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Abstract. A beautiful result of Bröcker and Scheiderer on the stability index of basic 
closed semi-algebraic sets implies, as a very special case, that every ^-dimensional poly
hedron admits a representation as the set of solutions of at most d(d + l) /2 polynomial 
inequalities. Even in this polyhedral case, however, no constructive proof is known, even if 
the quadratic upper bound is replaced by any bound depending only on the dimension. 

Here we give, for simple polytopes, an explicit construction of polynomials describing 
such a polytope. The number of used polynomials is exponential in the dimension, but in 
the two- and three-dimensional case we get the expected number d(d + l) /2. 

1. Introduction 

By a surprising and striking result of Bröcker and Scheiderer (see [Sc], [Br], [BCR], and 
[Ma]) every basic closed semi-algebraic set of the form 

where f(- e M[x\9..., #</], 1 < i < /, are polynomials, can be represented by at most 
d(d + l)/2 polynomials, i.e., there exist polynomials 
such that 
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Moreover, in the case of basic open semi-algebraic sets, i.e., > is replaced by strict 
inequality, one can even bound the maximal number of needed polynomials by the 
dimension d instead of d(d + l)/2. 

No explicit constructions, however, of such systems of polynomials are known, even 
in the very special case of d-dimensional convex polyhedra and even if the quadratic 
upper bound is replaced by any bound depending only on the dimension. In Example 2.10 
of [Br] or in Example 4.7 of [ABR] a description of a regular convex m-gon in the plane 
by two polynomials is given. This result was generalized to arbitrary convex polygons 
and three polynomial inequalities by vom Hofe [vH]. Bernig [Be] proved that, for d = 2, 
every convex polygon can even be represented by two polynomial inequalities. The main 
purpose of this note is to give some basic properties of polynomials describing polyhedra 
as well as an explicit construction of (exponentially many) polynomials describing simple 
d-polytopes of any dimension d. , 

In order to state the result we fix some notation. A polyhedron P C Rd is the 
intersection of finitely many closed halfspaces, i.e., we can represent it as 

for some a1 € Rd
t bt G R. Here a . x denotes the standard inner product on Rd. If P is 

bounded, then it is called a polytope. In general we are only working with d-dimensional 
polyhedra P C Rd, and, for short, we denote these polyhedra as d-polyhedra. A d-
polyhedron P is called simple if every k-dimensional face, 0 < k < d — 1, belongs to 
exactly d — k facets of P. In the case of polytopes, this is equivalent to the statements 
that every vertex lies in precisely d facets, or every vertex figure is a simplex (see p. 65 
of [Zi]). Since for unbounded polyhedra the above definition of simple polyhedra is not 
invariant with respect to projective transformation, we call a polyhedron P a strongly 
simple polyhedron if it is projectively equivalent to a simple polytope, i.e., for a "P-
permissible" projective transformation f: Rd -> Rd the closure of f(P), denoted by 
cl(f(P)), is a simple polytope. For more information about polyhedra, polytopes, and 
their combinatorial structure we refer to [MS] and [Zi]. 

For polynomials 

the associated closed semi-algebraic set and we define 

Definition 1.1. A P-representation of a d-polyhedron P c Rd consists of l polyno
mials 

For d-polytopes there are two other well known and important representations (see, 
e.g., [GK] and [Zi]): The representation of P by m vectors a1 e Rd and scalars bt as 
given in (1.1) is called the H-representation of P. Of course, any H-representation may 
be regarded as a special P-representation of P with linear polynomials (linear forms). 
As a dual counterpart we have the V-representation of a d-polytope P consisting of n 
points vl c Rd such that P is the convex hull of these points, i.e., 

(1.1) 

we denote by 

such that 



Both V- and H-representations are quite powerful and useful representations of poly-
topes. They admit the computation of the complete combinatorial structure (face-lattice) 
of the polytope (see [GK] and [Se]) and linear programming problems can be solved in 
polynomial time with respect to the input sizes of these representations. Many interesting 
combinatorial optimization problems, however, cannot be effectively solved via these 
representations because the size of both representations is exponential in the "natural" 
input size of the combinatorial problem instances. This holds, e.g., for the polytopes 
associated with the traveling salesman problem or the max cut problem, see [GLS] for 
details. 

On the other hand, the result of Bröcker and Scheiderer tells us that there always exists 
a P-representation by polynomially many (with respect to the dimension) polynomials, 
and, therefore, a representation or "good" approximation of a polytope by few polynomial 
inequalities could lead to anew approach to "hard" combinatorial optimization problems 
via nonlinear programming tools. In the last section we discuss this connection in more 
detail as well as the possible outcomes of such an approach. 

For a different approach of approximating "discrete problems" by semi-algebraic 
sets see [BV], and for related problems involving polynomials and optimization see, 
e.g., [Ba], [BG], [La], and the references within. 

Unfortunately, at the moment our knowledge about polynomials representing or ap
proximating polytopes is rather limited. For arbitrary polytopes we even do not know 
how to convert—via an algorithm—an H-representation into a P-representation where 
the number of polynomials depends only on the dimension. For simple polytopes we 
have the following result. 

Theorem 1.2. Let P C M.d be a d-dimensional simple polytope given by an H-
representation. Then ß(d) < dd polynomials pi e M[x\, . . . , x^\ can be constructed 
such that 

In particular^ we can take 

Since every two-dimensional polygon is simple, Theorem 1.2 includes the result of 
vom Hofe [vH]. 

It is not hard to see that if a polyhedron is given as the set of solutions of polynomial 
inequalities, then the sum of the total degrees of these polynomials is at least the number 
of facets (see Proposition 2.1(i)). In fact, the total degrees of the polynomials used in 
Theorem 1.2 depend on the number of k-faces, k = 0 , . . . , d — 1, of the polytope as 
well as on some metric properties of the polytope. For upper bounds on the degrees in 
the general semi-algebraic setting we refer to [BM]. 

All the polynomials that we use in Theorem 1.2 are of a rather special structure, 
namely, if P = {x e Rd: a1 • x < bi, 1 < i < m}, then they can be expressed as 

where ca are certain non-negative numbers and, of course, only finitely many of them are 
positive. One possible explanation for this special type is given by a result of Handelman 



[Han] which says that every polynomial that is strictly positive on a polytope P is of that 
type. His proof is non-constructive, for a more explicit version see [PR]. 

It seems to be an interesting question to ask for the minimal number of polynomials 
needed to describe a ^-polyhedron or ^-polytope. Therefore we define 

Definition 1.3. For a öf-polyhedron P C Rrf, let m-p(P) be the minimal number of 
polynomials needed in a ^-representation of P and let 

We set m<p(Rd) = 0, and for a polyhedron P C Rd with dim(P) < d we mean by 
m-p(P) the minimal number of polynomials in dim(JP)-variables, which are needed in 
order to describe an embedding of P in R*1"1^. 

Observe that m-p(P) is invariant with respect to regular affine transformations of P. 
Moreover, it is easy to see that m-p(P) > d for every rf-polytope P (see Corollary 2.2(i)), 
and together with the result of Bröcker and Scheiderer we obtain 

In Proposition 2.5 we show fh-p(d) < m<p(d)+l. Probably, the truth is m-p(d) = m-p(d). 
There are some trivial examples of polytopes for which d polynomials are sufficient. 

For instance, the cube Cd = {x € Rd: — 1 < JC,* < 1} can be written as Cd = {x € 
Rd: ~(xi)2 + 1 > 0}. Another example is an arbitrary öf-simplex Td. To see this, we 
may assume without loss of generality that Td = {x € Rd: JC,- > 0, jq H Vx^ < 1}. 
Then it is easy to check that 

Actually, the given representations of a cube and a simplex are special cases of a general 
construction of polynomial inequalities for prisms and pyramids (see Proposition 2.3), 
which in particular imply that every three-dimensional prism or pyramid can be described 
by three polynomials (see Corollary 2.4). However, we are not aware of a representation 
of a regular crosspolytope Cd = {x € Rd: \x\\-\ h \xd\ < 1} by d polynomials or 
of any constructive good upper bound on m^>(Cf). 

In this context it seems to be worth mentioning that a classical result of Minkowski 
[Mi] implies that a polytope can be approximated "arbitrarily closely" by only one 
polynomial inequality, where, of course, the degree of this polynomial is "arbitrarily 
large " In Section 2 we construct such a polynomial, which will be used in the scope 
of the proof of Theorem 1.2. Furthermore, in Section 2 we state some simple and basic 
properties of polynomials describing a polyhedron. In Section 3 we give the construction 
of the polynomials used in Theorem 1.2 and the proof of this theorem, A generalization 
of the theorem to strongly simple polyhedra is given in Section 4 (see Corollary 4.1). 
Finally, in Section 5 we discuss possible outcomes of research on the ^-representation 
of polyhedra associated with hard combinatorial optimization problems. 

is a d-polyhedron}, 

isa d-polytope}. 



2. Polynomials and Polyhedra 

Let 

be a d-dimensional polyhedron. We always assume that the representation (2.1) is irre-
dundant, i.e., P n [x e E.d: a1 • x = bi} is a facet of P, 1 < i < m. In particular, we 
have that bx — h(al), where h(>) denotes the support function of F, i.e., 

For a non-negative linear combination of vectors £ . Pi***, Pi € R>o, we have h (£ji pt u{) 
< Yli Pih(ul). The next proposition collects some simple properties of polynomials 
describing polyhedra. 

Proposition 2.1. Let 
let 

(i) Each facet defining linear polynomial bt — a1 • x, i € {1 , . . . , m}, is a factor of 
one of the pj. 

(ii) Let F be a k-dimensionalface of P. Then there exist d — k polynomials p ; i , . . . , 
Pjd-k»say*sucn tnat these polynomials vanish on the affine hull of F, i.e., 

Proof (i) Let Ft — P Ci[x eRd: a1 • x = £,•}• By assumption, F/ is a facet of P. 
First we note that for each y e F( one of the polynomials p;- has to vanish. Otherwise, if 
P; (y) > 0 for all 1 < j < I we get by the continuity of polynomials that we can move y 
in any direction without leaving P, which contradicts the property that y belongs to the 
boundary. Thus we know that the polynomial 

vanishes on Ft. Hence it vanishes on every segment joining two points of Ft and, there
fore, it has to be 0 on aff(Fi) = [x e Rd: bi — a1 • x — 0}. Thus b\ — ai: • x is a factor 
of f (x). Furthermore, since bi —al-x is irreducible, it has to be a factor of one of the p;-
(see, e.g., p. 148of [CLO]). 

(ii) We use induction with respect to the dimension k of the face F and we start with 
k — d — 1. In this case the statement follows immediately from (i). So let k < d — 1 and 
let G be a (k + l)-face containing F. By induction we can assume that aff(G) C [x e 
Rd: p1(x) = p2(x) = . . . = pd-k-1(x) = 0} and so 

With respect to the (k + l)-dimensional polytope G in the space aff(G) the face F is 
a facet and so we can conclude that one of the polynomials p^-*, . . . , p/ vanishes on 
aff(F). D 

(2.1) 



As an immediate consequence of Proposition 2.1(ii) we note 

Corollary 2.2. 

(i) Let F be a non-empty face of a d-polyhedron P C Rd. Then 

In particular, m-p(P) > d for d-polytopes. 
(U) 

Proof Let P = T^pi,. . . , pi). By Proposition 2.1(ii) we may assume that 

and so ntp(F) < mp(P) — (d — dim(F)). If P is a polytope, then we may choose for 
F a vertex and get mp (P) > d. 

For (ii) let ß be a ^-polytope with m-p(Q) — m-p(d). Now we take any {d -f 1)-
poly tope that has Q as a facet and then we can conclude from (i) that ntp(P) > m-p(d)-hl. 
Of course, the polyhedral case can be treated analogously. D 

The next statement gives some information on m-p{P) for /̂-prisms and ^-pyramids. 
A /̂-polytope P is called a d-pyramid (d-prism) with basis ß , where Q is a (d - 1)-
polytope, if there exists a v e Rd such that P = conv{ß, v] (P = Q -f conv{0, v] = 
{q-hkv: qe ß , 0 < k < 1}). 

Proposition 2.3. Ler P be a d-prism or a d-pyramid with basis Q. Then 

Proof Since in both cases the (d — l)-polytope ß is a facet of P we get from Corol
lary 2.2(i) 

In order to show the reverse inequality we start with a ^-dimensional pyramid P = 
conv{ß, v] and without loss of generality we assume that 

Let / = mv{Q) and p i , . . . . pj e R[xu . . . , xd-{\ such that Q = V(pu . . . , pj). Fur
thermore, we denote by p the maximum of the total degrees of the polynomials py, 
1 < j < U and let 

(2.4) 

(2.2) 

(2.3) 



Observe that JJ^JC) 6 R[x\,..., JC^], 1 < ; < /. Next we claim that 

To see this we first note that for 

A simple calculation shows that, for 

Next we observe that, for* 6 P, we have 0 < xj < 1. By (2.6) and assumption (2.3(i)) 
we conclude that 

Hence p(jc) > 0 for x 6 P and together with (2.7) we get 
V(p\,..., pu P) and consequently 

For the reverse inclusion we notice that p(x) > 0 implies 0 < xj < 1 and with (2.7) 
we obtain 

Since for*^ = 1 the inequality p(x) > Obecomes {x{)2-\ hfe- i ) 2 < Owe conclude 
that 

Hence we also have P(pi , . . . ,p/,p) C P. Thus(2.5) is shown and so we have m*p(P) < 
tn-p(Q) +1 . Together with (2.2) the statement of the proposition is verified for pyramids. 

If p = Q + conv{0, v} is a d-prism over the basis Q and if we assume again that 
v = (0 0 , l ) T , ß c M Rd: xd = 0}, and ß = V(p\,..., pmv{Q))> then it is easy 
to check that 

Since every two-dimensional polygon can be described by two polynomials (see [Be]), 
Proposition 2.3 gives 

Corollary 2.4. Let P be a three-dimensional prism or pyramid. Then 

Next we study the relation between mv{d) and rhp(d). Obviously, we have mp (d) < 
m-p (d). In order to bound rhp (d) in terms of mp (d), we apply a standard technique from 
Discrete Geometry, which "makes an unbounded pointed polyhedron bounded," namely, 
projective transformations. 

(2.5) 

(2.6) 

(2.7) 



Proposition 2.5. Let d > 2. Then 

Proof. In order to prove the upper bound on m-p(d) let P be a J-polyhedron such that 
rh'pid) = m-p(P). Let G be anon-empty face of minimal dimension of P, and we assume 
that 0 e G. Suppose that dim(G) > 0. Then the intersection of P with the orthogonal 
complement of lin(G), the linear hull of G, is a lower-dimensional polyhedron ß , say. 
Since P — Q + lin(G) = {q -f g: q e ß , g e lin(G)} any ^-representation of ß can 
easily be converted to a "P-representation of P with the same number of polynomials. 
With the help of Corollary 2.2(h) we get the contradiction 

Therefore, we can assume that the origin is a vertex of P. Thus, we can find a vector 
ceRd with c • x > 0 for all x e P\{0}. Let / : Rd -> Rd be the projective map 

Then we can describe f(P) by a set of inequalities of the form f(P) = {x e Rd: Ax < 
b,C'X < 1}, for a certain matrix A e Rmxd and a vector b e Rm. The inequality c- x < 1 
corresponds to the points at infinity. 

We conclude that the set (the closure of f(P)) 

is a J-dimensional polytope. Hence we get can find a ^-representation of cl(/(P)) by 
polynomials pi, i e I, say, with #/ < m-p{d). So we may write • 

Thus 

Since c • f(x) < 1 is equivalent to c • x + 1 > 0 we may multiply all rational functions 
pi(f{x)) by suitable powers of c • x + 1 and obtain some polynomials pi(x), say, such 
that 

Since c • x > 0 for all x e P we may replace the last inequality in this representation by 
c • x > 0 and since #/ < m<p(d) the proposition is shown. D 

In the next lemma a strictly convex polynomial p is constructed such that the convex 
body K — {x e Rd: p(x) < 1} is not "too far away" from P. Here the distance between 
convex bodies K\t Ki will be measured by the Hausdorff distance dist(i?i, Ki), i.e., 

(2.8) 



where || • || denotes the Euclidean norm. Furthermore, for a bounded set S C R.d, the 
diameter is denoted by diam(S), i.e., 

In order to construct this strictly convex polynomial we follow an approach of Hammer 
[Ham], but since we need a slightly different approximation we give the short proof. For 
similar results see [Fi] and [We], 

Lemma 2.6. 

Then we have 

Proof. Since |t>i(x)\ < 1 for all x € P we certainly have P C Ke. Without loss of 
generality let the origin be the center of gravity of P and let = e/ diam(P). First we 
check that^e C ft = {x € Rd: a1 • x < (1 +X)2>M 1 < / < m}.Let y £ ft. Then we 
may assume a1 -y > (1+k)h(al) which implies 

where the last inequality follows from the choice of the origin as the center of grav
ity (see p. 52 of [BF]). By the lower bound on p we conclude (l/m)0i(y)2p > 1 
and thus pe(y) > 1, which shows y $ Ke. Finally we observe that distCP, Py) < A 
diamCP) = e. a 

3. Proof of Theorem 1.2 

In the following let 

be a convex d-dimensional simple polytope with m facets. We further assume that we 
know all Maces of the polytope as well as the facets containing a given face. This 
information can be obtained from the H-representation above by several (exponential 
time and space) algorithms (see [Se]). 

We remark that every Mace of P is contained in exactly d - k facets. The set of 
all d-dimensional faces is denoted by Fk, 0 < k < d - 1. For a k-face F of P, let 

be a d-dimensional polytope. 



[/r]i,...,[/r]rf-jfe,[/7]i < ••• < [F]d-k, be all indices of vectors a1 such that al-x =&,-, 
for all x e aff(F). In other words, these are the ordered indices of all facets containing F. 

Next, for a &-face F and a positive integral vector w e Nd~k, we define 

Observe that a(F, w) is a support vector of F, i.e., 

Moreover, since F is contained in all the facets corresponding to the vectors a[F]j we 
note that 

With w e Nd~k and the set Ty. of all &-faces we associate the polynomial 

So, for a fixed w the polynomial p*iU) (x) is the product of all those supporting hyperplanes 
of all k-faces of P which can be written as in (3.1). Since we are only interested in finitely 
many different support vectors of the type a(F,w) at a given face F we define certain 
sets of integral vectors: 

In particular we have Wd-i = {(1,1)} and 

The meaning of these sets Wk is explained in the next lemma. 

Lemma 3.1. Let P be a simple d-dimensional polytope. Let k > 1, F, G e T^ with 
FDG^09and let w e W*f y e Rd such that 

Then there exists awe Wdim(FnG) such that 

Proof. In view of (3.2) we conclude from (3.5) that 

(3.6) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 



Further, we need a map x that gives, for a k-face F and a number q e {[F]1 , . . . , 
[F]d-k}, the position of q with respect to the ordered list [F]1,..., [F]d-k. In particular 
we have T(F , [F]j) = j. Now we merge the two normal vectors a(F, w), a{G, w) in 
the following way: Let 

On account of (3.6) we have 

Since the polytope is simple, the assumption FOG j^0 implies that the vectors {aj: j e 
1} are the vectors of all facets containing the face F C\G and by construction we may 
write a = Yljzi WijaJ f°r some numbers tify = 2 '> with 0 < //; <d — k—l. 

Thus we have a = a(F D G, w) for a certain vector w e Wdim(FriG)- ^ 

We note that from the proof of Lemma 3.1 it follows that it suffices to define the set 
Wd-3 as 

Lemma 3.1 says that if two linear factors of a polynomial p^Wi k e {1 , . . . , d — 1}, 
w e Wfc, are non-positive and at least one is negative, then there exists a linear factor of 
a polynomial of the type p^f k < ktw eW%, which has to be negative, too. Therefore, 
with these sets W* we associate the following sets of polynomials: 

% - b % - 2 consist of only one polynomial, #Pd-3 = 3 and for 0 < k < d — 3 we have 
(see (3.4)) 

We need one more polynomial. To this end we set, for two vectors a, b e Rrf\{0}, 

U(a, b) is a closed set and so we can define 

Since 

(3.7) 

(3.8) 

(3.9) 

and both planes 

(3.10) 

are supporting hyperplanes we have 



We note that for different vertices v, v e F0, w e Wo, we always have (see (3.10)) 

Finally let e satisfy 

With respect to e let pe(x) be the polynomial according to Lemma 2.6 and let 

Here for a set of polynomials ^J, say, Vß(x) > 0 means p(x) > 0 for all p(x) e ^J. 
Before giving the last piece of the proof of Theorem 1.2 we remark that in order 

to find a number e satisfying (3.13) we have to calculate several distances e(a, b). In 
general, e(a, b) can be calculated (or sufficiently well approximated) by several linear-
programming-based methods (see [MSW]). In particular, depending on the input size 
of the polytope and the vectors a, b one can give a lower bound on this distance if it is 
positive. Thus for a given polytope we can calculate such an e and hence the polynomial 
Pe(*)< 

Proof of Theorem 1.2. On account of (3.9) and (3.7) the theorem will follow from the 
identity 

Obviously, by the definition of all these polynomials via support vectors and by Lemma 2.6 
we know that P is contained in the set on the right-hand side. In order to prove the reverse 
inclusion we first claim 

Claim 3.2. Let y £ P, but y e Vi (P). Then there exists a vertex vofP and awe Wo 
such thath(a(v, w)) — a(v, w) • y < 0. 

Since y ^ P at least one of the inequalities a1 • x < bx, i e [1,..., m}, is violated and 
so we may define k as the smallest dimension such that there exists a face F e Tk and a 
w eWk with h(a(F, w)) — a(F, w) - y < 0. Suppose k > 0. Since y e V\(P) we have 
Pk,w(y) > 0 and so there must exist another £-faceG with h (a(G, w))—a{G, w)-y < 0. 
Hence we have 

If e(a(F, u>), a(G, w)) > 0, then we get from the definition of e and the approximating 
property of the polynomial pg (x) (see Lemma 2.6) that pg (y) > 1. Thus we can assume 
that e(a(F, u>), a(G, w)) = 0 and from (3.10) we get F D G ^ 0. Therefore we may 
apply Lemma 3.1 and we get a contradiction of the minimality of/:. This shows Claim 3.2. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 



Now let y $ P. We want to show that y is not contained in the set Vi (P) O V2(P). 
Suppose that y e V\(P) O V2(P). By Claim 3.2 we may assume that there exists a vertex 
v e Fo ^ d a w e Wo such that h(a(v, w)) - a(vt w) • y < 0. However, ;y € V2(P) 
implies po,u/00 > 0 and thus there exists another vertex v with h (a (v, w))—a(y, w)-y < 
0. Therefore we have 

Next we observe that e(a(v, iu), a(v, w)) > 0 (see (3.12)) and by the definition of s we 
conclude p$(y) > 1, which gives the contradiction y $ V\ (P). D 

4. Remarks 

First we want to generalize Theorem 1.2 to the class of strongly simple polyhedra. As 
in the case of polytopes, an ̂ -representation of a polyhedron P is a description of P by 
linear inequalities of the form (1.1). 

Corollary 4.1. Let P c l d be a d-dimensional strongly simple polyhedron given by an 
H-representation. Then ß(d) < dd polynomials pi e R[xi, ...,*</] can be constructed 
such that 

Proof. The proof is just a combination of the proofs of Proposition 2.5 and Theorem 1.2. 
As in the proof of Proposition 2.5 we first note that we can assume that P has a vertex. 
Next we apply a projective transformation f(x) = x/(c • x + 1) such that cl(/(P)) 
becomes a polytope. By the definition of strongly simple polyhedra, cl(/(P)) is a d-
dimensional simple polytope. Hence, from Theorem 1.2, we get a representation of the 
type 

with certain polynomials p;(x), / € / , # / < ß(d). Now we can proceed as in the proof 
of Proposition 2.5 in order to get a P-representation of P with jx(d) + 1 polynomials. 
A closer look on the number nid) shows that jx(d) < dd for d > 2 (see (3.9)) and so 
the assertion is proved. D 

We remark that the proofs of Theorem 1.2 and of Corollary 4.1 can be adapted such that 
for arbitrary polyhedra a representation by polynomials is obtained where the number of 
polynomials depends exponentially on the dimension and the maximal degree of a vertex 
of the polytope. In other words, degeneracy in the sense of linear programming leads to 
additional difficulties. Since, however, the main problem is to find a representation of a 
polytope by a few polynomials we omit a proof of this statement. 

In the two-dimensional case the meaning of the polynomials p\ (x), poM» and p$(x) 
can be easily illustrated. Suppose the polygon is the 7-gon depicted in these pictures. 
Then the shaded regions on the left-hand side of Fig. 1 shows all points in the plane 



Fig.l 

that satisfy the inequality px(x) > 0, whereas the shaded regions on the right-hand side 
correspond to the points p0(x) > 0. If we intersect the shaded regions of both pictures 
we get the points satisfying both inequalities (see Fig. 2). 

We see that all the shaded points that do not belong to the polygon are "far away" 
from the polygon and thus we can cut them off with the inequality p-s (x) < 1. 

Now let P = {x e R3: a{ -x < bif 1 < i < m] be a simple three-dimensional convex 
polytope. With the notation from Section 3 we get the following polynomials (see (3.7)): 

Fig. 2 



where e has to be chosen such that (3.13) is satisfied, and p is given by Lemma 2.6. Let 
us consider a "real" three-dimensional polytope P = {x e Rd: Ax < b], with 

P is a simple polytope with 12 facets, all of them pentagons, 30 edges, 20 vertices, and 
it may be described as a "skew" dodecahedron (see Fig. 3). 

With respect to the facets we get the polynomial 

Fig. 3 (produced using polymake [GJ] and javaview [PKPE]) 



For the 30 edges we obtain 

With respect to the 20 vertices we get three polynomials depending on the weights 
we Wo = {(1,1,2), (1,2,1), (2,1,1)}: 



Next we have to determine an s as defined in (3.13). To this end we have estimated 
all the needed distances Sk (see (3.11)) by a rather ad hoc method and found 

Hence we may set e = -jL and since diam(P) < 4 we may choose for the exponent 
p of Lemma 2.6 p = 332. With these values we get from Lemma 2.6 the following 
polynomial pe(x): 

5. Outlook 

Why should anyone care about the representation of polyhedra by exponentially many 
polynomial inequalities, given that one knows that quadratically many suffice? Our 
answer is that the latter result is of pure existential nature, while we can construct such 
inequalities. We admit that the representations we found do not form an achievement of 
concrete practical value. That is why we did not state them in an algorithmic fashion. 
We see our paper just as a small step towards a development of real algebraic geometry 
in a constructive direction. There are a number of possible routes. We want to mention 
briefly what we are interested in and what might be achievable. 

It would be nice to have efficient (in a sense that can be made precise) algorithms 
that provide, e.g., for polytopes P given in the form of a V- or ^-representation, a P-
representation P = V(p\,..., pi) with a number / of polynomials that is polynomially 



bounded in the dimension of the polytope. It may also be useful to be able to construct 
a small number of "simple" polynomials p i , . . . , pk such that V(p\t..., pk) approxi
mates P well. Of course, one can study similar problems concerning the representation 
of arbitrary semi-algebraic sets. For example, given a semi-algebraic set <S, can it be 
represented by a system of polynomials with total degree at most fc, say? Can such a 
system be constructed efficiently? How well can S be approximated by polynomials of 
degree kl For polyhedra P we know that there exists a representation by polynomials 
of total degree 1, but what can we say about the minimum number of polynomials of 
degree k representing PI 

To indicate possible outcomes that may result from such a change of representation, we 
look at the very successful polyhedral approach to combinatorial optimization. The basic 
idea here is to represent combinatorial objects (such as the tours of a traveling salesman, 
the independent sets of a rnatroid, or the stable sets in a graph) as the vertices of a 
polytope. This way one arrives at an (implicit) V-representation of classes of polytopes 
such as traveling salesman or stable set polytopes. If one can find complete or tight 
partial representations of polytopes of this type by linear equations and inequalities (i.e., 
^-representations), linear programming (LP) techniques can be employed to solve the 
associated combinatorial optimization problem, see [GLS]. 

This approach provides general machinery to establish the polynomial time solvability 
of combinatorial problems theoretically. In particular, it is often employed to identify 
easy special cases of generally hard problems. One such example is the stable set problem 
that is J\fV-haxd for general graphs but solvable in polynomial time for perfect (and other 
classes of) graphs, see Chapter 9 of [GLS]. 

The LP approach provides more. Even in the case where only partial ^-representations 
of the polyhedra associated with combinatorial problems are known, LP techniques (such 
as cutting planes and column generation) have resulted in very successful exact or approx
imate solution methods. One prime example for this methodology is the traveling sales
man problem, see [ABCC] and the corresponding web page at http://www.math.  
princeton.edu/tsp/, which includes an annotated bibliography with remarks about 
the historical development of this area. 

Progress of this type may also be possible via the '"P-representation approach." We 
discuss this by means of the stable set problem. 

Although complexity theory suggests that it is inconceivable that one can find an 
explicit "P-representation of all members of the class of stable set polytopes, i.e., the 
convex hull of all incidence vectors of stable sets, it might be possible to find, for every 
graph G, a "small" number 1(G) ofnottoo "ugly" polynomials such that V(p\,..., PKG)) 
approximates the stable set polytope STAB(G) well, and such that V(p\,..., pi(G)) 
equals STAB(G) for a special class of graphs. 

It is also conceivable that, for such particular systems p i , . . . , pi(Q) of polynomi
als, special nonlinear programming algorithms can be designed that solve optimization 
problems over V(p\,..., pi(G)) efficient in practice or theory. 

We do know, of course, that these indications of possible future results are mere 
speculation. Visions of this type, however, were the starting point of the results pre
sented in this paper. We do hope that there will be progress in some of the directions 
mentioned. 

http://www.math.princeton.edu/tsp/
http://www.tsp.gatech.edu/
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