et L

B R

Telebus Berlin: Vehicle Scheduling
in a Dial-a-Ride System

R. Borndirfer', M. Grotschel, F. Klostermeier?, and C. Kiittner?

! Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, TakustraBe 7,
14195 Berlin, Germany, Email: [surname]@zib.de, URL: www.zib,.de
? Intranetz Gesellschaft fiir Informationslogistik mbH, Klopstockstr. 9,
14163 Berlin, Germany, Email: info®intranetz.de, URL: www.intranetz.de

Abstract: Telebus is Berlin's dial-a-ride system for handicapped people who
cannot use the public transportation system. The service is provided by a
fleet of about 100 mini-buses and includes assistance in getting in and out
of the vehicle. Telebus has between 1,000 and 1,500 trensportation requests
per day. The problem is to schedule these requests onto the vehicles such
that punctual service is provided while operation costs are minimized. Addi-
tional constraints include pre-rented vehicles, fixed bus driver shift lengths,
obligatory breaks, and different vehicle capacities.

We use a set partitioning approach for the solution of the bus schedul-
ing problem that consists of two steps. The first clustering step identifies
segments of possible bus tours (“orders”) such that more than one person is
transported at a time; the aim in this step is to reduce the size of the problem
and to make use of larger vehicle capacities. The problem of selecting a set
of orders such that the traveling distance of the vehicles within the orders
is minimal is a set partitioning problem that can be solved to optimality. In
the second step the selected orders are chained to yield possible bus tours
respecting all side constraints. The problem to select a set of bus tours such
that each order is serviced once and such that the total traveling distance
of the vehicles is minimum is again a set partitioning problem that is solved
approximately.

We have developed a computer system for the solution of the bus schedul-
ing problem that includes a branch-and-cut algorithm for the solution of the
set partitioning problems. A version of this system has been in operation at
Telebus since July 1995. Its use made it possible for Telebus to serve about
30% more requests per day with the same resources.

1 Handicapped People’s Transport in Berlin

Better accessibility of the public transportation system has become an im-
portant political goal for many municipalities, partially met by introducing

http://www.zib.de
http://www.intranetz.de

302

Figure 1.1: A Telebus picks up a customer

low-floor buses, installing lifts in subway stations, etc. But meny handicapped
and elderly people still have problems because they need additional help, the
next station is too far away, or the line they want to use is not yet accessible.
Berlin, like many other cities, offers these people a special transportation ser-
vice. The system, called Telebus, provides door-to-door transportation with
assistance at the pick-up and the destination. The system is financed by the
Senate of Berlin's department for Social Affairs (SenSoz) and operated by
the Berliner Zentralausschuf fiir Soziale Aufgaben e.V. (BZA), an associa-
tion of charitable organizations. Fig. 1.1 shows a Telebus vehicle picking up
a customer,

Telebus is a dial-a-ride system: every entitled user (currently about 25,000
people) can order up to 50 rides per month through the BZA's telephone cen-
tre. If the order is placed one day in advance, Telebus guarantees to service
the ride as requested. Later “spontaneous” requests are serviced if possible.
The advance orders, about 1,500 during weekdays and 1,000 on weekends,
are collected and scheduled into a fleet of mini-buses that are rented on de-
mand from charitable organizations and commercial companies. These buses
will pick-up the customers at the desired time (within a certain tolerance)
and transport them to their destinations; if required, the crew will provide
assistance in leaving the apartment, entering the vehicle, ete. This service is
available every day from 5 am to 1 am.

Telebus was established 15 years ago and since then the number of cus-
tomers and orders have increased continuously. Until recently, the vehicle
scheduling was done manually by experienced planners who could work out a
feasible schedule in about 16 man-hours. But when East Berlin’s handicapped
people also started to use the system after the reunification of Germany, it
was clear that the traditional way of scheduling would not be able to cope

393

1
30 -

25 4 r’,

20 A

15 4

-

10

0! T T T T T T —> Year
82 B4 86 88 90 92 94 96

|| Costs in Million DM
] Entitled Users in Thousands

Figure 1.2: Development of Telebus

with the projected additional demand. The problem was not only to come
up with a feasible sehedule: more requests in an area of service which had
doubled in size led to rising costs and put the system under heavy pressure
to be more efficient. Fig. 1.2 illustrates the explosive growth of the system;
the numbers for the years up to 1993 are taken from report T 336 of Berlin's
audit division for the year 1994, the other date were provided by the BZA.

Mocdern computer hard- and software was needed to solve the scheduling
problems of the BZA and the Telebus project, involving cooperation between
the Konrad-Zuse-Zentrum fiir Informationstechnik Berlin (ZIB), the BZA,
and the SenSoz, was started to develop it. The result of the project is a new
Telebus-computersystem, that supports and integrates the complete sequence
of operations at the BZA: ordering, vehicle scheduling, radio communication,
accounting, controlling, and statistics. The system which eonsists of a tool hox
of software modules, running on a network of 20 MacIntosh computers, has
been operating at the BZA since 1995. Its use, together with & simultaneous
reorganization of many parts of the Telebus serviee, led to

(i) improvements in service: for example, a reduction of the advance or-
dering period from three days to one day (needed for vehicle renting)
and inereased punctuality of the computer schedule in comparison to
the result of manual planning,

354
(ii) cost reductions, such that today about 30% more requests can be ser-
viced with the same resources, and
(iii) simplifications of the work in the Telebus centre.

A comparison of the number of requests and the costs for a month before
and after the installation of the system is shown in Fig. 1.3.

Requests Costs in DM

Figure 1.3: Results of the Telebus Project

The heart of the Telebus-computersystem is the vehicle scheduling med-
ule. This module is based on mathematical optimization techniques that are
described in this paper. Our aim is to show that methods of this kind can
make a significant contribution to the solution of real world transportation
problems: the results at Telebus are of interest for similar dial-a-ride sys-
tems. It goes without saying, however, that optimization at Telebus did not
only consist of better vehicle scheduling, but involved many other important
factors: restructuring of the operation of the centre, negotiations with vehi-
cle providers, and personal dedication (F. Klostermeier and C. Kiittner, in
particular, worked for more than a year in the Telebus centre, drove Tele-
buses, etc.). More details on this consulting aspect of the Telebus project
can be found in the (German) articles Klostermeier/Kiittner (1993) and
Borndérfer/Grétschel /Herzog /Klostermeier /IKonsek /Kiittner (1996).

3085

2 Vehicle Scheduling at Telebus

The most important task at Telebus is the daily construction of the wvehicle
schedule which determines both operational costs for vehicles and crews and
customer satisfaection in terms of punctual service. The vehicle scheduling
problem (VSP) at Telebus can be stated in an informal way as follows:

Given a number of requests and a number of available vehicles, rent
a suitable set of vehicles and schedule all requests to them such that
a number of constraints like punctuality and labour regulations are
satisfied and operational costs are minimized.

(VSP)

The aim of this section is to describe the VSP precisely and to introduce our
set partitioning approach for its solution. We start with a discussion of the
VSP's data, its constraints, and objectives.

The basis for vehicle scheduling are some number v of vehicles of different
types. Actually, a vehicle is in this context not just a car, but also a crew for
a shift of operation: the BZA does not rent vehicles, but shifts of operation
of a car and a crew, Such a (manned) vehicle b, b = 1,...,r, is characterized
by the following data:

Ch type (class): Teletaxi, 1- & 2-bus (small or
large)
(V) A= (A}ehuir 45e08) capacity: no. of wheelchair places and seats
b group: type, depot location, shift

There are approximately 100 buses available for renting. Vehicles can be
distinguished by a type (or class) and a group. There are five types: Teletaxis,
small buses with one driver (1-bus), large 1-buses, small 2-buses, and large
2-buses. The type is important for deciding whether a request can be serviced
by a particuler vehicle: Teletaxis can transport only ambulatory customers
and those with folding wheelchairs. Non-folding wheelchairs require a bus.
Staircase aid require a bus with a crew of two. The type of & vehicle also
cdletermines its capacity: Teletaxis can transport one handicapped customer
and one non-handicapped companion, small buses have a capacity of (2, 3),
large buses of (3,4). Capacity is a sub-parameter of the type, but is given a
symbol of its own for convenience of notation. Vehicles of the same type fall
Into groups, that play a role for the constructlon of tours: a group contains
vehicles that are indistinguishable in the sense that they have the same type,
are stationed at the samne depot, and can be rented for identical shifts.

The vehicles will be used to service some number m of transportation
requests. The following data are associated with each request i =1,...,m:

396

pPick ydest pick-up and destination node
p(ufid‘), p(udest) pick-up and destination point
T(WP'*) = [t(vP™*), F(wP™*)] interval of feasible times to arrive at
pick-up point
(R) T(udest) := [t(vdest), F(vi=st)] interval of feasible times to arrive at
destination point

geervice () Picky yservice(qdest) gervice time at pick-up and destination
Ci set of feasible vehicle types
a; = (aleheir g3ent) no. of wheelchairs and seats needed

Figure 2.1: Graph of Berlin

There is a pick-up nade vf ick and n destination node v,‘-l‘“t, thet correspond

to the pick-up and delive_rz events of a request. The pick-up and destination
locations or points! p(vf"™) and p(v®s*) of a request are stored as nodes of
a graph of Berlin that is shown in Fig. 2.1. The 2,510 edges of this graph are
labelled with average travelling times and distances that we use to compute
shortest routes between its 828 nodes. In addition to this spatial information,
a request bears temporal data that is measured in units of 5 minutes. There
is an interval of feasible pick-up times T'(v} ik) that is computed accorcling
to Telebus specific rules. The rules try to find a compromise between punc-
tuel service and more degrees of freedom for the vehicle scheduling process.
Currently, most requests have T(vP') = t* (/%) 4 [-3, 3], where ¢*(vP'°¥)
is the time desired by the customer, i.e., the vehicle is allowed to arrive
3 » 5 = 15 minutes early or late. Similar, but more complex rules are usec to
determine a feasible time interval T'(vg®*) to arrive at the destination; here,
the shortest possible travelling time and a maximum detour time play a role.

IWe distinguish between nodes that belong to space-time networks and locations ar
points that correspond to geographical data.

397

Finally, some service time 50vice(yPick) gnq geervice(ydest) jg needed at the
pick-up and the destination point. The amount of assistance, the wheelchair,
and other factors determine what kinds of vehicles C; (Teletexi, 1-bus, or
2-bus) can or must be used, and the final load data o; gives the number of
wheelchair places and seats needed. Fig. 2.2 shows a typical distribution of
Teletaxi, 1-bus, and 2-bus demand.

requests

,.k-,
CEEERTR
SRR

Figure 2.2: Telebus request pattern for June 1995

Rules for feasible vehicle tours arise primarily from bus rental contracts
and labour regulations for bus drivers. Most renta! contracts are for shifts of
8% or 10% hours, although some vehicles can be rented by the hour to cover
demand peaks. The majority of renting is done on & daily basis on demand,
but vehicles can also be rented on a long term basis. Labour regulations
prescribe maximum driving hours and rules for obligatory breaks. The current
rule at Telebus is that a break of 30 minutes has to be taken between the
fourth and sixth hour of a shift. Two other rules state that a feasible vehicle
tour must start and end at the vehicle’s depot, and that it is not allowed to
wait or take a break with a customer “on board"”.

The objective of the VSP is to minimize operational costs, but the BZA.
seldom uses this criterion in its pure form. The reason is that the planned
schedule and the one that is reslly executed on the next day differ significantly
because of cancellations of requests, spontaneous requests, vehicle break-
cdowns, and other unpredictable events. The BZA must safeguard against
every day’s emergency situations and does so by preferring “safer” plans at
some extra cost. The main tool to do this is to introduce components intc
the objective that aim at schedules of a safer type; we will come back to this
point in the discussion of the set partitioning model.

Our solution approach for the VSP is based on the concept of a cluster
of requests. A cluster or, in BZA terminology, an order, consists of a set of
requests that are aclvantageously serviced simultaneously. It corresponds to
a maximal subtour such that the vehicle is never empty: the subtour starts
with an empty vehicle picking up a first customer, services the requests of

398

the cluster, and becomes empty for the first time when the last customer
leaves the vehicle at his/her destination. This results in “simultancous ser-
vice” of the requests in the cluster in the sense that, while one customer is
transported, at least one other person is picked up or transported to his/her
destination. Fig. 2.3 shows a number of clusters: collections, insertions, simple
and continued concatenations.

I collection with common destination IV concatenation
II insertion Vv continued concatenation
IIT collection with commaon pick-up

Figure 2.3: Telebus cluster types

Clusters can be used to decompose the vehicle scheduling process into two
phases: a clustering phase that combines requests into clusters and a subse-
quent chaining phase that builds tours as sequences of clusters. The flavour of
clustering is that of a local optimization to make use of larger vehicle capaci-
ties, while chaining must deal with constraints for the feasibility of complete
tours, such as depot locations, breaks, and shift lengths. The advantage of
this approach is that it gets easier to construct tours from a comparably
smaller number of orders in a non-overlapping way. The disadvantage is that
a hierarchical planning process will generally yield suboptimal solutions.

To use this approach, it makes sense to describe a cluster ¢ as follows:

Se = (v,..., 1) sequence of pick-up and destination nodes
Tpick ;= (gpick K] interval of feasible times to arrive at first pick-up
point

(C) Tdest .= [gdest 79 interval of feasible times to end service at last
destination point
te total time to service cluster completely
C, set of feasible vehicle types

The subtour corresponding ta a cluster is given by a sequence of pick-up and
de.stkination nodes S, that will be serviced in this order. More precisely, if 27 =
u]'° is a pick-up node, the vehicle will drive to the corresponding location

399

and pick-up the customers complete with service. If 17 = vt is a destination
node, the vehicle will go to the destination location and service the customer.
A cluster sequence S, must, of course, satisfy several constraints: the initial
node v must be a pick-up nede, the terminal node ' a destination node,
each node can appear at most once, each destination node must be preceded
by the pick-up node of the same request and vice versa, and the sequence
must describe simultaneous service, ie., the service of each request except
the first/last overlaps with the service of a succeeding/preceding request in
the sense that the customers share the vehicle. An important observation is
that the cluster sequence completely determines the operation of the vehicle:
since it is not allowed to wait with a customer “on board,” the vehicle either
drives to the next node or the crew provides service. This means that the
total time t. to service the cluster is constant and that the service of the
complete cluster can be shifted as a block over some feasible interval of time.
Thus, there is a maximal interval TPlk of feasible times to arrive at the first
pick-up node of the cluster and a corresponding interval of feasible end times,
and these have the property
b= Egcﬂt _ EEiCk - Z:lest _ ESiCk.

The sequence of serviced requests also determines the possible types of vehi-
cles C,: these depend on the most “demanding” vehicle type of the requests
and the maximum number of occupied wheelchair places and seats needed.

Velicle tours are the last structure that is needed, and just as & cluster
can be described as a sequence of request nodes, a tour k can be seen as a
sequence of clusters:

S = (c',...,) sequence of serviced clusters
TPick .= [ghick 2] interval of feasible times to start service of the
first cluster
(T) Toest .= [gdest 79 jnterval of feasible times to end service of the
last cluster
t total time to service tour completely
k vehicle

A tour k consists of a sequence of clusters S that are serviced in the given
order. To deal with depot locations, breaks, and shift lengths we also allow
for additional pull-in, break, and pull-cut clusters. Pull-in clusters will pre-
scribe a starting location and time of a tour, break clusters an obligatory
break between the fourth and sixth hour of service of a tour, and pull-out
clusters again model depot locations and maximum shift lengths. Pull-in and
pull-out clusters will fix the possible times to begin and end & tour, but we
nevertheless introduce the time windows T} ick and Tgest for later use in our
tour construction algorithm. Additional parameters give the total time to

service a tour, i.e., the shift length, and the vehicle.

400

What is a good way to do the clustering? In principle, one would like
to construct a set of clusters which will later result in the construction of a
good set of tours. We try to approximate this goal using secondary criteria
such as the travelling distance or itme within the clusters. This leads to the
clustering problem to construct & set of clusters, such that each request is
contained in exactly one cluster and some abjective, such as the sum of the
internal travelling distances, is minimal. Given a decision for a set of clusters,
the chaining problem can be stated in a similar wey. This time, we want to
construct a set of tours, such that each cluster is serviced by exactly one
tour, such that there are enough vehicles of the required types and groups,
and such that operational costs or a similar objective becomes minimal.

Both questions can be modeled as a set partitioning problem

min ¢T2 Az =1, z € {0,1}", (SPP)

where A € {0,1}™*" ig & (0/1-matrix and ¢ € R7 is a positive cost function.

In the clustering case, row i of the matrix A corresponds to request i,
and each column A.; of A to a feasible cluster: the entry aq; is equal to one
if cluster j services request i and zero; otherwise, the objective ¢; denotes,
for example, the internal travelling distance or time within the cluster. Then,
the feasible solutions z of the integer program (SPP) are in one-to-one corre-
spondence to sets S of clusters such that each request is contained in exactly
one cluster via the relation z; =1 <= j € S and the optimum solution z*
of (SPP) corresponds to the best such combination.

In the chaining cese, the rows correspond to the clusters selected in the
clustering step, the columns to tours, and the objective is some cost criterion
associated with a tour, for example, operation costs. The only additional point
to consider is that the model as stated does not respect vehicle availability.
The tour matrix A contains for each vehicle all possible tour-columns that
this vehicle can service, and it is possible that a solution of (SPP) will use a
vehicle more than once. To prevent this additional constraints are included
of the form

Z:nj§1 or Z:cj=1,

F€J (k) j€d{k)

where J(k) C {1,...,n} denotes the set of tours serviced by vehicle k. These
inequalities fit into the set partitioning model. They give rise to additional
rows that correspond to vehicles instead of requests (possibly introducing
additional columns as well, that correspond to slack variables).

A set partitioning model is well suited for the VSP, because it allows cor-
rect treatment of constraints and objectives that do not arise from individual
components of a tour, but from a tour as a whole. Break rules, for instance,
are observed by constructing only such tour-columns for the chaining SPP
that correspond to tours with feasible breaks. If operation of a vehicle at
night incurs additional costs, we can modify the objective accordingly. We

401

also can penalize “packed tours” that operate at capacity because delays are
mere likely and try to produce safer schedules at some additional cost. A
second advantage is that r correct tour matrix A already guarantees that all
feasibility constraints are satisfied such that the selection of the best set of
tours can be done in a second step on an abstract level. If the rules for feasible
tours change, the cluster or tour matrix changes, but a solver for set parti-
tioning problems will still be useful. This makes the approach particularly
useful to analyze different operating scenarios.

Our clustering and chaining approach to the VSP using set partitioning
can now be stated as follows:

o Clustering

(i} Cluster generation to construct all possible clusters and set up the
clustering SPP.

(if) Cluster selection to solve the clustering SPP to select a best set
of orders such that each request is contained in exactly one order.

o Chaining

(iif) Tour generation to construct a set of feasible tours and set up the
chaining SPP.

(iv) Tour selection to solve the chaining SPP and thus choose a best
set of tours.

The approach requires an iinplementation of three modules: a cluster gener-
ator, a tour generator, and a set partitioning solver. Our cluster generator is
based on complete enumeration. It turned out that there are usuelly about
100,000 to 250,000 legal clusters in a typical VSP that can be produced in
a couple of minutes. The corresponding set partitioning problems are of a
size that can be solved to near or proven optimality using branch-and-cut
algorithms and it is possible to do this in the Telebus case. The number
of possible tours in the chaining problem is, however, much larger, and we
can neither compute nor store all of them. We have nevertheless chosen to
use the same branch-and-cut algorithm as for the clustering problems in the
chaining instances, and we must thus restrict the set of considered tours to
a (small} subset of, say, 50,000 possible tours that we construct heuristically.
It turned out that the chaining SPPs are computationally much harder then
the clustering ones, and we cannot solve them to optimality. But our tour
optimization still yields significant savings in operational costs of about 10%
in comparison to what we can achieve with heuristic chaining methods.

Our set partitioning clustering and chaining approach is a static vari-
ant of the methods discussed in Cullen/Jarvis/Ratliff (1981), that solve a
sequence of dynamically generated set partitioning problems in both the
clustering and the chaining phase using column generation techniques, or
Ioachim/Desrosiers/Dumas/Solomon (1991), that use dynamic programming

402

techniques in a column generation algorithm for the clustering problem. An
overview of related techniques and pointers to the extensive literature on vehi-
cle routing can be found in the survey articles Desrochers/Desrosiers/Sounis
(1984) and Desrosiers/Dumas/Solomon/Soumis (1995) and in the aunotated
bibliography of Laporte (1997).

3 Cluster Generation

The aim of the cluster generation step is to enumerate all possible clusters. As
was pointed out in Sect. 2, we will ignore feasibility conditions for complete
tours like breaks, depot locations, and shift lengths for the moment, i.e.,
we ignore all information related to vehicle groups. Different vehicle types
(Teletaxi, small and large 1- and 2-bus), however, give rise to different possible
clusters. We can deal with this parameter by enumerating the clusters for each
of the five types separately. For ease of exposition, we can thus assume that
there is only one type of vehicle that can service all requests.

A way to enumerate all possible clusters in a systematic way is to consider
the operation of the vehicle in a cluster as the result of a sequence of decisions
to pick-up or deliver a next customer, or, in other words, to add a next node
to the cluster sequence. BEach time this is done, the vehicle must drive to
the corresponding node and pick-up or deliver the customer, before the next
decision can be taken.

The possible states of the vehicle can be recorded in terms of cluster sub-
sequences S = (v!,... ,v‘), where each node v? denotes a pick-up or delivery
node of some request. We adopt the convention that a vehicle in state S has
just serviced the last pick-up or delivery node »'. More information on the
vehicle can be derived from this basic state description. First, there is the set
of yet unserviced pick-up nodes

ick i ick ,
R(S) = {ug’lc < du? = Ufc Bt = ,Uélast}.

The customers of the unserviced requests are sitting in the car that has at
state S a total load of

o(8):= Y oa

‘Urh:keR(S)

Since it is forbidden to wait with a customer on board, the total time since
service of the sequence § began is independent of the precise starting time
and amounts to

l
t(S) — Zt('uj_l,‘uj) +tservice(,uj)’

i=1

403

where t(v77!,v7) denotes the time to drive from node v9~! to node vf and
where v’ := v! such that ¢(v9,v!') = 0. Depending on the time intervals as-
sociated with the nodes in 8, the service of the complete sequence S may be
shifted back or forth over a certain feasible time interval. This results in in-
tervals of feasible times TPi¢*(S)and T4e5t(S) to start service of the sequence
and to end service at the current last node »!. Since the total service time
(5) is a constant, these intervals have the same length and, in fact,

Tpick(S) + t(S) — Tde“(S).

We will discuss shortly how TPik(S) and 79°%¢(S) can be computed itera-
tively.

With this terminology, we can devise a simple algorithm to enumerate all
possible clusters. We start by setting S to an initiel state

ick
S = ().
Then:
R(S) = {vP'**} request 4 is not yet serviced
a(S) = a; customers and companions of request i are
in the car
$(S) = geervice(yPicky the total time spent to service the cluster was
‘ used to pick-up request i
Trick(8) = T(wPi%k) service of the cluster can start whenever 1 is

eligible for pick-up
Tdest(S) = T'(wP ieky 4+ t(vi’mk) service of the cluster ends in the same inter-
val shifted back the serviced time t(vP'™).

We cen now decide the next node to service and this decision will lead to
a transition to a new state. In general, a state transition from a state S to a
state S’ servicing an additional node v**! servicing request i ls as follows:

404

8= (v, ..., vHY) the new node v't! is added to
the cluster subsequence

e d+1 _ . pick
R(8") = (5)u {Lll_:ll} Tf vtil h U:'jm a request is serviced or there is
RS)\{v™7} o™ =1 another customer to be serviced
e d41 _ . pick
a(S’) = a(S) +ai Tf Ul+1 B U’Z ” customers and companions of re-
a(S) —a; iU = quest i enter/leave the car
t(S") = t(8) + t(v}, vttl) + toervice(yi+ly total time to service the cluster
goes up by time to drive from !
to v!*! and to service v!t!
Tde“(S’) = ((T(S) + t('ul, 'ul'*'l)) N T(’u“’l)) + tservica(,ut+l)
possible times to complete ser-
vice of vi+! are as follows: service
at v¢ ends in T'(.S), the vehicle ar-
rives at "1 in T(S) 4t (vt, vt +1),
but feasible times are in T'(v'*1),
time t%°Vice(y!+1) passes until
the request is serviced
Trick(g7y — Tdest (81 _ ¢(§) the time interval to start service
of the cluster is possibly reduced

We will denote this state transition by
§ =8 ot

Not all states that we can produce in this way are feasible or correspond
to a cluster. Conditions for a feasible state S for some vehicle k are

a(S) < Ay the load does not exceed the vehicle’s capacity
TPick(8) #@ all customers can be picked up in time

Tdest(8) £ @ all customers can be delivered in time

Other feasibility conditions are that a state S must contain a node only once
and that each destination node must be preceded by the corresponding pick-
up node and vice versa. A state that does not satisfy all of these conditions
is called infeasible. The state corresponds to a cluster ¢ when R(S) becomes
empty; such a state is called terminal. In this case, we can set
Se =8, TPcek.= prick(gy dest . pdestrg) and ¢ := ¢(9).

(The vehicle type was fixed at the beginning of this section by assumption.)

A simple algorithm to enumerate all possible clusters is to consider all
possible initial states and, starting from these, to do all possible state tran-
sitions recursively. The recursion stops when a terminal or infeasible state is
reached, the terminal states are returned.

405

| void dfs (state 8, digraph D) { vold cluster (digraph D=(V,A)) {
if (infeasible (8)) return; for all pick-up nodes v}'* gV
if (eliminated (8)) return; dfs (initial (vf"k). D),
if (texrminal (8)) output (5); }

// Bervice next raquest
for all transitions v*t! g yt(uk)
dts (8 «—u'*?, D);

Figure 3.1: Generic cluataer generation

Most state transitions, however, will immediately lead to infeasible states,
and some effort must be spent to filter these out. We do this using a transition
digraph D = (V, A), whose vertices are the pick-up and destination nodes.
There is an edge from node u to v if

(T(u) +t*°"1%8 (w) + 2w, v)) N T(v) # 6,

that is, if it is possible to arrive at u, service «, and arrive at v at a feasible
time. Since the dlestination time interval T9%5¢(S) of some state S with ter-
minal node v is always a subset of T'(v?) + t%*¥ie2(!), only the heads 4+ (v!)
of the arcs that go out from vt qualify as candidates for feasible transitions.

~Other states that must turn infeasible contain unserviced pick-up nodes
vP** such that the corresponding destination nodes can no longer be reached
in time. An easy criterion to detect this is

max T(v#*t) < minT(8) + t(«!, vd®sY),

that is, when it is impossible to arrive at the destination node of the unser-
viced request 1 in time even if we go there immediately. One can work out
more elaborate state elimination criteria, but for Telebus this one proved to
be efficient enough.

C-type pseudocade for our generic recursive procedure to enumerate all
clusters (for a fixed vehicle type) is given in Fig. 3.1. The procedure searches
in o depth first way starting from all possible initial states. digraph is a
data structure to store the transition digraph, and D=(V,A) is this digraph
as produced somewhere else, state is a data structure for cluster subse-
quences that contains the data items discussed in this section. infeasible,
eliminated, and terminal are boolean functions that check a state for in-
feasibility, whether it can be eliminated, or is terminal as described above.
initial is a function that returns an initia] state corresponding to a pick-up
node, output saves a cluster sequence to some medium.

Our procedure for cluster enumeration at Telebus is very simple: we do
not use a dynamic program, and our state space elimination criteria are

408

straightforward. There are two reasons why this algorithm is successful for the
Telebus instances. One is the ratio of service time, transportation time, and
maximum detour time at Telebus. Service of a request takes about 30 inin-
utes on average: 5 minutes pick-up service, 20 minutes driving, and another
5 minutes of service at the destination. Since a customer is not satisfied if
his transportation takes more than, say, 15 minutes longer to pick-up or drop
somebody else, it is often just not possible to service more than two requests
simultaneously. A second reason is that BZA rules do not accept all clusters
as produced by the above generic cluster generation routine. In fact, there is
a catalogue of “legal” clusters at Telebus, consisting of collections, insertions,
concatenations, and continued concatenations of a. maximum “depth” (cur-
rently at most 3). We use more restrictive derivatives of the generic routine to
produce the legal clusters and these are, of course, less than what the generic
routine would yield.

The cluster generator routines usually produce, depending on the re-
quests, the complete set of 100,000 to 250,000 legal clusters in a couple of
minutes. The resulting set partitioning problems are large scale, but compu-
tationally not difficult in the sense that one can find near or proven optimal
solutions in about the same time. Optimizing the internal travelling distance
of the vehicles within the clusters, one obtains a reduction of about 20% in
comparison to individual transportation, while the number of clusters is up
to 40% less than the number of requests. Fig. 3.2 illustrates these reductions.

1500
15,066 ke
Lo
(1.1}
Y Y o liigl gl (i i
Mo Tu We Th Fr_ _Sa Mo Tu We Th Fr Sa Su
B Requests B Clusters Requests 7] 2-bus [l-bus [Taxi
Clusters B 2-bus W 1-bus [J Taxi

Figure 3.2: Clustering requests of September 16-22,1998

407

4 Tour Generation

The aim of the tour generation step is to produce feasible vehicle tours as
sequences of clusters. The basic flavour is similar to cluster generation where
service nodes are replaced by complete clusters. But where clustering had
an. eye on local optimization and ignored tour feasibility conditions, vehicle
group information like depot locations, break rules, and shift lengths must be
considered in tour construction. Another difference is that while the service
of clusters cannot be interrupted, it is not only legal, but often advantageous
to wait between service of two clusters.

We deal with different vehicle groups by constructing the tours for vehicles
of each group scparately and will assume in the remeinder of this section that
we have fixed a depot location, the shift length, and the vehicle type similar to
what we did in cluster generation, We can then also assume that all clusters
can be serviced by the vehicles of the group under consideration.

Again analogous to cluster generation, our approach to chaining is to
build tours iteratively as sequences of clusters, but with an additional eye on
tour feasibility criterin, and represent the possible states of a vehicle in terms
of a tour subsequence of serviced clusters

§=(c,...,c);

the interpretation of state S is that the vehicle has just completed service of
the terminal cluster ¢

The main difference between clustering and chaining is the additional
consideration of driver breaks and shift lengths. Both criteria are in terms
of total elapsed time since the start of the tour: the shift length simply sets
an upper bound to this value, the break rule prescribes an obligatory break
of 30 minutes between the fourth and sixth hour of work. Our approach to
control the total time is simply to consider all possible times when a tour can
start. All possible times means in this case every quarter of an hour, because
15 minutes is the minimum accounting unit of the vehicle providers.

We can model the different possibilities of pull-in times tPUlin to start a
tour by means of a “pull-in” cluster cP4l" with

S epulin = (v;)’:ﬁ‘l‘m, ydest) pull-n cluster (starts and) ends at depot

Tf,.if.lf.,, = [tpullin gpullin) pyll-in time of tour
c;ﬁﬁﬂn = Tpick pull-in time of tour

T eputie = 0 no service

that represents the start of a vehicle tour and will be used to initialize the
cluster sequence of the tour. The pull-in cluster contains two service nodes
with service time zero, that point to the depot location. There is a unique
feasible pick-up time such that the pull-in cluster fixes the starting time of
a tour. An analogous pull-out cluster is supposed to terminate the tour. Its

408

service time intervals are chosen to model the shift length, i.e., for an 8% hour
shift we would have
TRick = Tdest . =Theh, +85%12 (1 hour = 12 # 5 minutes).

c [+

When the starting time P of the tour is fixed, breaks can be modelled
by a break cluster cPr®* with

S.=10 no pick-up and destination node

Thick, =tPullin 4 [4,5.5] x12 feasible time interval to start break

T‘Le,iﬁk = gpullln 4 [5.5,6] * 12 feasible time interval to end break
tebreak = 06 duration of break (6 * 5 = 30 minutes)

that has to be serviced by the tour. We adopt here the convention that an
empty cluster sequence results in the vehicle standing at its current location.
Our goal is to construct all cluster sequences that start at a fixed pull-in
cluster, contain a feasible break cluster, and end at the corresponding pull-
out cluster.

An algorithm for this must derive and update only a single data item
from a state S, the interval

Tdest (S)

of feasible times to end service of the last cluster in the tour subsequence,
and even here only the earliest such time %%t (S) is relevant, because one can
always wait arbitrarily long to service the next cluster.

The algorithm starts in a (fixed) initial pull-in state S = (cP!'™) with

Tdest() Tz_Lesltl;] [tpullin tpullin]
c u n =) .

We can now decide the next cluster to service, add this to the tour cluster

subsequence, and so on. In general, we will be in a state S = (e!,...,c!) and

decide to service a next cluster ¢!*+1. This results in a state transition to the

new state S’ with

St = (ct,...,c*t) ! is the new terminal cluster

Tdest(SI) — (Tdest(s) + [t(c‘, CH'I, oo]) N TgiCk +ig
feasible times to end service of cluster ¢!*! are as
follows: service of cluster ¢ ends in T4, t(c!, cM*1)

is needed to drive from ¢ to c¢!*!, one poss1b1e walits,
feasible times to start service of Ctt1 are T'}’f,, it

takes another ty+1 to service ¢,

where t(c!, c!*!) is the time needed to drive from the terminal node of ¢ to
the initial node of ¢!*!. We denote this state transition by

§' =8t

409

Feastbility conditions for o state are T9¢8¢(S) & § and that each cluster is
contained only once. A feasible state that contains the pull-in cluster under
consideration as the initial cluster, the carresponding break cluster cPresk,
and the terminal cluster cPullout ig called terminal.

The aim of tour generation is to enumerate all terminal states. A simple
algorithm to do this is to consider all possible initial pull-in states, to ex-
amine all feasible state transitions recursively, and to output all encountered
terminel states,

To msake this approach work we want to consider cnly transitions that
do not immediately lead to infeasible states because of incompatible service
times. A necessary condition for the existence of a feasible transition from
some cluster u to another cluster v is

(TS5 4 [t(u,v),00)) NTRIk £,

i.e., it is possible to service u, drive to the initial node of v, possibly wait,
and start service of v at a feasible time. We can store this set of possible
follow-on clusters in another transition digraph D = (V, A) that has an arc
from cluster « to v if this condition holds. Then, 4 (u) is the set of possible
follow-on clusters for a cluster . But different from the situation in cluster
generation, the number of possible follow-ons is very large: an hour in the
future every cluster is eligible!

Elimination criteria for states that cannot lead to o terminal state focus
on the break and pull-out cluster. If it is no longer possible to make & feasible
break because

min T9es¢(§) > ¢Pullin 4 g4 12
or pull-out is no longer possible because
min Tdost(S) + t(C!, Cpu}lOUt) > :Ecpulloue,

we can forget about state S.

The generic program for tour enumeration that results from these consid-
erations is so similar to the cluster generation routine that we refrain from
giving the pseudocode here.

As we have already pointed out, the combinatorial situation for tour gen-
eration differs from the clustering scenario becsuse the number of possible
follow-on clusters is much higher. In fact it is not possible to produce all
possible vehicle tours in this way, and the reeson is not that the routine
wouldn’t work fast enough, but that the output is simply so large that there
is no hope of even storing it. Also, the majority of tours obviously consist of
rather inefficient tours, such that an optimal plan will contain only a few of
them — which of course does not release us from trying to find “the right
ones”,

Since our set partitioning solver is a branch-and-cut code, we decided to
reduce the solution space by producing only a “promising” set of tours that

410

hopefully combine to a good vehicle schedule. Our tour generation routines
are modifications of the above generic procedure that produce tours along
heuristic strategies that we have developed in cooperation with the BZA. All
these heuristics work very fast and together they can also be used as a stand-
alone vehicle scheduling module (in fact, this was a first stage of installation
of the Telebus-computersystem at the BZA).

The z best neighbors heuristic tries to produce “good” tours by applying
the generic enumeration algorithm to a restricted transition digraph where
the outdegree of cach cluster, i.e., the number of follow-on clusters, has been
limited to some value (we use 2 = 2 and 2 = 3). The z surviving neighbors of
ench cluster are chosen with respect to local criteria, like “nearest clusters”.

The tour-by-tour greedy heuristic tries to work in a slightly more global
way by iteratively producing a feasible tour. It selects an initial pull-in state
and adds “best fitting” clusters (including the break) until the pull-out state
is reached. The serviced clusters are removed from the transition digraph, the
next tour is started, and so on, This heuristic tends to produce “good” tours
at the beginning and yields unsatisfactory results at the end when only far-out
or otherwise unattractive clusters are left. Tour-by-tour produces complete
vehicle schedules.

Time sweep also constructs a complete schedule by scanning the clusters
in some order. At every step, the next cluster is assigned to a best fitting
tour (that is eventually created), until all clusters are scheduled. We use
the natural orderings in time (from morning to evening and from evening
to morning), and a “peaks first” variant, that tries to smooth out peaks of
demand and link the resulting subtours.

A hybrid time sweep greedy heuristic performs a time sweep, but always
adds not only one, but some x best neighbors to a tour.

Of a similar flavaor is the assignment heuristic, that subdivides the time in-
terval into slots of half an hour, and constructs an assignment of the subtours
(possibly starting new ones) to the follow-on clusters of the next slot.

Another set of methods imitates the hand planning methods that were in
use at the BZA earlier. These methods partition the requests by hour and city
districts. Doing a time sweep from morning to evening, one looks at densities
of requests in districts and hours and tries to concentrate vehicles in or near
regions of high demand.

These methods can produce vehicle schedules that are already slgnifi-
cantly superior to comparable hand planning. We use them in this way to set
up chaining set partitioning problems with up to 100,000 columns. These IPs
turned out to be computationally much harder than the clustering instances.
A possible explanation is that clusters have a local nature and do not in-
teract much, while tours extend over much longer time periods and larger
service areas and thus exert more influence on each other. So we cannot solve
the chaining set partitioning problems to optimality, but we nevertheless ob-
tain significant reductions in operational costs of about 10% in comparison

it e o B A e e s+ E e T Tl et

411

to what we can achieve by only using the chaining heuristics. There is, of
course, evell mare potential for cost reductions if a better column generation
method is used.

5 Set Partitioning

The third module of our vehicle scheduling system for Telebus consists of
a branch-and-cut algorithm to solve large scale set partitioning problems.
High-level pseudocode for the algorithm is shown in Fig. 5.1. We will now
quickly state our branch-and-cut terminology and then discuss some aspects
of our implementation.

The algorithm uses a branch-and-bound enumeration scheme for solving
set partitioning problems that is based on considering subproblems

mine’z Az =1,1<z<u,ze{0,1}" (SPP(l,v))

of the original problem, where the lower and upper bounds ! and v are 0/1-
vectors. The original problem reads in this notation SPP(0,1), and a sub-
problem is formed by setting some of the upper bounds to zero, such that
the corresponding variables are fixed to zero, and some of the lower bounds
to one.

The scheme computes for each subproblem SPP(l,) a [ower and an upper
bound

z(lu) € z2*(Luw) < Z(Lu) = T, u)

on the optimal objective value z* (I, u): the lower bound is derived from the LP
relaxation QSPP(I, 1), the upper bound and a corresponding feasible solution
Z(l,u) are computed by e heuristic to be discussed later; when the heuristic
Fails, we have Z(l,u) = 400 and T(!,) is “undefined”.

Subproblems are useful to search the solution space of SPP(0,1) in a
divide-and-conquer way. The technique involves a rooted binary searchiree T,
whose nodes are subproblems SPP(l, u). The tree is initinlized to consist of
only the root node SPP(0, 1) and by setting z(0, 1} := —c0 and Z(0, 1) :=
+00, i.e., 1o lower and upper bounds for SPP(0, 1) are known in the begin-
ning. The algorithm works the root node by improving z(0, 1) and Z(0, 1) and
Labels the root as being processed. If this step results in 2(0, 1) = Z(0, 11}, the
problem is solved and T(0, 1) is the optimal solution. Otherwise, a branching
step is taken to subdivide the problem into two subproblems SPP(l3,%1) and
SPP{ly,uy), that become the sons of the root node. The subdivision must be
clone in such & way that the optimal solution for the roat problem is contained
in one of the two subproblems:

min{z*(ly,u1), 2" (l2, ug)} = 2*(0, 7).

412

Since the subproblems are restrictions of the father problem, their lower
bounds are at least as large and we can initialize them

z(l,uy) = z(lg, up) = 2(0,1)

with the father's lower bound. In general, the algorithm picks an unlabelled
node v, works, and labels it.

// initialization // cutting plane loop
read problem; set-up local LP relaxationm;
initial preprocessing; do {
sat up searchtree; solve LP relaxation;
if (integral) {
// branch-and-bound loop update Z(T);
vhila (3 unlabelled subproblem) { break;
selact unlabelled subproblem; }
label it; if (fathomed) break;
out pivoting;
// LP plunging heuristic preprocessing;
sBet-up local LP relaxation; in pivating;
do { separation;
golva LP relaxation; LP management;
if (integral) { }
update z(T); while (progress);
break; branch;
} }
set some fractional variables
to integar values; output Z(T);
do out pivoting;
preprocessing;
do in pivoting;
}
wvhile (!infeasibla);

Figure 5.1: A branch-and-cut algorithm.

Either the node can be solved, or a branching step is taken adding two new
unlabelled subproblems as the sons of v to the tree. To guarantee finiteness of
this process, the branching process is done in such a way that each subproblem
has at least one stricter bound than its father. This results in one more
variable being fixed, and after a finite number of steps all variables are fixed
and the subproblem is trivial to solve.

To save work, the algorithm maintains a global upper bound

Z(T) = Z(l,u),

= max F-4
SPP(l,u) unlaballed node of T

413

which is the value of the best solution encountered in any of T's subproblems.
The bound can be used to fathom subproblems that cannot contain a better
solution than the currently best know because

z(l,u) 2 Z(T);

such nodes can be labelled immediately and are not considered any further.

This standard branch-and-bound algerithm leaves a lot of freedom to im-
plement its generic subroutines. We will explain some aspects of our algorithm
in the following subsections.

5.1 Searchtree

The generic branch-and-bound algorithm does not specify the rule to choose
the next unlabelled node. We use the so-called best first rule, that chooses the
node with the smallest lower bound, i.e., the node that has most potential for
possible improvement of the global upper bound. The smallest lower bound
is also called the global lower bound

z(T) = min
SPP(l,u) unlabelled node in T

z(l,u).

The best first choice potentially raises the global lower bound and thus de-
creases the duality gap

which is a measure of the global progress of the algorithm.

Best first requires that we can jump from one problem in the searchtree to
any other. Our code uses a local setup procedure to do this, that simply gen-
erates the complete LP relaxation of a subproblem from scratch. This looks
like a time consuming operation at first sight, but the method has advantages
when additional cutting planes are used and redundant parts of the problem
are removed by preprocessing: redundant parts for one subproblem are not
necessarily redundant for others such that removed parts have to be restored,
and similar actions are necessary if different sets of cutting planes are used
in the subproblems. But removing and reinserting parts of a subproblem’s
description takes about the same time as & set-up from scratch.

The method to derive lower bounds z(/,u) for the subproblems of the
branch-and-bound tree is to solve the LP relaxation

minc’z Az =1,1<2z<u, (QSPP(l,u))

of the integer program (SPP) and a crucial point is that this need not be
done from scratch every time. Rather, the dual simplez method sllows using
the optimal solution of the father’s LP relaxation as a ducl feasible starting
basis for the LP relaxations of its sons and often only a few iterations are

414

needed to recover primal feasibility and thus optimality. To benefit from this
favorable behavior, we store this optimal basis for later use as starting basis.

A last point to specify is the branching rule that we use to subdivide a
subproblem into two smaller problems. We mainly use Ryan/Foster (1981)'s
rule and strong branching, see CPLEX (1995), that perform similarly in our
instances.

5.2 Cutting Planes and LP Management

The LP relaxations of the subproblems can be strengthened by adding vari-
ous types of globally valid cutting planes (see, e.g., Balas/Padberg (1976)).
We use clique inequalities and simultaneously lifted odd cycle inequalities of
the associated set packing polytope (see Padberg (1973)), and a class of
set covering inequalities that arise from an associated set packing problem
via “complementing” and “aggregating” variables (see Bornddrfer (1998)).
Clique inequalities are separated both heuristically and by an exact branch-
and-bound algorithm, cycle inequalities are separated using the exact polyno-
mial algorithm of Grétschel /Lovasz/Schrijver (1988) and a Chvdtal-Gomoroy
simultaneous lifting procedure, and the covering inequalities by heuristic pro-
cedures. Details of these methods are discussed in Borndorfer (1998).

Working on a subproblem means to solve and strengthen the LP relaxation
iteratively by adding violated cutting planes until the subproblem is either
solved, fathomed, or some other stopping criterion is satisfied and we branch.
In our implementation, we use the duality gap Z(!,u) —z(!, 1) as a measure of
progress of the cutting plane loop and continue as long as this gap is reduced
by 10% in every three successive iterations.

We also remove rows from a subproblem's LP relaxation, because the
time to solve LP relaxations of set partitioning problems increases with the
number of rows of the constraints matrix. Another important point in a
branch-and-cut framework is that more rows also tend to procuce more frac-
tional variables in the LP solution. To reduce running time and get & more
integral solution, it is important to remove redundant cutting planes from a
subproblem’s description and we do this heuristically when the slack exceeds
10~3. Each subproblem involves a different subset of all cutting planes that
we have found throughout the course of the algorithm and if we want to be
able to reproduce a subproblem exactly in the local set-up step, we must
maintain a global poo!l of all cutting planes. An advantage of this method is
that the computation on invocation of a subproblem becomes independent of
the history of the branch-and-bound algorithm.

The LPs themselves are solved using the CPLEX dual steepest edge sim-
plex algorithm, (see CPLEX (1995)).

415

5.3 Problem Reduction and Pivoting

Significant speed-ups for the solution of the LP relaxations of the subproblems
can be achieved by removing redundant parts like columns of variables that
are fixed to zero or one, or rows that intersect columns that are fixed to one.
Such fixings do not only arise from branching decislons, but also from the
logical structure of a set partitioning problem, and preprocessing is the use of
simple techniques to detect such redundancies. Preprocessing techniques for
set partitioning problems are know to be highly effective, and our code uses a
concept of repeated problem reduction that applies preprocessing techniques
after each individual LP solution. Repeated preprocessing of a similar type
has been used by Atamturk/Nemhauser/Savelsbergh (1995) for a Lagrangian
heuristic for SPPs, but the technique does not seem to have been tried in a
branch-and-cut framework before.

The preprocessing techniques that we use include ones from the literature,
like elimination of duplicate columns and rows, fixing of singletons, elimina-
tion of columns that are neighbors of a variable fixed to one, dominated rows,
and some new ones. These procedures must be applied several times, because
elimination of dominated rows can lead to more duplicate columns, ete. Our
preprocessor performs another pass as long as it detects reduncancies.

An important point in a dual simplex framework is the proper linking of
preprocessing and LP solving: preprocessing must not destroy dual feasibility
of the basis, because otherwise we would have to solve the LP essentially
from scratch. The consequence is that we are not allowed to remove fixed
basic variables and we cannot remove redundant nonbasic rows. The desire
to remove such redundant parts of the problem nevertheless leads to some
algorithmic consequences that we explain now.

Dual feasibility of the basis forces us to distinguish between fizings and
eliminations of variables. Fixing is the setting of bounds of variables, elimi-
nation involves a real removal of data from memory. Our preprocessor works
only with fixings, a subsequent elimination removes all fixed nonbasic vari-
ables and all detected redundant basic rows from memory. In this way, we
combine a maximum of problem reduction with maintenance of the basis’s
dual feasibility. Nevertheless, one would like to remove &ll detected redundan-
cles from memory, and this leads to the consideration of pivoting techniques.
The aim of these techniques is simply to perform a number of (degener-
ate) pivots to move from one optimal basis to an alternative one, such that
all fixed variables are nonbasic, all detected redundant rows are basic (have
their slack/artificial variable in the basis), and all of these redundancies can
be eliminated. A pivoting technique that is implemented in CPLEX is the
in pivoting of rows with zero dual multiplier into the basis. Unfortunately
it turns out that most of the (known) redundant rows have nonzero duals
and the reason is that fixed variables tend to proliferate in the basis: often
more than 30% of the basis consists of “junk” of this type, inhibiting removal
of the same number of rows. Fixed variables can also be pivoted out of the

416

basis using dual simplex steps, and we are grateful to Robert E. Bixby that
we had access to a version of CPLEX that provides this novel out pivoting
routine. Application of the procedure usually leads to a faster problem reduc-
tion, but out pivoting is not cheap: it requires one dual pivot for each fixed
variable. One thus has to compare the benefits of eliminating large numbers
of fixed variables by & consequently large number of pivots with the possibly
few simplex iterations required to solve the next LP without prior pivot-
ing. Eliminations, however, are inherited by all offspring problems and our
computational experience is that out pivoting is worth its price.

5.4 Primal Heuristics

We use the popular LP plunging heuristic to generate upper bounds and fea-
sible solutions for a subproblem in the searchtree. This heuristic solves the LP
relaxation of a subproblem, fixes some fractional variables to integer values,
and iterates, until the solution becomes integral or the problem infeasible.
QOur algorithm does not have a separate implementation of this routine, but
simply uses the main cutting plane loop in a “primeal mode” where separation
is turned off. This results in particular in iterative preprocessing after each
fixing decision, and this results in a fast reduction of the problem size. The
heuristic is nevertheless expensive: a sequence of LPs hes to be solved, and
the elimination of (the largest) parts of the associated data forces a subse-
quent second local setup of the subproblem to initiate the cutting plane loop.
For this reason we call the heuristic only once at the invocation of a new
subproblem.

6 Computational Results

In this section we report on computational experiences with our vehicle
scheduling system. Our aim is to discuss two complexes of questions. Our
first and main goal is to evaluate the usefulness of our set partitioning ap-
proach for the solution of VSPs at Telebus. Does clustering lead to savings
in internal travelling distance? Does tour optimization lead to better results
than our heuristics? Second, we want to look at the performance of our soft-
ware modules for Telebus instances. What is the size of the problems that we
can solve in reasonable time? What is the quality of the solutions?

To answer the second question, we ran our branch-and-cut algorithm on
a test set of Telebus clustering and chaining problems. It is not interesting to
provide performance data for the cluster and tour generators, because there is
no computational bottleneck in these procedures. Our branch-and-cut code is
implemented in C and consists of about 1 MB of source code in 140,000 lines,
the LP solver is the CPLEX Callable Library V4.0, CPLEX (1995). All test
runs were made on a Sun Ultra Sparc 1 Model 170E, the code was compiled

~p

417

with the Sun cc compiler using the switches ~fast ~x05, anc we used a time
limit of 7,200 CPU seconds. The format of the upcoming tables is as follows.
Column 1 gives the name of the problem, columns 2-4 contain the size of
the problem in terms of the number of rows, columns, and nonzeros. The
next three columns give the number of rows, columns, and nonzeros after the
initial preprocessing of the problem at the root node. Comparing columns 2-4
to columns 5-7 shows the performance of our preprocessing. The next three
columns give solution values. z reports the value of the global lower bound.
This number coincides with the global upper bound %, when the problems is
solved to proven optimality. Otherwise, we are left with a duality gap that
we report in percent of the global upper bound, i.e., the gap is computed as
(z—2)/Z. The following five columns give information about the performance
of the branch-and-cut algorithm. There are, from left to right, the number of
in and out pivots (Pvts), the number of cutting planes (Cuts), the number of
simplex iterations to solve the LPs (Itns), the number of LPs solved (LPs),
and the number of branch-and-bound nodes (B&B). The next five columns
show timings: the percentage of the total running time spent in problem
reduction (PP), pivoting (Pvts), separation (Cuts), LP solution {(LPs), and
the heuristic (Heu). The last column gives the total running time in CPU
seconds.

Our first set of test problems consists of 14 clustering problems for the
weeks of April 15-22, 1996, (v0415-v0421) and the already well-known week
September 16-22, 1996, (v1616-v1622) that we used to produce most of the
diagrams in this article. The first five problems of each data set correspond
to the weekdays Monday to Friday, the last two show a significantly smaller
number of rows (= requests) and belong to the weekend. The two test sets
were generated with different parameter settings of the cluster generator.

In April 1996, rules for legal clusters were very restrictive: continued con-
catenations and insertions were not allowed, maximum detour time was small,
ete. The cluster generator thus found only relatively few feasible clusters and
the clustering SPPs are small. Moreover, most of the legal clusters provide
simultaneous service to very few requests: the aversge number of nonzeros
per column is a little above two for four days of the week, the three larger in-
stances have a higher average because they contain many clusters for a couple
of large collective requests, but the remainder of the problem has the same
characteristic. This means that individual clusters do not interact much, the
problem sort of decomposes and becomes easy. And in fact the initial call to
the preprocessor is very successful, in particular the number of rows is re-
duced by more than 50%. This trend continues in the branch-and-cut phase:
all problems are solved to proven optimality in at most 3 minutes, and we
can see from the pivoting (Pvts) and preprocessing (PP) columns that the
problem is basically solved by iterative preprocessing. In particular, the high
number of out pivots shows that variables could be fixed in large numbers
and the sizes of the problems were reduced very fast.

Original Problem Preprocessed Solutions Branch-and-Cut Times in %

Name| Rows Cols NNEs|Rows Cols NNEs z z Gap Pvts Cuts Itns LPs B&B{PP Pvts Cuts LPs Heu|Total Time
v0415(1518 7684 20668] 598 4536 10988| 2429415 2429415 0.000 12774 70 755 36 gl 32 32 4 12 3 5.68
v0416| 1771 19020 58453 B12 11225 33991| 2725602 2725602 0.000(325151 1305 4677 1970 643(19 28 4 15 3 120.53
v0417| 1765 143317 531820 715 55769 206131/ 2611518 2611518 0.000 61309 294 1360 171 41135 21 8 10 3 174.07
v0418) 1765 B306 20748 742 4957 11177| 2845425 2845425 0.000 12203 81 941 25 7129 31 6 15 3 5.72
vD419| 1626 15709 b52B67| 650 7852 25052 2500326 2590326 0.000 4106 55 801 4 120 17 11 17 5 3.99
v0420(958 4099 10240] 417 2593 6124] 1696889 1696888 0.000 2538 47 511 4 1128 23 8 18 3 1.31
v0421| 952 1814 3119} 286 1134 1437] 1853951 1853951 0.000 2304 34 317 9 3132 18 4 18 3 0.72
v1616] 1439 67441 244727 1230 52926 199724 1006460 1006460 0.000] 1295605 11123 177084 4811 1605 6 30 8 41 8 4219.41
v1617| 1619 113655 432278| 1409 85457 336147| 1102357 1102586 0.021|15257970 16169 67051 15661 3571| 22 46 6 10 3 7200.61
v1618] 1603 146715 545337 1396 90973 349947 1152089 1154458 0.127] 2418105 5549 70533 1461 296(11 27 16 21 9 7222.28
v1619| 1612 105822 401097 1424 BHE96 336068| 1156072 1156338 0.023] 5774346 9040 124824 4203 8B80{ 15 40 15 12 10 7205.74
v1620f 1560 115729 444445| 1365 B9512 353689} 1140604 1140604 0.000| 7450098 20801 111073 19230 B161|19 20 14 11 2 5526.43
v1621] 938 24772 76971 BOT7 166B3 54208 825563 825563 0.000 12214 130 1415 13 5023 20 16 22 3 13.79
v1622] 859 13773 41656| 736 11055 35304| 793445 793445 (.000 13325 99 1147 14 327 29 10 18 3 9.68
v1616| 1439 67441 244727| 1230 52926 199724| 1006261 1006460 0.020 83501 B28 6193 70 11119 26 17 22 4 125.06
v1617) 1619 113655 432278] 1409 B5457 336147 1101822 1103036 0.110 48690 426 2972 20 4] 14 22 27 20 3 137.51
v1618{ 1603 146715 545337| 1396 90973 349947f 1152150 1156417 0.369 38494 436 2976 15 312 18 32 22 2 1306.19
v1619) 1612 105822 401097 1424 85696 336068; 1155336 1157851 0.217 48584 528 3228 15 3113 17 35 21 3 146.06
v1620| 1560 115729 444445 1365 B9512 353689 1140238 1142159 0.168 35910 377 2940 15 3112 20 24 29 3 133.33
v1621| 938 24772 76971| 807 16683 54208 B25563 825563 0.000 12214 130 1415 13 522 20 17 22 3 13.82
v1622| 859 13773 41656{ 736 11059 35304| 793445 793445 0.000 13325 99 1147 14 3|26 20 10 18 3 9.40

2129615 1375763 507093720954 952678 3625074[31105431 31117511 0.039]{32932766 67621 583360 47774 15258{ 16 34 12 1R [] 32405.34
t0415| 1518 7254 48867 870 3312 20592| 5163849 5590096 7.625) 1201268 2029 93675 724 167 5 11 14 17 53 T218.94
t0416(1771 9345 62703 974 3298 19692| 5BR2041 6130217 4.048| 1334745 2163 92796 641 144 5 11 14 17 54 7207.46
t0417| 1765 7894 54885| 897 3774 24186 5656886 B043157 6.392| 1814510 994 51439 316 7 6 17 6 11 60 7310.58
t0418| 1765 B676 66604| 999 4071 29368} 6185168 6550858 5.583] 629332 1066 67551 39S 87 3 9 12 21 56 7239.54
t0419{ 1626 9362 64745] 904 3287 19990(5689134 5916956 3.850(1891101 1235 57831 429 100 6 16 g 11 59 7251.57
0420} 958 4583 27781| 562 1872 10271| 4035528 4276444 5.610| 3989264 4440135766 1507 362(10 16 11 11 52 7208.44
t0421| 952 4016 24214| 557 1691 9015| 4113080 4354411 5.542| 4238861 4581 134126 1594 375 10 16 12 11 51 7213.44
t17168] 467 56865 249149] 467 11952 61110 122408 161636 24.269] 1230592 886 39379 296 69| 2 7 3 11 76 7212.95
t1717| 551 73885 325689 551 16428 B85108| 135539 184602 26.613| 1021307 592 27888 183 41 2 7 2 10 77 7331.93
tl718| 523 67796 305064| 523 16310 B3984| 127040 162992 22.058(982755 606 28048 203 44 2 6 3 10 7B T238.72
t1718] 556 72520 317391| 556 15846 83893| 130332 1B767725.760 992993 404 22565 169 37 2 6 2 8 80 T2B1.TT
t1720| 538 69134 310512 538 16195 84194) 127225 17275226.354| 899591 6RB 30360 187 38 2 6 3 11 77 7349.28
t1721] 357 36039 14R84B| 337 9043 44106| 104698 127424 17.835| 19656867 1521 69853 765 174 3 9 5 12 65 T243.42

13{13347 427369 2006452| B755 107079 575509|37482926 39850352 5.962(22082186 21605 851277 7413 1709] 4 11 7 12 65 94308.04

Table 6.1: Clustering and Chaining.

gly

419

In September 1996, rules were much more liberal: the clustering problems
contain, for example, continued concatenations of a depth of up to 6. Conse-
quently, there are many more possibilities for feasible clusters, the instances
are larger, contain about 4 NNEs per column, and there is more overlap. This
time, the initial preprocessing is still successful, but the number of rows is
reduced far less than in the first test set. And in fact, the instances turn out
to be harder in the sense that we cannot solve them to proven optimality as
fast: in fact, there are three instances that we cannot solve completely within
our time limit of 7,200 CPU seconds. Looking at the performance of the algo-
rithm, we see that pivoting and preprocessing need most of the time, but are
successful (remember that every pivot indicates a fixed variable). However,
even though we find a significant number of cutting planes, the quality of the
cuts does not prevent the algorithm from extensive branching, as can be seen
from the B&B column. All of this effort is, however, only spent in proving
the optimality of a solution of very good quality. To show this, we have run
the algorithm another time with a time limit of 2 minutes, and we see that
setisfactory solutions can be obtained in this period.

The clustering results are satisfactory in the sense that more or less in-
dependent of the parameter settings clusterings of proven optimality or with
very good quality guarantee can be computed in short time, considering the
complete solution space of all legal clusters.

We have used the clusterings that we computed in the previous test runs
to set up the corresponding chaining problems as well, The April instances
(t0415-t0421) contain duplicate rows for clustered requests and have thus the
same number of rows as the corresponding clustering instances, the optimiza-
tion criterion was operational costs, in the September instances (£1716-t1721)
only the bus clusters were chained, the optimization criterion was travelling
distance. Chaining rules were again more strict for April and the resulting
instances are not very large in terms of columns and NNEs. Locking at the
preprocessed instances (with the duplicate rows removed), however, the av-
erage number of NNEs is already larger, indicating a more complicated com-
binatorial structure. This can also be observed for the September instances:
here, our preprocessor cannot even remove a single row in any of the in-
stances. Although the preprocessed instances are not large, they turn out to
be computationally difficult. In contrast to what is usually reported about
real world set partitioning problems, there is a large duality gap between the
value of the LP relaxation and the best know integer solution. In fact, even
the duality gaps on termination of the algorithm as reported in column Gap
are significant, in the case of the September instances even large. Most of the
computational effort is spent in the heuristic, because the iterative prepro-
cessing doesn’t reduce the problems a lot in the early rounding steps. But
even if we subtract this time completely, the algorithm performs comparably
few Iterations: the number of LPs is rather small and the same holds for the
size of the searchtree. The reason for this is that the LP relaxations of the

420

chaining problems are harder to solve, as can be seen by looking at the av-
erage number of simplex iterations per LP (column Itns divided by colunin
LPs).

Heuristics Integer Programming

Day | Requests Clusters Tours Cluster Tours
No. || No. km DM DM [{ No. km DM

Mo 1439 i[1167 | 10909 || 66525 60831 || 1011 | 10248 || 55792
Tu 1619 || 1266 | 11870 (I 71450 67792 (| 1106 | 11291 || 62696
We 1603 || 12563 | 12701 || 74851 | 68166 || 1107 | 11813 || 61119
Th 1612 || 1276 | 12697 |} 74059 | 68271 (| 1121 | 11821 || 64863
Fr 1560 j| 1242 | 12630 || 71944 | 63345 | 1080 | 11757 || 61532
Sa 938 || 748 | 9413 || 4bB42| 47736 676| 8561 | 41638
Su 8h9 || 703 | 8850 || 42782 | 44486 | 620 8243 | 38803
Y 9630 || 7655 | 79070 || 447453 | 420627 (| 6721 | 73734 || 386443

Table 6.2: Comparing Vehicle Schedules.

Although the chaining step does not provide near optimal solutions, tour
optimization is still valuable. Table 6.2 shows the results of a comparison
of different vehicle scheduling methods for the week September 16-22, 1996.
Column 1 gives the day of the week and column 2 the number of requests.
The next three columns show the results of a heuristic vehicle scheduling
using our cluster and tour generators as a stand-alone optimization module.
There are, from left to right, the number of clusters obtained from a heuris-
tic clustering, the internal travelling distance within these clusters, and the
costs of a vehicle schedule based on this clustering. Skipping column 6 for the
moment, we can compare these numbers with the results that we obtained
using the set partitioning approach. Column 7 gives the number of clusters
obtained in this way, column 8 the corresponding internal travelling distance,
and the last column the costs of the vehicle schedule that was obtained by
chaining the optimal set of clusters and solving the resulting chaining SPP
approximately. Column 6 that we just left out gives the costs of a vehi-
cle schedule that was constructed heuristically from the optimal clustering.
Roughly speaking, these numbers show that an optimal clustering reduces the
number of requests about 10% more than what we can achieve heuristically.
Heuristic chaining based on optimized clusters results in vehicle schedules
that are about 5,000 DM per day cheaper than a pure heuristic approach,
while chaining optimization can save another 5,000 DM per day.

421

7 Summary

In this paper we have presented a set partitioning approach to vehicle schedul-
ing in & dial-a-ride system for handicapped people. The results show that it
is possible to solve vehicle scheduling problems for systems of this size in a
satisfactory way. In the Telebus case, the use of modern computer technology
and mathematical programming techniques resulted in improvements in ser-
vice quality and simultaneous significant cost reductions. We think that such
results can lead to a renewed interest in dial-a-ride systems for use not only
as & specinl purpose system for handicapped people, but as a component of
the public transport to service areas or times of low demand.

References

Atamturk, A./Nemhauser, G.L. /Savelsbergh, M.W.P. (1995): A
combined lagrangian, linear programming and implication heuristic for
large-scale set partitioning problems. Tech. Rep. LEC - 95-07, Georgie
Inst. of Tech.

Balas, E. / Padberg, M. (1976): Sct partitioning: a survey. SIAM Rev.,
18, 710 - T60.

Ball, M.O. / Magnanti, T.L. / Monma, C.L. / Nemhauser, G.L. (eds.)
(1995): Netwark Routing, Vol. 8 of Handbooks in Operations Research
and Management Science. (Elsevier Sci. B.V.) Amsterdam.

Borndérfer, R. (1998): Aspects of set packing, partitioning, and covering.
PhD thesis, Tech. Univ. Berlin.

Borndodrfer, R./Grdtschel, M. /Herzog, W./Klostermeier,
F./Konsek, W./Kiittner, C. (1996): Kiirzen muf nicht
Kahlschlag heiflen — Das DBeispiel Telebus-Behindertenfahrdienst

Berlin. Preprint SC 96-41?, (Konrad-Zuse-Zentrum) Berlin.

CPLEX (1995): Using the CPLEX Callable Library?. CPLEX Optimizs-
tion, Inc., Suite 279, 930 Tahoe Bivd., Bldg 802, Incline Village, NV
89451, USA.

Cullen, F. / Jarvis, J. / Ratliff, H. (1981): Set partitioning based heuris-
tics for interactive routing. in: Networks 11, 125 - 143.

Dell’Amico, M., / Maffioli, F. / Martello, S. (eds.) (1997): Annotated
bibliographies in combinatorial optimization. (John Wiley & Sons Ltd)
Chichester.

1Avail, at URL http://www.zib.de/ZIBbib/Publicationa/
2Inf. avail. at URL http://www.cplex.com

http://www.zib.de/ZIBbib/Publications/
http://www.ilog.com/products/cplex/

422

Desrochers, M. / Desrosiers, J. / Soumis, F. (1984): Routing with time
windows by column generation. in: Networks 14, 545 - 565.

Desrosiers, J./Dumas, Y./Solomon, M.M./Soumis, F. (1995):
Time constrained routing and scheduling. in Ball / Magnanti/
Monma / Nemhauser (1995), Chap. 2, 35 - 139.

Grotschel, M. / Lovéasz, L. / Schrijver, A. (1988): Geometric algorithms
and combinatorial optimization. (Springer Verlag) Berlin.

Ioachim, I. / Desrosiers, J. / Dumas, Y. / Solomon, M.M. (1991): A
request clustering algorithm in door-to-door transportation. in: Tecl.
Rep. G-91-50, Ecole des Hautes Etudes Commerciales de Montréal,
Cahiers du GERAD.

Klostermeier, F. / Kiittner, C. (1993): Kostengiinstige Disposition vou
Telebussen. Master's thesis, Tech. Univ. Berlin.

Laporte, G. (1997): Vehicle Routing. in: Dell’Amico/Maffioli/Martello
(1997), Chap. 14, 223 - 240.

Padberg, M.W. (1973): On the facial structure of set packing polyhedra.
Math. Prog. 5, 199 - 215.

Ryan, D.M. / Foster, B.A. (1981): An integer programming approach to
scheduling. in: Wren (1981), 269 - 280.

Wren, A. (ed.) (1981): Computer Scheduling of Public Transport: Urban
Passenger Vehicle and Crew Scheduling. (North-Holland) Amsterdam.

