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A Path-Based Model for Line Planning

in Public Transport∗

Ralf Borndörfer Martin Grötschel Marc E. Pfetsch

Abstract

The line planning problem is one of the fundamental problems in strate-
gic planning of public and rail transport. It consists in finding lines
and corresponding frequencies in a transport network such that a given
travel demand can be satisfied. There are (at least) two objectives. The
transport company wishes to minimize operating costs, the passengers
want to minimize travel times. We propose a new multi-commodity
flow model for line planning. Its main features, in comparison to ex-
isting models, are that the passenger paths can be freely routed and
that the lines are generated dynamically. We discuss properties of this
model and investigate its complexity. Results with data for the city of
Potsdam, Germany, are reported.

1 Introduction

The strategic planning process in public and rail transport is usually divided
into consecutive steps of network design, line planning, and timetabling.
Operations research methods can support the planning decisions in each
of these steps, see for instance the survey articles of Odoni, Rousseau, and
Wilson [18] and of Bussieck, Winter, and Zimmermann [6].

This article is about the line planning problem (LPP) in public transport.
The problem is to design line routes and their frequencies in a given street or
track network such that a given transportation volume, given by a so-called
origin-destination matrix (OD-matrix), can be satisfied. The frequency of a
line is supposed to indicate a basic timetable period and controls the lines’
transportation capacity. There are two competing objectives: on the one
hand to minimize the operating costs of lines and on the other hand to
minimize user discomfort. User discomfort is usually measured by the total
passenger traveling time or the number of transfers during the ride, or both.

∗Supported by the DFG Research Center Matheon“Mathematics for key technologies”
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14195 Berlin, Germany; Email: {borndoerfer, groetschel, pfetsch}@zib.de
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The recent literature on the LPP mainly deals with railway networks.
One common assumption is the so-called system split, which fixes the travel-
ing paths of the passengers before the lines are known. A second common
assumption is that an optimal line plan can be chosen from a (small) pre-
computed set of lines. Third, maximization of direct travelers, i.e., travelers
without transfers, is sometimes considered as the objective. In such an ap-
proach, transfer waiting times do not play a role.

This article proposes a new multi-commodity flow model for the LPP.
The model minimizes a combination of total passenger traveling time and
operating costs. It generates lines dynamically, handles frequencies implic-
itly by means of continuous frequency variables, and allows passengers to
change their routes according to the computed line system; in particular,
we do not assume a system split. These properties aim at line planning sce-
narios in public transport, where we see less justification for a system split
and fewer restrictions in line design than one seems to have in railway line
planning.

This paper is organized as follows. Section 2 gives an overview of the lit-
erature on the LPP. Section 3 introduces and discusses our model. Section 4
investigates aspects of a column generation solution approach for the LP re-
laxation of the model. We show that the pricing problem for the passenger
variables is a shortest path problem, while the pricing problem for the lines
turns out to be an NP-hard longest path problem. However, if only lines
of logarithmic length with respect to the number of nodes are considered,
the pricing problem can be solved in polynomial time. In Section 5, compu-
tational results of an implementation on a practical problem for the city of
Potsdam, Germany, are reported.

The goal of this article is to show that such an extended model is
tractable and can be used to optimize the line plan of a medium sized town.

2 Related Work

This section provides a short overview of the literature for the line planning
problem. More information can be found in the survey article of Ceder and
Israeli [7], which covers the literature up to the beginning of the 1990ies; see
also Odoni, Rousseau, and Wilson [18] and Bussieck, Winter, and Zimmer-
mann [6].

The first approaches to the line planning problem had the idea to assem-
ble lines from shorter pieces in an iterative (and often interactive) process.
An early example is the so-called skeleton method described by Silman,
Barzily, and Passy [21], that chooses the endpoints of a route and several
intermediate nodes which are then joined by shortest paths with respect to
length or traveling time; for a variation see Dubois, Bel, and Llibre [12].
In a similar way, Sonntag [22] and Pape, Reinecke, and Reinecke [19] con-
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structed lines by adjoining small pieces of streets/tracks in order to maximize
the number of direct travelers.

Another branch of the literature considers two-step approaches that pre-
compute some set of lines in a first phase and choose a line plan from this
set in a second phase. For example, Wilson [8] described an enumeration
method to generate lines whose length is within a certain factor from the
length of the shortest path, while Mandl [17] proposed a local search strategy
to optimize over such a set. Ceder and Israeli [7, 16] introduced a quadratic
set covering approach.

An important line of developments is based on the concept of the so-
called system split. Starting point is a classification of the transportation sys-
tem into levels of different speed, as common in railway systems. Assuming
that travelers are likely to change to fast levels as early and leave them as late
as possible, the passengers are distributed onto several paths in the system,
using Kirchhoff-like rules at the transit points, before any lines are known.
Note that this fixes, in particular, the passenger flow on each individual link
in the network. The system split was promoted by Bouma and Oltrogge [2],
who used it to develop a branch-and-bound based software system for the
planning and analysis of the line system of the Dutch railway network.

Recently, advanced integer programming techniques have been applied
to the line planning problem. Bussieck, Kreuzer, and Zimmermann [4] (see
also Bussieck [3]) and Claessens, van Dijk, and Zwaneveld [9] both propose
cut-and-branch approaches to select lines from a previously generated set of
potential lines and report computations on real world railway data. Both
articles deal with homogeneous transport systems, which can be assumed
after a system-split is performed as a preprocessing step. Bussieck, Lindner,
and Lübbecke [5] extend this work by incorporating nonlinear components
into the model. Goossens, van Hoesel, and Kroon [14, 15] show that practical
railway problems can be solved within reasonable quality and time by a
branch-and-cut approach, even for the simultaneous optimization of several
transportation systems.

3 Line Planning Model

We typeset vectors in bold face, scalars in normal face. If v ∈ � J is a
real valued vector and I a subset of J , we denote by v(I) the sum over all
components of v indexed by I, i.e., v(I) :=

∑

i∈I vi.
For the line planning problem (LPP) we are given an undirected multi-

graph G = (V,E) = (V,E1∪̇ . . . ∪̇Ek), a number k of transportation modes
(bus, tram, subway, etc.), terminal sets T1, . . . ,Tk ⊆ V , operating costs
c1 ∈ � E1

+ , . . . , ck ∈ � Ek

+ on the edges, fixed costs C1, . . . , Ck ∈ � +, vehicle
capacities κ1, . . . , κk ∈ � + for each mode, and edge capacities λ ∈ � E

+.
Denote by Gi = (V,Ei) the subgraph of G corresponding to mode i.
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A line of mode i is a path in Gi connecting two (different) terminals
of Ti. Note that paths are always simple, i.e., the repetition of nodes is not
allowed. Let c` :=

∑

e∈` ci
e be the operating cost of line ` of mode i, C` := Ci

be its fixed cost, and κ` := κi be its vehicle capacity. Let L be the set of
all lines. Furthermore, Le :=

⋃{` ∈ L : e ∈ `} is the set of lines that use
edge e ∈ E.

The problem formulation involves a (not necessarily symmetric) origin-
destination matrix (OD-matrix) (dst) ∈ � V ×V

+ of travel demands, i.e., dst

is the amount of passengers that want to travel from node s to t. Let
D := {(s, t) ∈ V × V : dst > 0} be the set of all OD-pairs.

We consider a directed passenger route graph (V,A) derived from G =
(V,E) by replacing each edge e ∈ E with two antiparallel arcs a(e) and a(e).
Let e(a) ∈ E be the undirected edge corresponding to a ∈ A. For simplicity
of notation, we denote this digraph also by G = (V,A). We are given
traveling times τa ∈ � + for every arc a ∈ A. For an OD-pair (s, t) ∈ D,
an (s, t)-passenger path is a directed path in (V,A) from s to t. Let Pst be
the set of all (s, t)-passenger paths, P :=

⋃{p ∈ Pst : (s, t) ∈ D} the set of
all passenger paths, and Pa :=

⋃{p ∈ P : a ∈ p} the set of all passenger
paths that use arc a. The traveling time of a passenger path p is defined as
τp :=

∑

a∈p τa.
With this notation, the line planning problem can be modeled using

three kinds of variables:

yp ∈ �
+: the flow of passengers traveling from s to t on path p ∈ Pst,

x` ∈ {0, 1}: a decision variable for using line ` ∈ L,
f` ∈

�
+: frequency of line ` ∈ L.

The model now reads:

(LPP) min τTy + CTx + cTf

y(Pst) = dst ∀ (s, t) ∈ D (i)

y(Pa) −
∑

`:e(a)∈`

κ`f` ≤ 0 ∀ a ∈ A (ii)

f(Le) ≤ λe ∀ e ∈ E (iii)
f ≤ Fx (iv)
x` ∈ {0, 1} ∀ ` ∈ L (v)
f` ≥ 0 ∀ ` ∈ L (vi)
yp ≥ 0 ∀ p ∈ P. (vii)

The passenger flow constraints (i) and the nonnegativity constraints (vii)
model a multi-commodity flow problem for the passenger flow, where the
commodities correspond to the OD-pairs (s, t) ∈ D. This part guarantees
that the demand is satisfied. The capacity constraints (ii) link the passen-
ger paths with the line paths to ensure sufficient transportation capacities
on each arc. The frequency constraints (iii) bound the total frequency of
lines using each edge. Inequalities (iv) link the frequency with the decision
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variables for the use of lines; they guarantee that the frequency of a line
is 0 whenever it is not used. Here, F is an upper bound on the frequency
of a line; for technical reasons, we assume that F ≥ λe for all e ∈ E, see
Section 4 for more information.

3.1 Discussion of the Model

Let us point out some properties of the model before we investigate its
complexity.

Objectives: The objective of the model has two competing parts, namely,
to minimize costs CTx + cTf and to minimize total passenger traveling
time τ Ty. Here, CTx is the fixed cost for setting up lines and cTf is the
variable cost for operating these lines at frequencies f . The model allows to
adjust the relative importance of one part over the other by an appropriate
scaling of the respective objective coefficients.

OD-Matrices: Each entry in an OD-matrix gives the number of passengers
that want to travel from one point in the network to another point within
a fixed time horizon. It is well known that such data have certain defi-
ciencies. For instance, OD-matrices depend on the geometric discretization
used, they are highly aggregated, they give only a snapshot type of view, it
is often questionable how well the entries represent the real situation, and
they should only be used when the transportation demand is fixed. However,
OD-matrices currently are industry standard for estimating transportation
demand. It is already quite an art and rather costly to assemble this data
and there is currently no alternative in sight.

Time horizon: In the LPP, the time horizon comes into play implicitly via
the OD-matrix. Usually, such data are aggregated over one day, but it is
similarly appropriate to aggregate, for instance, over the rush hours. In fact,
the asymmetry of demands in rush hours was one of the reasons to consider
directed passenger paths.

Passenger Routes: Since the traveling times τ are nonnegative, we can
assume passenger routes to be (simple) paths.

Our model does not fix passenger paths according to a system split,
but allows to freely route passengers in the line network. This is targeted
at local public transport systems, where, in our opinion, people determine
their traveling paths according to the line system and not only according
to the network topology. To our knowledge, such routings have not been
considered in the context of line planning before.

Note that the collection of passenger paths minimizes the total traveling
times τTy in the sense of a system optimum. In this case, with a linear
objective function and capacities, the system optimum is also a user equilib-
rium, namely the so-called Beckmann user equilibrium. See Correa, Schulz,
and Stier Moses [10] for more information. We do, however, not address
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the question why passengers should choose this equilibrium out of several
possible equilibria that can arise in routing with capacities.

The routing in our model allows for passengers paths of arbitrary lengths,
which may force some passengers to long detours. We remark that this
problem could be handled by introducing some type of resource constraints.
However, this would turn the pricing problem for the passenger paths into
an NP-hard resource constrained shortest path problem; see Section 4.2.
Note that such an approach models a range of path lengths with respect
to the underlying network, not with respect to the computed line system,
which is what one would really like to achieve.

Line Routes: The literature generally takes line routes as (simple) bidi-
rected paths, and we do the same in this article. In fact, a restriction forcing
some sort of simplicity is necessary in order to prevent repetitions around
cycles; see Section 4.3. As a slight generalization of the concept of simplic-
ity, one could investigate the case where one assumes that every line route
is bounded in length and “almost” simple, i.e., no node is repeated within a
given (fixed) interval.

In principle, it is easy to incorporate additional constraints on the for-
mation of individual lines, as well as constraints on sets of lines, e.g., bounds
on the number of edges in a line, or that the length of line should not deviate
too much from a shortest path between its endpoints. Such constraints are
important in practice.

Transfers: Transfers between lines are currently ignored in our model,
because constraints (iii) only control the total capacity on edges and not
the assignment of passengers to lines. The problem here are not transfers
between different modes, which can be handled by linking the mode networks
Gi with appropriate transfer edges, weighted by estimated transfer times.
A similar trick could in principle be used for transfers between lines of the
same mode, using an appropriate expansion of the graph. However, this
greatly increases the complexity of the model, and it introduces degeneracy;
it is unclear whether such a model remains tractable for practical data.

Frequencies: Frequencies indicate the (approximate) number of times ve-
hicles are employed to serve the demand over the time horizon. In a real
world line plan, frequencies have to produce a regular timetable and hence
are not allowed to take arbitrary fractional values. Our model, however,
treats frequencies as continuous values. This is a simplification. We could
have forced our model to accept only a finite number of frequencies by enu-
merating lines with fixed frequencies, in a similar way as Claessens, van
Dijk, and Zwaneveld [9] and Goossens, van Hoesel, and Kroon [14, 15]; but
this would greatly increase the complexity of our model. However, as the
frequencies are mainly used to adjust line capacities, we do (at present)
not care so much about “nice” frequencies and view the fractional values as
approximations or clues to “sensible” values.
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4 LP Relaxation

The LP relaxation of (LPP) can be simplified by eliminating the x-variables.
In fact, since (LPP) minimizes over nonnegative costs, one can assume
w.l.o.g. that the inequalities (iv) are satisfied with equality, i.e., there is an
optimal LP solution such that Fx` = f` ⇔ x` = f`/F for all lines `. Elimi-
nating x from the system using these equations and setting γ` = C`/F + c`,
we arrive at the following equivalent, but simpler, LP:

(LP) min τ Ty + γTf

y(Pst) = dst ∀ (s, t) ∈ D (i)

y(Pa) −
∑

`:e(a)∈`

κ`f` ≤ 0 ∀ a ∈ A (ii)

f(Le) ≤ λe ∀ e ∈ E (iii)
f` ≥ 0 ∀ ` ∈ L (iv)
yp ≥ 0 ∀ p ∈ P. (v)

Since F ≥ λe, the inequalities f` ≤ F remaining after the elimination are
dominated by inequalities (iii) and can be omitted. Hence, (LP) contains
only a polynomial number of inequalities (apart from the nonnegativity con-
straints (iv) and (v)).

We aim at solving (LP) with a column generation approach and therefore
investigate the corresponding pricing problems. These pricing problems are
studied in terms of the dual of (LP). Denote the variables of the dual as
follows: π = (πst) ∈ � D (flow constraints (i)), µ = (µa) ∈ � A (capacity
constraints (ii)), and η ∈ � E (frequency constraints (iii)). The dual of (LP)
is:

(DLP) max dTπ − λTη

πst − µ(p) ≤ τp ∀ p ∈ Pst, (s, t) ∈ D
κ` µ(`) − η(`) ≤ γ` ∀ ` ∈ L

µ, η ≥ 0,

where
µ(`) =

∑

e∈`

(

µa(e) + µa(e)

)

.

It will turn out that the pricing problem for the line variables f` is a
longest path problem; the pricing problem for the passenger variables yp,
however, is a shortest path problem.

4.1 Complexity of the LP Relaxation

Proposition 4.1. The computation of the optimal value of (LP) is NP-hard
in the strong sense, even for planar graphs.
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Figure 1: Example for the node splitting in the proof of Proposition 4.1

Proof. We reduce the Hamiltonian path problem, which is strongly NP-
complete even for planar graphs [13], to the LPP. Let (H, s, t) be an instance
of the Hamiltonian path problem, i.e., H = (V, E) is a graph and s and t
are two distinct nodes of H.

For the reduction, we are going to derive an appropriate instance of (LP).
The underlying network is formed by a graph H ′ = (V ′, E′), which arises
from H by splitting each node v into three copies v1, v2, and v3. For each
node v ∈ V , we add edges {v1, v2} and {v2, v3} to E′ and for each edge {u, v}
the edges {u1, v3} and {u3, v1}, see Figure 1. Our instance of (LP) contains
just a single mode with only two terminals s1 and t3 such that every line
must start at s1 and end at t3. The demands are dv1v2

= 1 (v ∈ V ) and 0
otherwise, and the capacity of every line is 1. For every e ∈ E, we set λe to
some high value (e.g., to |V |). The cost of all edges is set to 0, except for
the edges in δ(s1), for which the costs are set to 1. The traveling times are
set to 0 everywhere. It follows that the value of a solution to (LP) is the
sum of the frequencies of all lines.

Assume that p = (s, v1, . . . , vk, t) (for v1, . . . , vk ∈ V ) is an (s, t)-Hamil-
tonian path in H. Then p′ = (s1, s2, s3, v

1
1 , v

1
2 , v1

3 , . . . , v
k
1 , vk

2 , vk
3 , t1, t2, t3) is

an (s1, t3)-Hamiltonian path in H ′, which gives rise to an optimal solution
of (LP). Namely, we can take p′ as the route of a single line with frequency 1
and route the demands dv1v2

= 1 for every v ∈ V on this line directly from v1

to v2. As the frequency of p′ is 1, the objective value of this solution is also 1.
On the other hand, every solution to (LP) must have value at least one, as
every line has to pass an edge of δ(s1) and the sum of the frequencies of
lines visiting an arbitrary edge of type {v1, v2}, for v ∈ V , is at least 1. This
proves that (LP) has a solution of value 1 if (H, s, t) contains a Hamiltonian
path.

For the converse, assume that there exists a solution to (LP) of value 1,
for which we ignore lines with frequency 0. We know that every edge {v1, v2}
(v ∈ V ) is covered by at least one line of the solution. If every line contains
all edges {v1, v2} (v ∈ V ), each such line gives rise to a Hamiltonian path
(since the line paths are simple) and we are done. Otherwise, there must be
an edge e = {v1, v2} (v ∈ V ) which is not covered by all of the lines. By the
capacity constraints (ii), the sum of the frequencies of the lines covering e
is at least 1. However, the edges in δ(s1) are covered by the lines covering
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edge e plus at least one more line of nonzero frequency. Hence, the total
sum of all frequencies is larger than one, which is a contradiction to the
assumption that the solution has value 1.

This shows that there exists an (s, t)-Hamiltonian path in H if and only
if the value of (LP) with respect to H ′ is 1.

4.2 Pricing of the Passenger Variables

The reduced cost τ p for variable yp for p ∈ Pst, (s, t) ∈ D, is

τp = τp − πst + µ(p) = τp − πst +
∑

a∈p

µa = −πst +
∑

a∈p

(µa + τa).

The pricing problem for the y-variables is to find a path p such that τ p < 0 or
to conclude that no such path exists. This can easily be done in polynomial
time as follows. For all (s, t) ∈ D, we search for a shortest (s, t)-path with
respect to the nonnegative weights (µa+τa) on the arcs; we can, for instance,
use Dijkstra’s algorithm. If the length of this path is less than πst, then yp

is a candidate variable to be added to the LP, otherwise we proved that no
such path exists (for the pair (s, t)). Note that each passenger path can
assumed to be simple: just remove cycles of length 0 – or trust Dijkstra’s
algorithm, which produces only simple paths.

4.3 Pricing of the Line Variables

The pricing problem for line variables f` is more complicated. The reduced
cost γ` for a variable f` is

γ` = γ` − κ` µ(`) + η(`) = γ` −
∑

e∈`

(

κ` (µa(e) + µa(e)) − ηe

)

.

The corresponding pricing problem consists in finding a (simple) path ` of
mode i such that

0 > γ` = γ` −
∑

e∈`

(

κ` (µa(e) + µa(e)) − ηe

)

= C`/F + c` −
∑

e∈`

(

κ` (µa(e) + µa(e)) − ηe

)

= Ci/F +
∑

e∈` ci
e −

∑

e∈`

(

κi (µa(e) + µa(e)) − ηe

)

= Ci/F +
∑

e∈`

(

ci
e − κi (µa(e) + µa(e)) + ηe

)

⇔ ∑

e∈`(κi (µa(e) + µa(e)) − ηe − ci
e) > Ci/F.

This problem turns out to be a maximum weighted path problem, since the
weights (κi (µa(e)+µa(e))−ηe−ci

e) are not restricted in sign. Hence, the pric-
ing problem for the line variables is NP-hard (even for planar graphs) [13].

This scenario, however, may be a little too pessimistic. In fact, better
algorithmic properties can be achieved when assuming bounds on the lengths
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of the lines, i.e., the number of edges used in a line. Let us start with two
arguments why this case has some relevance.

The first argument is based on an idea of a transportation network as a
planar graph, probably of high connectivity. Suppose this network occupies
a square, in which n nodes are evenly distributed. A typical line starts in
the outer regions of the network, passes through the center, and ends in
another outer region; we would expect such a line to be of length O(

√
n).

Real networks, however, are not only (more or less) planar, but often
resemble trees. In a balanced and preprocessed tree, where each node degree
is at least 3, the length of a path between any two nodes is only O(log n).

We now provide a result which shows that the maximum weighted path
problem can be solved in polynomial time in the case when the length of a
path is logarithmic in the number of nodes. Our result is a direct general-
ization of work by Alon, Yuster, and Zwick [1]. Our method works both for
directed and undirected graphs.

Consider for this purpose the graph G = (V,E) (with only one mode)
with arbitrary edge weights we ∈ � for all e ∈ E and choose a source node s.
We let n = |V | and m = |E|. The problem is to compute a maximum weight
path with respect to w in G from s to all other nodes of length O(log n).

The goal of the work of Alon et al. is to find induced paths of fixed
length k − 1 in a graph. The basic idea is to randomly color the nodes of
the graph with k colors and only allow paths that use distinct colors for
each node; such paths are called colorful with respect to the coloring and
are necessarily simple. Choosing a coloring c : V → {1, . . . , k} uniformly
at random, every path using at most k − 1 edges has a chance of at least
k!/kk > e−k to be colorful with respect to c. If we repeat this process α · ek

times with α > 0, the probability that a given path p with at most k − 1
edges is never colorful is less than

(

1 − e−k
)α·ek

< e−α.

Hence, the probability that p is colorful at least once is at least 1 − e−α.
The search for such colorful paths can be performed using dynamic pro-
gramming, which leads to an algorithm running in m · 2O(k) expected time.
This algorithm is then derandomized.

This argument yields the following result, which can easily be generalized
to directed graphs.

Proposition 4.2. Let G = (V,E) be a graph, let k be a fixed number, and
c : V → {1, . . . , k} be a coloring of the nodes of G. Let s be a node in G
and (we) be edge weights. Then a colorful maximum weight path with respect
to w using at most k − 1 edges from s to every other node can be found in
time O

(

m · k · 2k
)

, if such paths exist.

Proof. We find the maximum weight of such paths by dynamic program-
ming. Let v ∈ V , i ∈ {1, . . . , k}, and C ⊆ {1, . . . , k} with |C| ≤ i. Define
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w(v, C, i) to be the weight of the maximum weight colorful path with respect
to w from s to v using at most i−1 edges and using the colors in C. Hence,
for each iteration i we store the set of colors of all maximum weight colorful
paths from s to v using at most i − 1 edges. Note that we do not store
the set of paths, only their colors. Hence, at each node we store at most 2i

entries. The entries of the table are initialized with minus infinity and we
set w(s, {c(s)}, 1) = 0.

At iteration i ≥ 1, let (u,C, i) be an entry in the dynamic programming
table. If for some edge e = {u, v} ∈ E we have c(v) /∈ C, let C ′ = C ∪{c(v)}
and set

w(v, C ′, i + 1) = max
{

w(u,C, i) + wa, w(v, C ′, i + 1), w(v, C ′, i)
}

.

The term w(v, C ′, i + 1) accounts for the cases where we already found a
path to v (using at most i edges) with higher weight, whereas w(v, C ′, i)
makes sure that paths using at most i − 1 edges to v are accounted for.
After iteration i = k, we take the maximum of all entries corresponding to
each node v, which is the wanted result. The number of updating steps is
bounded by

k
∑

i=0

i · 2i · m = m ·
(

2 + 2k+1(k − 1)
)

= O
(

m · k · 2k
)

.

The sum on the left side of this equation arises as follows. In iteration i, m
edges are considered; each edge {u, v} starts at node u, to which at most 2i

labels w(u,C, i) are associated, one for each possible set C; for each such set,
checking whether c(v) ∈ C takes time O(i). The summation formula itself
can be proved by induction, see also [20, Exc. 5.7.1, p. 95]. The algorithm
can be easily modified to actually find the maximum weight paths.

We can now use Proposition 4.2 to produce an algorithm which finds
a maximum weight path in α ek O

(

mk2k
)

= αO
(

m · 2O(k)
)

time with high
probability. Then a derandomization can be performed by a clever enumera-
tion of colorings such that each path with at most k−1 edges is colorful with
respect to at least one such coloring. Alon et al. combine several techniques
to show that 2O(k) · log n colorings suffice. Applying this result we obtain:

Theorem 4.1. Let G = (V,E) be a graph and let k be a fixed number. Let
s be a node in G and (we) be edge weights. Then a maximum weight path
with respect to w using at most k − 1 edges from s to every other node can
be found in time O

(

m · 2O(k) · log n
)

, if such paths exist.

If k ∈ O(log n), this yields a polynomial time algorithm. Hence, by the
discussion above, it follows that the LP relaxation (LP) of the line planning
problem can be solved in polynomial time in this case. On the other hand
we have following result.
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Proposition 4.3. It is NP-hard to compute a maximum weight path of
length at most k, if k ∈ O

(

n1/N
)

for any fixed N ∈ � \ {0}.

Proof. Consider an instance (H, s, t) for the Hamiltonian path problem,
where H is a graph with n nodes. We add (nN − n) isolated nodes to H
in order to obtain the graph H ′ with nN nodes, which is polynomial in n.
Let the weights on the edges be 1. If we would be able to find a maximum
weight path with at most k = (nN )1/N = n edges starting from s, we could
solve the Hamiltonian path problem for H.

5 Computational Experience

In this section we report on computational experience with line planning
problems for the city of Potsdam, Germany. The experiments originate from
a joint project with two local public transportation companies in Potsdam
(ViP Verkehrsgesellschaft GmbH and Havelbus Verkehrsgesellschaft mbH),
the city of Potsdam, and the software company IVU Traffic Technologies
AG.

Potsdam is a medium sized town near Berlin; it has about 150,000 inhabi-
tants. Its public transportation system uses city buses and trams (operated
by ViP) and regional busses (operated by Havelbus). Additionally, there
are regional trains connecting Potsdam to its surroundings (operated by
Deutsche Bahn AG) and a city railroad (operated by S-Bahn Berlin) which
provides connections to Berlin. As regional trains and the city railroad are
not operated by ViP and Havelbus, the associated lines routes and frequen-
cies were assumed to be fixed.

5.1 Data

Our data consists of a multi modal traffic network of Potsdam and an asso-
ciated OD-matrix, which had been used by IVU in a consulting project for
the Potsdam line network (Nahverkehrsplan). The data represents the line
system of Potsdam of 1998 and has 27 bus lines and 4 tram lines. Including
line variants, the total number of lines was 80. The original network had 951
nodes, including 111 OD-nodes, and 1321 edges. This data was preprocessed
as follows.

We removed isolated nodes. Then we iteratively removed “leaves” in the
graph, i.e., nodes which have only one neighbor, and iteratively contracted
nodes with two neighbors. We remark that although such preprocessing
steps are conceptually easy, the data handling can be quite intricate in
practice; for instance, our data included information on possible turnings
of a line at road/rail crossings, which must be updated in the course of the
preprocessing.
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The OD-matrix was also modified. Nodes with no traffic were removed.
The original time horizon was one day, but we scaled the matrix to 40%
in an (admittedly rough) attempt to simulate afternoon traffic (3 p.m. to 6
p.m.). Note that the resulting matrix still is quite symmetric (the maxi-
mum difference between each of the two directions was 25) whereas a real
afternoon OD-matrix would not be symmetric.

The preprocessed graph had 410 nodes, 106 of which were OD-nodes, and
891 edges. The scaled OD-matrix had 4685 nonzeros and the total scaled
traveling demand was 42796.

As an overall objective, we used

min λ (CTx + cTf) + (1 − λ) τ Ty, (1)

where λ ∈ [0, 1] is a parameter weighting the two parts. The traveling time
is measured in seconds. Since no data was available on line costs, we decided
on C` = 10000 (fixed costs) for each line ` and ci

e = 100 (operating costs)
for each edge e and mode i. Hence, we do not distinguish between costs of
different modes (an unrealistic assumption in practice).

5.2 Algorithms

We have implemented a column generation algorithm based on the model
(LPP). The algorithm solves the LP relaxation in the first phase and con-
structs a feasible line plan using a greedy type heuristic.

For column generation, our implementation iteratively prices out pas-
senger and line paths until no improving variables are found. The master
LPs are solved with the barrier algorithm and, towards the end, with the
primal simplex algorithm of CPLEX 9.0.

Passenger paths are priced out by using Dijkstra’s algorithm, as ex-
plained in Section 4.2 . This pricing part is very fast, but sometimes many
iterations were necessary to find the correct paths.

The pricing of the (simple) line paths was performed by a restricted
enumeration, which works as follows. For each mode i and each pair (a, b)
of terminals from Ti, where a 6= b, we enumerated lines of length ≤ 50;
this restriction arises from the fact that the maximal length of the original
lines in our data was 47 (in the preprocessed network). We furthermore
restricted the line paths as follows. We computed the minimal number
k(a, b) of edges needed to connect a and b in Gi. We only allowed lines
with k ≤ max{α · k(a, b), 50} edges, where we used α = 1.2. The idea is
to produce only lines that do not deviate too much from a shortest path.
This pricing step is also quite fast; the reason seems to be that the mode
graphs Gi for this Potsdam network are almost “tree-like”, i.e., they include
few cycles and typically have low degree (3 or 4).

Our heuristic for generating an integer solution of (LPP) is motivated by
the observation that the solution of the LP relaxation (LP) contains many

13



Table 1: Reference solution and optimized solution of (LP) and integer solution of (LPP)
computed by the greedy method for the case λ = 0.9977.

Reference solution:
total passenger time: 103,922,094.00 [scaled: 239,020.82]
total line cost: 506,105.26 [scaled: 504,941.22]
LP objective value: 743,962.04
active line/pass. var.: 68/4896

Optimized solution:
total passenger time: 107,628,512.75 [scaled: 247,545.58]
total line cost: 253,913.16 [scaled: 253,329.16]
LP objective value: 500,874.74
active line/pass. var.: 67/4889

Integer solution of greedy method:
total passenger time: 115,125,491.50 [scaled: 264,788.63]
total line cost: 317,757.46 [scaled: 317,026.61]
LP objective value: 581,815.24 integer: 950,964.24
active line/pass. var.: 37/4772

lines with very low frequencies; such lines are not reasonable for practice.
We try to remove these lines by a simple greedy method. It removes lines
in the order of increasing frequencies as long as the remaining set of lines
still is feasible, i.e., all demands can be transported. The x-variables of the
resulting lines are set to 1 and all other x-variables to 0.

5.3 Experiments

We report results of several computational experiments with this data and
implementation. All experiments were performed on a 3 GHz Pentium 4
machine running Linux.

Let us point out explicitly that we do not claim that these results are
already practically significant; we only want to show that there is a potential
to apply our methods to practical data.

In our first experiment, we solved the LP relaxation (LP) for λ = 0.9977,
which roughly balances the two parts of the objective function. The resulting
problem had 5773 rows. After 152 iterations (i.e., solutions of the master LP)
and 371 seconds we obtained an optimal solution shown in the middle part
of Table 1. We performed 7 pricing rounds for lines. The pricing needed a
total time of 60 seconds of which most was used for the pricing of line paths.
Hence, most of the time is spent in solving LPs.

The reference solution, shown in the upper part of Table 1, was com-
puted by fixing the paths of the original lines of Potsdam and then solving
the resulting LP relaxation without generating new lines, but allowing the
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Figure 2: Total traveling time (solid, left axis) and total line cost (dashed, right axis) in
dependence on λ (x-axis in logscale).

frequencies of the lines to change. Comparing these two solutions in Table 1
shows that allowing the generation of new line paths reduces the line cost to
roughly 50% and the total objective to roughly 67% of the original values.

We also investigated the passenger routing of our LP solution. To con-
nect the 4685 OD-pairs only 4889 paths are needed, i.e., most OD-pairs
are connected by a unique path. The total traveling time in the system is
10,758,179 seconds; weighting with the number of passengers for each con-
nection gives 107,628,512.75, i.e., the total passenger time listed in Table 1.
In comparison, when we route all passengers between every OD-pair on the
fastest path in the final line system, the total traveling time is 8,308,002
seconds and weighted with the number of passengers: 92,938,324. This is
a relative difference of 23% for the total traveling time and of 14% when
weighted with the number of passengers. This seems to be an acceptable
deviation.

Our second experiment investigates the dependence of the solution on
the parameter λ. We computed the solutions to the LP relaxation for 21
different values of λi, taking λi = 1 −

(

1 − i/20
)4

, for i = 0, . . . , 20. This
collects increasingly more samples near λ = 1, a region where the total
passenger traveling time and the total line cost are about equal.

The results are plotted in Figure 2. This figure shows the total traveling
time and the total line cost depending on λ. The extreme cases are as
expected: For λ = 0, the line costs do not contribute to the objective and
are therefore high, while the total traveling time is low. For λ = 1, only
the total line cost contributes to the objective and is therefore minimized
as much as possible at the cost of increasing the total traveling time. With
increasing λ, the total line cost monotonically decreases, while the total
traveling time increases. Note that each computed pair of total traveling
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time and line cost constitutes a Pareto optimal point, i.e., is not dominated
by any other attainable combination.

In our third experiment, we computed an integer solution for (LPP)
associated with the parameter λ = 0.9977. The application of our greedy
algorithm results in a solution with 37 lines, down from 67 from our first
solution. (Here only lines among city buses, trams, and regional busses could
be removed.) The final objective without fixed costs is 581,815.24, with total
passenger time 115,125,491.50 seconds, and the total line cost is 317,757.46;
the fixed costs are λ · 370, 000 = 369, 149, see Table 1.

We can compare this solution to the integer solution obtained by round-
ing all nonzero x-variables in the solution of the LP relaxation to 1. The
objective of the rounded solution including fixed costs is 1,158,642.15, which
leads to a gap of 56.83% to the value of the LP-relaxation. For the solu-
tion computed by the Greedy heuristic the integer objective is 950,964.24
and the gap is 38.82%. This gap seems reasonable, keeping in mind that
LP-relaxations of fixed cost problems typically produce bad lower bounds
and some of the lines were not allowed to be removed. Still, more research
is needed to provide better lower bounds by integer programming methods
and to produce better primal solutions.

Acknowledgement. We thank Volker Kaibel for pointing out Proposition 4.3.
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