the best known theoretical algorithms for this problem run in O(kn(m+n log n)) time,
see Yen [Yen71, Yen72] and Lawler [Law72]. For undirected graphs, Katoh, Ibaraki,
and Mine [KIM82] improved the algorithm of Yen to O(k(m+n logn)) running time.

In the following, we present another algorithm for k-SP proposed by Martins, Pas-
coal, and Santos [MPS99], called MPS in the sequel. Since their proof of correctness
is based on simplifying assumptions which we can show to be false by a simple ex-
ample, we state a more detailed proof here. Although MPS seems to outperform the
above mentioned algorithms significantly in practice, as shown in [MPS99], its theo-
retical running time has previously been open. In the last section of this chapter, we
show that its worst-case running time is exponential in the size of the digraph.

In our application, MPS is useful as a subroutine for the DSCA-algorithms which
compute costs of lightpaths and realize a cheapest one. For larger networks it is com-
putationally too expensive to evaluate all currently available lightpaths connecting the
start node and the end node of the connection request. Since our algorithms tend to
prefer short lightpaths and do rarely choose any of the currently available long light-
paths, their decisions should not differ much if only a subset of shorter lightpaths is
considered instead of all free lightpaths.

MPS works in directed graphs but can also be applied to undirected graphs with
non-negative edge lengths by the usual transformation into a digraph: Each edge is
replaced by two opposite directed arcs. Since all edge lengths are non-negative, the
resulting digraph cannot contain a negative cycle. Note that in our application, we have
unit edge lengths, since the length of a lightpath is defined as its number of edges.

4.2 Preliminaries

Given an instance of k-SP, we may assume that there is a path from s to v and a path
from v to t in D for each node v ∈ V . Otherwise, a node v without this property can
be removed from D since it cannot be contained in any (s, t)-path. In the following,
we denote by V (p) and A(p) the node and arc set of a given walk p, respectively.
Furthermore, the concatenation of two paths p and q is denoted by pq, and for an
(s, t)-walk p and each node v ∈V (p) that is reached on p before any node is reached
twice, we denote by psv the starting subpath from s to v.

In an initial phase, MPS computes a single destination shortest path tree T with
destination t. For each node v ∈ V , the path from v to t defined by this tree, denoted
by pv, is a shortest path. Note that such a tree corresponds to a single source shortest

CHAPTER 4. THE ALGORITHM MPS 58

path tree with source t in the digraph with the reversed arcs of D. Hence, it can be
computed as described in the previous paragraph. In the special case that arcs have
unit lengths, as in our application, the tree T can be determined more easily. Using
breadth-first search, the computation takes only O(n+m) time, cf. [KV00, Chapter 2].

Let c(p) := ∑a∈A(p) c(a) denote the length of walk p. Moreover, let d(v) := c(pv)
be the distance from v to t for each node v ∈ V . MPS uses the following modified
length function which was firstly applied in this context by Eppstein [Epp98]:

c̄(a) := c(a)+d(head(a))−d(tail(a)) for each arc a ∈ A

Note that for each arc (u,v) ∈ A, the number c̄((u,v)) is the difference between the
lengths of the two (u, t)-walks (u,(u,v),v)pv and pu. That is, c̄((u,v)) measures the
length of the detour which results from taking the walk along (u,v) followed by a
shortest path from v to t, instead of taking directly a shortest path from u to t. As
above, we define for each walk p its modified length c̄(p) := ∑a∈A(p) c̄(a).

Lemma 4.1. For the length function c̄, the following holds.

a) c̄(p) = c(p)−d(s) for each (s, t)-walk p.

b) c̄((u,v)) ≥ 0 for each arc (u,v) ∈ A.

c) c̄((u,v)) = 0 for each arc (u,v) ∈ T.

d) c̄(pv) = 0 for each node v ∈V.

e) For two (s, t)-walks p and q it holds that c(p) ≤ c(q) if and only if c̄(p) ≤ c̄(q).

Proof. a) By using d(t) = 0, we obtain:

c̄(p) = ∑
a∈A(p)

c̄(a)

= ∑
a∈A(p)

c(a)+d(head(a))−d(tail(a))

= c(p)+ ∑
a∈A(p)

d(head(a))−d(tail(a))

= c(p)+d(t)−d(s)

= c(p)−d(s).

b) Clearly, d(u) ≤ c((u,v))+d(v). Hence, c̄((u,v)) = c((u,v))+d(v)−d(u) ≥ 0.

c) Since (u,v) ∈ T , the shortest (u, t)-path pu is of the form pu := (u,(u,v),v)pv .
Therefore, its length equals c(pu) = c((u,v))+d(v). On the other hand, we have
c(pu) = d(u). Hence, c̄((u,v)) = c((u,v))+d(v)−d(u) = 0.

d) Since a ∈ T for each arc a ∈ A(pv), d) follows directly from c).

e) By a) we have c(p) ≤ c(q) if and only if c(p)− d(s) ≤ c(q)− d(s), which is
equivalent to c̄(p) ≤ c̄(q).

CHAPTER 4. THE ALGORITHM MPS 59

Notice that Lemma 4.1 e) reveals that both length models are equivalent, in partic-
ular, an (s, t)-path is a shortest path with respect to c if and only if it is a shortest path
with respect to c̄. Hence, we may omit the specification of the length function.

4.3 The Algorithm

Since the algorithm MPS aims at solving k-SP, its input consists of a not necessarily
simple digraph D = (V,A), a length function c : A → R such that no negative cycle in
D exists, two nodes s, t ∈V , and a number k ∈ N. As mentioned before, it is assumed
that for each node v ∈ V , v is reachable from s and t is reachable from v. Moreover,
it is required that the digraph D is stored by adjacency lists. The output of MPS is a
sequence (p1, . . . , pk) that contains the k shortest (s, t)-paths in D or all such paths if
there are fewer than k, which indeed solves k-SP. Furthermore, the lengths of paths in
this sequence is increasing, i.e., c(p1) ≤ . . . ≤ c(pk).

The strategy of MPS is as follows. While running the algorithm, it maintains a
priority queue X that stores found walks. In each step of the algorithm, a walk p
which is shortest among all walks in X is extracted, and new (s, t)-walks which share a
subpath with p are determined and inserted into X . To this end, each walk p is assigned
a special node dp called the deviation node of the walk. By construction, the starting
subpath psdp of p to its deviation node will always exist. All walks newly inserted after
the extraction of p share at least this subpath psdp , but diverge afterwards as depicted
in Figure 4.1.

u3
s t

u2

v3

psu1

v1

v2
pv2

pv1

pv3

u1 = dp

Figure 4.1: Shape of new walks which emerge by considering walk p (solid arrows).
The deviation node of p is denoted by u1, and the dashed thick arcs indicate where the
new walks diverge from p. New walks are psui(ui,(ui,vi),vi)pvi , for i = 1,2,3. Note
that all walks are actually paths in this picture.

We wish to assert that the extracted walk p is not only shortest among the walks
currently in X but also among all (s, t)-walks which have not yet been inserted into X .
That is, only previously extracted walks may be shorter than p. Therefore, walks are
extracted from X in order of increasing length. For that purpose, the algorithm makes
use of the following sorting of arcs in the adjacency lists. For each node v ∈V \ {t},
all arcs with tail node v are ordered by increasing modified length c̄. Furthermore, the
first arc in each order is contained in the single destination shortest path tree T . Hence,
for the arcs a(v)

1 ,a(v)
2 , . . . ,a(v)

degv
∈ δ+(v), it holds that

a(v)
1 ∈ T and c̄(a(v)

1) ≤ c̄(a(v)
2) ≤ . . . ≤ c̄(a(v)

degv
), (4.1)

CHAPTER 4. THE ALGORITHM MPS 60

where degv := |δ+(v)| is the out-degree of v. Since c̄(a) ≥ 0 for each arc a ∈ A and
c̄(a) = 0 for each tree arc a ∈ T by Lemma 4.1 b) and c), the tree arcs can indeed be
the first elements in each order, respectively. For this reason, such orders exist.

New walks are constructed as follows. For walk p := (s,(s,v1),v1, . . . ,vh,(vh, t), t)
which has been extracted from X , let 1 ≤ l ≤ h be the maximum index such that the
walk (s,(s,v1),v1, . . . ,vl−1,(vl−1,vl),vl) is a path. The algorithm tries to construct one
new walk for each node u located on psvl between dp and vl (including the nodes dp and
vl). Let a(u)

i(p) ∈ δ+(u)∩A(p) be that arc of walk p whose tail node is u. MPS looks for
the minimum index j > i(p) such that psu(u,a(u)

j ,v j) is a path, where v j := head(a(u)
j).

If such an index j exists, the concatenated walk q := psu(u,a(u)
j ,v j)pv j with deviation

node dq := u is inserted into X . Note that walk q still has a starting subpath from s to
the immediate successor node of its deviation node. The construction of new walks, as
described above, is depicted in Figure 4.2.

s t
u

a(u)
4

a(u)
1

a(u)
3

v

w

a(u)
2 pv

pw

Figure 4.2: Construction of the next walk which diverges at node u from walk p (thick
arcs). The arc of p which leaves u is a(u)

1 . Since psu forms a cycle together with the arc
a(u)

2 , the next walk which is inserted into X is psu(u,a(u)
3 ,v)pv. Extracting this walk in

turn in a subsequent step of the algorithm yields walk psu(u,a(u)
4 ,w)pw. Actually, the

three considered walks are again paths.

As mentioned above, we claim that MPS extracts walks from X in order of increas-
ing lengths. Moreover, we will show that the set of constructed (s, t)-walks contains
especially all paths from s to t. Hence, the output sequence of k shortest (s, t)-paths can
be obtained as follows: Once a path is extracted from X , it becomes the next element
in the sequence. After k paths have been extracted, the algorithm terminates. The code
of MPS is shown in Algorithm 5.

Example 4.2. For an illustration of the algorithm, consider the digraph D with arc
lengths c shown in Figure 4.3(a). The single destination shortest path tree T (indicated
by thick arrows), the distances from each node to t, and the modified arc lengths c̄
are depicted in Figure 4.3(b). In the given example, the order of the adjacency lists is

CHAPTER 4. THE ALGORITHM MPS 61

Input : A digraph (V,A); a length function c : A → R such that no negative
cycle exists; two nodes s, t ∈V ; a number k ∈ N.

Output : A sequence (p1, . . . , pk), consisting of k shortest (s, t)-paths, or all
paths from s to t if their number is less than k, respectively, with
c(pi) ≤ c(p j) for 1 ≤ i ≤ j ≤ k.

Determine a single destination shortest path tree T with destination t;
Compute c̄(a) := c(a)+d(head(a))−d(tail(a)) for each a ∈ A;
For each node v ∈V \{t}, define degv := |δ+(v)| to be the out-degree of v;
For each node v ∈V \{t}, let a(v)

1 ,a(v)
2 , . . . ,a(v)

degv
∈ δ+(v) satisfy (4.1);

Let X := {ps} and define the deviation node of path ps to be dps := s;
Let l := 0; {l indicates how many of the k paths have already been found}

1 while X 6= /0 and l < k do
Choose p ∈ X such that c̄(p) ≤ c̄(q) for each q ∈ X ;
X := X \ p;
if p is a path then

l := l +1;
pl := p; {Next path in the sequence is found}

end
Let u := dp be the deviation node of walk p;
Let pstart := psu be the subpath of p from s to u;

2 repeat
{Detect new walk that diverges from walk p at node u, cf. Figure 4.2}
Let a(u)

i(p) ∈ δ+(u)∩A(p) be that arc of p whose tail node is u;
if i(p) < degu then

Let j := i(p)+1;
while j ≤ degu and a(u)

j forms a cycle with pstart do
j := j +1;

end
if j ≤ degu then

Let v := head(a(u)
j);

Let q := pstart(u,a(u)
j ,v)pv; {New walk found}

dq := u;
X := X ∪{q};

end
end
Let v := head(a(u)

i(p)); {The next node on p is set to u}
pstart := pstart(u,a(u)

i(p),v);
u := v;

until pstart constains a cycle or u = t;
end

Algorithm 5: MPS

CHAPTER 4. THE ALGORITHM MPS 62

0 0

2 3
−1

v

ws t

(a)

0 0

0 1
1

2

00 0

(b)

Figure 4.3: (a) Example digraph D with arc lengths c; (b) Shortest path tree (thick
arcs), distances to t, and modified arc lengths c̄ of D.

unique since all arcs leaving the same node have different lengths with respect to c̄.

s : a(s)
1 = (s,w)

w : a(w)
1 = (w, t),a(w)

2 = (w,v)

v : a(v)
1 = (v,s),a(v)

2 = (v, t)

In order to simplify the notation, we will denote a walk by the sequence of its nodes,
which is possible since D is simple. The shortest (s, t)-path given by T is ps = (s,w, t)
with deviation node dps = s. In the first iteration of the while-loop of MPS (Step 1), this
path is extracted from X , and we have p = p1 = (s,w, t). The algorithm now tries to
find new (s, t)-walks by processing the nodes of p (repeat-loop, Step 2). The first one
of those is its deviation node dp = s. But, except from (s,w), there are no further arcs
emanating from s. Hence, there is no new walk which diverges from p at s. The next
node which is processed by the algorithm is w. Besides arc (w, t) of p, (w,v) is the only
other arc with tail node w. Furthermore, (w,v) succeeds (w, t) in the sorting of δ+(w)
and does not form a cycle together with the path (s,w). Therefore, the next (s, t)-walk
q1 := (s,w)(w,v)(v,s,w, t) = (s,w,v,s,w, t) with deviation node dq1 = w is inserted into
X . Afterwards, the first iteration of the while-loop in Step 1 is over since the successor
node of w in the path is t. In the next iteration, the extracted walk is p = (s,w,v,s,w, t).
Since it contains a cycle, p2 is not found yet. Processing the deviation node dp = w,
no new walk is found. But a second arc (v, t) is leaving node v and succeeds (v,s)
is the adjacency list of v. This yields the path q2 = (s,w,v)(v, t)(t) = (s,w,v, t) with
deviation node dq2 = v. Path q2 is inserted into X . Thereafter, the second iteration of
the while-loop stops since s follows v, whereby the resulting walk (s,w,v,s) is a cycle.
By extracting the only remaining walk in X , we obtain the next path p2 = (s,w,v, t).
No further walk is found by processing its deviation node v, and its successor node is
already t. MPS terminates having found all (s, t)-paths in D.

4.4 Proof of Correctness

As mentioned above, the proof of correctness for the algorithm MPS in [MPS99] is
based on simplifying assumptions. Before we give a new proof, we show that one
substantial assumption made by the authors is wrong.

CHAPTER 4. THE ALGORITHM MPS 63

Their proof uses induction on k and starts as follows. Obviously, MPS is correct for
k = 1. Assume that it also determines correctly a sequence of k−1 shortest (s, t)-paths
(p1, . . . , pk−1). Let p be one candidate path for pk. For each path in the sequence,
consider the subpath which starts in s and follows p as long as possible. Let p ′ be
one path in the sequence whose starting subpath is longest, and let u ∈V be the node
where p diverges from p′. Here the authors claim that u must be the deviation node dp
of p. However, this is not necessarily true as Example 4.2 shows for k = 2. We have
p = (s,w,v, t) and p′ = (s,w, t). But w is not the deviation node dp since p is found by
processing the node v of walk (s,w,v,s,w, t). Hence, the deviation node of p is d p = v.

In the following, we state a new proof of correctness. It is structured into two parts.
In the first part, it is shown in Lemma 4.3 and Lemma 4.4 that MPS extracts walks from
X in order of increasing length. Afterwards, we prove that all (s, t)-walks which are
constructed by the algorithm are of a special form. Furthermore, if k is chosen suffi-
ciently large, MPS finds all of those walks which comprise especially the (s, t)-paths.
These results are obtained by Lemma 4.5. Together, Lemma 4.4 and Lemma 4.5 imply
that MPS indeed returns the k shortest paths in D in order of increasing lengths.

Lemma 4.3. In an arbitrary iteration of the while-loop of Algorithm 5, let p be the
walk currently extracted from X. Then each diverging walk q which is detected by
processing the nodes of p is at least as long as p.

Proof. Let u := dp be the deviation node of walk p. Using the notation as in the algo-
rithm but omitting the superscript, let ai(p) ∈ δ+(u)∩A(p) be that arc of walk p which
leaves its deviation node, and let v := head(ai(p)) be the head node of this arc. Hence,
the walk p is of the form p = psu(u,ai(p),v)pv. Since c̄(p(v)) = 0 by Lemma 4.1 d), it
has the modified length c̄(p) = c̄(psu)+ c̄(ai(p)). By construction, each walk q which
is generated from p either diverges at u or at a successor node of u. In the first case,
q = psu(u,a j ,w)pw, where a j ∈ δ+(u)∩A(p) with j > i(p) and w := head(a j). There-
fore, its modified length is c̄(q) = c̄(psu) + c̄(a j). Since c̄(ai(p)) ≤ c̄(a j), we have
that c̄(p) ≤ c̄(q). In the second case, q shares with p the subpath psu(u,ai(p),v). By
Lemma 4.1 b), c̄(a) ≥ 0 for each arc a ∈ A, and hence c̄(q) ≥ c̄(psu)+ c̄(ai(p)) = c̄(p),
yielding the claim for this case.

Lemma 4.4. At any time while performing Algorithm 5, let r ∈ N be the number of
walks extracted from X so far, and for l = 1, . . . ,r, let ql be the l-th extracted (s, t)-walk.
Then, it holds for the lengths of these walks:

c(ql) ≤ c(ql+1) for l = 1, . . . ,r−1.

That is, walks are extracted from X in order of increasing length.

Proof. For the proof we use induction on the number of extracted walks r.

r = 1:
Nothing to show.

r → r +1:
We only have to prove that c(qr) ≤ c(qr+1). Let Xr be the priority queue X directly

CHAPTER 4. THE ALGORITHM MPS 64

before qr was extracted. At that time, qr was a shortest walk among all walks contained
in Xr, i.e., c(qr) ≤ c(q) for each walk q ∈ Xr. Moreover, all (s, t)-walks which are
constructed from qr and inserted into X are at least as long as qr itself, as shown by
Lemma 4.3. Therefore, each walk which is contained in X when the next walk qr+1 is
extracted is at least as long as qr.

Lemma 4.5. Given a node v ∈ V , let p′ be an arbitrary (s,v)-path that satisfies the
following conditions:

a) t is not an interior node of p′, i.e., t /∈V (p′)\{v}.

b) If p′ 6= (s), the last arc of p′ is not contained in the shortest path tree T .

If k is sufficiently large, MPS determines the (s, t)-walk p = p′pv exactly once.

Proof. Let r ≥ 0 be the number of arcs in p′, i.e., the (s,v)-path p′ is of the form
p′ = (s,b1,v1, . . . ,vr−1,br,v), where b1, . . . ,br ∈ A, br /∈ T and v1, . . . ,vr−1 ∈ V \ {t}.
By construction, when p = p′pv is inserted into X , its deviation node is set to dp = vr−1
if r ≥ 1 (v0 := s). We prove by induction on the number of arcs r of p′ that the walk
p = p′pv is determined exactly once by MPS.

r = 0:
Obviously, since p′ is the empty path, p = ps. This path is determined when the
shortest path tree T is constructed, and it is extracted from X in the first iteration of
the while-loop. Afterwards, all walks in X contain at least one arc which is not in T .
Hence, the shortest (s, t)-path ps is not found again.

r → r +1:
Given the starting subpath p′ = (s,b1,v1, . . . ,vr,br+1,v) of p, where b1, . . . ,br+1 ∈ A,
br+1 /∈ T and v1, . . . ,vr ∈V \{t}, we define the set A(vr) as follows:

A(vr) := {a ∈ δ+(vr)\T | (s,b1,v1, . . . ,br,vr)(vr,a,head(a)) is a path}.

It is now shown by an inner induction on |A(vr)| that for each arc a ∈ A(vr), the con-
catenated walk (s,b1,v1, . . . ,br,vr)(vr,a,head(a))phead(a) is determined exactly once.
Since br+1 ∈ A(vr), this proves the inductive step from r to r + 1. Let h := |A(vr)| be
the number of arcs in A(vr), and again omitting the superscripts, let ai1 , . . . ,aih be their
order with respect to the modified length c̄, i.e., i1 < .. . < ih and c̄(ai1) ≤ . . . ≤ c̄(aih).
Moreover, for j = 1, . . . ,h, let q j := (s,b1,v1, . . . ,br,vr)(vr,ai j ,head(ai j))phead(ai j) be
the (s, t)-walk which contains arc ai j . When q j is inserted into X , its deviation node is
set to vr. Due to the order of the arcs ai1 , . . . ,aih in the adjacency list of vr, processing
the node vr in the repeat-loop of MPS (Step 2) after q j has been extracted from X yields
the walk q j+1 for j = 1, . . . ,h−1.

First, we prove the claim for walk q1. Let bi be the last arc in (s,b1,v1, . . . ,br,vr)
which is not an element of the shortest path tree T , if such an arc exists. By the outer
induction’s hypothesis, the walk

q :=

{

(s,b1,v1, . . . ,bi,vi)pvi , if {b1, . . . ,br}∩ (A\T) 6= /0,

ps, otherwise

CHAPTER 4. THE ALGORITHM MPS 65

is determined exactly once by MPS. Its deviation node is

dq =

{

vi−1, if i > 1,
s, if i = 1 or q = ps.

Furthermore, it holds by definition of the arc bi that q contains the starting subpath
(s,b1,v1, . . . ,br,vr), since bi+1, . . . ,br ∈ T if q 6= ps, and b1, . . . ,br ∈ T if q = ps.
Hence, vr is a node of q. Since this node is particularly a successor of dq on the
walk q and reached without yielding a cycle, vr is processed in the repeat-loop (Step 2)
of the algorithm after q has been extracted from X . In doing so, the walk q1 is detected
since ai1 is the first arc in the order of the adjacency list of node vr that succeeds the
tree arc and whose attachment to path (s,b1,v1, . . . ,br,vr) does not yield a cycle.

It remains to show that q1 cannot be constructed again. Let q̄ be any (s, t)-walk
from which the algorithm constructs q1 in its repeat-loop (Step 2). We will now show
that q̄ = q. Note that q1 and q̄ share the same starting subpath up to the deviation node
of q1. Furthermore, the deviation node of a constructed walk is always the tail node
of the last arc on the walk that is not contained in the shortest path tree T (if all arcs
are elements of T , the deviation node is s). That arc is ai1 for the walk q1, yielding the
deviation node dq1 = vr. Hence, q̄ has the starting subpath (s,b1,v1, . . . ,br,vr). More-
over, the deviation node dq̄ of q̄ must lie on this subpath, or vr will not be processed
after extracting q̄. As mentioned above, q1 cannot be constructed from any walk q j
for j = 1, . . . ,h−1 (as q j+1 is constructed from q j). Note that this also holds for j = h.
Therefore, we have dq̄ 6= vr since otherwise q̄ = q j for some 1 ≤ j ≤ h. Furthermore,
the arc of q̄ which is emanating from dq̄ cannot be contained in the shortest path tree T
(unless dq̄ = s), but all succeeding arcs on q̄ must be elements of T . This implies that b i
is the arc that emanates from dq̄, which yields q̄ = q.

Assume that the claim has been proven for the walk q j for j < h. We show next
that it also holds for q j+1. As mentioned before, this walk is immediately constructed
after q j was extracted from X . Due to the way the algorithm selects the diverging arc
at a processed node, q j+1 can only be determined via q j. Since q j is detected exactly
once, the same applies to q j+1.

As mentioned above, from Lemma 4.4 and Lemma 4.5 follows the correctness of
the algorithm MPS.

Theorem 4.6. After a finite number of steps, the algorithm MPS correctly determines
a sequence (p1, . . . , pk) containing the k shortest paths from s to t, or all such paths if
there are fewer than k. In addition, it holds that c(p1) ≤ . . . ≤ c(pk).

Proof. By Lemma 4.5, especially each (s, t)-paths is determined exactly once. It only
remains to be shown that the running time of MPS is finite. Note that this fact is
assured since Lemma 4.5 can be applied to each walk which is constructed by the
algorithm.

CHAPTER 4. THE ALGORITHM MPS 66

4.5 Runnning Time Complexity

Finally, we are interested in the running time complexity of MPS. Example 4.7 proves
that its worst-case running time is indeed exponential. However, experimental results
in [MPS99] reveal that MPS is very fast in practice. E.g., in an undirected 100×25
grid network for k = 1000, MPS runs 500 to 1000 times faster than the algorithm of
Yen [Yen71] and that of Katoh, Ibaraki, and Mine [KIM82]. Moreover, these two
algorithms are, to the knowledge of the authors of MPS, the most efficient previously
known.

By the following example, we prove the worst-case running time of MPS to be
exponential.

0

0

0

0

0

0

0

0

1

2

s

v1

t

v2 v3 vh

Figure 4.4: Worst-case example for MPS.

Example 4.7. Consider the task to find the k = 2 shortest (s, t)-paths in the digraph
shown in Figure 4.4, where h ≥ 2. Since there are two parallel arcs from v1 to v2,
from v2 to v3, . . ., and from vh−1 to vh, the number of (v1,vh)-paths in the digraph is
2h−1. Obviously, the shortest (s, t)-path in the digraph is p1 = (s,(s,v1),v1,(v1, t), t).
All further walks which are ever contained in the set X during the performance of the
algorithm are either of the form

p = (s,(s,v1),v1)p′(vh,(vh,s),s)p1 with length c(p) = 1, (4.2)

or
q = (s,(s,v1),v1)p′(vh,(vh, t), t) with length c(q) = 2, (4.3)

where p′ is a (v1,vh)-path. Since walks are extracted from X in order of increasing
length (Lemma 4.4), all 2h−1 walks of form (4.2) are extracted from X before the
first path q of form (4.3), which yields our second path p2 whereupon the algorithm
terminates. Furthermore, since the number of arcs is m := |A| = 2h + 2, we have
h = m/2− 1. Hence, the running time of MPS is Ω((

√
2)m), which is exponential

in m.

Note that Example 4.7 can easily be adapted to prove an exponential running time
for MPS also for simple digraphs. The example still works if for i = 1, . . . ,h− 1 one
new node wi is added and one of the two parallel arcs (vi,vi+1) is replaced by two suc-
cessive arcs (vi,wi) and (wi,vi+1) with lengths c((vi,wi)) = c((wi,vi+1)) = 0. How-
ever, note that digraphs with such successive arcs might be very similar to digraphs

CHAPTER 4. THE ALGORITHM MPS 67

having parallel arcs. For many optimization problems in digraphs, a node v of degree
two that is incident to arcs (u,v) and (v,w) can be removed by replacing the two arcs
by one arc (u,w). Such a transformation may be applied to shortest paths computa-
tions unless v is an end node of paths to find: The length of (u,w) is defined as the
sum of the lengths of (u,v) and (v,w). Figure 4.5 depicts a digraph without nodes of
degree two, in which MPS also needs exponential running time to compute the two
shortest (s, t)-paths. At least 2h−1 walks containing cycles are extracted from X before
the second path p2. Since m = 6h−2, the number 2h−1 is still exponential in m.

2

1

1

11 1

1
1

0

0

s

v1

t

v2 v3 vh

Figure 4.5: Worst-case example for MPS, where the digraph is simple and contains no
node of degree two. All arcs without labels have length 0.

Chapter 5

Experimental Results

In this chapter we report on an extensive experimental study of the DSCA-algorithms
presented in Chapter 3. These studies were carried using our self-developed simula-
tion tool CARWA whose features are shortly described in the appendix. We compare
the blocking probabilities of these algorithms in relation to the offered traffic load in
four optical networks based on two topologies. These networks and the way their di-
mensioning is determined are introduced in Section 5.1. The random model used to
generate request sequences is presented in Section 5.2. Section 5.3 describes the actual
settings in the used simulations. Finally, we present and analyze the obtained results
in Section 5.4.

5.1 Four Real-World Optical Networks

For our experimental studies, we took into account four different optical networks that
are based on two topologies, the 17-nodes topology and the 14-nodes topology. The
dimensionings of the considered optical networks are based on given static traffic de-
mands shown in Table 5.1 and Table 5.2. These static demands were generated with
respect to US-American and German population data. Partitioning the population into
different regions leads to the 14-nodes and 17-nodes topologies (cf.[̃]Poensgen+etal:ONDM03).
Due to the methods the dimensionings are constructed, we call them shortest path di-
mensioning and low cost dimensioning.

Given a graph G = (V,E) and a static traffic demand matrix, the shortest path
dimensioning is obtained as follows. For each unit of static traffic between nodes
u,v ∈V , a shortest [u,v]-path is computed. Let p(e) be the number of those paths
which contain edge e ∈ E . Then, the set of wavelengths in the optical network is de-
fined as Λ := {λ1, . . . ,λχ}, where χ := maxe∈E p(e) is the maximum number of paths
which have an edge in common. Moreover, each edge e ∈ E is equipped with the set
of wavelengths W (e) := {λ1, . . . ,λp(e)}. That is, every edge contained in a path yields
one wavelength on that edge in the optical network. Note that this dimensioning does
not imply that there is a set of conflict-free lightpaths using the computed paths (such

68

CHAPTER 5. EXPERIMENTAL RESULTS 69

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 - - - - - - - - - - - - - - - - -
2 1 - - - - - - - - - - - - - - - -
3 1 2 - - - - - - - - - - - - - - -
4 1 1 4 - - - - - - - - - - - - - -
5 0 0 0 0 - - - - - - - - - - - - -
6 0 0 3 3 2 - - - - - - - - - - - -
7 0 1 1 1 1 2 - - - - - - - - - - -
8 0 0 0 0 0 0 1 - - - - - - - - - -
9 0 0 0 0 0 0 2 0 - - - - - - - - -
10 0 1 4 4 2 3 3 1 0 - - - - - - - -
11 0 0 0 0 0 0 0 0 0 0 - - - - - - -
12 0 1 5 3 1 3 1 0 2 5 1 - - - - - -
13 0 1 1 0 0 1 1 0 0 1 1 2 - - - - -
14 0 0 0 0 0 0 0 0 0 0 1 1 1 - - - -
15 0 0 0 0 0 1 0 0 0 0 0 2 1 0 - - -
16 0 0 0 0 1 1 1 0 0 0 0 2 1 1 1 - -
17 0 0 0 0 1 1 0 0 0 2 0 1 1 0 0 1 -

Table 5.1: Static demand matrix for the German 17-nodes network.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 - - - - - - - - - - - - - -
2 13 - - - - - - - - - - - - -
3 2 3 - - - - - - - - - - - -
4 4 6 1 - - - - - - - - - - -
5 6 9 2 4 - - - - - - - - - -
6 3 4 1 2 3 - - - - - - - - -
7 5 7 2 3 6 2 - - - - - - - -
8 1 1 0 1 1 0 1 - - - - - - -
9 4 6 1 3 4 3 4 1 - - - - - -
10 9 13 2 6 10 5 8 1 14 - - - - -
11 6 9 2 4 6 4 5 1 13 16 - - - -
12 11 16 4 7 11 4 8 2 7 15 10 - - -
13 1 2 0 1 1 0 1 0 1 2 1 2 - -
14 3 5 1 2 3 1 2 0 2 4 3 5 1 -

Table 5.2: Static demand matrix for the US 14-nodes network.

CHAPTER 5. EXPERIMENTAL RESULTS 70

conflict-free lightpaths would exist if the network provided arbitrary wavelength con-
version in its nodes). Hence, it might be impossible to satisfy all given static demands
together.

In contrast, the low cost dimension yields a network that is always capable of satis-
fying all static demands. The low cost dimensionings were computed using a method
of [KWZ03]. This method focuses on cost minimization while providing backup ca-
pacities for failure situations. The four optical networks which result for the 17-nodes
and 14-nodes topology with respect to the given static demand matrices are shown in
Figure 5.1 and Figure 5.2.

Figure 5.1: The 17-nodes network with shortest path (left) and with low cost dimen-
sioning (right).

Figure 5.2: The 14-nodes network with shortest path (left) and with low cost dimen-
sioning (right).

5.2 Traffic Model and Request Sequences

Recall that each connection request σ j in the problem DSCA is of the form:

σ j = (u j,v j,b j, tstartj , tstopj , p j),

where d j := tstopj − tstartj is the duration of the call. In our simulation studies, we
consider a restrict version in which we assume several parameters to be constant. Each

CHAPTER 5. EXPERIMENTAL RESULTS 71

connection request requires one lightpath for a constant duration of 1 hour and yields
a profit of 1 if it is accepted. That is, b j = p j = d j = 1. Hence, the specification of
call σ j can be reduced to:

σ j = (u j,v j, tstartj).

The used model of call arrivals depends on a given traffic demand matrix, and an
integer number m, called the multiplex factor that serves to control the offered load. Let
(G,Λ,W) be the considered optical network, where G = (V,E). For each unit of static
demand between nodes u,v ∈ V , m sources generate calls for connections between u
and v according to a modified Poisson arrival process. More precisely, the inter arrival
times between two calls generated by a single source are determined as the sum of
a constant and an exponentially distributed random value. The constant is chosen to
be 1. In doing so, it is ensured that no two calls of the same source can overlap, since
the constant duration of each call equals 1, too. This models that no customer requires
two connections simultaneously. The mean of the exponential distribution is chosen
equal to 11. That is, each source generates on average one call of duration 1 in a time
span of 12 hours. This reflects the observation of a network provider that a customer
who has a permanent connection uses it only for about 1/12 of the time.

At this point the impact of the multiplex factor becomes clear: A multiplex factor of
1 yields dynamic traffic that corresponds to the traffic actually incurred on permanent
connections. But as connections can be set up and taken down on demand, additional
network capacities are temporarily available, and further demands could be satisfied.
In principle, 12 calls with duration 1 could be accepted in 12 hours using the same
lightpath. This would correspond to a permanent connection that is used continuously.
At a multiplex factor of 12, exactly this number of calls are generated on average.
Therefore, multiplex factor 12 corresponds to 100% offered load.

5.3 Simulation Model

For each of the four optical networks, we compare the blocking probabilities of the
considered algorithms on request sequences which are generated for multiplex factors
from 1 to 12. That is, we investigate the dependence of an algorithm’s blocking prob-
ability on the multiplex factor. For both 17-nodes networks, we generated for each
multiplex factor 21 batches of 5000 requests each, where the first batch serves as an
onset for the sequence. In doing so, we achieve a balanced state before the actual
simulation starts with the remaining 20 batches. From the blocking probability values
obtained for the calls in these batches, i.e., the ratio of rejected and generated requests,
we determine a 95% confidence interval (cf. [LK00]). For the 14-nodes networks, the
number of calls per batch is reduced to 1000 since the processing of calls in these
optical networks requires more computational effort due to its larger dimensioning.
Unfortunately, the resulting confidence intervals for the blocking probabilities in the
14-nodes networks are quite large. Hence, we must evaluate the corresponding results
with more cautious. Since blocking probabilities greater than 5% are considered un-
acceptable for the customer according to network providers the graphics are plotted
within a logarithmic scale to emphasize the smaller ranges. However, providers desire
a threshold value of 0.5% for blocking probabilities.

CHAPTER 5. EXPERIMENTAL RESULTS 72

5.4 Results

We consider the results of our experiments for each class of algorithms separately and
then present overview tables with a selection of the best algorithms.

5.4.1 Greedy-Type Algorithms

First, we consider the greedy-type algorithms with partial wavelength search (cf. Sec-
tion 3.1.1). Their blocking probabilities in the different optical networks are depicted
in Figures 5.3–5.6.

For the 17-nodes networks (Figure 5.3 and Figure 5.4), the results are very similar
and show clearly which wavelength selection strategies are advantageous and which
not.

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

Fixed1
Fixed2
Pack1
Pack2

Spread1
Spread2
Random

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

Figure 5.3: Blocking probabilities (including confidence intervals) of the greedy-type
algorithms with partial wavelength search in the 17-nodes network with shortest path
dimensioning.

Note that RANDOM shows medium performance in both cases for all traffic loads.
This is not a surprise: good and bad selections are both made similarly frequently.
Preferable wavelength search orders are those of FIXED2 and PACK2, which yield
nearly the same blocking probabilities and perform best in both networks, whereas the
opposite search orders used by FIXED1 and SPREAD2 are apparently inferior: At a
multiplex factor of 3, the latter achieve a blocking probability which is approximately
10 times higher than that of FIXED2 and PACK2 in the 17-nodes network with shortest
path dimensioning. The other way round, at a blocking probability of 1% FIXED2 and
PACK2 can handle up a multiplex factor of 4, which corresponds to an offered load of
about 30%, whereas FIXED1 and SPREAD2 can not even cope with a multiplex factor
of 2, i.e., half the offered load.

CHAPTER 5. EXPERIMENTAL RESULTS 73

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

Fixed1
Fixed2
Pack1
Pack2

Spread1
Spread2
Random

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

Figure 5.4: Blocking probabilities (including confidence intervals) of the greedy-type
algorithms with partial wavelength search in the 17-nodes network with low cost di-
mensioning.

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

Fixed1
Fixed2
Pack1
Pack2

Spread1
Spread2
Random

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

Figure 5.5: Blocking probabilities (including confidence intervals) of the greedy-type
algorithms with partial wavelength search in the 14-nodes network with shortest path
dimensioning.

CHAPTER 5. EXPERIMENTAL RESULTS 74

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

Fixed1
Fixed2
Pack1
Pack2

Spread1
Spread2
Random

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

Figure 5.6: Blocking probabilities (including confidence intervals) of the greedy-type
algorithms with partial wavelength search in the 14-nodes network with low cost di-
mensioning.

Similar, but more differentiated trends, are apparent the 14-nodes networks (Fig-
ure 5.5 and Figure 5.6). For the shortest path dimensioning, PACK2 performs best,
followed by FIXED2. For the low cost dimensioning, however, FIXED2 is better up
to an offered load of about 60% (multiplex factor 7). The 14-nodes networks show
the huge difference in offered load the algorithms can handle at small blocking prob-
ability even more obviously: PACK2 and FIXED2 deal with more than 50% offered
load at a blocking probabily of 1%, FIXED1 and SPREAD2 do not even manage 20%
for the low cost dimensioning. Finally, let us consider the difference between PACK1
and PACK2. Obviously, defining the wavelength order with respect to increasing edge
availabilities (PACK2) is superior to using decreasing availabilities (PACK1). For the
version of SPREAD, however, SPREAD1 outperforms SPREAD2 since rarely installed
wavelengths have usually small edge utilizations. Therefore, the wavelength search
order of SPREAD1 tends slightly to those of FIXED2 and PACK2.

Figure 5.7–5.10 show the results for the greedy-type algorithms with total wave-
length search (cf. Section 3.1.2). For each network, the graphic looks very similar
to the corresponding graphic for the greedy-type algorithms with partial wavelength
search: Using a certain wavelength search order for breaking ties in an EXHAUS-
TIVE version seems to be as effective as the order is for the wavelength selection in
the corresponding greedy-type algorithm with partial wavelength search. Moreover,
any EXHAUSTIVE version is superior to the corresponding greedy-type algorithm with
partial wavelength search which uses the same wavelength order. To give an exam-
ple for the supremacy of EXHAUSTIVE f 2 and EXHAUSTIVEp2 , consider the 14-nodes
network with low cost dimensioning. These algorithms can handle circa 60% offered
load (multiplex factor 7) at a blocking probability of 0.54%, while EXHAUSTIVE f 1 and
EXHAUSTIVEp2 can not even manage 25% load (multiplex factor 3) for that blocking

CHAPTER 5. EXPERIMENTAL RESULTS 75

probability.

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

Exhaustive_F1
Exhaustive_F2
Exhaustive_P1
Exhaustive_P2
Exhaustive_S1
Exhaustive_S2
Exhaustive_R

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

Figure 5.7: Blocking probabilities (including confidence intervals) of the greedy-type
algorithms with total wavelength search in the 17-nodes network with shortest path
dimensioning.

5.4.2 Versions of ALR

For the algorithm ALR, we considered the versions CCC, TCC, CCE, TCE, CEC, TEC, CEE,
and TEE of Section 3.2.2. Recall that the first parameter considers whether given traffic
demands T are taking into account or not C, a second parameter of E specifies that end
nodes with currently small connectivity are protected, and E for the last parameter
specifies that shorter lightpaths are additionally protected.

For the 17-nodes networks only four selected versions are plotted in Figure 5.11
and Figure 5.12 since the blocking probabilities of the eight variants are very close
to each other. For both dimensionings the ranking of the four selected versions is the
same: CEE achieves the smallest blocking probabilities, followed by CCC and TCC,
while TEC performs worst. For the network with low cost dimensioning, the obtained
blocking probabilities are closer to each other as for the other dimensioned network.
We guess that the reason for this is that the routing decisions made by the algorithms in
the network with low cost dimensioning are more similar to each other. Let us mention
that the blocking probabilities of all remaining variants whose results are not plotted
lie between the values of CEE and TEC for both 17-nodes networks.

Note that this also holds for the 14-node networks (Figure 5.13 and Figure 5.14),
where the results for all eight versions of ALR are depicted. Be aware that we used
another scale in Figure 5.13 and Figure 5.14, starting with multiplex factor 3. Also
in these networks, CEE is superior to the other algorithms (note that the line styles
changed). Compared with the results in the 17-nodes networks, the curves lie less

CHAPTER 5. EXPERIMENTAL RESULTS 76

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

Exhaustive_F1
Exhaustive_F2
Exhaustive_P1
Exhaustive_P2
Exhaustive_S1
Exhaustive_S2
Exhaustive_R

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

Figure 5.8: Blocking probabilities (including confidence intervals) of the greedy-type
algorithms with total wavelength search in the 17-nodes network with low cost dimen-
sioning.

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

Exhaustive_F1
Exhaustive_F2
Exhaustive_P1
Exhaustive_P2
Exhaustive_S1
Exhaustive_S2
Exhaustive_R

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

Figure 5.9: Blocking probabilities (including confidence intervals) of the greedy-type
algorithms with total wavelength search in the 14-nodes network with shortest path
dimensioning.

CHAPTER 5. EXPERIMENTAL RESULTS 77

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

Exhaustive_F1
Exhaustive_F2
Exhaustive_P1
Exhaustive_P2
Exhaustive_S1
Exhaustive_S2
Exhaustive_R

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

Figure 5.10: Blocking probabilities (including confidence intervals) of the greedy-
type algorithms with total wavelength search in the 14-nodes network with low cost
dimensioning.

close to each other. This trend, which also applies to the greedy-type algorithms, lets
us suppose that the quality of a DSCA-algorithm becomes more apparent for optical
networks with larger dimensionings which provide more different routing possibili-
ties. That is, for such large networks, the choice of the algorithm is more important.
Furthermore, notice that the versions which take into account the given average traffic
demands using the function as defined by (T) perform worse than their unweighted
counterparts with function (C).

CHAPTER 5. EXPERIMENTAL RESULTS 78

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

CCC
TCC
TCE
CEE

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

Figure 5.11: Blocking probabilities (including confidence intervals) of selected ver-
sions of ALR in the 17-nodes network with shortest path dimensioning.

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

CCC
TCC
TCE
CEE

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

Figure 5.12: Blocking probabilities (including confidence intervals) of selected ver-
sions of ALR in the 17-nodes network with low cost dimensioning.

CHAPTER 5. EXPERIMENTAL RESULTS 79

0.1

1

10

3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

CCC
TCC
CCE
TCE
CEC
TEC
CEE
TEE

0.1

1

10

3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

Figure 5.13: Blocking probabilities (including confidence intervals) of selected ver-
sions of ALR in the 14-nodes network with shortest path dimensioning.

0.1

1

10

3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

CCC
TCC
CCE
TCE
CEC
TEC
CEE
TEE

0.1

1

10

3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

Figure 5.14: Blocking probabilities (including confidence intervals) of selected ver-
sions of ALR in the 14-nodes network with low cost dimensioning.

CHAPTER 5. EXPERIMENTAL RESULTS 80

5.4.3 Versions of SFR

As a last group, we consider the versions based on SFR, namely, the original SFR it-
self, SFR(T), ASFR, and ASFR(T), (cf. Section 3.2.3). The results for the 17-nodes
networks in Figure 5.15 and Figure 5.16 reveal that also for this class of DSCA-
algorithms, the versions which incorporate average traffic demands are inferior to their
counterparts, particularly for the shortest path dimsioning. In the interesting range up
to blocking probability 5%, ASFR slightly outperforms the basic version SFR. Also
similar to the versions of ALR, we see that the results for the network with low cost
dimensioning are closer to each other than those for the shortest path dimensioned
network.

Slightly different are the observations for the 14-nodes network. For the shortest
path dimensioning, see Figure 5.17, ASFR(T) performs best for an offered load larger
than 75%, which corresponds to a multiplex factor of 9. But since the corresponding
blocking probability at this point exceeds 5%, this region of offered load is hardly of
interest. In the 14-nodes network with the low cost dimensioning, however, ASFR

outperforms the other versions significantly in the whole relevant range of offered
load, as depicted in Figure 5.18. Also for the versions of SFR, the blocking probability
values in the 14-nodes networks are further spread than those in the 17-nodes networks.

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

SFR
SFR-T
ASFR

ASFR-T

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

Figure 5.15: Blocking probabilities (including confidence intervals) of the variants for
SFR in the 17-nodes network with shortest path dimensioning.

5.4.4 Best Algorithms Revisited

In order to determine which DSCA-algorithms perform globally best, we compare the
results of the best algorithms from each group. The selected algorithms are PACK2 for
the greedy-type algorithms with partial wavelength search, EXHAUSTIVE p2 for those

CHAPTER 5. EXPERIMENTAL RESULTS 81

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

SFR
SFR-T
ASFR

ASFR-T

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

Figure 5.16: Blocking probabilities (including confidence intervals) of the variants for
SFR in the 17-nodes network with low cost dimensioning.

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

SFR
SFR-T
ASFR

ASFR-T

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

Figure 5.17: Blocking probabilities (including confidence intervals) of the variants for
SFR in the 14-nodes network with shortest path dimensioning.

CHAPTER 5. EXPERIMENTAL RESULTS 82

with total wavelength search, CEE for the variants of ALR, and ASFR for the algorithms
based on SFR. Furthermore, first simulation results for the algorithm NFR which was
developed last have been obtained and added. The runs in the 14-nodes network with
low cost dimensioning have not finished until now. Therefore, we can only report
on its results for the 17-nodes networks and the 14-nodes network with shortest path
dimensioning.

The blocking probabilities of the selected algorithms for the 17-nodes networks
are plotted in Figure 5.19 and Figure 5.20. For the network with shortest path di-
mensioning, EXHAUSTIVEp2 performs best, but ASFR is equal to EXHAUSTIVE p2 up
to a multiplex factor of 4 (about 33% offered load), where their blocking probabili-
ties reach a value of 0.7%. The algorithm CEE and PACK2 perform a bit worse with
a similar progression in both networks. A very different curve yields NFR. It starts
very bad for small offered load, comes close to the others at multiplex factor 5, and
performs very well for high offered load. To give one example on this network, the
blocking probabilities for multiplex factor 4 are nearly 0.7% for EXHAUSTIVE p2 and
ASFR, 0.8% for CEE, 1.0% for PACK2, and 1.3% for NFR.

For the low cost dimensioning, NFR yields exactly the same blocking probabilities
as EXHAUSTIVEp2 , which are best from multiplex factor 4 on. If the offered load
is smaller, ASFR is slightly superior to them. The results for CEE and PACK2 again
perform a bit inferior to EXHAUSTIVE p2 and ASFR.

The results for the 14-nodes network are depicted using a different scale, see Fig-
ure 5.21 and Figure 5.22. For both dimensionings, the algorithm ASFR clearly outper-
forms the others, and PACK2 yields the highest blocking probabilities by far. For the
network with shortest path dimensioning, NFR is second, followed by EXHAUSTIVE p2,
and CEE. For example, at a multiplex factor of 7, the achieved blocking probabilities
are 0.16%, 0.18%, 0.22%, 0.26%, and 0.75% for ASFR, NFR, EXHAUSTIVE p2 CEE,
and PACK2, respectively. In contrast, to the network with shortest path dimensioning,
CEE is superior to EXHAUSTIVEp2 for the low cost dimensioning. For multiplex factor
7, the blocking probabilities for ASFR, CEE, EXHAUSTIVE p2 , and PACK1 are 0.20%,
0.27%, 0.54%, and 1.17%, respectively.

CHAPTER 5. EXPERIMENTAL RESULTS 83

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

SFR
SFR-T
ASFR

ASFR-T

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

Figure 5.18: Blocking probabilities (including confidence intervals) of the variants for
SFR in the 14-nodes network with low cost dimensioning.

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

Pack2
Exhaustive_P2

CEE
ASFR

NFR

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / shortest path dimensioning

Figure 5.19: Blocking probabilities (including confidence intervals) of selected algo-
rithms in the 17-nodes network with shortest path dimensioning.

CHAPTER 5. EXPERIMENTAL RESULTS 84

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

Pack2
Exhaustive_P2

CEE
ASFR

NFR

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

17-nodes topology / low cost dimensioning

Figure 5.20: Blocking probabilities (including confidence intervals) of selected algo-
rithms in the 17-nodes network with low cost dimensioning.

0.1

1

10

5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

Pack2
Exhaustive_P2

CEE
ASFR

NFR

0.1

1

10

5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / shortest path dimensioning

Figure 5.21: Blocking probabilities (including confidence intervals) of selected algo-
rithms in the 14-nodes network with shortest path dimensioning.

CHAPTER 5. EXPERIMENTAL RESULTS 85

0.1

1

10

5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

Pack2
Exhaustive_P2

CEE
ASFR

0.1

1

10

5 6 7 8 9 10 11 12

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

[%
]

multiplex factor

14-nodes topology / low cost dimensioning

Figure 5.22: Blocking probabilities (including confidence intervals) of selected algo-
rithms in the 14-nodes network with low cost dimensioning.

Chapter 6

Conclusions and Outlook

In this diploma thesis, we focused on the design and evaluation of online algorithms
for DSCA, a problem of call admission and routing and wavelength assignment in op-
tical networks. Experimental results showed that the blocking probabilities of DSCA-
algorithms may differ substantially, even for algorithms which only differ in their tie-
breaking rules.

For the greedy-type algorithms that are based on routing along shortest lightpaths
in some wavelength (the choice of which defines the version), we obtained the follow-
ing results. Each EXHAUSTIVE variant that using one of the considered orders on the
set of wavelengths for breaking ties outperforms the greedy-type algorithm with partial
wavelength search that selects a shortest lightpath in the first possible wavelength in
that order. Furthermore, we have seen that for both classes of greedy-type algorithms
the selection of this order substancially affects the performance. This is particularly
interesting for the EXHAUSTIVE versions since they only differ in their strategies to
break ties. That is, globally shortest routing lightpaths are often available in many
wavelengths. The studies suggest that less available wavelengths should be preferred.
The availability of a wavelength can be either defined as the total number of edges
on which the wavelength is available with respect to the current network status, or as
the number of edges on which the wavelength is installed. Both versions yield similar
blocking probabilities. That is, among the greedy-type algorithms, EXHAUSTIVE p2
and EXHAUSTIVE f 2 perform best.

Moreover, we observe that the network fitness algorithms based on ALR, which
route in such a way that the total number of newly blocked lightpaths in the network
is minimized, could not benefit from incorporating informations about the average
traffic demands. However, the way some versions of ALR protect lightpaths with end
nodes whose connectivity is currently small and lightpaths which are short proves to
be advantageous. We believe this to be the reason that the version CEE is superior to
the others.

The studies about the variants of SFR which are based on the idea of considering
only edge-disjoint lightpaths between each pair of nodes yield the following results.
Also for these algorithms considering average traffic demands is disadvantageous in
most cases. However, if the durations of calls are also given at the moment of their

86

CHAPTER 6. CONCLUSION AND OUTLOOK 87

arrival, the version ASFR which also account for currently blocked lightpaths performs
better than the other variants.

As an overall result in the evaluation of algorithms, it turned out that no algorithm is
superior to the best greedy-type algorithm in the 17-nodes networks. This also applies
to the algorithm NFR which is based on solving a multicommodity flow problem in
order to compute a set of edge-disjoint lightpaths. However, in the relevant range up to
a blocking probability of 5%, the algorithm ASFR achieves only marginally different
blocking probabilities from those of the best greedy-type algorithms. In the 14-nodes
networks, which have larger dimensionings, the differences between the algorithms are
much more apparent: ASFR performs best, in particular for the low cost dimensioning.
For this dimensioning also CEE outperforms the greedy-type algorithms.

Throughout the simulation experiments, we observed that the achieved blocking
probabilities of the different algorithms in the 14-nodes networks diverge more from
each other than those in the 17-nodes networks. We suppose the reason for this to
be, among others, the size of network’s dimensioning: For larger dimensionings, the
algorithms have more freedom of decision, whereby the impact of good or bad routings
is strengthened. We believe that the network fitness algorithms could be superior to the
best greedy-type algorithm in larger networks in general. It has been observed in other
fields of optimization that greedy strategies might degrade for approaches for more
inhomogeneous problem data. That is, the greedy-type algorithms could lead to worse
results if the parameters of the connection requests are more irregular, e.g., changing
demands and durations.

For the practicability of the network fitness algorithms, it must be mentioned that
they require great computational effort, especially in comparison with the greedy-type
algorithms. However, the running time of the new algorithms can be reduced signi-
ficantly by taking into account only a fixed number of possible routing lightpaths. In
doing so, the versions based on SFR can handle each call in polynomial time. This also
holds for SALR, a variant of ALR which we did not take into account in the experiments.

For further research, the following points are of interest. In order to obtain more
evidence on the qualities of the algorithms, additional studies based on other networks
are necessary. These should also include real-world traffic data instead of the random
call generation due to Poisson arrivals applied in this work. Moreover, more inhomo-
geneous call parameters like changing demands and durations should be considered.
After these, the additional parameters of DMCA should be taken into account: differ-
ent customer classes and different service classes. Also suitable handling of failure
situation is important. Note that this problem has more offline than the call processing
in the standard operating state of the network, since a lot of information gets known at
the same time. That is, a possibly large set suspended connections must be rerouted at
the same time.

Another point is that of rejection criteria. Note that all presented algorithms com-
pletely omit the call admission part of DSCA. Possibly, the option to reject calls im-
proves performance of an algorithm. In our opinion, this could apply to scenarios with
high offered traffic. Note that the profit function is highly associated with rejection cri-
teria since particularly calls with profits that are small in comparison to their required
service should be rejected.

Appendix A

Table of Notations

G denotes a graph
D denotes a digraph
n total number of nodes in a graph or digraph
m total number of edges or arcs in a graph or digraph, respectively
δ+(v) set of all arcs in a digraph with start node v
δ−(v) set of all arcs in a digraph with end node v
p,q usually denote paths or walks
V (p) set of nodes of a walk p in a graph or digraph
E(p) set of edges of a walk p in a graph
A(p) set of arcs of a walk p in a digraph
pq denotes the concatenation of two walks p and q
(G,Λ,W) denotes an optical network
L set of all lightpaths in an optical network
L(u,v) set of all [u,v]-lightpaths in an optical network
S denotes a network status
MS = (m(S)

i j) denotes a link-status matrix in status S
LS set of all lightpaths in a network that are available in status S
LS(u,v) set of all [u,v]-lightpaths in a network that are available in status S
σ denotes a request sequence
σ j denotes a call
u j,v j denote the end nodes of the connection for call σ j
b j denotes the demand (number of lightpaths) of call σ j
tarrj denotes the arrival time of call σ j

tansj denotes the latest answer time of call σ j

tstartj denotes the start time of the connection for call σ j

tstopj denotes the expiration time of the connection for call σ j

d j denotes the duration of the connection for call σ j
c j denotes the customer class of call σ j
q j denotes the customer class of call σ j
p j denotes the profit of call σ j

88

Appendix B

Basic Definitions

In the following, we introduce the graph theoretical notations that are used in this
thesis. For a more detailed look at graph theory, cf. [Jun99].

Definition B.1. A graph G is a pair G = (V,E) consisting of finite set V 6= /0 of nodes
and a set E ⊆V (2) of edges, where V (2) denotes the set of unordered pairs of elements
in V . An edge with nodes u,v ∈V is denoted by uv. The nodes u and v are said to be
the end nodes of the edge uv. Moreover, we say that the nodes u and v are incident
with the edge uv and that u and v are adjacent or neighbors. G is called to be simple if
there is at most one edge between each pair of nodes and if there is no edge connecting
a node with itself.

Definition B.2. A walk in a graph G = (V,E) is a sequence (v0,e1,v1, . . . ,ek,vk) con-
sisting of nodes and edges of G such that ei = vi−1vi for 1 ≤ i ≤ k. The nodes v0 and
vk are called the end nodes of the walk, which is also said to be a [v0,vk]-walk. If, in
addition, the nodes of a walk are pairwise distinct, the walk is a path. If v1, . . . ,vk−1
are pairwise distinct and v0 = vk, the walk is called a cycle.

Definition B.3. A digraph D is a pair D = (V,A) consisting of finite set V 6= /0 of nodes
and a set A ⊆ V ×V of arcs. An arc from node u to v is denoted by (u,v). Node u is
said to be the tail node of (u,v), and v is said to be the head node of (u,v). Moreover,
we say that the nodes u and v are incident with the arc (u,v). D is called to be simple
if there is at most one arc from u to v for each pair of distinct nodes u,v ∈ V edge
between each pair of nodes and if there is no edge connecting a node with itself.

Definition B.4. A walk in a digraph D = (V,A) is a sequence (v0,a1,v1, . . . ,ak,vk)
consisting of nodes and arcs of D such that ai = (vi−1,vi) for 1 ≤ i ≤ k. v0 is called
the start node and vk is called the end node of the walk, which is also said to be a
(v0,vk)-walk. If, in addition, the nodes of a walk are pairwise distinct, the walk is a
path. If v1, . . . ,vk−1 are pairwise distinct and v0 = vk, the walk is called a cycle.

89

Appendix C

Deutsche Zusammenfassung

In dieser Diplomarbeit werden Online-Algorithmen zur Bearbeitung von Verbindungs-
anfragen in optischen Telekommunikationsnetzen untersucht.

Für ein gegebenes optisches Telekommunikationsnetz ist die Entscheidung zu tref-
fen, eingehende Verbindungsanfragen entweder anzunehmen und die geforderte Ver-
bindung zur Verfügung zu stellen oder diese abzulehnen. Für dieses Problem werden
bereits bekannte und neue Algorithmen vorgestellt und diese mit Hilfe von Simula-
tionsstudien bewertet.

Ein optisches Netz besteht aus Knoten, zwischen denen Leitungen verlaufen. Jede
Leitung enthält optische Fasern, auf denen Daten als optische Signale übermittelt
werden können. Die Knoten des Netzes sind mit Schaltern ausgestattet, die opti-
sche Signale weiterleiten können, ohne diese zwischenzeitlich in ihre digitale Infor-
mation umwandeln zu müssen. Dadurch können optische Kanäle entlang mehrerer
Fasern realisiert werden. Diese optischen Kanäle werden auch als Lichtwege bezeich-
net. Mit Hilfe der Technik Wavelength Division Multiplexing (WDM) können opti-
sche Signale mehrere sich nicht gegenseitig beeinflussende Wellenlängen verwenden.
Das bedeutet, dass mehrere Lichtwege dieselbe Faser gleichzeitig benutzen können,
sofern sie dabei verschiedene Wellenlängen verwenden. In dieser Arbeit werden keine
Wellenlängenkonverter betrachtet, d.h. ein Lichtweg muss dieselbe Wellenlänge auf
allen durchlaufenden Fasern verwenden.

Jede eingehende Anfrage fordert eine Verbindung zwischen zwei Knoten im Netz
für eine bestimmte Dauer, die vorher meist nicht bekannt ist. Die Verbindung er-
fordert eine bestimmte Zahl von Lichtwegen. (Im Rahmen der in dieser Arbeit enthal-
tenen Simulationen werden nur Anfragen berücksichtigt, die genau einen Lichtweg
benötigen.) Für jede angenommene Anfrage müssen entsprechende Lichtwege zur
Verfügung gestellt werden. Diese Dienstleistung liefert einen bestimmen Profit. Das
Ziel ist die Maximinierung des Gesamtprofits. Bei den durchgeführten Untersuchun-
gen werden konstante Profite angenommen. In diesem Fall ist das Ziel der Profitma-
ximierung äquivalent zur Minimierung der Wahrscheinlichkeit einer Anfrageableh-
nung, der sogenannten Blockierungswahrscheinlichkeit. Der wesentliche Charakter
des Problems besteht darin, dass zukünftige Anfragen bis zum Zeitpunkt ihrer Ankunft

90

CHAPTER 2. DEUTSCHE ZUSAMMENFASSUNG 91

unbekannt bleiben, jede Anfrage also ohne Kenntnis der zu erwartenden weiteren An-
fragen angenommen oder abgelehnt werden muss.

Ein Algorithmus für dieses Problem muss also für eine gegebene Anfrage die
Entscheidung treffen, ob und auf welchen Lichtwegen die geforderte Verbindung re-
alisiert oder ob die Anfrage abgelehnt werden soll. Zu den untersuchten Algorithmen
gehören die sogenannten Greedy-Algorithmen sowie neu entwickelte Algorithmen, die
auf dem Konzept der Netzfitness beruhen. Die Greedy-Algorithmen verwenden stets
kürzeste Lichtwege (die Länge eines Lichtwegs ist die Anzahl der von ihm verwende-
ten Fasern), und unterscheiden sich nur in der Wahl der Wellenlängen. Es gibt zwei
Klasse dieser Algorithmen. Die Greedy-Algorithmen mit partieller Wellenlängen-
suche durchsuchen alle im Netz verfügbaren Wellenlängen gemäß einer speziellen
Ordnung (diese definiert die verschiedenen Varianten) und wählen einen kürzesten
Lichtweg in der ersten Wellenlänge dieser Ordnung, in der es überhaupt einen Lichtweg
für die aktuelle Anfrage gibt. Die Greedy-Algorithmen mit totaler Wellenlängensuche
hingegen bestimmen in jeder Wellenlänge einen kürzesten Lichtweg und wählen unter
diesen den insgesamt kürzesten aus. Sie unterscheiden sich in der Wahl der Lichtwege,
wenn es in mehreren Wellenlängen kürzeste Lichtwege gibt.

Die neu entwickelten Netzfitness-Algorithmen versuchen eine sinnvolle Funktion
zu finden, die einem aktuellen Status des Netzes, der sich über die augenblicklich re-
alisierten Lichtwege definiert, den sogenannten Fitnesswert zuweist. Dieser Wert soll
die Fähigkeit des Netzes widerspiegeln, zukünftige Anfragen annehmen zu können.
Zur Realisierung von Verbindungen für ankommende Anfragen werden diejenigen
Lichtwege gewählt, für die der resultierende Fitnesswert maximiert wird.

Der erste Algorithmus available-lightpaths-reduction (ALR) definiert den Fitness-
wert als die Anzahl Lichtwege, die augenblicklich verwendet werden könnten. Es
wird also jeweils der Lichtweg gewählt, der eine minimale Abnahme an verfügbaren
Lichtwegen bewirkt. Für diesen Algorithmus gibt es noch einige Varianten, die er-
möglichen, wichtige Lichtwege höher zu gewichten.

Ein zweiter Algorithmus single-flow-reduction (SFR) betrachtet zwischen jedem
Knotenpaar in jeder Wellenlänge nur noch Kanten-disjunkte Lichtwege. Dadurch soll
verhindert werden, dass zu viele unwichtige, nie verwendete Lichtwege, berücksichtigt
werden.

Der letzte betrachtete Netzfitness-Algorithmus network-flow-reduction (NFR) soll
in jeder Wellenlänge nur Systeme von Kanten-disjunkten Lichtwegen berücksichtigen.
Diese Lichtwege könnten theoretisch alle gleichzeitig im optischen Netz realisiert wer-
den.

Für die Simulationen wurden vier Netze untersucht, die auf zwei verschiedenen
Topologien basieren. Die Simulationsergebnisse für die Greedy-Algorithmen zeigen
deutlich, dass die Wahl der Wellenlängenordnung jeweils einen entscheidenen Einfluss
auf die erreichten Blockierungswahrscheinlichkeiten haben. Am besten schneiden die
Varianten ab, die einen über alle Wellenlängen kürzesten Lichtweg wählen und dabei
falls dieser nicht eindeutig ist, denjenigen auswählen, dessen Wellenlänge im Augen-
blick auf am wenigsten Fasern im Netz verfügbar ist.

CHAPTER 2. DEUTSCHE ZUSAMMENFASSUNG 92

Fast genauso gut ist in diesen Netzen eine Variante von SFR. Für die Netze, die
über mehr Kapazitäten verfügen, erweist sich dieser jedoch als deutlich besser.

List of Algorithms

1 FFC . 22
2 Generic greedy-type algorithm with partial wavelengths search. 27
3 Generic greedy-type algorithm with total wavelengths search. 30
4 Generic network fitness algorithm. 34
5 MPS . 61

93

Bibliography

[AAF+96] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosén, On-line com-
petitive algorithms for call admission in optical networks, Proceedings
of the 4th Annual European Symposium on Algorithms, 1996, pp. 431–
444.

[AAP93] B. Awerbuch, Y. Azar, and S. Plotkin, Throughput-competitive on-line
routing, Proceedings of the 34th Annual IEEE Symposium on the Foun-
dations of Computer Science, 1993, pp. 32–40.

[ABFR94] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, Competitive, non-
preemptive call control, Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1994, pp. 312–320.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Networks flows, Prentice
Hall, Englewood Cliffs, New Jersey, 1993.

[BEY98] A. Borodin and R. El-Yaniv, Online computation and competitive analy-
sis, Cambridge University Press, 1998.

[BFL96] Y. Bartal, A. Fiat, and S. Leonardi, Lower bounds for on-line graph prob-
lems with applications to on-line circuit and optimal routing, Proceed-
ings of the 28th Annual ACM Symposium on the Theory of Computing,
1996, pp. 531–540.

[BK95] A. Birman and A. Kershenbaum, Routing and wavelength assignment
methods in single-hop all-optical networks with blocking, Proceedings
of INFOCOM ’95, 1995, pp. 431–438.

[BSSB95] K. Bala, T. Stern, K. Simchi, and K. Bala, Routing in a linear lightwave
networks, IEEE/ACM Transactions on Networking 3 (1995), 459–469.

[CGK92] I. Chlamtac, A. Ganz, and G. Karmi, Lightpath communications: An
approach to high bandwidth optical WAN’s, IEEE Transactions on Com-
munications 40 (1992), 1171–1182.

[Epp98] D. Eppstein, Finding the k shortest paths, SIAM Journal on Computing
28 (1998), no. 2, 652–673.

94

CHAPTER 2. DEUTSCHE ZUSAMMENFASSUNG 95

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability (a guide
to the theory of NP-completeness), W.H. Freeman and Company, New
York, 1979.

[HJK+03] R. Hülsermann, M. Jäger, S. O. Krumke, D. Poensgen, J. Rambau, and
A. Tuchscherer, Experimental study of routing algorithms in optical net-
works, Proceedings of the 7th IFIP Working Conference on Optical Net-
work Design & Modelling, Kluwer Academic Press, 2003, To appear.

[Jun99] Dieter Jungnickel, Graphs, networks and algorithms, 5 ed., Springer,
1999.

[KIM82] N. Katoh, T. Ibaraki, and H. Mine, An efficient algorithm for k shortest
simple paths, Networks 12 (1982), no. 2, 411–427.

[KP02] S. O. Krumke and D. Poensgen, Online call admission in optical net-
works with larger demands, Proceedings of the 28th International Work-
shop on Graph-Theoretic Concepts in Computer Science, vol. 2573,
Springer, 2002, pp. 333–344.

[KT95] J. Kleinberg and E. Tardos, Disjoint paths in densely embedded graphs,
Proceedings of the 36th Annual IEEE Symposium on the Foundations of
Computer Science, 1995, pp. 531–540.

[KV00] Bernhard Korte and Jens Vygen, Combinatorial optimization: Theory
and algorithms, 1 ed., Springer, 2000.

[KWZ03] A. M. C. A. Koster, R. Wessäly, and A. Zymolka, Transparent optical
network design with sparse wavelength conversion, Proceedings of the
7th IFIP Working Conference on Optical Network Design & Modelling,
Kluwer Academic Press, 2003, To appear.

[Law72] E. L. Lawler, A procedure for computing the k best solutions to discrete
optimization problems and its application to the shortest path problem,
Management Science 18 (1972), 401–405.

[LK00] A. M. Law and W. D. Kelton, Simulation modeling and analysis,
McGraw-Hill, Boston, 2000.

[LMSPR98] S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Rosén, On-
line randomized call-control revisited, Proceedings of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 323–332.

[MA98] A. Mokhtar and M. Azizoglu, Adaptive wavelength routing in all-optical
networks, IEEE/ACM Transactions on Networking 6 (1998), no. 2, 197–
206.

[MPS99] E. Q. V. Martins, M. M. B. Pascoal, and J. L. E. Santos, An algorithm for
ranking loopless paths, Tech. report, CISUC, 1999.

[Muk97] B. Mukherjee, Optical communication networks, McGraw-Hill, New
York, 1997.

CHAPTER 2. DEUTSCHE ZUSAMMENFASSUNG 96

[RS98] R. Ramaswami and K. N. Sivarajan, Optical networks: A practical
perspective, Morgan Kaufmann Publishers, Inc., ISBN 1-55860-445-6,
1998.

[SB99] T. E. Stern and K. Bala, Multiwavelength optical networks: A layered
approach, Addison Wesley Longman, Inc., ISBN 0-201-30967-X, 1999.

[Val79] L. G. Valiant, The complexity of enumeration and reliability problems,
SIAM Journal on Computing 8 (1979), no. 3, 410–421.

[Yen71] J. Y. Yen, Finding the k shortest loopless paths in a network, Manage-
ment Science 17 (1971), 712–716.

[Yen72] , Another algorithm for finding the k shortest loopless network
paths, Proceedings of 41st National Meeting of the Operations Research
Society of America, vol. 20, 1972.

[ZA95] Z. Zhang and A. Acampora, A heuristic wavelength assignment algo-
rithm for multi-hop WDM networks with wavelength routing and wave-
length re-use, IEEE/ACM Transactions on Networking 3 (1995), 281–
288.

