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0. INTRODUCTION.

A typical problem in combinatorial optimizatiocn is tha following. Given
T
a finite sat 3 cof vectors in R® and a linear cbjective function c x, 2ind

(1) oax{e'x | xes).

Ganerally § is large (say exponential in n) bur highly structured. For examplse,
S may consist of all charactaristic vectors of perfact matchings in a graph.
Wa are interested in finding tha valus of (1) by an algorithm whoss running
time is polynomial in n. Thersfors, enumerating the elssents of S is not a
satisfactory sclution.

Tha following approach was proposed by Edmonds [1965], Ford and Fulkarson
[1962] and Hoffman [1960], and is the classical approach in combinatorial opti-
mization. Lat P danots the convex hull of S. Then clearly

{2) max{c'x | x €S} = max{c'x | x ¢P}.

' The right hand side hers is a linsazr programaing problem: maximize a linear -
abjactive function on a polytopa. 0f course, to be abls to apply tha methods
of linear programming, we have to represent P as the set of solutions of a
system of linear inequalities. Such a representation, of coursa, always axiscts,
but our ability to find the necessary inequalitiss depands on the strugturs of
S. Howevar, in many cases these inequalitima (the facets of P} can ba deacribed.
There ars some besutiful thecrmms of this kXind, e.g. Edmonda’ description of
tha matching polytope. In thase cases, the methods of linsar programming can be
appliad to solve (1). Howaver, until about a year ago thers wars two aain cb-
stacles in carrying out the above program even fox nice ssta S like tha set of
perfact matchings. First, no algorithm to solve linear programming with poly-
nonial running time in tha worat case was known. Second, the number of inequal-
ities describing § is typically large (sxponantial) and henca even to formulata
the linear program takes exponential spaca and tima. Indeed, ths well-known
efficiaent combinatorial algorithms, like Edmonds' matching nlqozithn [1965] or
Lucchesi's algorithm £5 find cptimum coverings for directad cuts [1376] are
based on differeant ~ ad hoc - ideas.

A recent algorithm to solvs linear programs due to L.G. Khachian [1979],
based on a method of Shorr [1970], removes bath difficulties. Its runaning tima
is polynomial; also, it is very i{nsensitive to the mmber of constxaints in tha
following sanse: we 40 not need to list the faces in advance, but only nead a
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subroutine which recognizes feasibility of a vecter and if it ix {afsasihle
then computas a hypsrplane seaparating Lt from P. Seaxching for such 4 hypsz-
plana is anather gmmtonu optinization problem which is often much
sasier to solve. It L intazesting that if we want to apply the sama mathod
to this sacond problem, we get back the first ona.

The main purpose of this paper is to sxploit this equivalance hatwean
oroblems. After formulating tha optimization problem in Chapter [ exactly,
wa survey the "ellipscid method" in Chaptar 2. Ian Chapter 1 wa prave the
equivalence af the optimizarion and the separation problem, and their equiva-
lance with othar optimization problems. Sc wa show that optizua dual solutions
can be cbtained by the method (since ths dual preblem has, genarally in combi-
natorial problems, axponentially many variables, the mathod cannot ba applisd
to the dual directly). Chapter 4 contains applications to the matching, matroid
intersection, and branching problems, while in Chaptar 5 wa show how to apply
_ the method to minimize a submodular sat function and, as an application, to
give algorithmic versicns of scme results of Edmonds and Giles [1977] and
Frank [1979]. These include an algorithm to find optimum covaring of directsd
cuty in a graph, solved first by Lucchesi [1976]. .

It is intaresting to point out that these applicaticns rely on tha deep
theoreams charactarizing facets of ths corraspending polytopa. This is in quite
a contrast to pravicualy known algorithms, which typically do not use thess
characterizations but quite oftan give them as a by-product.

Tha efficisncy of the algorithms we give is polynomial but it sesms much
unzio than those algorithms developed bafors. Even Lif we assume that this affi-
ciency can ba improved with more work, wa do not consider it the purpome cof our
work to compets with tha speacial-purpose algorithms. The main point is that the
.allipmoid method proves the polynomial solvability of a large number of diffar-
ant combinatorial optimization problems at once, and hershy points oyt direc~
tions for the search for practically feasible polynomial algozithma.

Chaptar 6 contains an algorithm to find maximm independent sets in perfect
gqraphs. The algorithn makes usa of a number ¢(G) introduced by one of the authors
as an astimation for the Shannon capacity of a graph (Lovész [1979)). Finally, .in
Chapter 7 we note that the vertex-packing problem of a graph iz iln a sanse equi-
valent to the fracticnal chromatic nukber problem, and cosment on ths phsnomenon
that this latter problam is an exszple of a problem in NP which is NP-hard but
{(as for now) not known to ba NP-cozplata.
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1, OPTIMIZATION ON CONVEX BODIES: FORMULATION Of THEE PROBLEMS AND THE RESULTS

Lat K ba a non-empty convex compact set in R". We formulste the following
two algorithmic problems in connection with X.

(1) Strong optimization probles: given a vector emn, find a vector x

in X which maximizas ch on X.

(2) Strong separation problam: given a vector y cmn, decide if yeX, and
if not, find a hyperplane which separates y from K; more axactly,
£ind a vector c «&" such that cTy > max{c'x | x € x}.

Examples. Lat X ba the set of solurions of a system of linear inequalities

(3) alxsb

It L (1 =1,...,m}

('1. € nn, bL £R). Then the strong separation problem can be solved trivially:
we substitute x = y in the constraints. If each of them is satisfied, yec K. If

constraint nTbe iz violated, it yields a separating hypaerplans. On the other

hand, the cp:".mi.z:tion problem on X is just the linear proqramming problem.

As a second axample, lat K be given as tha convex hull of a set {vl,. .- ,vm)
of points in R". Then the optimization problem is easily solved by evaluating
the objactive fynction at each of tha given points and selecting ths maximun.
On the othar hand, to solva the separation problem we have to find a vagtor ©
in R" such that

{4) cTy>ch (L =1,...,m)

i
So this problem requiras finding a feasible solution to a system of linear in-
equalities; this is again unnti.ally‘ the sazm as linear programming.

Nota that the convex hull of {vl""'vn) is, of course, a polytops and so
it can ba dascribed as the set of solutions of a system of lineaar inequalitiaes
as well. But the number of these inequalitias may ba vary large compared to m
and n, and s0 their detarmination and the checking is too long. This lllustrates
that the solvability of the optimization and separation problams depanda on the
way K 1ls given and not only on K. ) ’

Wa do not want to make any a priori arithmetical assumpticn on X. Thus it
may well ba that the vector in K maximizing ch has irrational cocrdinatas. Ia

this case the formulation of the problem is not corzact, sinca it is not clear




-515-

how to state the answer. Therefore we have to formulate two weakar and zore

coemplicated, hut more correct problems.

{5) (Waak) optimization problem: given a vector c ¢ /" and a number €20,
£ind a vector y ¢ A" such that d(y,K) Se and y almost maximizes ch

an X, i.e. for every xc¢Kk, chScTy-b- E.

(&) (Waak) separation problem: glven a vector y € R” and a number t¢> 0,
conclude with ona of the follawing: (1) asserting that d(y.,K) € gy
(11) finding a vector c « R” such that {c! 21 and for avery x¢K,

chScTy-b £.
Wea shall always assume that wa are given a point a, and 0 <r s R such that
(N Slag,r) €K & S(ag,R).

The second inclusion hare singiy neans that K is bounded, where a bound is known
explicltly; thisz is quite natural to assuna both {n theoretical and in (posaible]
practical applications. The first assumpticn, namely that X contains an explicit
ball, is much lsss natural and wa make it for purely technical reasons. What

it really means is that X {3 full-dimensional, or at least wa can find the affine
subspace lt spans and also that wa can £ind a ball in this subspacs contained in
K. At the and of Chaptar 1 we shall show that some assumption like this must be
made.

S50 wva define a convex body as 2 quintuple (Km,ao,:,n) such that nzl, K
i3 a convax set in m.“, a e K, O0<xsR and (7) i9 sacisfied.

Let K be a class of compact convex bodies. We assume that sach Ke¢ K has
scme encoding. An input of ths optimization problem for K is then the coda of
sowe member X of K, a vector c¢ R”, and a number €20, Inputs of the other
problems ars defined similarly. The length of the input is defined in the (usual)
binary ancoding. Thus the length of the input im at least n+ {logr| +|logRI +
o+ llogel. An algorithm to solve tha optimization problem far ths class K is called
polynomial if its running time is bounded by some pelynomial of the size of the
input.

The fact that the running time must be polynomtal in [loge! is crucial:
it means that running the algorithm for € = &k, &, ... we gat a sequence of
approximations which convearge sxponentially fast in the running tima. Other
approximation algorithms for linear programming {Motzkin and Schoenberg {19541}
have only polynomial convargence speed. This exponential conargenca rate enablas
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Khachian to obtain axact optimum in polynomial time {essentially by rounding)
and us to give the combinacorial applications in this paper.

2. THE ELLIPSQID METHOD

Let us first descrive the simple geometric idea behind the nethod. We
start with a convex body K, included in a ball s(ao,m - Eo, and a lineaxr
objective function ch. In the k-th step there will be an sllipsoid Ek’ which
{ncludes the set Kk of those polnts x of K for which ch is at least ag large
as the best found so far. e look at the centre x, of E, . b4 4 xktx then we
take a hypszplane through x5 which avoids K. This hyperplane cuts E‘k into two
halves; wa pick that one which includes l& and include it in a new ellipsoid
!kﬂ.' “smaller” than &‘ Iz x, € X then wa cut with the hypsrplane ch - chk
similarly. The volumes of the sllipsoids Ek will tand to O axponentially and
this guarantses that those centres X, which are in K will tend to an optimum
solution axponentially fast.

Wa now turn to the exact formulation of the procedura. Lat K £ A" be a
compact convex sat, S(ao,r) cK¢g S(an,n). ch a lineaar objectiva function,
{cl 21 and €>0. Assums that thare is a subroutine SEP to solve the separation
problem for K. This means that given a vector y ¢ R" and §>0, SEP sither
concludas that y = S{K,5) or yields a vector d such that

(1 max{d'x | x eX} s d'y+é.

To solve the optimization problem on K we xun the following algorithm. Lat

2
el
(2) N = 4n [10g 251,
2 -8
24 (n-1) '

and

) /A
(4§ p=n[logiER1.

$ R

Wa now defina a sequence Rgr Xyo o aor of vectors and a sagquence AO’ AL' . OF
positive definits matrices as follows. Lat Xq = 8, and Ao = RZI. Asauming that
X Ak ars defined, wa run the subroutine SEP with y = . and §. If it concludes
that &‘ES(K,ﬂ) we say that k is a feagible index, and set a = c. If SEP ylelds
a vector d¢ R° such that ldl 21 and
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{5) m{drx]xcl() < dT&‘-b&,
then wa call k an infeagibla index and let a = -d. Next define

(6} bk = Aka/ 4 aThka.

L i
n 5 " 5 Y ET B

*  2n'el 2 T
(8 A = o B - meT B!

and

(9 Xepy ™ X 3 A, ¥ AL,

whare the sign ™~ means that tha laft hand side is optained by rounding thae
right hand side to p binary digita, taking cars that Akﬂ is symmatric.
Tha sequenca (x.k). k feasibls, will give good approximations for tha
optimum solution of our problem. To prove this, wa shall need some lemzas,
which will also illuminate tha gecmatric background of the algorithm.

First we introduce soma further noration. Lat

(10} 7 - {xeR"| (x-ﬁ)rA;L(x-xk) £1},

and

(11) £ = (xe B[ (ko) Ay amxgy S 4T

(2.1) LEMMA. The matrices Ao, AL' oo are positive definite. Moreover,
(12) el slagh +8.2%, I <xl.2%, ana At s 7245,

PROOF. By induction on k. for k = 0 all the statements are cbvicus. Assume
that they are trua for k. Then note first that

+ _ 2n'+d 2 T, .2n'+d 3,.2.%
(13) lll\kﬂ -—z?—llhk-mbkbk" S—ﬁ;r-"kkﬂs(l-#ﬁr)l!.z

and do
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2%, q.2 PR

k|
(14) Ay, L“SHA.“Q'I“L 1 Aklls(uz,)n
Further,

(15) Ihkn-lyl:.‘:; '/—kkismsnl,
A.kl.

a i\ka

and so
(16) Tx M $ixll +——ibfl #lx - shad+R Hetop e /m.27P s

Xeotl SUxE o qiB T #0075 g PR TRer e .

s llay) + R
Finally wa have

n =1 2n’ 2 anT

i”n (Ak) m(kx —-'—.r—'-').

aAa
as it is easy to verify bu cmpuudan, and hence A iz positive dafinite.
Further, ’

2 It aII n+1

« =1
(18) (Ak) i s 2.n+3 (I“\.k a.Taka. .+3 (ﬂﬁ l] +—-'.|Ak ll) ‘ST

Iln.k II

Lat Ao dencte the lsast aigenvaiua of Ako-l and lat v ba a corresponding eigen-

vactor, vl = 1. Then

T T -1y -1
(19) A ® vTL‘ﬂv -y e (R -A;)v 2 Ay by

-iA,, -l 2

Ilnkﬂ /.22 -—i k. AP PRIt

This proves that Ak+1 is positive definite and also that
-1 -2 k+i

(20) uamu =1\ SR 4T a

{2.2) LEMMA. Let u denote tha n-dimensional volume. Then

s (E)«-‘L) < .-1/4n.
u(Ek)

PROOF. Sea Gics and Lovdsz (19791, O

(21)
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Sat
{22 8 = mxicij ]0$y<x, § faasiblal,
and
(23) K = Kknfx|cxzg}.

(2.3) LEMMA. !kakk, for k = 0,1,...,N.

PROOF, By induction on k. For kX = {0 the assertion is cbviocus. Let x“‘kﬂ'
Than

(24) le&sﬁk,
and also
(25) ;;xz..;xk-a,

where a, equals the auxiliary vactor a used in step k (if k i3 a fsasible index

wa do not sven have the § hera). wWrits
(26) x-:ﬁt+y+tbk.

where 1;3’ = 0 (since bk and a, ars not perpendicular because of the positive
dafiniteness of H‘, such a decomposition of % always existy). By (24),

(27) {2 tyeen) A Hiyren,) = yTA.;l'y-b:zb;A;lbk - yTal:ly+t.2.
Hence ts< 1. On the other hand, {(25) y.iulds

(28) sstan = t/-x—;l\;‘.

Now wa have

T =i P * W=l *
(29) (x-xk_H) letx-xkﬂ) l'x-kaPk tx-wk) +Ri'

wheare the resmainder term R, can be sstimated easily by similar mathods to those

2
in the proof of Lemma (2.!), and it turns out that R, < 1/12n".
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For the main tarm we have

T
N » 2n' | Tr =1 2 aa
(30) (x=3, ) A (x-xk) = mL(t—ﬁ)bk-by) (Ak o T)((t-m)b +y) -
2n’ 1.2, T.-1 2_,..1,2 n _2:(1 €l
“ g () T 0 v ALy & e ani-l (G T 0 f
N
N 44 1 48 , -1 1 48754
R Ty Sl- g taqinl st-gm + =—-

{(n=1)7/a )H‘a

Hanca (x"ﬁwﬂr"kﬂ(x‘ﬂﬂ’ S 1, and a0 xeZ .. a

Nov we ars able to prova the main theorem in this saction.
(2.4) THEOREM. Let j %a a famsible index for which
(an crxj . m{crxkiOSktN, k faasihle}.

Ther c'x, 2max{c'x | xer}-e,

3

PROQOF. Lat us absarve first that Lemmas (2.2) and (2.3} imply that

(32) MRy S u(Ey) $ .‘""“u(zo) - .‘“"‘“n“vn.

whars vn is the volume of ths n~dimensional unit ball. On ths othar hand, let
T
133) ¢ = zax{c x | xe X}

and y £ X such that cTy = {. Consider the cone whoss base is tha (n-1)-dimensional
ball of radius r and cantre xq in the hyperplane ch = chu and whosa vertex is
Y. The piece of this cone {n the hd!-:pa:l chZr:ij iz contained in ls‘ The
volume of this pieca is

n-1

v et X3 E-c Tx
n-1 -N/4n _n
(34) T=1 ch}'i) SUIRY) S e AV
Hance
: g-c'xy =L oy
(35) c-chj s a V48 g, (—— 0) - (‘_’_n_) Vn ot/

n-1

We still nwed an upper bound on . Since
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A T T
(16) lg=-¢ xol - e ty=xg) | SIIclI.Ily-xOII sR.lcl,

we finallv have

2
(37) C-cTKj<2¢-N/4n.RT|IcII se. O

3. EQUIVALENCE OF OPTIMIZATION AND OTEER PROHBLEMS

Pirst we prave tha equivalance of the separation problem and the optimi-~
zation problem, for any given K. More axactly, this means the following.

(J.1) THPOREM. Let K ba a class of convaxr bodims. Thers is a polynomial algo=-
rithm toc solve the separation problem for the members of K, if and only if
thare is a polynomial algorithm to solve the optimization problam foxr the
membars of K.

A clagss K with this property will ba called solvabls.

PROOF. I. Tha "only if" part. In view of tha results of Chapter 2, the only

thing te check is that tha algorithm described there is polynomial-bounded.

This follows since by assumpeion, tha subroutine SEP is polynomial, hance the

numbar of digits in the sntries of a is polynomial and so the computation of

Xl and Ak+1 requiras only a polyncmial number of stepa. All other numbars

occurring have only a polynomial number of digits, by Lamma (2.1). The number

of iterartions is also polynomial. Hence the algorithm runs in polynomial tima.
II. The "{f" part. Without loss of ganerality assume that a, = 0. Leac

N

X be the polar of K, i.se.,

(1) K" = {u|u'x<1 for sach x¢K).

It is wall-known that X" is a canvex body, and

(2 §(0,1/8) ¢ K ¢ $(0,1/r).

If K is a class of convax bodies with & = 0, let k* = [K*| XeK).

{31,2) LEMMA. Tha gdeparation problem for a class K of convex bodies with 2, = 0

is polyncmially solvable iff tha optimization problem is polynomially solvabla

for the class K .
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Since (K')* = K, this lezma izmediately implies the "if" part of the
theorem: 1£ the oprimization problem is polymomially solvable for K then the
ssparation problem is palyncmially solvable for k*. But then by part I, the
optimization problam is polynomially solvable for l(‘r and so using the lemma
again, it follows that the separation problem is polynomially solvable for K.

PROCF OF THE LEMMA. I. Tha "if" part. Lat X e K, ve R® and £>0. Using the

cptimization subroutins for K, with cbjective function v and error £.r, we
gqat a vector z¢R® auch that d(z,X) S ex, and

(3) szzm{vTxlx:K}*u‘.

Naw LZ VTZSl then vszl'bu and hence Vo " 1—*_1—3; ve lc', whance d(v,l(*) SE.

On the other hand, 1if sz >1 then z is a solution of the saparation
problem for x". In fact, let LI such that Ilz—zoli < gr. Then for every uce¢ k",

. T T T
(4} zZu= (z-zO) u+z°us Ilull.ﬂz—zoll +lsg+z v,

which proves that z is a solution of the ssparation problem for K..
II. The "only 1f" part follows by intarchanging the roles aof K and K. T

Lat K and L be two classas of convex bodies. Define ‘ !
{s) KaLa (k0L [ReK, Lel, dimXmdiml, a,(K) =a,(L)}.

{3.3) COROLIARY, If K and L are solvabla than so iz KA L.

PROOF. The separation problem for KA L goes trivially back to the saparation ‘
problems for K and L. O E

(3.4) COROLLARY. Lat K ba a claxs of convex bodias with .0-0. Then K is
solvable Iff K* is solvabls.

The proof is trivial by Lemma (3.2).
Lat ll: be the non-negative orthant Ln'nn. Nexr wa study convex bodias

K such thac theare ara 0> 0, R> 0 with

n n
(6) R_nS(0,0) SR RN S(0,R).
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The anti-blocker of X is defined by
(n A(K) = (yeR® |y xSl for avery x ¢ K},
Moreover, A(K) = {a(X) | ke K}.

(1.5} COROLLARY. Lat K ba a class of convex bodies satisfying (6). Then K is
solvable iZf AlK) is solvablse.

The proof is the same as that of Lemma (3.2).

Next we want to show that without the assumption that K contains a bhall,
thare is no alq&:ir.hn, at all to solva the optimization problem. More exactly,
consider tHe class of polytopes (KJ\:Z,Q_,*,I), where the + means that no ball
is supposad to bs contained in Kl’ and

- =
(8) K. ((xl,xzi |0$xls‘\, x, = (1+hrS)x, }.
Flrst note that if A is known than both optimization and separation algorithms

are sasily given, evan in the strong sensa: ch i3 maximized by aither (0,0)
or (A, (h+hr5}1); and if (¥, 79 € R then lat

(-1,0) iy <0
(0, =1) if Yl z0, yz < Q;
2 2
(9) cm {ley, =2y, ¥, 4y,) 1fy 20, y; 20, ¥ *Yx'fz‘*’%‘o;
by #2yy =y -y)  E ¥y 20, vy 20, vy ¥,my) > O
(1,0) iy, > y,20, Y+, ¥y¥a T 0

£ 0sy, SA, yzzo, and yf-ﬁylyz—yg = 0 than concluds (yl,yzl €K, . It is easy to
chack that this algorithm solvas the separation oroblem for ch

on the other hand, we show that there is no algorithm at all {aven arbi=-
trarily slow) which would use a separation oracle for the class (K, |osasty,
and would be able to maximize the objective function Xy {L.e., ch with ¢ =
{1,0)) over K,. By this we mean an algorithm whoss input is a block box which
ia known to solve tha strong separation problem for ons of the K)"sx but the
box cannot be broken open to see which value of A iz there; and the algorithm
should work regardless which saparation algorithm is used by the black box. In
particular, it must work if we usa tha abova—describsd separation algorithm.

Sut chen our algorithm runs ths same way for avery 0SS A S 1: the only way it
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could distinquish batween diffarent K;\_'s is to run the subroutine with an
input vector (yl,yz} such that ¥y >0 and yid'yiyz-yg = 0. But then ona of
¥yr¥p (s {rraticnal and sc it cannot be the input of an algorithm. 50 the
algorithm cannot determine A, a contradiction. Thus ne such algorithm may
axist.

Finally wa show that Zor polytopes many of the rssults are even nicer.
By a rational polytope we mean a quadruple (P:n,no,‘r) whera P is a full-
dimensional polytcpe (in n“) ' 3 ¢ Int?, and every component of a, as wall
as of avery vartex of P is a rational number with numerator and dencminator
not excesding T in absoluts value. (This definition is much in the spirit of
our prsvious discusaion: the vertices of P must bs raticnal in order to be
abla to explicitly presant them and explicit bounds must be known for their

complaxity.)

(3.6) THEOREM. Let (Pm,ao,':'l be 2 u:‘.ioml polytope. Then Sh.o,r.) cPec
S(ao,m , whara R = 2nT and r = (2’1‘)-“ “  purthermore, every facat of P can
be writtan as aTbe, whers a (# 0) 13 an integral vector, b is an latager,

and the sntries of a as well as b are less than T’ = (o) B,

Thus every rational polytops can be viewsd as a convex body, with r and
R as above. A certain convarss of this assartion holds as wall.

{3.7) THEOREM. Let P £ R be a palytope, a, € IntP, and assume that every
component of 8, is a rations] number with numerator and denominator lass than
T in absoluta vaiue. Alsc assume that every facst of P can be writtan as
aTbe, whare a (f 0] is an Intagral vector, b is an integer and tha antries
Of a az well as b are less than T in dbsolute value. Than (Pm,a.o-,T') is a

rarional polytope whare T' = (n'r)n.

The proof of thess two theorams is rathey straightforward arithmetic and !
is cmitted (cf. Lammas 1-2 in G&cs and Lovdsz [1979]). ‘

{31.8) THEOREM. Lat K be a class of rational polytopes. Suppase that K is
solvable. Then the strong optimization problem and the strong separation problem
are solvabla for K in time polynomial in n, log?, and logllcli (respectivaly
log 5, where 5 is the maxioum of the absolute values of the numerators and

dencminators occurring in y).
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PROOF. Let (P:n,ag,':') ek, Q= 2'1.'2, and

(10) d=g% + (1,0,....25HT".
We orove that max{d'x | ®eP) La attained at a unique varzex of P and that this
vertex maximizas ch as well.

For let Xq be a vertex of P maximizing de and lst x, be another vartex.
Writa

1
{11} X=Xy =TT

whare O <a <'1'2 is an integexr and z = (zl,...,zn)T is an intagral vector with

iz, | <27 = Q. Then '

T | T d 4=
(12} 0sd"(xgx,) = —{Q""z + 3§1Qj 1zj}.

r
Here ¢ 220, since it is an inteqar and {f cTzs-l. then the first term in

the bracket is larger in absolute value than the sacond. Eence
(13) 'z = ¢ (xyx,) 20

for eavery vartax X i.e., X5 indeed maximtizes the objective function ::Tx

over P. Also nota that the second term i3 non-zero since z 3 0. Hence
T 1,1
(14) d (xo—xl) Z;EF

. and so Xy is the uniqus vertex of P maximizing the objective function d.Tx.
Now use the hypathessizad pelynomial algoriechm ts £find a vactor y = »"
such that '

(15) dly,P) Se = l-||c1||'1"r‘6

and d.Ty 2 deo - €. Wa claim that

i
{16) [ y-xol] s P

For lat Yg be the paint of P next to y. Repressnt Yo A8 a convex combination

of n+l varcices of P, one of which is xo:
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n n

(17) goom L A% A 20, LA =1l

4] (=0 171 i (=0 i
Then by (14)

T T T g T T 1-34
(183 d'y = d (y=yq) +d ¥q s:IldII+i§°kid xLSclld.H-vd Xg =T -
Hanca

1-k0
{19) '?—" selafl+ 1) s 2efal
and

n XL

(2o Hy-xoll Sﬂy-zoﬂ +|ly0-x°|! SE+ (l-lo)ll 121-1—_1: x, - xnll s

2 4 1
£ s+u->.0)2'r se+ 2elial.2T S?Er .

Now it is rather clear how to concluda: round each entxy of y to ths next
raticnal number with dencminator less than T; the restlting vector is X5-
The rounding can be dona by using the techniqus of continued fractions. We
leava the details tc the rsader.

The saparation algorithm can be ocbrained by applying ths érwiau: algo-
rithn to P' (assuming that a, = 0, possibly aftsr translation). d

If ths strong separation problem conclodes that y ¢ P then it is nice to
have a "proof® of that, i.a., 2 represuntaticon of y as a convex comnination

of vertices of P. This prcblem can also be solved.

{3.9) THEORYM. Lat K be a sclvable class of rational polytopes. Then thare
axists an algorithm which, given (Pm_.a.o.'r) ¢« K and a rational vector ye¢P.
yields vertices XgeXyoee ¥y of ? and coefficients xo,xl,.‘...xnzo such that
J\0+).1+...+kn = | and k0x0+klxl+...+lnxn =y, in time polynomial in n, legT
and log5, whare § is the maxizum abgalute value of numerators and denomina-

tors of componants of Y.

PROOF. Ws construct a iequencs X., xl, ,xn of vartices, ¥q yl, ee yn
of points and Fl' Fz' 'Fn of facets of P as follows. Lat 'xo ba any vertax
of P, and lat Yg " ¥ Assumas that X0 ¥y and Fi are defined for 1 sj. Let

Yj+1 ba tha last point ¢f P on the sami-lina from xj through yj. lat
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1 v -
(21) Yj+1 = yjﬂ - e(yj xj)
aln?
whare 0 < < (nT) 7. rLet Fj+l ba a facet separating y)'.ﬂ from P, and let
::j+1 ba a vertex of Fl NN E'jﬂ. It is gtraightforward to prove by induection

that xi,yit F, for 21, yeconv(xo,...,xl,yi), and di..m(FLn n!-‘j) = n-v,

3

Hence L A and 3o y (s contained in the convex hull of LYARE ,xn.

The procedure degcribed above L5 esasy to follow with computation. The
vertex of F, n... n F, can be chtained as follows. Lat aIxS bi. be the in-

t 3
equality corrssponding to facet F then maximize the objactive function

L
(}:j_l ai]Tx. We leave the details to the reader. Q

The "dual" form of this theorem will also play an important role in the
sequel. It shows that if wa consider optimization on P as a linear program,
an ootimal dual basic solution capn be found in polyncmial time, if the.class
is solvabla.

{3.10) TREOREM. Lat K be a solvable class of rational polytopes. Then thare

axists a polynomial-bounded algorithm which, given (Pm,ao,'rl ek, ce zz“,

provides facats aIxsbL (L=1{,...,n) and rationals XLZO (L = 1,...,n) auch
n

that 1l ),-ai- c and Z

n T .
1-1"1”1 = pax{c x| xe P}.

The proof is easy by considering k",
4. MATROID INTERSECTION, BRANCEINGS AND MATCHINGS

We now apply the methods described in the previous chapters to a number
of combinatorial problems. As said in the introducticon ouxr main aim is to show
tha existencs of polynomial algorithms for certain combinatorial problems, and
thase algorithmg ars not meant as substitutes for the algorithms devaloped for
these problams before (see Lawler (1976] for a survey). Hawevar, in the next
chapters we shall show the axistence of polynomial algorithms also for certain
problems which ware not yet solved in this senae. The algorithms found thers,,
though polynomial, in genaral do not seem to have the highast possible rate of
efficiency, and the challanga remains to find batter algorithms.

First we apply the ellipscid method to matroid intersection (cf. Edmonds
£1970,1979], Lawler [1570]). Norve that givan a matroid (V,r), tha corresponding
zatroid palytope is the convax hull of the characteristic vectors of indepen-
dent sets. The idea is very simple: given an inteqral "weight" function w on V,
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<ha trivial "greedy algorithm" finds an independent sat V' maximi2ing
zveV'"w) . That ia, it finds a vertex x of the corrssponding matroid polytops
maximizing the cbjective function w'x, in time bounded by a polynomial in [V
and logllwl. 50 the class of matroid polytopes is solvable. Thersfors, by Cor-
ollary (3.3) alsoc intarssctions of matroid polytopas ara solvable. Since the
intersection of two matroid polytopes has inteqer verticass again, this pro-
vidas us with a polynomial algorithm for matroid intersection. (In fact, wa
abtain a polynomial algorithm for common "fractional® indepandent sets for
any number of matroids.) Obviously, we may raplace "matroid" by "palymatroid".
In Chapter 5 we shall axtend this algorithm to a mora ganeral claas of poly-
topes, and we shall show thars how toc cbtain optimal integral duasl solutions.

In this application, and in the following examples wa lsave it to the
reader to chack that without loas of ganerality we may rastrict the classss
of polytopas to full-dimensional polyfopcl, and to find a vector &, and a
number T such that (i) each numerator and denominator occurring in the com-
ponants of the vertices of the polytope, and in those of aye do not sxcesd
T in absolute valua, (ii) a, i3 an internal point of tha polytope, and (iii)
logT i3 bounded by a polyncmial in the size of the original combinatorial
problem (in most cases wa have T = l).

Also the sacond application is illustrative for the use of the method.
It shows the axistence of a polynomial algorithm for finding optimum branchings
in a dirmcted graph (c#. Chu and Liu [1965], Edmonds (1967]). Let D = (V,A) ba
a digraph, and let r be soma fixed vertex of D, called the roet. R branching
is a sat A' of arrows of D making up a rooted directed spanning tres, with
root r. A rocotad cut is a sat A' of arrows with A' = § (V') for some non-empty
sat V' of varticas not containing r, where 5T (V') denotus tha sat of arrows
entaring V'. It follows from fdmonda' branching thecrsm [1973] that the convex
hull of the (charactsristic vectors of) the sets of arrows containing a branch-
ing as a subsst {i.s., the sats intu-.s-cu.nq each rootad cut), is a polytopa P
in B® "dafined by the following linear inequalities:

(1) (i) o0<x(a)si {acd),
(14) ):“A,x(a) 21 {A' rooted cut).

Sc therw exists an algorithm which, given a digraph D = (V,A), a root r, and a
nonnegativae integral waight function w defined on A, deterzines a branching

of minimum weight, in time polyncmially bounded by |V| and logliwll, {f and only
if the strong optimizatien problaz iz solvabla for the class of polytopes P
arising in this way. By Theorem (3.1} and (1.8) it is anocugh to show that the




strong separation problem is solvabhla. Indeed, (f xe¢ RA one sasily checks
condition (i) above and one finds a separating hyverplane in case of viclation.
To check condition (ii), we can find a zooted cut A' minimizing [“A.x(a) in
time polynemially baunded by (V| and logT (where T is the zaximum of ths nu-
perators and dencminators occurring in x), namely by applying Ford-rulkerson's
max flow-min cut algorithm to the corrssponding network with capacity function
%, source r and sink s, for each s  r. If the minimm is not lass than | we
conclude x € P, and otherwise A' dstexymines a separating hyparplane. (Again,

see Chapter 5 for a more general approach.)

In fact this branching algorithm is one instance of a more genaral pro-
cedure. Let £ ba a ciuttsr, i.e., a finite collection of finits sets no tw
of which are contained in each other. Thm biockar B(E) of E 1a the collscticn
of all minimal sets intersecting every set in F (minimal with respect to in-
clusion). E.g., 1f E is the collection of branchings in a digraph, then a(f)
is the collaction of minimal rooted cucs. One sasily checks that B(B{E}) =
E for svery cluttsr E. Sometimas an even stronger duality ralation may hold.
tat Vv = UE, and let P be the convax hull of the characteristic vectors (in Ilv)
of all subsaets of V containing some ser in . Clearly, each vectcr x in P

satisfies:

(2 () 0sxivist (vevl,
(14) J  gix(v) 21 tv' e8(E)),

ag thase inequalities hold for characteristic vectors of sets in E. In cass
P is completely determined by these linear inequalities, I (or the hypargraph
{v,E)) is sald to have the Q,-max flow-min cut-property or the Q -~MFMC-prop-
erty (cf. Seymour [1977]). Thus the clutter of all branchings in a digraph
has the @, ~MFMC-property, as we saw a:bavu. rulkerson [1570) showsd the intez-
esting fact that a clutter E has the Q;H!.-'Hc:-prape:ty if and only if its
blocker B{E) has the @, -MFMC-property.

Now one easily extends the derivation of a polynomial algorithm for branch-
ings from such an algorithm for rooted cuts as described above, to ths follow-

ing theorea.

(4.1) THEOREM. Lat C be a claas of clutters with the q+-.llr.*lc-property, such

R v
that there exists an algorithm which finds, given Ee( and we z, (whara v=|E),
ve' WV la time bounded by a8 palynomial in {V! and

logiwl. Then the same is true for the class of blockars of clurters in C.

a set V' in E minimizing |
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r-s-paths all have the Z:HF!c-prop-rty {proved by Fulkerson [1974], Edmonds
{1973]), Lucchest and Younger (1978], Ford and Fulkerson [1956], and Fulkarson
{1968], raspactively), and the clutters of T-joins, two-commodity cuts, two-
commodity paths, and multicommedity cuts in planar graphs (with commodities
on the boundary): have the ‘:Z;H!'HC—propurty (proved by Edmands and Jonnson
(1970], Hu (19631, Seymour [1978], and Ckamura and Seymcur [1979], respec-
tively). Bdmonds and Giles {1977] posed the problem whether the clutter of
directesd cuts has the Z +—H!‘l¥.!-pruparty.

We wars not able to derive from the sllipsoid method in general a poly-
noaial algorithm for aptimum (half-)integer dual solutions, if such sclutions
exist. Howevar, in the casa of optimum packings of (roated, directed, r-3-,
T-) cuts we can £ind by Theorsm (3,10) an optimum fractional solution in
which the number of cuts with nonzero coefficient i{s at most [vl. Hence, by
wall-known techniques {cf. Edmonds and Giles (1977], Frank [1979], Lovdsz
£1975]) we can make these cuts laminar (i.as., non-crossing) in polyncmial
time, and we can find (half-)integer coafficients for the new collaction of
cuts, again in polynomial time, thus yielding an optimum {half-)integer pack-
ing of cuts.

We do not know whather thae class C of a1l cluttars with the @, -MFHC-
property is polyncmially solvable in the sanse of Thecran {4.1) tin which
case Theorem {(4.1) would hecome trivial). In Chaptsr 6 we shall see this
indeed 13 the case for its anti-blocking analogue.

In this chapter, as wall as in the naxt chaptsrs wa see that the axis-
tence of polynomial algorithms can be derived from the silipsoid methed for
many problems for which such algorithms hava besn designed bhefors. However,
we were not abla to derive such an algorithm for the following two problems,
for which (complicated) polynomial algorithms ars known: the problem of find-
ing a maximum indepandent set of vertices in a x:,:'f“" graph (Minty [19771),
and thar of finding a maximm collaction of independent lines in a projactive
space (Lovdsz [1978]). A main obstacls to dsrive such algarithm from the
allipseid method {a that so far no charactsrizations in tarms of facets of
the corrasponding convex-hull polytopss have besn found. Such characterizations,
prsvicusly considered as mors thecretical of nature, might now ba useful to
darive polynocmial algorithms avan for the welghted versions of these problems.
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5. SUBMODULAR FUNCTICONS AND DIRECTED GRAPHS

In this chapter wa show the sxiscence of a polynomial algorithm finding
the minipum valus of a submodular set function, and we darive polynomial
algorithms for the cptimization prohlams introduced by Edmcnds and Giles
[1977) and by Frank [1979].

Lat X be a finite set, let F be a collection of subsets of X closed
undar union and intersection, and let f bes an inteqer-valusd submodular
function defined on F, that {g, let f£:F-—+2Z bas such that

(1) £(X') + £(X") 2 £(X'nX") + £(X'ux")

for X', X" ¢ F. Examplas of submodular functions ars tha rank furcticns of
marroids, and the function f defined on all sets V' of verticas of a capac-~
itated digraph by: f£{V') is the sum of tha capacitiss of the arrows leaving
V'. We shall give an algorithm to find X' in F minimizing £(X'), in time
polynomially bounded by |X| and logB, whers B is some {(pravicusly known)
upper bound for |£(X')] (X' ¢ F). So as special cases we can decide {n poly-
nomial time, given a matroid (X,r) and a weight function w on X, whether

« is in the corresponding matrcid polyrope (L.e., whether ) wix) s x{Xx')

L ‘
for each subset X' of X), and wa can darive a polynomial af;i:ithm for £ind-
ing minimum capacitated cuts in networks.

We need to maks some requirements on the way F and ¢ ars given. Firae
we should know an uppar bound B for [£(X')| (X' e F). Secondly, we must knaw
in advance the sets NF and UF, as well as for which pairs X, /%, in X there
exists X' e F with X € X' and X ¢X'. This makes it possiblg to dscide whether
a given subset X' of X i3 in F, and it allows us to assume without loss of
generality that NF = g and UF = X. Finally, given X' in F we mugt ba able
to find £(X'). It is snough to know that f({X') can be calculated in time
polynomial in [X| and log B, or that some oracle gives tha answer. Most of
the special-cass submodular functions fulfil these requiresments.

We shall reducs the minimizarion problam for submodular functions to
the strong separation problem for polymatroid polytopes. Since the class of
polymarroid polytcoes is solvabla {as optimization can be don by the greedy
algorithm - sea Edmonds [1970]), this will sclve the prohlem.

Since we know an upper bound B for |£(X')| we can f£ind the pinimum value
of £ by applying binary saarch. Se it suffices to hava a polynmomial algorithm
finding an X' in F with f£(X') <X, or deciding that no such X' exists, for any
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given K. Since adding a constant to the valuas of f does not violata sub-
modularity we can take X = 0, Now Lf £{#) <0 wa can taks X' = 3. Hence we
may assume that f£{@) = Q.

leat g be the function defined on F by

(2) g(Xx') = £(x') + 28. X',

for X' € F, So g is nonnegativa, intaqral, monotone and submodular. Moreover,

£(X'} <0 if and only if g(X') < 2B, |X'|l. Next defins for each subset X' of
X the set

(3) X" = N{X"eF | X' gx").

(Note that X' can be detarmined in polyncmial tims.) Let h{X') = g(X') for
sach subset X' of X. One easily checks that h again iz nonnegative, intagral,
monotone and submcdular. Morsover, thae problem of the axistsnce of an X' in
F with g(x') <2B.|X'| is equivalent to that of the existence of a subset X'
of X with n(X') <2B.|X'[. But the lattar problem is just a special case of

the stzong separation problem for the polymatroid polytope corraspending
to hi

(4} (ve®) | [ .. vtx) Sh(x) for all x' X}

(by Theorem (1.8) the separation algorithm ylelds facets as separaring hyper-
planas, i.e., subsets X' of X viclating thae inequality), As thas optimization
problem is solvable for the class of thesa polytopes we are finished.

We apply the algoritha for findi{ng tha minimuos valus of a submodular
function to thecrems af Edmonda and Giles and of Frank.

Let D = (V,A) be a digraph, and lat F be a collection of subsets of V
such that {2 V', V"¢ F and V'nV" g Z and V'uvV" ¢ ¥ chen V' NV" « F and
V'uv"eF. Lat £ ba an integer-valued function defined on F such that for
all V', V"¢ Fwith V' aVv" ¥ § and V' UV" § V we hNave

{5} V') + £(VT) 2 £(V'AVY) + £(VUVY),
Danota by 6+(V'1 and & (V') the ssts of arrows leaving (entaring, respecivaly)

the gat V' of vertices. Lat vectors b,c,d¢ ZA ba given, and consider the
linear programming maximization problsm
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(6) 7
maximize L“Ac(a) .x{a),
A

whera x ¢JR auch that

(7 (1) d(a) s x(a) £n(a) tacl),

4y § x(a) x{a) § £(V") v e F1.

aes’(v!) - Zué'(v')

Edmonds and Gilas showed that this problem has an intager optimum solution;
this is equivalent to the fact that the polytops defined by the linear
inequalities (7) has {nteqral vertices. Edmonds and Gilas also showed that
the dQual =minimization problem can be solved with intsgral cocefficients.

As spacial casas of Edmonds and Glles' result one has Ford and Fulkerson's
maAxX flow-min cut-thacrem, the Lucchesi-Younger thecrem an packing dizacted
cuts and minimm coverings, Edmonda’ {poly-)jmatrold inzersection thecrem, and
theorems of Frank (1979] on oriantations of undirected qraphs. Moreover, ons
may darive the theorem due to Frank that if £ is an intagral submodular
function defined on a collection F and g is an integral supermsdular function
on F (i.e., -g is submodular) such that g{X'} £ £{X') for all X' ia F, then
thares exists an integral modular function h onF (i.e., both sub— and supsr-
modular) such that g(X') sh{X') S £(X') for all X' in F,

Wa shall give an algorithm which sclves the maximization problem (&) in
time polynomially bounded by [v| and logB, where B is some (previcusly known)
upper bound on [£(X')| (X' e F}, {bl, llcH and A, We muar know in advanca for

aach pair of varticas v v of D whather v, ¢ V' and v, tv' for some V' ¢ F (this

tmakes it passible to dacidi whethar V' ¢ F)T Morecver we must have a suhroutine
caleculating £(V') if V' eF, in time polynomially bounded by |V| and logB.
) FPirst of all, wa may supposs that d{a) <b(a) for each arrow a, since if
d(a) > b(a) the polytops {7] i3 emoty, and if d(a) =b(a) wa can remova tha arrow
a from the digraph and replaca £(V'] by £lv')y adfa) if udz(V'). Wa may eaven
assume that the palytope (7) is full-dimensional and that we knew an interiecr
point x whose componants have numerators and denominators not largex than a
polynomial in {v| and B. Otherwise we can axtend tha digraph D with one nsw
vartex g and with new arrows (vo,v) for each "ald" vertex v of D. Dafine d(a) =
= -48, b{a) =0 and c(a) -Zru!2 for the new arrows a. One saaily checks that the
corrasponding new polytope is full-dimansional, and one easily finds an x as
requiresd. Mareover, the solutions of the original cptimization problem corre-
apond exactly to those solutions x of the naw problem with x(a) = ¢ for each
new arrow a.

Assuming the polytcge (7) ta be full-dimensional, by Thecrsm (3.8} it is
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enough to show that the strong zeparation problem is molvahle. Let x € !R.A.
One easily checks in polynomial time whether condition (1) {s fulfilled. In
case of violation we find a separating hyperplans. To cheack condition (ii)
it suffices to find a gset V' in F minimizing

(8) g(v') = £(V') -

x(a) + L xla)

Iu&'(V') €6 (V)

in time polynomial in logB and log T, whers T is the maximm of the numerators
and dencaminators occurring in x. Nots that ¢ is submpdular, hance wa can
appaal to the algoriths finding the minimm value of a submodular function.

To this and wa have to multiply the valuss by a factor to make tha function
integral (this factor is bounded above by TIVI’), and wa have to apply tha
alqorithm for each V7, in V with vy # vy ko the function rastricted to
{v'«F | v, eV', vy V'], sinca this collection is closed under union and intar-
ssction. Note that thess requisites do not affect tha polynomial boundedness
of ths required time.

So wa proved that the clasa of "Edmonds-Giles" polytopas i..s solvable.
Bence, by Theoram (1.10) we can find an optimm solution for the dual linear
programming problem. In general, this solution will be fractional, but one
can maka this solution intsgral by making the collection of sats in F with
non~zara dual coafficient laminar, by the wall-known techniques (sae Edmands
and Giles [1977]); in polyncmial time. Now the (possibly fractional) coeffi-
clants can be raplaced by intager coefficiants, and these coefficieants can
ba found by solving a linear program of polynomial sizs.

We lsave it to the reader to darive by similar methods a polynomial al-

gorithm for finding the soluticon to the following optimization problem, dasigned

by Frank [1979]. Lat b = (V,A} be a digraph, and let F be a collaction of sub-
sars of V such that 1f V',V ¢ F and V'nV" ¢ @ then V'nV" ¢ F and V'uv" ¢ F. Lat
f ba a nonnegative integral function defined on F such that

(9) £(V') + £1V") S £(¥'nV") + Z{V'uv")

1 V',V ¢F and V'aV" ¢4 2. Lat b.c,dcz:. Considar the linear programming
problam

(10) ainimiza Z cla).x(a),

ach

where x¢ lIA such that
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(11} (1) d(a) S$x(a)s bla) (a €A},
(L0) [ grigey XMa1 2 £V (vi ¢ Fy.

Frank showed that this problem, and its dual, has an integer goluticn. As
special cases cne zay darive again Ford and Fulkerson's max flow~min <ut
theorem and Edmonds po].yn'at.r:old intersection theorem, and also Fulkerson's
theorem on minimwm waighted branchings [1974].

We finally remark that the algorithm for finding a set V' in F mini~
mizing £(V'), where f is a submodular function defined on F, can be modifisd
to a polyncmial algerithm for finding a set V' in F of odd size minimizing
E{V'). Thig axtends Padherg and Rac's algorithm [1979] to £ind minimm odd
cuts. More genarally, let GSF be such that if V' ¢G and V" ¢ F\G then v'ny¥"
¢ Gor V'w" €G. (E.g., G is the collection of sets in F intersecting V, in
a number of slements not divisible by k, for gome fixed subset Vo of V and
some natural number k.) Then there exists a polynomial algorithm to f£ind V!
in G minimizing £(V') (by this we mean: £(V') = min{f{v") | v" ¢G}). This
algorithm needs, bagides the prereguisites for F and £ as above, a pclyno-
aial subroutine deciding whether a given set V' {s in G. Without loss of
generality we Day assume that #¢G and vi¢ G.

The algorithm is defined by induction on !V|. Suppose the algorithm has
been defined for all such strucrures with smaller |vi. Find a set V' in F
such that @ # V' # ¥ which minimizes £{V'}). This can be done by applying tha
polynomial algorithm described above %o tha function £ reatricted to tha
collaction (v'eF | viev', v, ¢v'}, for all v ,v, in V. If V' G we are finish-
ed. If V' ¢ G thars will be a sat V" Ln G minimizing £(V") such that V" gV' or
V' <y". Indaed, if V" € G minimizes £(V") then eithar V'av" e G ar V'uV" e Gy

in the former case we hava

(12) F(VIAYT) + £{VIUV™) S £(V!) + E(VT),
E(yIave) 2 £(V),
Fivruyr) 2 E(V'), .

as V' and V" minimize £(V') and £(V") for V' eF and V"¢ G, respectively. Rance
£(V'AV") = £(V"). If V'UV" ¢ G wa can exchange u and n in this reasoning. Now
there axists an algorithm figding V" ¢ G with V" zV' minimizing £(V"), and an
algorithm finding V"¢ G with v" 2 V' minimizing £(V"), for chese algorithms
follow seraightforwardly fzom the previcusly defined algorithma Zor sets of
size (v'! and |V\V'|. We lmave it tc tha reader to check that this gives us

a polynomial algeoxithm.
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6. INDEPENDENT SETS IN PERFECT GRAPHES

In the previcua chaptars ws hava appliad the sllipsoid method ta classes
of polytopes. Wa now apply the method to a class of non-polytapal convex sats,
in order to obtain a polynomial algorithm finding maximum (waightsd! indepen=
dant sets and minimum colouriaqs for perfact graphs (cf. Lovdsz [1972]).

Lat G = (V,E) ba an undiracted graph, and let a(G) dencte tha independance
number of G, i.a., the maximum numbsr of paiwise non-adjacent varticas. Let
a" (G} denote the fractional indepandance number of G, i.s., the maximum valus
of ):uvc(v) whexe tha civ) are nor:noqar.tn rual numbars such that Lucc(v) <1
for each clique C of G. So a{G) £a (G), and furtharmare G is perfact if and
cnly if a(G') = a"(G') for sach induced subgraph G' of G. Since a’(G) is the
optimum of a linear programming problem, wa could try to calculats a.*(G) by
means of the ellipsoid method; but the size of this problem is not polynomially
boundad as thara can exist too many cliques C.

Howevar, the following number ¢(G) was introduced in Lovdsz ([1979]. Sup-
pose V= {1,...,n}. Then #(G) is the maximum valus of Z:,j-lblj' whars

B = (bi ) balongs to the following convex body of zatrices

p|
(4 (p = (hlj) | 8 is positive semi-definite with trace 1, and

bij = 0 if 1 and | are adjacent verticas of G {L¢ )},
If B belongs to thia clasa wa shall say that B rapressnts G. It was shown
that c(G) S9(G) sa (). (In Zact, ¢(G) is an upper bound for the Shannon capac-
ity of G.) We show that ¢(G) can ba calculated (approximatad} by the ellipscid
method in time boundad by a polynomial in (v(. This allows us to find &(G)
for graphs G with a(G) = #(G), in particular for perfact graphs.

In fact we exhibit an algorithm finding the maximum weight ):“Au(v) '
wvhere A is an independent set in a parfesct graph, given somea nonnegative
integral weight functien on V, in time polynemially bounded by |V!| and logilwl.
Obviocusly, this maximum weight 1= equal to u(Gw) , where the graph Gw arises
from G by replacing each vartax v of G by w(v) pairwise non-adjacent naw var-
tices and where two vertices of Gw ars adijacent iff thair originals in G ares
adjacant. Nota that if G is perfect then alsc any Gw is perfact (cf. Lovisz
{1972]). Morcover, O(Gw) is equal to the maximum valua of

n
(2) I e w b, .,
i,j-l i j Lj
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where B = (bij) represents G. This can be seen as “ollows. If B = !b.j) rep-
L E
rasents G then, by replacing each entry bi* by a matrix of size w_xw_ with
- 4 1 ]
constant. entries tu]_w ) kS , we obtain a matrix A' representing G , with
3 i w'
n n
(3) )} Wb = I ol..
i, 4=t 3744 i,9m1 L)

Conversely, if B' reprssents Gw' then, by replacing the wiij submatrix in-
duced by the copies of | and i, by the sum of its antries dlvided by /::;;,
we abtain a matrix 8 raprssenting G, satisfying (3) again.

To approximate NGW) up to An error of at modt €>4, wa can raplace

Yo w, of (2) by some rational number w, , with

i) i
(4) N 2
Imij "‘ijl <g/ln
(taking ""Lj L] wji)’ whers the denominators of the mij are at mosc 2112/!:.
Then O(G_d) differs vy at most 4€ from the spaxiom value of Ei jmtj'bij with
S = (b ) rapresenting G. So we need to approximace this last number with

i
accuracy %€, which can be dens by the ellipsoid zethod.

To apply the ellipsoid oethod we replace the set (1) by a full-dimansion-

al convex body, by forgatting tha coordinates balow the main diagonal, as well
as the coordinates (i1,j} for adjacent i and j, and cne diagonal coordinate.
Wwe end up with a full-dimensional convex body in the (n+ f;] - |El - 1} ~dimen-
sional space. One easily finds an interior point a, in i1t, and radii r and R
such that the convax body contains S(ao,r) and is containad in S(no,ﬂl , and
such that the logarithms of r and R and of the numerators and dencminAators

occcurring (n a, are boundsd (in absclute value) by a polynomtal in n (fixed

over all q:aph: G). S0 wa may apply Thecoram (3.!). We show that the separatiocn
problez is solvable for the class of convex bodies ontained in this way. Let

b ba seme vector in the (n+ [;] - |[EI = 1) ~dimensional spaca. Extand this vectar,
in the abviocus way, to a symmerric nxn-matrix B = (hi.j) with trace ! and witzh
bij = 0 if i and j are adjacent vertices of G. Tind a principal muinor 3' of B
such that rank({B') = rank(B)-and B' is nonsinqular {this is easy by Gaussiap -

kK k

elimination}. Without loss of genarality assume that B' = (bij)i-l,j-l' The

matrix 3 is positive semi-definits iff

< t

13 tat,3m 20

(3) det Bt. det(b

far ¢ = 0,1,...,k. Since chesa decerminants can ba calculated in polynomial
time, thereby we hava checksd in polynomial time vhether B balangs to the con-~
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vex set (1). If, morecver, we find that B is not positive samidefinite
i

then lst t bs the smallest index for which dat Bt'< 0. Let ¢L danots (~-1)

timas the (i,t)-th minor of B: (L. =1,...,8), and ‘:L = Q {f1i>¢t, Then

n
(6) i #,9.8,20
1,qe 23712

for every positive semidefinite matrix tau). By dafinition, and by simple

computation,
n n
- . a.
(7 1-2.1 jzi 49,5, = dotB, .detd, , <

So the matrix “Lq'j):,j-l is a solution of the saparaticn problam.

Thorefore, by Thaorem (3.1), we can approximata the maxizmum valus of
Zuijbij for B = (bLj) in (1) with accuracy ke (and hence 'HG') with accuracy
€), in time polynomially bounded by [V{, |loge| and logT where T is the
maximum among the denominatars and numerators cccurring in fw .Lj) . If wa know
that u(Gw! - '”Gv) it follows that G(Gw) {4 an integar, and we can takec = k.
In particular there axisrs an algorithm which calculatas a(Gw) for perfsct
graphs G in time polynomially bounded by [V| and logiwl.

We can find an explicit maximum weighted indspendant set in a perfact
graph as follows. Ceompaxa a.(Gw) with G(G‘:’,), whears G' and w' arise from G and
w by removing vertex 1 frem G and the corrasponding cecmpnent from w. If
u(G‘:r,) - G(Gw) wa raplacs G by G' and w by w'; otherwisa we leava G and w
unchanged. Naxt we try to rsmovs veartex 2 similarly, and so on. At the end wa
ars laft with a collaction of verticas forming a maximum wsighted indspendant
set in G.

So given a perfect graph G.= (V,E) and a weight function w on V wa can
find an indepandant set V' maximizing va, w(v}. This implies that the strong
optimization prcblem is sclvable for ths class of convex hulls of the indepen-
dent ssts in perfact grapha. For perfact graphs G = (V,E) this convex hull 1is
givan by the linear inequalities

(8) (L) x(v) 20 (ve V),
{(11) [“cx(v) 51 (C clique).

This yialds that also the strong saparation problem is solvabla for this class,
but this is not interssting anymore, as it amounts to finding a maximm weight-
od clique in a perfact graph, i.s., a maximum waighted indapendent set in the
complemantary graph, which is perfect again.
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Bowever, by Theorem (3.9) we can find an optimal (fractional) dual
golution for the corresponding linear programming procblem. So, grven w€ Zg.
we can find cliques Cyr++.,C, and positive real numbers )‘1"'”)‘: tzs v
such thatr ).1+...+At = u(Gw) and

(9}

for each vertax i, in polynomial time. But for parfact graphs a{G) is equal to
the minimum nutber of cliques needed ta cover V (i.e., to the chromatic number
of the complementary graph), which maans that thers exist integers *1""'*1:
with the required properties. Indeed we can find such integers as follows.
Firse, {f w @ 1, sach clique (.‘.j with Xj >0 intarsects all maximum-sized

indepandent sats. So we can remcva clique o::l from G, thus obraining a graoh G’
with a{G') = a{(G) - i, and wa can repeat the procedurs for G'. After &(G) repe-
titicns we have found a(G) cliques covering V.

If w is arbitrary, let A] be the lower integer part of \,, and let

3 i

.'- -

{(10) v {xi
i

€

le

. Si.ntzze U\j - ’ta) <1 we know by (9) that w; <tc< V|, Therafore, G, has at most
Iv1° verticea, and as in the previous paragraph a covering with u(Gw.) cliques
can be found in time polynamially bounded by IVIz. This covering, together with
the covering by C1""'°: with coefficiants Ai,...,.\é, yields an optimum inte-
gral dual scluticn as required.

We reamark that the algorithm to find a(G) clearly works for all graphz G
with a(G) = 8(G) but that our method to find an explicit maximum indepandent
set requires that a(G') =» #(G'} for each induced subgraph G' of G: this iz the
cage Lf and only Lf G Ls perfect, as was shown by Lovdaz [1979],

7. INTRACTABILITY OF VERIEX-PACKING AND FRACTIONAL CCOLOURING

The ellipsoid mathod yields a cercain "polynomial squivalence” of combi-
natorial problems, in the sensa that thers existi a polynomial algorithm for
one problem iff such an algorithm axists for scme othar prchlem. We can use
this principles also in the negative: if soms problem is "hard” (e.g., NP-
completa) then it follows that alsoc certain other problems are hard.

we apply this to the problem of decermining the indspandencs nunbar 3 (G)
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of a graph G, which is known to be NP-cemplete (¢f. Garay and Johnson [19791).
Mors pracisely, and more genarally: given a graph G = (V,E), a waight function
w:v-—*ﬂ+ and a number K, the problam of daciding whather thers sxiats an in-~
dapandent set V' of vartices such that Zwv, w(vl 2 X (i.e., whether a(G ) 2K)
is NP-complsta. To formulate this in terms of polytopas, lat P(G) ba tha con-
vax hull of the characteristic vectors of indepandent sets in G. Then the
strong optimization problem for the class of palytopes P(G), is m—émpla:n.

Now consider the anti-blocker A(P(G)) of P(G) (cf. Chapter 1). By Corol~-
lary (3.5) the strong optimization problem for the class of polytopes A(P(G))
is solvable iff it i{a solvablas for tha class of nolytopes P(G). This camaina
to ba true if wa yasatrict G to & subclass of the class of all graphs.

Now tha strong optimization problem for A(P(G)) asks for a meximum weight-
ad fractional cligque, i.a., for a vactor x in n:' such that Z_“v, x(v}s i for
sach independant set V', and such that y_nvw(v).x(v) {s as largm as possible,
given some weight function w (n z+. By iinear progrmmming duality this maxi=~
eaz is equal to the weighted fractional chromatic number, i.s., to the minimm

value Y:(Gl of A1+...+-\ where Al""')‘t. are positive numbars for which there

tl

axist indspandent sets vl,...,vr_ such that for svery vertex Vv we have

(1) I
y 3

veYy

3

= w(v)

(wea can take t S |V}). Hance, given a class of graphs, thers axista a polynamial
algorithm detsrmining a(GwJ for mach graph G in this class and for each weight
function w, i{ff such an algorithm exists detsrmining the fractional chromatic
nupber for sach such G and w. In fact, the sllipsoid mathod shows that both
problems are "Turing rsducible” to sach other (cf., Garey and Johnson [1979]1).
This implies that, since the formar problem for the claas of all graphs is NP~
camplete, the latter problem is both NP-hard and NP-easy, i.s., NP-equivalent.

In fact the problam of dni:lmim..nq the fracticnal chromatic number balongs
to the clasa NP, ag in order to show in polynomial time that Y:,(G) £K wa can
bound the numerators and dln'md.nat.ai.'s of the J‘j by Jwl.|v] vi . So the fraction-
al colouring problez ia not only Turing reducible, but even polyncaial reduc-
ible to the indspendence numbar problam, hut wa do not'know the othar way
around.

Since ths problem of detarmining a(G) is alraady NP-complete if wa ra-
strict G to planar cubic graphs the problem of detarmining Y, (C) remains to be
NP~equivalent {f G is restricted sinilarly. The problem of determining the
fractional chromaric numbar 1:(G) and that of datermining the chremstic number
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*{G) seem t3 be incomparabla with redapect to hardness. For cubic grapns G,
Y(G] can be determined sasily in polynomial time, but the problem of dater-
mining Y;(G) is NP-equivalent. In contrast to this, for lina graphs G aof
cubic graphs the problem of detarmining Y(G) is NP-cemplete {(Jolyer [19791),
whareas Y;(Gl can ba determined in polynomial cime (since n(GH) can be deter-
mined in polynomial time by the matching algqorithm),
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