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The favorite topics and results of a researcher change over 
time, of course. One area that I have always kept an eye on is 
that of perfect graphs .These graphs introduced in the late 
'50s and early '60s by Claude Berge, link various mathemati

cal disciplines in a truly unexpected way: graph theory, combinatorial 
optimization, semidefinite programming, polyhedral and convexity theo
ry, and even information theory. 

This is not a survey of perfect graphs. It's just an appetizer. To learn 
about the origins of perfect graphs, I recommend reading the historical 
papers [1] and [2]. The book [3] is a collection of important articles on 
perfect graphs. Algorithmic aspects of perfect graphs are treated in [13]. 
A comprehensive survey of graph classes, including perfect graphs, can be 
found in [5]. Hundreds of classes of perfect graphs are known; 96 impor
tant classes and the inclusion relations among them are described in [16]. 

So, what is a perfect graph? Complete graphs are perfect; bipartite, 
interval, comparability, triangulated, parity, and unimodular graphs are 
perfect as well. The following beautiful perfect graph is the line graph of 
the complete bipartite graph K33. 

Due to the evolution of the theory, definitions of perfection (and ver
sions thereof) have changed over time. To keep this article short, I do 
not follow the historical development of the notation. I used £ riitions 
that streamline the presentation. Berge defined 

G is a perfect graph, 

if and only if 

(1) o(6") = x(G') for all node-induced subgraphs G Q. G, 

where o (G) denotes the clique number of G (= largest cardinality of a 
clique of G, i.e., a set of mutually adjacent nodes) and %{G) is the chro
matic number of G (= smallest number of colors needed to color the 
nodes of G). Berge discovered that all classes of perfect graphs he found 
also have the property that 
(2) a(G')= %{G) for all node-induced subgraphs G <^G, 
where a (G) is the stability number of G (= largest cardinality of a stable 
set of G, i.e., a set of mutually nonadjacent nodes) and %(G) denotes the 
clique covering number of G (= smallest number of cliques needed to 
cover all nodes of G exactly once). 
Note that complementation (two nodes are adjacent in the complement G 
of a graph G iff they are nonadjacent in G) transforms a clique into a sta
ble set and a coloring into a clique covering, and vice versa. Hence, the 
complement of a perfect graph satisfies (2). This observation and his dis
covery mentioned above led Berge to conjecture that G is a perfect graph 
if and only if 

(3) G is a perfect graph. 

Developing the antiblocking theory of polyhedra, Fulkerson launched 
a massive attack on this conjecture (see [10], [11], and [12]). The conjec
ture was solved in 1972 by Lovasz [17], who gave two short and elegant 
proofs. Lovasz [18], in addition, characterized perfect graphs as those 
graphs G = (V, E) for which the following holds: 

(4) (o(<7) • a(G') > | V(G')\ for all node-induced subgraphs G c G. 

A link to geometry can be established as follows. Given a graph G = 
(V, E), we associate with G the vector space R where each component 
of a vector of R is indexed by a node of G. With every subset ScL_V,we 
can associate its incidence vector % = (% ) „e R defined by 
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Xv := 1 if v e S, %v := 0 if v £ S. 

The convex hull of all the incidence vectors of stable sets in G is denot
ed by STAB (G), i.e., 

STAB(G) = conv tfeMr|5c Kstable} 

and is called the stable set polytope of G Clearly, a clique and a stable set of 
G can have at most one node in common. This observation yields that, 
for every clique Q c V, the so-called clique inequality 

x(Q):=I>v <1 
veQ 

is satisfied by every incidence vector of a stable set .Thus ,all clique 
inequalities are valid for STAB(G). The polytope 

QSTAB(G) .-= {x e RV| 0 < xp V v e V, x(Q) <1 V cliques Q c: V} 

called fractional stable set polytope of G, is therefore a polyhedron contain
ing STAB(G), and trivially, 

STAB(G) = conv \x e {0,1}^ |x eQSTAB(G)}. 

Knowing that computing a(G) (and its weighted version) is 5\̂ P-hard, one 
is tempted to look at the LP relaxation 

max c x, x e QSTAB(G), 

where c e R + is a vector of node weights. However ,solving LPs of this 
type is also 9^-ha.rd for general graphs G (see [14]). 

For the class of perfect graphs G, though, these LPs can be solved in 
polynomial time - albeit via an involved detour (see below). 

Let us now look at the following chain of inequalities and equations, 
typical for IP/LP approches to combinatorial problems. Let G = (V,E) be 
some graph and c > 0 a vector of node weights: 

max { £ <v I S c V stable set of G} = 
veS 

max {cT x I x e STAB (G)} = 
max {cT x I x > 0, x(Q) < lVcliquesQ c V , x e { 0 , l } v } < 

max {cT x I x > 0, x(Q)< lVcliquesQ c V } = 
min { £ yQ I £ yQ >Cv Vv e V, yQ > OVcliquesQ c V } < 

Q clique Q3v 

m i n 1 £ VQ I 52 VQ ^CvVv G V, yQ e LVcliquesQ c: V } 
Qclique Q3v 

The inequalities come from dropping or adding integrality constraints, 
the last equation is implied by LP duality. The last program can be inter
preted as an IP formulation of the weighted clique covering problem. It 
follows from (2) that equality holds throughout the whole chain for all 
0/1 vectors c iff G is a perfect graph. This, in turn, is equivalent to 

(5) The value max {c\ \ x e QSTAB(G)} 
is integral for all c e {0,1} . 

Results of Fulkerson [10] and Lovasz [17] imply that (5) is in fact equiva
lent to 

(6) The value max {c x \ x e QSTAB(G)} is integral for all c e Z . 

and that, for perfect graphs, equality holds throughout the above chain for 
all c G Z+ . This, as a side remark, proves that the constraint system defin
ing QSTAB(G) in totally dual integral for perfect graphs G Chvätal [6] 
observed that (6) holds iff 

STAB(G) = QSTAB(G) 

These three characterizations of perfect graphs provide the link to poly
hedral theory (a graph is perfect iff certain polyhedra are identical) and 
integer programming (a graph is perfect iff certain LPs have integral solu
tion vi ue) . 

Another quite surprising road towards understanding properties of per
fect graphs was paved by Lovasz [19]. He introduced a new geometric 
representation of graphs linking perfectness to convexity and semidefinite 

programming. 
An orthonormal representation of a graph G = {VE) is a sequence (u.\ i 

G V) of | V\ vectors u. e R such that ||«J|=1 for all /' e Vand ui u. = 0 for 
all pairs i,j of nonadjacent nodes. For any orthonormal representation 
(u. \ i £ V) of G and any additional vector c of unit length, the so-called 
orthonormal representation constraint 

I>\)V<1 
ieV 

is valid for STAB(G). Taking an orthonormal basis B = {e f ..^e.J of R 
and a clique Q of G, setting c:= u\=ex for all /' e Q, and assigning different 
vectors of B\{e^ to the remaining nodes / e V\Q, one observes that every 

clique constraint is a special case of this class of infinitely many inequali
ties. The set 

TH(G) := {x e R^J x satisfies all 
orthonormal representation constraints} 

is thus a convex set with 

STAB(G) cTH(G) c:QSTAB(G). 

It turns out (see [14]) that a graph G is perfect if and only if any of the 
following conditions is satisfied: 

(8) TH(G) = STAB(G). 

(9) TH(G) = QSTAB(G). 

(10) TH(G) is a polytope. 

The last result is particularly remarkable. It states that a graph is perfect if 
and only if a certain convex set is a polytope. 

F ^ e R + is a vector o° nod e weigi ts, h e optimization prdbl em (with 
infinitely many linear constraints) 

m ax c x, x TH(G) 

can be solved in polynomi 'adime of any grap h G Th'irrip ids', fo (8) 
that the weighted stable set problem for perfect graphs can be solved in 
polynomial time, and by LP duality, that the weighted clique covering 
problem, and by complementation, that the weighted clique and coloring 
problem can be sd ved in pd ynomil time.Th ese resit ts rest on h ef act 
that the value 

V(G ,}: :=max{ Tc ^ xcTH(G)} 

can be characterized in many equivalent ways, e.g., as the optimum value 
d" a serrid £ riite program, h el argest eigenal ue <f a certain set <£ sym

metric matrices, or the maximum value of some function involving 
orthornormal representations . 

Details of this theory can be found, e.g., in Chapter 9 of [14]. The 
algorithmic results involve the ellipsoid method. It would be nice to have 
"more combinatorial" algorithms that solve the four optimization prob
lems for perfect graphs in polynomial time. 



Let us now move into information theory. Given a graph G = (V,E), we 
call a vector/) e R+ a. probability distribution on V if its components sum 
to 1. Let G" = (V, E") denote the so-called n-th conormal power of G, 
i.e., V is the set of all w-vectors x = (xv..., x) with components x.& V, 
and 

E" := {xy \x,yc V and 3 i with #. _y. e £] 

Each probability distribution p on V induces a probability distribution p" 
on V" as follows: p" (x) : = p (x) • p(x^ • ... • p(x). For any node set Uc: 
V, let Ön\U\ denote the subgraph of G00 induced by £/and X (G0^ [£/]) 
its chromatic number. Then one can show that, for every 
0 < e < 1, the limit 

H(G,p) :=l im- min logX(G("}[U]) 
n->°°n p"(U)>l-e 

exists and is independent of e (the logs are taken to base 2). H{G,p) is 
called the graph entropy of the graph G with respect to the probability 
distribution/?. If G = (V,E) is the complete graph, we get the well-known 
Shannon entropy 

H ( P ) = - £ Pi log p;. 
ieV 

Let us call a graph G = (V,E) strongly splitting if for every probability dis
tribution/? on V 

H(p)=H(G,p) + H(G,p) 

holds. Csiszär et. al [9] have shown that a graph is perfect if and only if 

G is strongly splitting. 

I.e., G is perfect iff, for every probabiltity distribution, the entropies of 
G and of its complement G add up to the entropy of the complete graph 
(the Shannon entropy). I recommend [9] for the study of graph entropy 
and related topics. 

Given all these beautiful characterizations of perfect graphs and polyno
mial time algorithms for many otherwise hard combinatorial optimization 
problems, it is really astonishing that nobody knows to date whether per-
fectness of a graph can be recognized in polynomial time. There are many 
ways to prove that, deciding whether a graph is not perfect, is in 9$. But 
that's all we know! 

Many researchers hope that a proof of the most famous open problem 
in perfect graph theory, the strong perfect graph conjecture: 

A graph G is perfect if and only ifG neither contains an odd hole 
nor an odd antihole as an induced subgraph. 

results in structural insights that lead to a polynomial time algorithm for 
recognizing perfect graphs. It is trivial that every odd hole (= chordless 
cycle of length at least five) and every odd antihole (= complement of an 
odd hole) are not perfect. Whenever Claude Berge encountered an imper
fect graph G he discovered th at G con dins an odd h d e or an odd ait'h <b e 
and, thus, came to the strong perfect graph conjecture. In his honor, it is 
customary to call graphs without odd holes and odd antiholes Berge 
graphs. Hence, the strong perfect graph conjecture essentially reads: every 
Berge graph is perfect. 

This conjecture stimulated a lot of research resulting in fascinating 
insights into the structure of graphs that are in some sense nearly perfect 
or imperfect. Eg., Padberg [20], [21] (introducing perfect matrices and 
using proof techniques from linear algebra) showed that, for an imperfect 
graph G = (V.E) with the property that theddetion of any node resd ts'in 
a perfect graph, satisfies the following: 

• |V| = a (G) . (o (G) + l, 
• G has exactly | V\ maximum cliques, and every node is contained in 

exacdy (0 (G) such cliques. 
• G has exacdy | V\ maximum stable sets, and every node is contained 

in exacdy a (G) such stable sets. 
• QSTAB(G) has exacdy one fractional vertex, namely the point 
xv = I /o (G) V v G V, which is contained in exacdy | V\ facets and 

d jacent to exadt}[ V\ vertices, h e lhcT ence vectors fi h e maximum 
sta bfe sets. 

Simi kr investigations (bit not resu lling in sue hstrong structura 1 
resd ts) h ave recenl yb een mad eb y Annegret Wag er[ 21] on grajh s 
which are perfect and have the property that deletibn (ar a ddtion )o fany 
edge results in an imperfect graph The graph of Figure 1 is from Waglers 
Ph.D. thesis. It is the smallest perfect graph G such that wh enever any 
edge is added to G or any edge is deleted from G the resul ting graph is 
imperfect. 

Particular efforts have been made to characterize perfect graphs "con
structively" in the following sense. One first establishes that a certain class 
C of graphs is perfect and considers, in addition, a finite list Ce of special 
perfect graphs. Then one defines a set of "operations" (e.g., replacing a 

node by a stable set or a perfect graph) and "compositions" (e.g., take two 
graphs G and H and two nodes u e V{G) and v e V(H), define V(G ° H) 
: = (KG) u V{U)) \\u,v} and E{G° H) : = E(G-u)uE(G- v) u \x,y \ 

xu& E(G),yv& E (H)} and shows that every perfect graph can be con
structed from the basic classes C^ and Ce by a sequence of operations and 
compositions. D espite'ingenious constructions (th at were veryhd pfd in 

proving some of the results mentioned above) and lots of efforts, this route 
of research has not led to success yet. A paper describing many composi
tions that construct perfect graphs from perfect graphs is, e.g., [8]. 

Chvätal [7] initiated research into another "secondary structure" related 
to perfect graphs in order to come up with a (polynomial time recogniza
ble) certificate of perfection. For a given graph G = (V,E), its P4-structure is 
the 4-uniform hypergraph on Kwhose hyperedges are all the 4-element 
node sets of Kthat induce a P4 (path on four nodes) of G Chvätal 
observed that any graph whose P4-structure is that of an odd hole is an 
odd hole or its complement and, thus, conjectured that perfection of a 

graph depends solely on its P4-structure. Reed [23] solved Chvatals semi-
strong perfect graph conjecture by showing that a graph G is perfect iff 
(12) G has the P4-structure of a perfect graph. 

There are other such concepts, e.g., the partner-structure, that have 
resulted in further characterizations of perfect graphs through secondary 
structures. We recommend [15] for a thorough investigation of this topic. 
But the polynomial-time-recognition problem for perfect graphs is still 
open. 

A rfe ativfe y reeentl' ine <f researii m h e area <f struetual pef ect graph 
theory is the use of the probability theory. I would like to mention just 
one nice result of Prömel und Steger [22]. Let us denote the number of 
perfect graphs on n nodes by Perfect (n) and the number of Berge graphs 

on n nodes by Berge (n), then 

In other words, almost all Berge graphs are perfect, which means that if 
there are counterexamples to the strong perfect graph conjecture, they are 
"very rare." 



The theory of random graphs provides deep insights into the proba
bilistic behavior of graph parameters (see [4], for instance). To take a sim
ple example, consider a random graph G = {V,E) on n nodes where each 
edge is chosen with probality Vz. It is well known that the expected values 
of <x(G) and 0(6) are of order log n while X(6) andX(G) both have 
expected values of order nl log n. This implies that such random graphs 
are almost surely not perfect. An interesting question is to see whether the 
"LP-relaxation of a(G)," the so-called fractional stability number a* (G) = 
max {1 x | x G QSTAB(G)}, is a good approximation of a(G). Observing 
that the point x = (x)ti(E ̂ with xv: = 1 /(o(G), v e V, satisfies all clique 
constraints and is thus in QSTAB(G) and knowing that (0 (G) is of order 
log n one can deduce that the expected value of a*{G) is of order n /log n, 
i.e., it is much closer toX(G) than to a{G). Hence, somewhat surprising
ly, a*(G) is a pretty bad approximation of <x(G) in general - not so for 
perfect graphs, though. 

To summarize this quick tour through perfect graph theory (omitting 
quite a number of the other interesting developments and important 
results), here is my favorite theorem: 

Theorem Let G be a graph. The following twelve conditions are equivalent 
and characterize G as a perfect graph. 

(3) G is a perfect graph. 

(4) <»(G).a(G)>\V(G')\ 
for all node-induced subgraphs G c G. 

(5) The value max {c x \ x e QSTAB(Gj\ is integral for all c e {0,1} . 

(6) The value max {c x \ x e QSTAB(G)} is integral for all c e Z +. 

(7) STAB{G) = QSTAB(G). 

(8) TH{G) = STAB(G)-

(9) TH (G) = QSTAB(G)-

(10) 77/(G) « ^ polytope. 

(11) G1« strongly splitting. 

(12) G1 />/« f/>̂  P4-structure of a perfect graph. 
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