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1. Introduction 

A telecommunication provider has to offer its service as cheaply as possible 
and to keep its quality as high as possible. Installing and maintaining a network that 
achieves an appropriate balance between these conflicting goals is a difficult task. We 
describe here a problem of dimensioning a survivable telecommunication network 
that we encountered in a joint project with E-Plus Mobilfunk GmbH, one of the 
currently three mobile phone service providers in Germany: Given the nodes and the 
possible physical links of a telecommunication network, determine what capacity to 
install on the links to satisfy the demands and certain survivability requirements. 

This problem has many versions; see, e.g., [1-4,7,9,10,13-15,17,18], to 
mention a few relevant references. Of course, the link capacities must be chosen in 
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such a way that all demands can be satisfied. An important design aspect is the protec­
tion of the network against component failures and the handling of such situations. 
Our partner E-Plus considers three options to set up a network with high survivability. 

The first is called reservation and is intended to equip the network with enough 
capacity such that, after the failure of a component, a certain percentage of each 
demand can still be satisfied. Utilizing this idea may require extensive rerouting of 
the communication paths in failure situations, and thus, additional management and 
maintenance efforts. 

The second option is called diversification and has the goal of routing every 
demand on several node-disjoint paths so that in case of a component failure, for each 
demand, not all paths are affected and the traffic can be directed through the surviving 
paths. By employing this concept, the network remains operational in failure situations 
without rerouting efforts. 

Finally, the network designer may impose length restrictions on paths carrying 
communication traffic to avoid unacceptably long paths and to decrease the probability 
of a failure of a path component. 

In [1], we presented a mixed integer programming model, based on the work of 
Dahl and Stoer [7,18], that provides a proper mathematical formulation of the concepts 
indicated above. We assumed in [1] that, for every link, the capacity can be chosen 
from a given finite set. This assumption on the capacities is very general. A number of 
practical situations can be solved adequately with this approach, see [1]. However, if 
many capacities are available, the size of the resulting problem instance may become 
too large. To obtain reasonable upper and lower bounds on the optimal objective 
value (in acceptable running time), we had to reduce the number of available capacities 
considerably in a preprocessing step. Our computations result in satisfactory solutions, 
but we later found several cases where the optimal solution of our original problem 
was not feasible for the reduced model. Despite the limitations, this approach is 
justifiable and it is, in fact, still in use at E-Plus. 

Nevertheless, we have been searching for ways to handle large numbers of 
capacities without reducing these artificially. Here, we present such an approach 
that makes use of a special structure of the capacities available for lease that we 
encountered in many (but not all) practical problem instances. For example, Deutsche 
Telekom offers leased line capacity in multiples of 2 Mbit/s links (30 channels), 
multiples of 34 Mbit/s links (480 channels) and multiples of 140 Mbit/s links (1920 
channels). In terms of channels, these "basic capacities" have the property that each 
one is an integral multiple of each smaller one. The same is true, for instance, for the 
DSO, DS1, and DS3 facilities (offered in the US) which come with the "basic 
capacities" 1, 24, 672, respectively. The main topic of this paper is the treatment of 
survivable network design problems where each available link capacity is an integer 
combination of (a few) basic capacities with this special "divisibility property". This 
paper is based on [1], where more details of our approach are outlined. Here, we only 
report on the new parts. Reference [1] also contains a discussion of the advantages 



and disadvantages of implementing survivability by means of reservation and/or 
diversification. 

The algorithms for the solution of the models described in [1] and in this paper 
have been integrated in our network dimensioning tool DISCNET (Dimensioning 
Survivable Cellular phone NETworks). The tool is in use at E-Plus for the annual 
transport network planning. 

The rest of the paper is organized as follows: In the next section, we formally 
define the problem and present the model. We give a high-level description of the 
algorithm in section 3, while in section 4, we describe the associated polytopes and 
classes of valid inequalities for these polytopes. In section 5, we sketch our heuristics, 
and in sections 6 and 7, we present computational results with real-world data and 
some conclusions, respectively. 

2. The model 

Our network dimensioning problem is defined on two graphs on the same node 
set V, the supply graph G = (V, E), and the demand graph H = (V, D). The edge set 
E of the supply graph is the set of the supply edges, which represent the links that 
already exist or can be physically installed (in our case: leased from some supplier). 
The edge set D of the demand graph is the set of the demand edges. Such an edge is 
introduced whenever there is a communication demand between the end-nodes of this 
edge. With each demand edge uv G D, we associate the following four parameters: the 
communication demand duv G N between nodes u and u, the reservation parameter 
puv E [0, 1] C R+, which is a lower bound on the fraction of the demand duv that must 
be served when a single node or a single edge of the network fails, the diversification 
parameter Suv G (0, 1] C R+, which is an upper bound on the fraction of the demand 
duv that can be routed through a node or an edge in the case all network components 
are operating (normal operating state), and the path-length parameter iuV G M, which 
is an upper bound on the number of edges contained in a path that routes (part of) the 
demand duv in the normal operating state. 

The operating states s we consider are the normal operating state A- = 0 (all 
nodes and all supply edges are operating), the single node failures s = v for each 
node vEV, and the single supply edge failures s = e for each edge e G E. We denote 
by Gs = (ys,Es) the supply graph and by H„ = (V„ Ds) the demand graph under 
operating state s, i.e., Vx is the set of nodes that are still functional in operating state 
s, and similarly, Ex is the set of available supply edges and Ds is the set of existing 
demands in operating state s. 

We formulate the problem as a mixed integer linear programming problem with 
three types of variables. 

A variable ye is introduced for each supply edge e G E. It denotes the capacity 
chosen for edge e. These variables are redundant, as we will see later, but they are 
introduced here for notational convenience. 



The second type of variables are the "flow" variables f(s, uv, P) which are 
introduced for each combination of an operating state s, a demand edge uv e Dx, and 
a valid path P in Gs connecting the two end nodes « and v. If s = 0, a wu-path in G is 
valid if it contains at most £uv supply edges, while if s ■*■ 0, any wu-path in Gs is valid. 
The set of valid paths between « and v in operating state s is denoted by T(s, uv). In 
a solution of the problem, the value/(s, uv, P) gives the amount of flow on the path 
P in Gs that satisfies part of the demand puvduv in the operating states s * 0, or part of 
the total demand duV in the normal operating state s = 0. 

With this notation, we can formulate the continuous part of the mixed integer 
linear programming formulation of the problem. 

(1) 

(2) 

(3) 

(4) 

(5) 
(6) 

Constraints (1) bound, for each operating state s, the flow on each supply edge « £ £ 
by the capacity ye of the edge. Equations (2) and (3) impose the demand requirements 
in the normal operating state s = 0 and in the failure states s *■ 0. Constraints (4) and 
(5) bound from above, for every demand edge uvED, the flow through all edges and 
nodes (other than the nodes u and v) by 8uvduv. This implies a diversification of 
the corresponding flow on several disjoint paths. Finally, (6) are the nonnegativity 
constraints. 

Before we introduce the variables to decide the capacities of the supply edges, 
let us define a property of a set of numbers that is used to characterize the capacity 
structure. This property will frequently be used when we deal with valid inequalities 
for the associated polyhedra. 

Property 2.1 (Divisibility). Let Af = {mx,...,mk} C N, with mx <,tn2£ ■■■ <mk. We 
say that M has the divisibility property if the coefficients mM/mj are integral for all 



The capacities to be installed have the following particular structure. We are 
given a set T = {Tj,..., in} of technologies, one for each different type of line that can 
be installed on a link. With each technology TGT, we associate a positive basic 
capacity Mx and the edge-dependent installation costs (which include a fixed cost 
and a variable cost which varies with the length of a link). We assume that the basic 
capacities satisfy property 2.1 and we refer to the smallest basic capacity A/T| as the 
unit capacity. 

Now, the third type of variables can be defined. For each supply edge e G E, we 
are given a set t(e) C T of available technologies. The capacities that can be installed 
on edge e are integer combinations of the basic capacities Mz, z G t(e), of the available 
technologies plus an additional free capacity M°. The free capacity M® is used to 
represent a potentially existing capacity on edge e. We model this structure by 
introducing, for every supply edge e GE and every available technology TGt(e), a 
nonnegative integer variable jcjto denote the integral multiple of MT. The variables JCJ 
may be restricted by an upper bound u\. For each x G /(e), we denote by Kl the cost 
of installing one unit of the basic capacity Mx on supply edge e G E. 

The objective is to minimize the total cost of installing the necessary capacities 
on the edges of the supply graph. This is formulated as 

The constraints that must be satisfied in addition to ( l ) - (6) are the nonnegativity and, 
if required, the upper bound constraints 

(7) 

where the capacity yc of a supply edge e G E is 

(8) 

As we mentioned before, the variables ye - and thus the constraints (8) - are not used 
explicitly in the linear program. They are rather calculated from these equations given 
a vector x. 

A feasible solution is a vector (x, y,f) that satisfies the constraints (1) to (8). 
For our purposes, we assume that there exists a feasible solution. This assumption 
implies the existence of at least \ 1 /Sm,] node-disjoint length-restricted paths for each 
demand edge uv eD. Note that the problem to decide whether there exist at least k 
node-disjoint paths of length at most £ is NP-complete (see, e.g., Garey and Johnson 
[8]). For the sizes of the problem instances we consider, the framework of Hley |5] 
suffices to find such paths, if they exist, in reasonable running times. 



3. Algorithmic approach 

We solve the problem presented in the previous section with a cutting plane 
algorithm, followed by linear programming based heuristics. Figure 1 shows the flow 
chart of the algorithm. The algorithm consists of three main parts: 

(i) the feasibility problem (FP) (that decides whether a given capacity vector admits 
feasible routings in all operating states), 

(ii) the cutting plane part (that calculates a lower bound on the optimal value of a 
feasible solution), and, 

(iii) the heuristic algorithms (that produce "good" feasible solutions). 

Figure 1. Flow chart of the algorithm. 

The feasibility problem (FP) is defined by the constraints ( l )-(6) . This problem 
decomposes into one multicommodity-flow problem for each operating state. To solve 
each individual multicommodity-flow problem, we apply a variation of the column 



generation approach suggested by Minoux and also used by Dahl and Stoer (see 
[7,15]). In [1], we described the modification of this approach to generate only 
columns that correspond to valid paths. 

In every iteration of the cutting plane part, we solve an LP-relaxation of the 
integer program in the decision variables x, which contains the constraints (7) and 
a subset of the known valid inequalities for the polytope of feasible ^-vectors, see 
section 4. The valid inequalities (cutting planes) we use are 

(i) partition inequalities introduced by Pochet and Wolsey [16], 
(ii) strengthened partition inequalities, see section 4, 

(iii) strengthened metric inequalities, see section 4, and 
(iv) diversification-cut inequalities, see section 4. 

One iteration of the cutting plane algorithm is as follows: Given the solution of 
the current LP-relaxation, we use separation algorithms (sketched in section 4) to find 
valid inequalities that are violated by this solution. We add all violated inequalities 
found to the LP-relaxation and resolve it. If we cannot generate any violated inequality, 
we calculate via (8) a (possibly fractional) capacity vector. For this capacity vector, 
we decide (FP), that is, we test whether there exist feasible routings in all operating 
states. If not, we can identify a violated metric inequality. From this, we derive violated 
inequalities in ^-variables, add these and start the next iteration with the augmented 
LP-relaxation. 

Eventually, if the (possibly fractional) capacity vector is feasible, there are two 
possibilities. If the x-variables are integer, we have found an optimal solution and we 
are done. Otherwise, we resort to various heuristic algorithms (see section 5) to obtain 
"good" integer solutions. The heuristic algorithms are from two classes of heuristics. 
The first class consists of primal improvement heuristics, whereas the second class 
consists of a kind of dual heuristics that follow one branch of a branch-and-cut tree. 

The cutting plane phase provides a lower bound and the best heuristic solution 
provides an upper bound on the optimal solution value (the minimum cost). Thus, we 
have a guaranteed quality of the solutions. 

4. Related polyhedra and valid inequalities 

In this section, we describe the polyhedra associated with the model presented in 
section 2 and valid inequalities for these polyhedra. We investigate two polyhedra: 
(i) the convex hull of feasible solutions in terms of x-variables, and (ii) a polyhedron 
in the y-variables that can be viewed as a relaxation of the polytope in the je-variables. 

4.1. Two polyhedra 

The convex hull of all feasible solutions in ^-variables is 



(9) 

and the relaxation to the continuous ^-variables 

such that (y,f) satisfies (l)-(6)}. (10) 

There is an obvious relation between these two polyhedra. If Xee£<zeye ^ a is valid 
for Y, then £ e e E ae XT g ,(e) Mxxj > a - Xe e E

 aeM* i s v a l i d f o r x•To k e e P t h e exposi­
tion simple, we assume without loss of generality throughout the remainder of this 
section that all free capacities M° are zero. 

4.2. Valid inequalities for the polyhedron Y 

The polyhedron Y is the set of solutions to our feasibility problem (FP), defined 
by the inequalities ( l ) - (6) . Obviously, this problem decomposes into one continuous 
multicommodity-flow problem for each operating state. Iri [11] and Kakusho and 
Onaga [12] independently characterized the solutions of continuous multicommodity-
flow problems using the so-called metric inequalities. In our case, a generalization of 
these metric inequalities describes the polyhedron Y (see also Dahl and Stoer [7]). 

4.2.1. Metric inequalities 
Let y - (ye)eEE De a vector of capacities. For every operating state s ^ 0, the 

corresponding multicommodity-flow problem (MCFPS) is defined by the inequalities 
(1), (3) and (6) (for this operating state s). In the normal operating state, the multi­
commodity-flow problem (MCFP0) is defined by the inequalities (1), (2), (4), (5) and 
(6), for s = 0. Necessary and sufficient conditions for the feasibility of y are given in 
the following two theorems. 

Theorem 4.1 [11,12]. A capacity vector y is feasible for (MCFPS), s * 0, if and only 
i f ^ >P 

Z, ^ e * Zi ^vPuvduv (11) 
BE£, UUED, 

for all /xe > 0 (e e E), where, for every uv e Ds, ffliu is the value of a shortest uu-path 
in Gs with respect to the edge weights fie. 

In our case the multicommodity-flow problems are more complicated in the 
normal operating state, because of the diversification and the path-length constraints. 
In this case, the above result can be modified as follows. 

Theorem 4.2 [7]. A capacity vector y is feasible for (MCFP0) if and only if 



for all \ie > 0 (e e E), y ^ £ 0 (uv G D, w £ [u, v}), and y™ £ 0 (uv e D, wu e E). nuv 
is defined as follows: Given uvGD, we assign to each edge e e E\{uv) the weight ^ e , 
to edge wu (if it is contained in E) the weighty, + y'™, and to each node w eV\{u, v} 
the weight fuv Then nuv is the value of a shortest among all wu-paths in G with at 
most l„u edges. 

Inequalities (11) and (12) are called metric inequalities. We often write a metric 
inequality as ?Le£p fieye ^d, where F := {e EE\fie > 0} and dis the right-hand side in 
(11) or (12). 

Since the feasibility problem (FP) decomposes into one multicommodity-flow 
problem for each operating state, theorems 4.1 and 4.2 together yield necessary and 
sufficient conditions to decide (FP) for a given capacity vector y. 

4.2.2. Cut inequalities 
A special case of a metric inequality is a cut inequality. Given W C V, define 

fie = 1 for every e e 8G(W) := [wzEE :w EW, z e V\W}, and fie = 0 otherwise. 
Furthermore, we set y*u = Yuv = 0 f° r every uvsD and every w S V\ {u, v}. Then 
7TUU = 1 for every uv E 8H(W), and %m ~ 0 otherwise, are - under appropriate connec­
tivity assumptions - the shortest path lengths from u to v with respect to edge weights 
fl. Then inequality (12) reads as follows: 

ee«5c(W) «ue5w(VV) 

These inequalities are called cut inequalities. 

4.3. Valid inequalities for the polyhedron X 

Based on valid inequalities for Y, we now derive two classes of valid inequalities 
for X. The first class, the strengthened metric inequalities, is just the result of a divide-
and-round procedure. The second class, formed by the partition inequalities, describes 
the relaxation given by a cut inequality or, more generally, by the relaxation given by 
a metric inequality with coefficients that satisfy property 2.1. If we are to consider 
failure situations, we derive stronger inequalities, the strengthened partition inequali­
ties. A third class of inequalities valid for X, not based on a valid inequality for Y, is 
the class of diversification-cut inequalities. If survivability is implemented by setting 
some diversification parameters to a value smaller than 1, then this class has proven 
to be very useful in the lower bound calculation (see section 6). 

4.3.1. Strengthened metric inequalities 
Let Heeff^eye^d be a metric inequality. Using equality (8), we substitute y-

variables with jc-variables and obtain the inequality 



(14) 

which is apparently valid for X. To this inequality, we apply a divide-and-round proce­
dure to get a stronger inequality. 

Proposition 4.3. Let XeGf Heye -d be a metric inequality and g be the greatest 
common divisor of the coefficients, i.e., g:= gcd{jltM'z\e 6 F . T 6 f(e)}.Then the 
inequality 

is valid for X. 

(15) 

Proof. Divide the coefficients of (14) by g and round up the right-hand side of the 
inequality. The resulting inequality is due to the integrality of every feasible solution 
valid for X. Finally, take for each coefficient the minimum of this coefficient and the 
right-hand side. □ 

Given a metric inequality for the normal operating state, we can further 
strengthen it, in particular, if the reservation parameter is close to 1.0 for all demands. 

Proposition 4.4. Let Xe6/r fieye > X„ue£)7rI(udulj be a metric inequality and g be the 
greatest common divisor of the coefficients, i.e., g := gcd{/ieMT|e £ F , TEr(e)}.Then 
the inequality 

(16) 

is valid for X, where d 

Proof. Choose hGF and let TT*„ be, for every uv G D, the value of a shortest HU-path 
in Gh with respect to \i. Then 

Finally, the result follows with the same arguments as in the proof of proposition 4.3. 
□ 

We call inequalities of type (15) or (16) strengthened metric inequalities. 

for every uv e D. If we sum inequality (17) over all h G F, we obtain 



In the course of our cutting plane procedure, we try to overcome the strengthen­
ing of metric inequalities because these inequalities are very dense (one positive 
coefficient for each e &F and each available technology of these edges) and, more 
importantly, their "wild" coefficients cause numerical instabilities. 

4.3.2. Partition inequalities 
Again, let 1,eefHeye ^ d be a metric inequality. Furthermore, let us assume that 

the coefficients M:= {fieMr\e G F,z 6 t(e)} satisfy property 2.1. This assumption 
is satisfied, for instance, if the metric inequality is a cut inequality. By ordering and 
renaming, we rewrite the coefficients M as M = {m i,..., mn} with 0 <, m { 5 m 2 < ■ ■ ■ ^ 
mn. Renaming the x-variables accordingly, the inequality HeSFlJ'e^i:et(e)M'cXg> d 
reads as X"=1 m,*,- > d and gives rise to the knapsack cover poly tope 

G : = c o n v j x e Z J | J T i n , * / S d [ . (19) 

Q is apparently a relaxation ofX, i.e., X C Q. Introducing so-called partition inequali­
ties, Pochet and Wolsey provide a complete linear characterization of Q in [16]. For 
the sake of completeness, we briefly describe these inequalities here. 

To introduce partition inequalities, we define r : = max{i | m{ < d, 1 <, i < n) and 
we partition the index set of M into t consecutive blocks {i\,...,j\},..., {i„... Jt) such 
that ii = 1, i, < r,j, = n and ik - 1 =jk~\ for k = 2,...,t. Furthermore, we set d,:= d 
and define recursively the coefficients Kk:= \djmlk] and the remaining demands 
dk-i '-=dk-{Kk-\)mk, forfc = f,...,l. 

Proposition 4.5 [16]. The inequality 

k = \ 
is valid for Q. 

Inequalities (20) are called partition inequalities and suffice to describe Q. 

Theorem 4.6 [16]. Q is the solution set of the system (20) of partition inequalities 
and the nonnegativity constraints. 

4.3.3. Strengthened partition inequalities 
If we are to consider failure situations, we can strengthen the partition inequali­

ties. Let W C V. Instead of the cut inequality I t<e5( ; (W) ye ^ !««<=«„(W) elit„, we now 
consider the weaker version of the cut inequality 



Let 

(21) 

where T(8G(W)) := Uee^(w)f(fi)- Now, assume that the partition inequality 

is valid for P. Then we can derive the stronger inequality 

(22) 

Inequalities of this type are called strengthened partition inequalities. The 
inequalities (22) are stronger than partition inequalities, if the reservation parameter 
equals 1.0 for all demands in the cut. 

Proposition 4.7. Inequalities (22) are valid for X. 

Proof. The result follows as in the proof of proposition 4.4, if we sum up the respective 
partition inequalities for all edge failures/6 5G(W). □ 

4.3.4. Diversification-cut inequalities 
The third class of inequalities is the class of diversification-cut inequalities. 

Proposition 4.8. Let W C V and AfT' be the unit capacity. Then the inequality 

(23) 

is valid for X, where 

Proof. Let x be an integral feasible point for X, choose e G SG(W) and let / be a 
feasible flow vector with respect to the capacities ye = XT6 t(e)Mxx]. The diversification 
parameters imply (see (4), (5)) that 



and thus 

Summing up over all e G SG(W), we obtain 

Now, divide by the unit capacity. Finally, the integrality of x proves the proposi­
tion. □ 

Inequalities (23) are called diversification-cut inequalities. Clearly, one can improve 
(23) if for all supply edges e e 5G(W) the available technologies t(e) do not contain 
the technology xx. Then, the unit capacity A/T' can be substituted by the smallest basic 
capacity over all supply edges in the cut. 

4.4. Identification of violated inequalities 

We now sketch, for the classes of valid inequalities defined above, the separation 
algorithms we use to identify inequalities violated by the solution of an LP-relaxation 
during the cutting plane algorithm. For the classes of metric and partition inequalities, 
we know exact separation algorithms. We separate diversification-cut inequalities 
heuristically. 

4.4.1. Separation of (strengthened) metric inequalities 
We can solve the separation problem for the class of metric inequalities exactly, 

i.e., we find a violated metric inequality, provided it exists. Moreover, we find a 
violated metric inequality in polynomial time, using linear programming, whenever 
we test the feasibility of a capacity vector which turns out to be infeasible. For details 
of this approach, see Minoux [15], Stoer and Dahl [7] and Alevras et al. [ 11. 

We store identified metric inequalities and identified cut inequalities in two 
different cutting plane pools. Whenever we cannot find any other violated inequality 
(partition inequality, diversification-cut inequality), we check whether there is a metric 
inequality with associated violated strengthened metric inequality in the pool. 



4.4.2. Separation of (strengthened) partition inequalities 
For any cut inequality, or any inequality valid for Y satisfying the divisibility 

property (property 2.1), we are given a relaxation Q of X defined by this inequality as 
in (19). For those relaxations, we solve the separation problem for partition inequalities 
exactly with an algorithm proposed by Pochet and Wolsey. We refer the reader to [16] 
for details. 

The identification of violated strengthened partition inequalities is performed 
with almost the same separation algorithm. We only have to initialize it differently 
and to calculate a different right-hand side. 

4.4.3. Separation of diversification-cut inequalities 
We generate a diversification-cut inequality whenever we find a violated cut 

inequality. This is the case when we either test the connectivity of the graph defined 
by the supply edges with positive capacity, or when we identify a cut inequality in the 
feasibility test of a capacity vector. 

5. Heuristic algorithms 

We use two classes of heuristics to compute integer feasible solutions: one class 
consists of primal improvement heuristics and the other class of dual heuristics. As 
we mentioned in section 3, we run the heuristics after the lower bound calculation. To 
reduce the running time, we apply a preprocessing procedure before we employ any 
of the heuristics. First we describe the preprocessing and then the two classes of 
heuristics in more detail. 

5.7. Preprocessing 

The preprocessing consists of fixing of variables. Based on various criteria, 
we fix a minimum capacity on promising supply edges, or we exclude supply edges 
which are not necessary to build a feasible network, and we exclude capacities that 
we consider too expensive. To decide the supply edges for which we wish to fix a 
minimum capacity, we use a mixture of the following criteria: 

• fix the edges in the cheapest path connecting the end-nodes of the demand edges 
with the biggest demand values, 

• fix the supply edges with the biggest fractional capacity, after the lower bound 
calculation, and 

• fix edges to realize a sufficiently connected network. 

Depending on the particular problem instance, we decide how many supply edges to 
fix, and to which minimum capacity. 

To exclude supply edges or expensive capacities, we use a mixture of the follow­
ing criteria: 



• We exclude the longest supply edges with capacity zero, if the lower bound 
calculation was performed. Note, since the fractional solution after the lower 
bound calculation is feasible, we know that the remaining supply edges permit 
an integer feasible solution. 

• We order the capacities with respect to their costs and remove a certain number 
of the most expensive ones, if we can still guarantee an integer feasible solution. 

We implemented both the fixing of minimum capacities, and the removal of 
supply edges and capacities through constraints that we added to the LP-relaxation. 

5.2. Decrease heuristics 

The decrease heuristics are primal heuristics, i.e., we start with a feasible capacity 
vector and try to reduce the capacity of its components (supply edges) keeping it 
feasible. A feasible capacity vector is obtained either by rounding up the capacity ye 
of each edge e GE, as calculated from the solution to the current LP-relaxation via 
(8), to the next bigger feasible capacity, or by the solution of an increase heuristic. 

To keep the number of possibilities small, we first select a technology, then the 
supply edges that potentially can be reduced, and then we choose among these edges 
according to three different criteria the particular supply edge for which the capacity 
reduction will be tried. 

The technologies are selected either in increasing or decreasing order of their 
capacities. Given a technology T, the three criteria to select the supply edge are: 

where kc is the number of capacity reductions we 
already applied to edge e. 

5.3. Increase heuristics 

The increase heuristics are dual heuristics. While the (primal) decrease heuristics 
maintain a feasible integer solution in every iteration, the increase heuristics maintain 
a feasible fractional solution in every iteration and terminate as soon as an integer 
feasible solution is constructed. 

In every iteration, we choose one supply edge among those with at least one 
fractional ^-variable and fix some of the jc-variables of the chosen supply edge to an 
integer value. Then we employ the cutting plane procedure, as described in section 3, 
to calculate a lower bound on the optimal solution value of the restricted problem. 
Since we can guarantee a feasible (fractional) solution at the end of the cutting plane 
procedure, we have found an integer feasible solution as soon as all je-variables are 
integer at the end of one iteration. We apply three different criteria to choose the supply 



edge and two criteria to decide the fixing of the ̂ -variables. Thus, we get six different 
increase heuristics. 

Let x = (*/), e e E, % e t(e), be given and define frac{x) as the set of supply 
edges with at least one fractional variable, i.e., frac(x) := {e eE\3ret(e) with 
xl * [ xl\}. Furthermore, let \ye] be defined as the smallest feasible capacity bigger 
than ye = A/° + £ref(e) MT3cJ. Then there exists a cheapest integer vector z (satisfying 
(7)) which yields the capacity [ v j = M° + I r g , w M T z J . The criteria to choose the 
supplv p.d pes are 

CD 
(2) 

(3) 

Given a supply edge e £ frac(x), we use either a greedy or a so-called conservative 
strategy to fix the ;c-variables. In more detail: 

(1) 
(2) 

Both the greedy and the conservative fixing of *-variables can be implemented 
in terms of linear inequalities. These are added to the LP-relaxation. We remove these 
additional inequalities after an increase heuristic is finished. 

5.3.1. Post-processing for increase heuristics 
The result of an increase heuristic is not necessarily a local optimum; however, 

it is often either a local optimum or a "good" starting point for a decrease heuristic. In 
a typical run, we try all decrease heuristics after an increase heuristic. 

Neither class of heuristics is very sophisticated. Currently, we are working on 
combinatorial heuristics that are independent of the final fractional solution of a cut­
ting plane procedure. Nevertheless, we have empirical evidence that the implemented 
heuristics achieve "good" solutions (we used a branch-and-bound implementation to 
calculate optimal solutions for small instances). 

6. Computational results 

In this section, we present computational results for different problem instances 
supplied by E-Plus, with various settings for the demand-related parameters, i.e., 
diversification, reservation and path length restriction. We used four networks to test 
the program, the characteristics of which are given in table 1. The number of nodes 
varies from 11 to 17, the number of supply edges from 34 to 62, and the number of 
demand edges from 24 to 106. The unit of the demand value is a channel (64 kbit/s). 



Table 1 

Characteristics of the test problems. 

The available capacities for each supply edge are multiples of 30 channels (2 Mbit/s), 
multiples of 480 channels (34 Mbit/s) and multiples of 1920 channels (140 Mbit/s), 
and any nonnegative integer combination of these three basic capacities. 

We chose the following parameter settings. The length restriction takes two 
values, 3 and °° (no length restriction). For each length, we set four different diversi­
fication/reservation pairs. The different parameter settings together with the names 
of the problems are given in table 2. 

Table 2 

Diversification and reservation parameter settings. 

We ran all tests on a SUN Ultra-1 with 512 MB main memory. As a solver for 
linear programs, we used the callable library of CPLEX 3.0 [6]. 

The total time reported in the tables corresponds to a complete run of the program 
that consists of the calculation of the lower bound (cutting-plane part), the execution 
of six decrease heuristics, and the execution of six increase heuristics. Each of the 
increase heuristics is followed by a run of all decrease heuristics. Keeping this in 
mind, the times shown in table 3 are reasonable, considering also the fact that the 
model is to be used in the annual planning process. It is not easy to make a fair 
comparison between the running times of our codes based on the model of 111 and 
based on the model presented in this paper. The new model provides feasible solutions 
with slightly better objective function value. However, the running time reduction is 
in the range of 50% to 80%. 

From tables 3 and 4, we see that the gaps (= 100 + (upper bound - lower bound)/ 
lower bound) are quite large. We believe that the reason for this is the weak lower 
bound. We have done further computational experiments with data from practice, 
variants thereof, and many parameter settings. However, these are too extensive to 



Table 3 

Results for unrestricted path length. 

Table 4 

Results for path length restriction £uu = 3. 



even briefly present and discuss the results here. They indicate that some of the classes 
of inequalities are very useful under certain parameter combinations, while they lead 
to only minor improvements in other cases. Thus, we conclude that the big gaps 
can be attributed to our restricted knowledge of the facial structure of the associated 
polytope X. 

7. Conclusions 

The computational experience with our model [1] for the design of low-cost 
survivable telecommunication networks revealed difficulties in the handling of large 
instances. Here, we have presented a modification of this model that takes into account 
that the capacities that can be leased in practice often have a special "divisibility 
property" and which results in considerably smaller problem sizes. 

We are not able to solve relevant practical instances to optimality; in fact, the 
gaps between upper and lower bounds are still large. But, using our new model, we 
come up - in acceptable running times - with feasible solutions that are considered 
satisfactory by the network designers and that are much better than those obtained 
by the traditional approaches used formerly by our partner company. To achieve 
acceptable running times with the old model, we had to artificially reduce the instance 
sizes in a preprocessing step. Our new model does not need such preprocessing, and 
produces true upper and lower bounds on the optimum costs in the case the capacities 
are structured in a special way. To improve the bounds, we need better cutting planes, 
and thus, further research on the structure of the set of feasible solutions is necessary. 
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