
* Combinatorial Online Optimization in Real Time

Martin Grötschel1, Sven O. Krumke1, Jörg Rambau1, Thomas Winter2, and Uwe
T. Zimmermann3

1 Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Germany
2 Information and Communication Mobile Networks, Siemens AG, Germany
3 Abteilung Mathematische Optimierung, Technische Universität Braunschweig, Germany

Abstract Optimization is Üie task of finding a best solution to a given problem. When the
decision variables are discrete we speak of a combinatorial optimization problem. Such a
problem is online when decisions have to be made before all data of the problem are known.
And we speak of a real-time online problem when online decisions have to be computed
within very tight time bounds. This paper surveys the art of combinatorial online and real
time optimization, it discusses, in particular, the concepts with which online and real-time
algorithms can be analyzed.

1 INTRODUCTION

Models and methods from Combinatorial Optimization provide powerful tools for
solving highly complex problems from a broad spectrum of industrial and other
applications. The traditional optimization techniques assume, in general, knowledge
of all data of a problem instance. There are many cases in practice, however, where
decisions have to be made before complete information about the data is available.
In fact, it may be necessary to produce a part of the problem solution as soon as a
new piece of information becomes known. We call this an online situation, and we
say that an algorithm runs online if it makes a decision (computes a partial solution)
whenever a new piece of data requests an action.

Practice may be even more demanding. The online algorithm may indeed be
required to deliver the next piece of the solution within a very tight time bound.
In this case, we speak of a real-time problem (or real-time system), i.e., a problem
where an online algorithm is required to react in real-time.

How tight do time bounds have to be in order to turn an online problem into
a real-time problem? There is no general rule. A standard answer is: The required
reaction time of the algorithm must be short compared to the "time frame of the sys
tem", i.e., the definition depends on problem-specific settings. For example, we all
expect telecommunication and computer systems to react within a few seconds or
faster. Thus, real-time algorithms that, e.g., decide about routing, switching, capac
ity, or paging must answer within milliseconds. Real-time algorithms controlling
chemical reactions or other production processes may be given a few seconds for
the computation of a solution, while in transportation or traffic a few minutes lead
time could be acceptable. In fact, what could be considered real-time or not may
also depend on the complexity of the mathematical model applied, the importance
of the decision, and other problem-specific items.

Online and real-time problems have been around in continuous optimization
(e.g., control of airplanes, re-entry of a spacecraft) for quite a long time, while com
binatorial optimizers have neglected this issue to a large extent. With a few excep
tions, systematic investigation of combinatorial online problems started only about
15 years ago. Initially, research was mainly driven by applications in computing
and communication machinery. The emergence of new paradigms for the analysis
of online algorithms particularly fostered this "combinatorial online research". In
teresting and important additional applications broadened its scope.

Why is new theory necessary? Isn't it possible to transfer online results from
continuous optimization to combinatorial optimization? The (unfortunate) truth is
that continuous and discrete optimization are very different in nature. Combina
torial decision making is, in general, non-convex and non-continuous. Continuous
techniques rarely apply to discrete models.

In this paper we will discuss many of the models that have been proposed in the
recent years for the analysis of online algorithms. These models usually differ in the
way information becomes available to the online algorithm. We will describe the by
far most common online paradigms, the sequence model and the time-stamp model,
in greater detail.

Despite significant research efforts in recent years, combinatorial online opti
mization is not in a mature state yet. Compared to this, combinatorial real-time
optimization is even still in its infancy. No commonly accepted tools and concepts
for the analysis of combinatorial real-time algorithms that take both, solution qual
ity and time requirements, into account have been established yet. We will address
this topic in Section 3.

It is, however, important to note that practical applications have become a driv
ing force in this area. And, thus, we may hope to see new success stories on both,
the theoretical and the practical side, in the near future.

1.1 The Sequence Model

An online problem in the sequence model can be described as follows. An algorithm
ALG, we call it the online algorithm, is confronted with a finite request sequence
<j = r i , T2, The requests must be served in the order of their occurrence. More
precisely, when serving request n , the online algorithm ALG does not have any
knowledge of requests Tj with j > i. When request n is presented to ALG it must
be served by ALG according to the specific rules of the problem. The action taken
by ALG to serve n incurs a cost and the overall goal is to minimize the total service
cost.1 The decision by ALG of how to serve n is irrevocable. Only after ri has been
served, the next request T-L+I becomes known to ALG. In some cases the appearance
of the last request is announced, in some not.

We begin with sketching a very basic decision problem that occurs in various
forms frequently in everyday life. We phrase it as a ski rental problem. Despite its

1 It is also possible to define online profit-maximization problems. For those problems, the
serving of each request yields a profit and the goal is to maximize the total profit obtained.

simplicity the ski rental problem will enable us to point out some of the subtleties
in the modeling and analysis of online algorithms.

Example 1 (Ski Rental Problem). Suppose that a woman goes skiing for the first
time in her life. She is faced with the question of whether to buy skis for B » 1 Euro
or to rent skis at the cost of 1 Euro per day. Of course, if the woman knew how
many times she would go skiing in the future, her decision would be easy. But
unfortunately, she is in an online situation where the number of skiing days only
becomes known at the very last day. D

The above situation can be modeled as an online problem in the sequence model.
In the Ski Rental Problem each request n is a day the woman goes skiing. Each
request can be "served" in three different ways: (i) rent skis at the cost of 1 Euro,
(ii) buy skis at the cost of B Euro, (iii) use the skis that she already owns at the cost
of 0 Euro (where of course this option is only available in case she already bought
skis when serving some request Tj with j < I). Request r-L+i (that is, the next skiing
day, if there is any) only becomes known to the woman after Vi has been served.
The overall goal is to minimize the total rental/buying cost.

Some comments apply to the ski rental problem. We have formulated the prob
lem in such a way that the skiing woman does neither have any lookahead (that is
knowledge about a certain number of subsequent requests) nor any statistical infor
mation about the future. This is in accordance with the basic sequence model. If we
want to incorporate any of these additional information into the problem then the
sequence model must be augmented.

Example 2 (Paging Problem). Consider a two-level memory system (e.g., of a com
puter) that consists of a small fast memory (the cache) with k pages and a large slow
memory consisting of a total of N pages. Each request specifies a page in the slow
memory, that is, n e { 1 , . . . , N}. In order to serve the request, the corresponding
page must be brought into the cache. If a requested page is already in the cache, then
the cost of serving the request is zero. Otherwise one page must be evicted from the
cache and replaced by the requested page at a cost of 1. A paging algorithm specifies
which page to evict. An online algorithm must base its decisions when serving rt
only on the requests r i , . . . , n without any knowledge of future requests. The ob
jective is to minimize the total cost of processing the sequence of page requests. D

1.2 The Time Stamp Model

In the time stamp model requests become available over time at their arrival or
release dates. The release date tj. > 0 is a nonnegative real number and specifies
the time at which request n is released (becomes known). An online algorithm ALG
must determine its behavior at a certain moment t in time as a function of all the
requests released up to time t. Again, we are in the situation that an online algorithm
ALG is confronted with an input sequence a = r- | , . . . , r n of requests which is given
in order of non-decreasing release times and the service of each request incurs a cost

for ALG. The difference to the sequence model is that the online algorithm is allowed
to wait and to revoke decisions. Waiting incurs additional costs, typically depending
on the elapsed time. Previously made decisions may, of course, only be revoked as
long as they have not been executed.

Example 3 (Online Machine Scheduling with Jobs Arriving Over Time).
In scheduling one is concerned with the distribution of jobs (activities) to a number
of machines (the resources). In our example, one is given m identical machines and
is faced with the task of scheduling independent jobs on these machines. The jobs
become available at their release dates, specifying their processing times. An online
algorithm learns the existence of a job only at its release date. Once a job has been
started on a machine the job may not be preempted and has to run until completion.
However, jobs that have been scheduled but not yet started may be rescheduled. The
objective is to minimize the average flow time of a job, where the flow time of a job
is defined to be the difference between the completion time of the job and its release
date. D

The above problem can be modeled as an online problem in the time stamp
model. Request n (corresponding to job 1) is a pair r_ = (tt, pi), where t t is the re
lease time of job 1 and pi is the processing time. An online algorithm must make its
decisions at point t in time only based on the jobs released up to time t. The online
algorithm may leave some of its machines idle for some time even if unprocessed
jobs that have already been released exist. (Using a small amount of idle time can
actually be beneficial in order to gather information about potential new jobs).

Example 4 (Online Traveling Salesman Problem). An instance of the Online Trav
eling Salesman Problem consists of a metric space M. = (X, d) with a distinguished
origin o G M. and a sequence <J = r- | , . . . , r n of requests. Each request is a
pair Vi = (ti,xt), where tj. is the time at which request n is released (becomes
known), and xt 6 X is the point in the metric space requested to be visited. A
server is located at the origin o at time 0 and can move at unit speed. A feasible
online/offline solution is a route for the server which serves all requested points,
where each request is served not earlier than the time it is released, and which starts
and ends in the origin o. The cost of such a route is the time when the server has
served the last request and has returned to the origin (if the server does not return to
the origin at all, then the cost of such a route is defined to be infinity). This objective
function is also called the make span in scheduling.

It is assumed here that an online algorithm does neither have information about
the time when the last request is released nor about the total number of requests. An
online algorithm must determine the behavior of the server at a certain moment t of
time as a function of all the requests released until time t. D

Notice that the Online Traveling Salesman Problem differs from its famous rel
ative, the Traveling Salesman Problem (see Example 17 in Section 3.2), in certain
aspects: First, the cost of a feasible solution is not the length of the tour but the to
tal travel-time needed by the server. The total travel time is obtained from the tour

length plus the time during which the server remains idle. Second, due to the online
nature of the problem it may be unavoidable that a server reaches a certain point in
the metric space more than once.

A delicate issue arises when designing an online algorithm for the Online Trav
eling Salesman Problem: Suppose that at some moment in time all known requests
have been served. If the algorithm wants to produce a solution with finite cost, then
its server must return to the origin after a finite amount of waiting time. But how long
should this waiting time be? If the server returns immediately, then a new request
might become known and all the traveling to the origin has been in vain. However, a
too large waiting time before returning to the origin increases the cost of the solution
unnecessarily.

2 COMPETITIVE ANALYSIS

Combinatorial online problems and algorithms had been studied in the sixties to
eighties rather sporadically. Broad systematic investigation started when Sleator and
Tarjan [46] suggested comparing an online algorithm to an optimal offline algo
rithm, thus laying the foundations of competitive analysis. The term "competitive
analysis" was coined in the paper [33].

We call an algorithm deterministic if its actions are uniquely determined by the
input. A randomized algorithm may, in contrast, execute random moves, i.e., one
and the same input given to such an algorithm twice may result in two different
outputs. For the analysis of deterministic and randomized algorithms, of course,
different tools are needed.

2.1 Deterministic Algorithms

Let ALG be a deterministic online algorithm. Given a request sequence o denote
by ALG (a-) the cost incurred by ALG when serving <J and denote by OPT(a) the
optimal offline cost (the optimal offline algorithm OPT knows the entire request
sequence in advance and hence can serve it with minimum cost).

Definition 5 (Competitive Algorithm, Deterministic Case). Let c > 1 be a real
number. A deterministic online-algorithm ALG is called c-competitive if

holds for any request sequence o. The competitive ratio of ALG is the infimum over
all c such that ALG is c-competitive. D

We want to remark here that the definition of c-competitiveness varies in the
literature. Often, an online algorithm is called c-competitive if there exists a constant
b such that

holds for any request sequence. Some authors even allow b to depend on some prob
lem or instance specific parameters. Thus, whenever c-competitiveness is addressed

(1)

one should check which definition is applied. We will stick to the definition given
above since, in the examples we consider, requiring b = 0 is the natural choice.

Observe that, in the above definition, there is no restriction on the computational
resources of an online algorithm. The only scarce resource in competitive analysis is
information. In many practical applications, severe restrictions on the computation
time of an online algorithm apply. We address this issue in Section 3.

Competitive analysis of online-algorithms can be imagined as a game between
an online player and a malicious offline adversary. The online player uses an online
algorithm to process an input which is generated by the adversary. If the adversary
knows the (deterministic) strategy of the online player, he can construct a request se
quence which maximizes the ratio between the player's cost and the optimal offline
cost.

We illustrate competitive analysis of deterministic online algorithms on two ex
amples.

Example 6 (A Competitive Algorithm/or the Ski Rental Problem). Due to the sim
plicity of the Ski Rental Problem all possible deterministic online algorithms can
be specified. A generic online algorithm ALGk rents skis until the woman has skied
k — 1 times for some k > 1 and then buys skis on day k. The value k = oo is
allowed and means that the algorithm never buys. Clearly, each such algorithm is
online. Notice that on a specific request sequence <J algorithm ALGk might not get
to the point that it actually buys skis, since <J might specify less than k skiing days.
We claim that ALGk for k = B is c-competitive with c = 2 — 1 /B.

Let (J be any request sequence specifying n skiing days. Then our algorithm has
costALGB((x) = n i f n < B - 1 and cost ALGB(d) = B - 1 + B = 2 B - 1 if j > B.
Since the optimum offline cost is given by OPT (a) = min{n, B}, it follows that our
algorithm is (2 — 1/B)-competitive. D

Example 7 (A Bad Algorithm for the Paging Problem). The algorithm LFU - least
frequently used - for the Paging Problem given in Example 2 works as follows:
For each page p from the main memory, LFU maintains a counter on the number of
times that p has been requested so far. Upon a request n which is currently not in
the cache, LFU evicts the page from the fast memory which has been requested least
frequently in the past.

The algorithm LFU is not competitive. Indeed: suppose that X = {p i , . . . ,Pk} is
the initial cache contents and pk+i is one additional page from the slow memory.
Let £ > 1, and consider the sequence <J = p* ,P2, • • • ,Pk-i > (Pk+i ,Pk)£- Here y{
means that page pi is requested £ times in a row and (pk+i ,Pk)£ states that pk+i
and pk are requested alternatingly £ times. Starting with the £(k — 1) + 1 st request,
LFU has cost 1 for every subsequent request, which gives LFU(a) = 2£. On the
other hand, OPT can process the sequence at cost 1 by evicting page pi upon the
first request to pk+i • Since £ can be chosen arbitrarily large, it follows that LFU is
not competitive. D

Example 8 (Negative Result in Machine Scheduling). The online scheduling prob
lem in Example 3 is notoriously difficult. It can be shown that even in the case of a

single machine any deterministic online algorithm has a competitive ratio that grows
with the number of jobs presented in the input sequence. More precisely, any deter
ministic online algorithm has a competitive ratio of at least n — 1, where n is the
number of jobs, (see [24, Chapter 9]). D

Example 9 (Competitive Algorithms for the Online TSP). Probably the most obvi
ous algorithm for the Online TSP (see Example 4 for the definition) is given by
the following "REPLAN"-strategy: If a new request becomes known, plan a shortest
route starting at the current position, serving all yet unserved requests and ending in
the origin. It can be shown that this algorithm is 5/2-competitive (see [8,9]). How
ever, there are more complicated algorithms which achieve a competitive ratio of 2
(see [6,8,9]) in general metric spaces. For the special case that the metric space is
the real line, a 7/4-competitive algorithm is presented in [8,9]. D

2.2 Randomized Algorithms

So far we have only considered deterministic online algorithms. The definition of
competitiveness for randomized algorithms is a bit more subtle. In the case of a
deterministic online algorithm, the adversary has complete knowledge about his
opponent and can exploit this knowledge. For randomized algorithms we have to be
precise in defining what kind of information about the online player is available to
the adversary. This leads to different adversary models which are explained below.
For an in-depth treatment we refer to [15,39].

An oblivious adversary (OBL) must choose the entire request sequence in ad
vance. He does neither have knowledge about the outcome of the random experi
ments of the online algorithm ALG nor about the specific actions taken by ALG as a
result of the random decisions. However, the oblivious adversary knows the online
algorithm ALG itself including the probability distributions guiding ALG's decisions.

An adaptive adversary can choose each request in the input sequence based on
knowledge of all actions taken by the randomized algorithm so far, and of the out
come of all random experiments. One distinguishes different adaptive adversaries
depending on how the adversary himself must serve the input sequence.

The adaptive offline adversary (ADOFF) defers serving the request sequence
until he has generated the last request. He then uses an optimal offline algorithm.
The adaptive online adversary (ADON) must serve the input sequence (generated by
himself) online. Notice that in case of an adaptive adversary ADV, the adversary's
cost ADV (a-) for serving <J is a random variable.

Definition 10 (Competitive Algorithm, Randomized Case). A randomized algo
rithm ALG is c-competitive against an adversary of type ADVG {OBL, ADON, ADOFF}
for some c > 1, if

E[ALG((J)-CADV((J)] < 0 (2)

for all request sequences <J. Here, the expectation on the left hand side is taken over
all random choices made by ALG. D

In case of an oblivious adversary, the adversary's cost ADV((j) = OBL(a) does not
depend on any random choices made by the online algorithm. Hence, a randomized
online algorithm ALG is c-competitive against an oblivious adversary, if for any
request sequence the inequality E[ALG(a)] < c OPT(a) holds.

The power of a randomized algorithm depends on the adversary it competes
with. Relations between the adversaries have been studied in a general model called
request-answer games (see [15]). It turns out that randomization does not help
against an adaptive offline adversary. More precisely, it can be shown that the ex
istence of a c-competitive algorithm against an adaptive offline adversary implies
the existence of a deterministic algorithm which is c-competitive (see [15]). How
ever, against an oblivious adversary, a randomized algorithm can "hide" its current
configuration from the adversary which might enable him to achieve a better com
petitive ratio.

Example 11 (Ski Rental Problem Revisited). We look again at the Ski Rental Prob
lem given in Example 1. It is easy to see that any deterministic algorithm has a
competitive ratio at least (2 — 1/B). Any competitive algorithm must buy skis at
some point in time. The adversary simply presents skiing requests until the algo
rithm buys and then ends the sequence. A straightforward calculation shows that
this forces a ratio of at least 2 — 1 /B between the online and the offline cost.

We consider the following randomized algorithm RANDSKI against an oblivious
adversary. Let p := B/(B — 1) and a := -§Fzx- A t the start RANDSKI chooses
a random number k e {0 , . . . , B — 1} according to the distribution Pr[k = x] :=
ap k . After that, RANDSKI works completely deterministic, buying skis after having
skied k times. We analyze the competitive ratio of RANDSKI against an oblivious
adversary. Note that it suffices to consider sequences <J specifying at most B days
of skiing. For a sequence <J with n < B days of skiing, the optimal cost is clearly
OPT(a) = TL. The expected cost of RANDSKI can be computed as follows

E[RANDSKI

A lengthy computation shows that

E[RANDSKI

Hence, RANDSKI is CB-competitive with CB = 1 _^. Since lmiß-xx) CB = e/(e —
1) A: 1.58, this algorithm achieves a better competitive ratio than any deterministic
algorithm whenever

Example 12 (Paging Revisited). It can be shown that no deterministic algorithm for
the Paging Problem (see Example 2) can achieve a competitive ratio smaller than k,
the size of the cache. However, there exists a randomized algorithm which is 214^,
competitive, where H^ = 1 + 1 /2 + • • • + 1 / k is the kth harmonic number. Proofs
and the algorithm can be found in [15]. D

Example 13 (Machine Scheduling Revisited). The scheduling problem from Exam
ple 3 remains difficult even for randomized algorithms. Every randomized algorithm
has a competitive ratio of Cl{y/n) against an oblivious adversary where again n de
notes the number of jobs given in the request sequence (see [49]). D

2.3 Alternatives to Competitive Analysis

Competitive analysis is a type of worst-case analysis. It has (rightly) been criticized
as being overly pessimistic. The competitive ratios observed in practice are usually
much smaller than the pessimistic bounds provable from a theoretic point of view.
Often the offline adversary is simply too powerful and allows only trivial competi
tiveness results. This phenomenon is called "hitting the triviality barrier" (see [24]).
To overcome this unsatisfactory situation various extensions and alternatives to pure
competitive analysis have been investigated in the literature.

In comparative analysis the class of algorithms where the offline algorithm is
chosen from is restricted. This concept has been explored in the context of the
Paging Problem [34] and the Online TSP [14]. Another approach to strengthen
the position of an online algorithm is the concept of resource augmentation (see,
e.g. [10,41,42,46]). Here, the online algorithm is given more resources (more or
faster machines in scheduling) to serve requests than the offline adversary. The dif
fuse adversary [34] model deals with the situation where the input is chosen by an
adversary according to some probability distribution. Although the online algorithm
does not know the distribution itself, it is given the information that this distribution
belongs to a specific class of distributions. Other approaches to go beyond pure
competitive analysis include the access graph model for paging [16,17,32] and the
statistical adversary [18]. We refer to [24, Chapter 17] for a comprehensive survey.

All of the extensions and alternatives to competitive analysis have been proven
to be useful for some specific problem and powerful enough to obtain meaningful
results. However, none of these approaches has yet succeeded in replacing compet
itive analysis as the standard tool in the theoretical analysis of online algorithms.
Hence, it is particularly irritating that competitive analysis can only give substantial
decision support for a few "real-world problems".

3 REAL-TIME ISSUES

In real-time systems (cf. section 1), an algorithm has to deliver a solution within
prescribed time constraints. The behavior of a real-time system depends of course on
the quality of the solution but it depends as well as on the time needed for producing
the solution. A solution provided too late may be useless or, in some cases, even
dangerous because it does not fit to the current system parameters which may vary
over time.

For instance, if a decision support system watching the stock market needs a
long time to propose buying or selling a certain share, the price of the share (espe
cially in a volatile market) may have changed so much that this action is no longer

reasonable. If, however, the decision support system of a pilot takes long to suggest
the right action in case of an emergency the result may be fatal.

In our context, the notion time emphasizes the fact that the system significantly
depends on the time in which answers to requests are produced. The notion real
indicates that the system's reaction to external events must occur instantaneously.
In other contexts, real-time reaction is just a synonym for fast reaction to external
events. We have to be more precise, the speed of real-time reaction must correspond
to the specific time requirements of the systems environment and the problem set
ting. The time available for computation may vary, e.g., from milliseconds to min
utes. The general objective of real-time optimization is to match the problem specific
timing requirements of each task and to produce a best possible solution within the
incurred time constraints. Since the solution is based on the information available at
the beginning of the computation, it may be necessary to check its feasibility for the
state of the system at the end of the computation.

3.1 Real-Time Decision Support Systems

Real-time algorithms are often integrated into computerized decision support sys
tems, see [44] for such examples in local transport.

Decision support can be based on the knowledge of a previously forecasted de
velopment of the real-time system. In our context, such forecasts may be obtained
via offline computations of optimal solutions of some combinatorial optimization
problem for real-world data describing the standard situation of the real-time sys
tem. We will thus call the presently available forecasted development of the real
time system briefly the current solution. Real-time decision support systems provide
proposals for "quick" reactions to external unforseen events which change the cur
rent solution. Real-time decisions usually have to be made subject to and despite of
severe limitations of resources: hardware, time, and information. Some fundamental
components of such a decision system (according to [44]) are:

1. Information management: current update of incoming information.
2. Situation assessment: evaluation of the situation, decision whether or not a re

action of the system is required (or should be proposed).
3. Evaluation of alternatives: checking possible actions for the real-time event.
4. Decision: determining an action (or choosing to do nothing).

Real-time decision support systems for complex real-time systems are (more or
less) semi-autonomous systems that support and assist human operators. Due to
efficiency, responsibility, and security issues, human operators are seldom replaced
by such systems. On the other hand, these systems usually require highly qualified
personnel.

Decision support systems may propose actions with different degree of influence
on the development of the real-time system. Three different types of decisions with
increasing impact [44] are reactive planning, incremental planning, and deliberative
planning. In reactive planning, the current solution is only locally adapted to some
real-time event. Incremental planning already results in a more global update of the

Combinatorial Online Optimization in Real Time 689

current solution. Deliberate planning is a complete revision of the current solution.
This is advisable when the observed situation significantly differs from the predicted
state so that the current solution becomes ineffective or even infeasible. The choice
of reactions on real-time events depends on the time available for computation and
on the observed effects of the real-time event.

Example 14 (Dispatching Trams in Local Transport). In municipal tram dispatch,
trams start from a certain depot for serving scheduled round trips. In the depot, trams
are stored in several sidings one behind the other. The dispatcher has to assign the
trams to a sequence of round trips each requiring a certain type of tram [13,50,51].

Due to unforeseen external events, e.g., delays, the pre-calculated current fea
sible assignment of trams to round trips has to be replaced by a new one. The dis
patcher needs to find the new feasible assignment as fast as possible within a few
minutes. His objective is to minimize (or prevent) shunting of trams. Otherwise, new
delays may be generated or more tram drivers may be required for moving trams.

D

For results on competitive analysis for online versions of tram dispatch prob
lems, unfortunately mainly negative observations have been made, we refer to [50,
51].

In the following sections we survey some of the prominent methods for solving
offline-optimization problems and comment on their usability in a real-time context.

3.2 Exact Solution Methods for Combinatorial Optimization Problems

Online and real-time algorithms try, of course, to make use of the existing machinery
of combinatorial optimization. Core ingredients are, thus, fast solvers for linear,
integer and mixed-integer programs.

Mixed-integer programming (MIP) provides effective tools for solving combi
natorial optimization problems which arise from industrial applications. Constraints
from combinatorial optimization can often easily be reformulated in terms of linear
MIP-constraints though it may turn out to be difficult to find a computationally ef
fective formulation. Modelling software like AMPL [25] or GAMS [19] is available
which support modelling and problem solving. Powerful state-of-the-art solvers for
linear and mixed integer programming problems such as CPLEX [12] have success
fully been applied to such formulations of industrial applications.

Definition 15 (Mixed integer programming). In (linear) mixed integer program
ming the given (linear) objective function

has to be minimized subject to

for integer valued vectors x and real valued vectors y.

the given (linear) constraints

(3)

(4)
(5)

Solving MIPs is difficult in theory (NP-hard) and, in general, hard in practice.
Nevertheless, MIP formulations and solution techniques may help under real-time
constraints. Here are two examples of the MIP approach.

Example 16 (Load Balancing on Identical Machines). Consider the Load Balanc
ing Problem (also called makespan minimization) arising in machine scheduling.
One is given a sequence I = (1 , . . . , n) of jobs where job i has processing time pi.
The task is to distribute the jobs on m identical machines such that the maximum
load of a machine is minimized. Here, the load of a machine is defined to be the sum
of job processing times assigned to the machine.

The above problem can be formulated as the following Integer Linear Program:

minimize M.
subject to

The binary (decision) variable Xij has the following meaning: Xij = 1 if and only
if job i is assigned to machine j . Constraints (7) ensure that each job is assigned to
exactly one machine, constraints (6) ensure that M. is greater or equal to the load of
any of the m machines. Since M. is minimized it follows that in an optimal solution
M. will be exactly the maximum load of a machine. D

Example 17 (Offline Traveling Salesman Problem). In the famous symmetric Trav
eling Salesman Problem one is given a complete undirected graph G = (V, E) on
TL vertices V = { 1 , . . . , n} with (symmetric) edge weights dtj for each edge ij e E.
The problem consists of finding a shortest tour starting and ending at the same ver
tex and visiting each other vertex exactly once. The cost of a solution is the total
length of all edges in the tour.

We formulate the Traveling Salesman Problem as an Integer Linear Program. To
this end define, for a subset
incident with S. Then using the decision variables X-LJ, with X-LJ = 1 if and only if
edge ij is contained in the tour, we can write the TSP as the following Integer Linear

(6)

(7)

(8)

[of edges

Program

(9)

(10)

(11)

A proof that the feasible solutions to the above Integer Linear Program are in fact
exactly (incidence vectors of) tours, can be found, e.g., in [22,36].

As already noted, there are important differences between the objectives in the
Offline TSP and the Online TSP specified in Example 4. However, an algorithm
for the Online TSP can make use of an (exact or approximate) algorithm for the
Offline TSP to solve the following sub-problem: For a set of known but yet unserved
requests R find a shortest route which serves all requests in R and returns to the
origin.

Integer programming formulations are quite flexible and general. While adding
or cancelling of constraints and/or variables in a MIP may severely change the com
plexity of the model, it still remains a MIP and thus basic methods for solving MIP's
still apply. Combinatorial algorithms specially designed and tuned for some com
binatorial optimization problem usually break down when such changes become
necessary.

For example, integer programming methods have successfully been applied to
real-time problems in transport and logistics. If solving a complete real-time model
turns out to be too time-consuming, it may be decomposed into smaller parts which
can be solved fast enough. Trading computing time versus solution quality helps to
adapt the problem setting to the changing requirements in real-time applications.

Example 18 (Dispatching Trams in Local Transport Revisited). The task of finding
shunting free assignments for the tram dispatching problem of Example 14 can be
modelled as a 0-1-quadratic assignment problem [50,51].2 Shunting-free assign
ments correspond to assignments that obey certain additional side constraints [13].
After exact linearization and some model tuning, the resulting integer programming
model can be solved within reasonable time [50,51]. D

A similar approach has proved to be useful in the context of container logistics [47].
Exact solution methods, here based on mixed integer programming formulations

of the combinatorial optimization model, are essential for pre-calculation of good or
2 See [20] for a definition of the quadratic assigment problem and a comprehensive survey

of solution approaches.

optimal solutions to real-time optimization problems. While computation times are
reasonable, matching tight real-time requirements in real-time applications may en
force tradeoffs between solution quality and computation time. However, even then,
exact methods provide indispensable information on the quality of other approaches.

3.3 Approximation Algorithms

If exact methods fail to produce answers in real-time the next step is to look for sub-
optimal solutions which have a guaranteed quality. Approximation algorithms for
offline minimization problems are closely related to competitive online algorithms.

Definition 19 (Approximation algorithm). A deterministic algorithm ALG is ot-
approximative if

holds for any problem instance I. The quantity a — 1 provides a worst case bound
on the relative error of the approximation. The infimum of all values of a for which
ALG is a-approximative is called performance ratio of ALG. (The remarks made on
variants of the definition of c-competitiveness also apply here.) D

By the above definition, a c-competitive online algorithm is c-approximative.
Conversely, if a c-approximate algorithm is also online, it is also c-competitive. In
view of applications, in the design of approximation algorithms speed is of first pri
ority since here computation time is the scarce resource. Thus, one usually restricts
approximation algorithms to the class of polynomial time algorithms.3 In contrast,
time complexity is not an issue in competitive analysis: there is (at least in theory)
no bound on the computation time for an answer generated by an online algorithm.

Many approximation algorithms have a simple structure and are in fact online.
For NP-hard problems, polynomial time approximation algorithms offer a way to
trade solution quality for computation time. Polynomial time approximation algo
rithms have intensively been considered within the last years. Comprehensive sur
veys on approximation algorithms can be found in [7,31,38,48].

Example 20 (Load Balancing on Identical Machines revisited). Consider again the
load balancing problem described in Exampe 16. Graham [27, 28] proposed the
following greedy-type heuristic LIST: Consider the jobs in order of their occurence
in the input sequence I. Always assign the next job to the machine currently with
the least load (breaking ties arbitrarily). Clearly, LIST can be implemented to run in
polynomial time. Moreover, LIST is also an online algorithm for the online version
of the problem where jobs are revealed to an online algorithm according to the
sequence model.

We are now going to analyze the performance of LIST. Obviously, the optimum
load is at least as large as any job processing requirement resp. at least as large the

3 In the literature often the notion of an approximation algorithm includes the property of
the algorithm being polynomial time.

(12)

average processing time for each machine, i.e.:

Consider the machine j where LIST generates the maximum load when processing I.
Let pi be the load of the last job assigned to machine j and let L be the load of j
before job I was assigned. With these notations we have LIST(I) = L + pi.

By definition of LIST, at the moment job I was assigned to machine j all other
machines had load at least L. Hence, the total sum of job sizes is at least mL + pi.
Hence from the second inequality in (13) we get OPT(I) >_ 1/m(mL + pO =
L + Pi /m. This results in

where for the last inequality we have used the first inequality in (13).
This proves that LIST is (2 — 1/m)-approximative. Since we have already re

marked that LIST is in fact an online algorithm, LIST is also (2 — 1/m)-competitive
for the online variant of the problem in the sequence model. D

For m > 2, Albers [1] describes an online scheduling algorithm which is 1.923-
competitive. Her algorithm tries to prevent schedules which distribute the load uni
formly on all machines by keeping some machines with a "low" load whereas the
other machines have a "high" load. For m >_ 80, Albers [1] derives a lower bound
of 1.852 on the competitive ratio of deterministic online algorithms for the machine
scheduling problem.

In the offline case, LIST can easily be improved by taking advantage of the in
formation about I. In worst-case examples for LIST, the last job has a very long
processing time. By sorting the jobs in non-increasing order according to their pro
cessing times, i.e., processing jobs with the longest processing times first, a better
approximation ratio of | — - ^ can be achieved [28]. Since sorting is quite fast, this
algorithm may still be applied to real-time versions of machine scheduling problems
where several jobs arrive simultaneously.

Example 21 (Offline Traveling Salesman Problem Revisited). It is easy to see that
for the Traveling Salesman Problem (see Example 17), polynomial-time approxima
tion algorithms with constant performance ratio can only exist if the edge weights
satisfy the triangle inequality [26]. In this case, a 2-approximative algorithm can be
constructed using a minimum spanning tree in the graph [40]. Christofides' algo
rithm [21] also starts with a minimum spanning tree. For the nodes with odd degree
in this tree a shortest perfect matching is computed. Then, a tour following a Eule-
rian walk in the multi-graph formed by the spanning tree and the perfect matching
is constructed. The solution found this way is §-approximative.

For the special case that the vertices in the input graph corresponds to points
in the Euclidean plane and the edge lengths are given by the Euclidean distances,

(13)

Arora [2] and independently Mitchell [37] have devised polynomial time approxi
mation schemes.4 However, no practical implementation of these fairly complicated
algorithms has been reported yet. D

Real-time applications require that answers are computed online and within
tight time windows. The length of this time window is closely connected to the
arrival times of the requests. In view of the discussion of polynomial approxima
tion algorithms, one may define a real-time algorithm as an online algorithm that
generates answers in constant or, at least, in "suitably" low polynomial time. A con
cept for the evaluation of the performance of real-time algorithms, that combines
approximation aspects and time requirements in a convincing manner, would be of
great value for real-time applications. Up to now, no convincing concept has been
proposed.

3.4 Offline Heuristics (without Provable Worst-Case Performance Guarantees)

In some applications, optimal or approximate solutions even for small problem in
stances cannot be computed within the tight required real-time bounds. The typical
approach in this case is to look for algorithms that quickly produce a feasible so
lution and iteratively keep on improving the solution. There are general principles,
such as local search (or more fashionable: meta heuristics), that can be adapted to
special applications and have indeed successfully been applied to many real-world
applications. For a comprehensive introduction to local search we refer to [23,43].

Local search for a combinatorial optimization problem proceeds in the following
way. Let T be the set of all feasible solutions (also called solution space). For each
feasible solutionx G T, one defines a neighborhood^^ C T containing all feasible
solutions which are "close" to x and which can be reached from x by applying
certain modifications to x. The solution space T is covered by the collection of
neighborhoods{ N x : x G J7}.

Starting from an initial feasible solution, local search moves from one feasible
solution to another, while storing the best solution found so far. Local search can
thus be stopped at any time and will always provide a feasible solution. In our con
text, local search algorithms may thus be called any-time algorithms. The initial so
lution for a local search algorithm is usually generated using a starting heuristic. The
local search algorithm terminates either after a certain number of steps (in the con
text of real-time computation this may also be after a user-defined time threshold)
or according to some other stopping criterion with respect to the objective function
value.

The basic local search paradigm leaves open how a successor x ' e N x to the
current solution x is selected. Different rules to select a successor lead to different
incarnations of local search. For instance, a Greedy-type local search would always
choose the solution with the best objective function value among all solutions in Nx .

4 An approximation scheme consists of a collection {ALGe : £ > 0} of algorithms where
■approximate and has polynomial running time.

However, since such an algorithm can get stuck at local optima, various other ap
proaches have been suggested in the literature. In Simulated Annealing one accepts
also successors with worse objective function value but only with a certain probality
which decreases over time. Tabu Search is another implementation of local search
which attempts to avoid a breakdown at local optima. Other approaches include so
called improvement heuristics like k-opt. We refer to [23,43] for comprehensive
survey.

Example 22 (Dispatching Trams in Local Transport by Local Search). An example
for a powerful local search algorithm is the reactive tabu search (RTS) heuristic de
veloped by Battiti and Tecchiolli [11]. In RTS, the next solution in the neighborhood
is chosen at random while recording whether and how often this solution has been
visited before. If a re-visiting counter exceeds a threshold, some random steps are
executed in order to leave the previously visited neighborhood in which RTS threat
ens to stall. RTS is known to be very effective for instances for quadratic assignment
problems.

The real-time tram dispatch problem introduced in Example 14, requires to com
pute tram assignments within two minutes. Reactive tabu search provided optimal
solutions for more than 80 percent of the considered real-world instances as well as
for randomly generated instances within these tight time bounds [50,51]. D

4 GENERAL-PURPOSE ONLINE-HEURISTICS

There are general principles which can be used to design an online algorithm.

4.1 First-In-First-Out f Fl FO)

The FIFO-strategy does only make sense in the time stamp model. This approach to
control the order in which requests are served completely works without regard of
efficiency issues: FIFO strictly serves requests in the order of appearance.

Although it is clear form the definition that this strategy is almost never cost-
efficient it is incredibly popular in production-planning and control. One reason for
this might be that FIFO has a desired side-effect: items in a production environment
are delivered according in the order of production, so that no newer items are sold
(or used) before the old items are cleared. One other reason is that a Fl FO-heuristic is
sometimes hidden in a control system based on priority rules. These systems usually
employ FIFO as a tie-breaker inside the priority classes. Whenever there are many
requests in one priority class the efficiency problem will take effect. Thus, a major
problem for such controls is catching up after system break-downs.

In principle it is possible to use any of the following strategies as a tie-breaker
in a priority-based control system. Therefore, FIFO- if not explicitely required -
is usually an inferior strategy whenever there is a substantial number of requests
available for planning.

4.2 Greedy

The greedy algorithm is a well defined algorithm in the context of matroids or in
dependence systems in combinatorial optimization. In terms of online optimization
the notion of an algorithm being "greedy" is used for all kinds of algorithms which
have in common the following strategy: Make a "locally most promising" decision
how to process the next request.

In the sequence model the GREEDY principle amounts to serving the next re
quest that is revealed to the online algorithm by such an action that has least service
cost. In the time stamp model at any time GREEDY serves that request (among the
yet unserved requests) next that can be served with the least cost with respect to the
current system state. This is one extremal case of local optimization: GREEDY only
decides upon the next request to be served, i.e., it does not plan into the future or
does not consider the system state after the service. That means, even when no other
request arrives, GREEDY is very likely to be sub-optimal. Moreover, GREEDY does
not take into account possible future requests.

Although the above GREEDY-strategy is very shortsighted and the solutions pro
duced maybe sub-optimal it is very popular because it is

- easy to implement,
- usually real-time compliant, and
- it produces a stable, predictable behavior since no decision is revised.

However, if cost-efficiency is the main-goal one usually needs a more sophisticated
approach.

4.3 Rep Ian

The REPLAN-strategy for an online problem in the time stamp model assumes that
we have a method that computes an optimal (or almost optimal) solution to the
static optimization problem (the corresponding offline-problem) at a specific point
in time. Note that, in a realistic environment, this imposes the restriction of real-time
compliance on the algorithms used to compute the optimum of the offline-problem
(see Section 3).

While the GREEDY-approach 4.2 acted as locally as one could think, for RE-
PLAN we find the other extreme case: at any time REPLAN tries to be "as globally
optimal as possible", given the information it has at that point.

More specific: REPLAN maintains a "plan" containing the information on how
to serve the already known requests. This plan is followed as long as no relevant
event happens. Whenever a relevant event happens (a new request arrives, a change
of the system state gives rise to a new cost of the current solution, etc.), REPLAN
computes a cheapest solution of all known request in the current system state. Due
to its nature, REPLAN is also called REOPT in the literature.

At any point in time we compute an optimal solution that is globally optimal at
that particular moment. However, with respect to the complete instance the current
solution is yet only locally optimal. Whenever a new request arrives the plan maybe

revised, and the global efficiency of the old plan is never really exploited since only
the first couple of requests have been served according to that plan.

A more serious problem, however, is the fact that REPLAN can completely revise
all decisions for which this is still possible. This often leads to an unpredictable
behavior over time. One can even produce "oscillating" solutions. This means the
following: assume, e.g., at some point in time, we find an optimal solution serving
some request r of type A before another request r ' of type B. Before we can serve r,
a new request of type B arrives. Now the optimal plan may suggest to serve r ' prior
to r. But then there might arrive a new request of type A changing the plan back,
and so on.

4.4 Ignore

The IGNORE-strategy also assumes that we are working in the time stamp model
and that we have a way of computing (sub-) optimal solutions to the static (offline)
version of the problem. The main idea of this method is to make sure that the effi
ciency of an optimal offline-solution computed at a certain point in time be exploited
completely. More important even: once we computed an optimal plan it is absolutely
predictable how the system will work in the near future.

The way it works is the following: IGNORE again maintains a plan. In contrast
to REPLAN, the strategy IGNORE will stubbornly serve requests according to this
plan until the plan is finished. Upcoming requests are temporarily ignored and col
lected in a buffer. When the current plan is finished IGNORE computes a new plan
optimizing the service of all not yet served requests.

Although IGNORE might give away optimization potential by temporarily ig
noring requests it still exploits optimization. Moreover, the upcoming requests that
fit "very well" into the old plan (i.e., with no cost) can be incorporated with no harm.

We illustrate the general purpose strategies FIFO, GREEDY, IGNORE and RE
PLAN for the Online Traveling Salesman Problem:

Example 23 (Online TSP Revisited). Applying FIFO to the Online Traveling Sales
man Problem leads to a tour that visits all cities in the order of appearance. If not
required by other constraints this is certainly not the best choice.

The GREEDY-heuristic for the Online Traveling Salesman Problem means the
following: At any point in time visit the closest city next. It is known that this
can lead to a very inefficient solution. In some practical applications of the Online
Traveling Salesman Problem, however, the experience shows that even this simple
heuristics is acceptable.

Whenever a new city becomes known the REP LAN-heuristic computes an op
timal tour (according to the objective function used to model the cost) visiting all
cities known so far. This tour is followed until the next city pops up.

The observed performance depends heavily on the application. In practical in
stances it maybe necessary to cope with the problem of system break-downs: the
salesman has to interrupt his work at some point. During the break the number
of unserved requests increases, and so does the gain of offline-optimization of all

unserved requests. For instance, an automatic storage system where transportation
tasks are served by a stacker crane can be modeled as an asymmetric Online Trav
eling Salesman Problem (see [4,5]). In this specific application unexpected system
break-downs of the automatic storage system may occur. During the forced idle
period of the server a lot of requests pile up. All these requests can be taken into
account by RE PLAN when the server resumes. Thus, it is plausible that RE PLAN
yields a good recovery method.

The effort to get the necessary offline-solutions is usually large and not always
real-time compliant. This, however, could be achieved in cases where good approx
imation algorithms (see Section 3.3) exist, like in the metric case (see Example 21).

The method IGNORE waits for the first city to be "released". Then it moves its
salesman to that city. Once arrived, it computes an optimal tour through all the cities
that have been released during the time the salesman was underway. Then this tour
is completely traveled. At the end of the tour, the cities that have become known in
the meantime are planned.

Again, the success of this method in realistic systems modeled by variants of
this problem is application dependent. Simulation experiments show that in single
server systems there usually is a substantial gain in stability and predictability of the
system behavior over RE PLAN. D

4.5 Chasing the Offline Optimum and Balancing Costs

Suppose that there are n (system-) states s i , . . . , s n in which an algorithm can be
and that the service cost for a request depends (only) on the current state. Moreover,
there is a cost for changing states. (This situation can be stated more formally as a
Metrical Task System, see [15]).

Upon arrival of a new request n , the strategy of chasing the offline optimum
changes to that state Sj in which the offline optimum for the sequence r i , . . . , n
would process n . A balancing costs type algorithm would change from the current
state s to that state s' which minimizes some function of the following two values:
(i) the charge for changing from s to s', and (ii) the cost of serving r_ in s'. The
most famous representative of the latter class is the work function algorithm which
has been successfully applied to the theoretical analysis of the Paging Problem and
the k-Server Problem [15,35].

5 SIMULATION

One can view simulation as a method of checking industrial system layouts and as
sociated algorithms by an organized sequence of computer based experiments and
evaluations. This takes place, of course, on the border line of mathematics and engi
neering. Therefore, we cannot hope for exact mathematical definitions of all relevant
objects in the realm of simulation.

In this section we informally describe the method of discrete event based sim
ulation and address issues that may come up during the process of modeling and
computing. More elementary information can be found in [45].

5.7 Why Simulation?

The theoretical background surveyed in Section 2 leads to mathematical problems of
substantial difficulty, even for seemingly easy online optimization problems. On the
other hand, the performance guarantees achieved by these methods are often very
poor. This renders competitive analysis problematic for most industrial purposes. In
this case, evaluation and comparison of the practical performance of online algo
rithms are necessary.

There are new theoretical developments - one of them in this volume - that
provide some improvements in this area; the final decision about which algorithm to
choose in practice, however, is usually done on the basis of simulation experiments.

5.2 Discrete Event Based Simulation

Simulating an aspect of the real world on a computer requires a quantitative defi
nition of the relevant part of the real world. This is referred to as the system. The
system may consist of several components. In order to investigate waiting time dis
tributions in a supermarket consider, e.g., the check-out area in that supermarket as
the system. This system consists of several cashiers, waiting queues, etc.

The part of the real world outside the system is usually called environment.
Sometimes there is a feed-back between system and environment, and it is at times
a difficult modeling issue to find a suitable separation. The system interacts with the
environment by producing an output of the system for an input of the environment.

In the area of online optimization we are usually concerned with dynamic sys
tems, i.e., the system parameters change over time. For example, the lengths of the
lines at the cashiers in the supermarket are not constant. Moreover, in the realm
of combinatorial online optimization it is usually possible to find discrete points in
time where the system changes its state. Such systems are called time-discrete. In
the sequel we restrict ourselves to time-discrete systems.

A simulation model is a translation of the relevant parameters of the system
into mathematical language so that the behavior of the system over time can be
investigated by a computer calculation. In this step it is necessary to specify the
components and their attributes that one would like to keep track of. Very important
attributes are strategies or algorithms that hold information about how components
react on system events. Some attributes are time-dependent, some are not. In the
supermarket example we could specify a component "cashier" and a component
"customer". The attributes for a cashier, e.g., could be open/closed, operator speed,
length of line.

The changes of a time-discrete system over time is described by Events. First,
an event specifies a system transition function that assigns to every possible system

state a new system state. Second, it defines a successor function that assigns to every
system state a set of succeeding events together with their time of occurrence.

In the supermarket example the event "customer arrives in line at cashier 1"
can be formalized as follows: for all current system states the new system state
incorporates the following changes: the queue at cashier 1 contains a new customer,
and the set of succeeding events is empty.

The event "customer is being served at cashier 1" can be defined as follows:
the customer is no longer in the corresponding queue, and there is one successor
event, namely "customer leaves the system" in five seconds times number of items
in shopping cart from now.

Simulation means computing the output of the system (over time) for a given
input (over time) of the environment. In Discrete Event Based Simulation this is
done by dynamically processing events, i.e., computing the system states and the
successor events until no events are left or a specified time is over. To start the
simulation one uses environment input events modeling the input of the environment
to the system.

An example of a discrete event based simulation system is the library AM
SEL [3]. It was used in the investigations in [29].

5.3 Issues for the Practitioner

The quality of an evaluation of algorithms by means of simulation experiments
heavily depends on the input data used. The following ways of generating input
data are common:

- Generate data according to a probability distribution (random data).
Advantages: It is possible to generate an arbitrarily large set of test data.
Draw-backs: A realistic probability distribution maybe hard to come by.

- Compile data in the system under consideration.
Advantages: One can adjust parameters of the simulation model by comparing
the outcome of the simulation experiments with the outcome in the real world
operation.
Draw-backs: Compiling the data is extremely time-consuming, often it is not
clear whether the compilation contains typical or unusual data.

Although we are advertising here the use of simulation for the performance eval
uation of online algorithms we are aware of the fact that simulation experiments may
be misguiding. It is a nontrivial matter to come up with meaningful and representa
tive simulation tests.

6 CONCLUSION

More and more industrial decision makers appear to understand the issues coming
up in online and real-time systems. Solution techniques are requested in a range of
applications which will certainly improve research and development in online and
real-time algorithms.

We have introduced competitive analysis as a mathematical method for the eval
uation of combinatorial online-algorithms resulting in provable performance guar
antees. A shortcoming of this approach is that it does not take into account the
real-time requirements that are present in many real-world systems. Moreover, for
complex systems and complicated algorithms a rigorous competitive analysis is in
most cases impossible.

Thus, using this method on elementary problems that are similar to the given
complex problems seems to be the right utilization: it is possible to get an idea
about what kind of strategies are promising for real-world systems and why.

There are new developments in the area of theoretical evaluation of online-
algorithms [30]; this field is, however, still in its childhood.

Most online-strategies caring about cost efficiency employ offline-algorithms.
Here the need for real-time compliant methods is apparent. Theoretical concepts to
get a hand on the issue that a solution is computed under circumstances that might
have changed when the computation finishes are not yet available. Some achieve
ments are presented in this volume.

After all, up to now there is no way to replace the experience in simulation exper
iments completely by a purely theoretical concept for evaluation of combinatorial
online-algorithms.

R E F E R E N C E S

1. S. Albers, Better bounds for online scheduling, Proceedings of the 24th Annual ACM
Symposium on the Theory of Computing, 1997, pp. 130-139.

2. S. Arora, Polynomial-time approximation schemes for euclidean TSP and other geomet
ric problems, Proceedings of the 38th Annual IEEE Symposium on the Foundations of
Computer Science, 1997, pp. 2-11.

3. N. Ascheuer, Amsel - a modelling and simulation environment library, Online-
Documentation available5.

4. N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manufac
turing systems, Ph.D. thesis, Technische Universität Berlin, 1995.

5. N. Ascheuer, M. Grötschel, N. Kamin, and J. Rambau, Combinatorial online optimiza
tion in practice, Optima - Mathematical Programming Society Newsletter (1998), no. 57,
1-6.

6. N. Ascheuer, S. O. Krumke, and J. Rambau, Online dial-a-ride problems: Minimizing
the completion time, Proceedings of the 17th International Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science, vol. 1770, Springer,
2000, pp. 639-650.

7. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-
tasi, Complexity and approximation, combinatorial optimization problems and their ap-
proximability properties, Springer, 1999.

8. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Competitive algo
rithms for the traveling salesman, Proceedings of the 4th Workshop on Algorithms and
Data Structures, Lecture Notes in Computer Science, vol. 955, August 1995, pp. 206-
217.

http://www.zib.de/ascheuer/AMSEL.html

http://www.zib.de/Optimization/Software/Amsel/

9. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo,, Algorithms for the
on-line traveling salesman, Algorithmica (2001), To appear.

10. B. Awerbuch, Y. Bartal, and A. Fiat, Distributed paging for general networks, Proceed
ings of the 7Ü1 Annual ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 574-
583.

11. R. Battiti and G. Tecchiolli, The reactive tabu search, ORSA journal on computing 6
(1994), no. 2, 126-140.

12. R. E. Bixby, M. Fenelon, Z. Gu, E. Romberg, and R. Wunderling, MIP: Theory and prac
tice closing the gap, ILOG Technical Report, Presented at 19th IFIP TC7 Conference on
System Modelling and Optimization, Cambridge, England, July 1999.

13. U. Blasum, M. R. Bussieck, W Hochstättier, H. H. Scheel, and T. Winter, Scheduling
trams in the morning, Mathematical Methods of Operations Research 49 (1999), no. 1,
137-148.

14. M. Blom, S. O. Krumke, W E. de Paepe, and L. Stougie, The online-TSP against fair
adversaries, Proceedings of the 4th Italian Conference on Algorithms and Complexity,
Lecture Notes in Computer Science, vol. 1767, Springer, 2000, pp. 137-149.

15. A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cambridge
University Press, 1998.

16. A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of
reference, Proceedings of the 23th Annual ACM Symposium on the Theory of Comput
ing, 1991, pp. 249-259.

17. A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of
reference, Journal of Computer and System Sciences 50 (1995), 244-258.

18. A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson, Adversarial
queueing theory, Proceedings of the 23rd Annual ACM Symposium on the Theory of
Computing, 1996, pp. 376-385.

19. A. Brooke, D. Kendrick, A. Meeraus, and R. Raman, GAMS - a user's guide, GAMS
Development Corporatio, 1998.

20. E. Cela, The quadratic assignment problem., theory and algorithms, Kluwer Academic
Publishers, Dordrecht, 1998.

21. N. Christofides, Worst-case analysis of a new heuristic for the traveling salesman prob
lem., Tech. report, Graduate School of Industrial Administration, Carnegie-Mellon Uni
versity, Pittsburgh, PA, 1976.

22. W J. Cook, W H. Cunningham, W R. Pulleyblank, and A. Schrijver, Combinatorial
optimization, Wiley Interscience Series in Discrete Mathematics and Optimization, John
Wiley & Sons, 1998.

23. J. K. Lenstra E. H. L. Aarts, Local search, in combinatorial optimizatio, Wiley, 1997.
24. A. Fiat and G. J. Woeginger (eds.), Online algorithms: The state of the art, Lecture Notes

in Computer Science, vol. 1442, Springer, 1998.
25. R. Fourer, D. M. Gay, and B. W Kernighan, AMPL: A modeling language for mathemat

ical programming, Duxbury Press, Brooks/Cole Publishing Company, 1993.
26. M. R. Garey and D. S. Johnson, Computers and intractability (a guide to the theory of

NP-completeness), WH. Freeman and Company, New York, 1979.
27. R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical

Journal 45 (1966), 1563-1581.
28. Ronald L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Ap

plied Mathematics 17 (1969), 263-269.
29. M. Grötschel, S. O. Krumke, and J. Rambau, Forschungsartikel, ch. This book, Springer,

2001.

30. D. Hauptmeier, S. O. Krumke, and J. Rambau, The online dial-a-ride problem, under rea
sonable load, Proceedings of the 4th Italian Conference on Algorithms and Complexity,
Lecture Notes in Computer Science, vol. 1767, Springer, 2000, pp. 125-136.

31. D. S. Hochbaum (ed.), Approximation algorithms for NP-hard problems, PWS Publish
ing Company, 20 Park Plaza, Boston, MA 02116^1324, 1997.

32. S. Irani, A. Karlin, and S. Phillips, Strongly competitive algorithms for paging with lo
cality of reference, Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete
Algorithms, 1992, pp. 228-236.

33. A. Karlin, M. Manasse, L. Rudolph, and D. D. Sleator, Competitive snoopy caching,
Algorithmica 3 (1988), 79-119.

34. E. Koutsoupias and C. Papadimitriou, Beyond competitive analysis, Proceedings of the
35Ü1 Annual IEEE Symposium on the Foundations of Computer Science, 1994, pp. 394-
400.

35. E. Koutsoupias and C. Papadimitriou, On the ^-server conjecture, Journal of the ACM
42 (1995), no. 5, 971-983.

36. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (eds.), The travel
ing salesman problem., Wiley-Interscience series in discrete mathematics, John Wiley &
Sons, 1985.

37. J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric tsp, k-m.st, and related problems,
SIAM Journal on Computing 28 (1999), no. 4, 1298-1309.

38. R. Motwani, Lecture notes on approximation algorithms: Volume I, Tech. Report CS-TR-
92-1435, Department of Computer Science, Stanford University, Stanford, CA 94305-
2140, 1992.

39. R. Motwani and P. Raghavan, Randomized algorithms, Cambridge University Press,
1995.

40. C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization, Prentice-Hall, Inc.,
1982.

41. C. Phillips, C. Stein, E. Torng, and J. Wein, Optimal time-critical scheduling via re
source augmentation, Proceedings of the 29th Annual ACM Symposium on the Theory
of Computing, 1997, pp. 140-149.

42. K. Pruhs and B. Kalyanasundaram, Speed is as powerful as clairvoyance, Proceedings
of the 36Ü1 Annual IEEE Symposium on the Foundations of Computer Science, 1995,
pp. 214-221.

43. C. R. Reeves, Modern heuristic techniques for combinatorial problems, McGraw-Hill,
1995.

44. S. Seguin, J.-Y. Potvin, M. Gendreau, T. G. Crainic, and P. Marcotte, Real-time decision
problems: An operational research, perspective, Journal of the Operational Research So
ciety 48 (1997), 162-174.

45. H.-J. Siegert, Simulation zeitdiskreter Systeme, Oldenbourg, München, Wien, 1991.
46. D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules,

Communications of the ACM 28 (1985), no. 2, 202-208.
47. D. Steenken, T. Winter, and U. T. Zimmermann, Stowage and transport optimization in

ship planning, (2001).
48. V. Vazirani, Approximation algorithms, Springer, 2001.
49. A. P. A. Vestjens, On-line machine scheduling, Ph.D. thesis, Eindhoven University of

Technology, Eindhoven, The Netherlands, 1994.
50. T. Winter, Online and real-time dispatching problems, Ph.D. thesis, Technical University

Braunschweig, 1999.

51. T. Winter and U. T. Zimmerman, Real-time dispatch of trams in storage yards, Annals
of Operations Research 96 (2000), 287-315.

