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Abstract

In this paper we describe several versions of the ronting problem arising in VLSI design and
indicate how the Steiner tree packing problem can be used to model these problems mathematically.
We focus on switchbox routing problems and provide integer programming formulations for
routing in the knock-knee and in the Manhattan model. We give a brief sketch of cutting plane
algorithms that we developed and implemented for these two models. We report on computational
experiments using standard test instances, Our codes are able to determine optimum solutiens in
most cases, and in particular, we can show that some of the instances have no feasible solution if
Manhattan routing is used instead of knock-knee routing. © 1997 The Mathematical Programming
Society, Inc. Published by Elsevier Science B.V.
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1. Introduction

The design of electronic circuits is a hierarchical process consisting of several phases.
The beginning is a description of the task the circuit to be designed must perform. Such
a task can be viewed as a complex logical function that consists of many elementary
logic operations. Usually several of these elementary logic operations are combined
into a logical unit (for example an adder). In the logical design phase chip designers
specify which of these predefined logical units are to be used, and determine which of
the chosen logical units must be connected by wires so that the chip performs in the
way it should.

The logical units are also called cells. Each cell is characterized by its width, its
height, its contact points (so-called terminals) and its electric properties. A net is a
set of terminals that must be connected by a wire (as specified in the logical design
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phase). The list of cells and the list of nets are the input of the second phase, the
physical design. Here, the task is to assign the cells to a certain rectangular arca and
connect (route) the nets by wires. The physical design problem is, of course, more
complicated than the sketch above suggests, since certain design rules have to be taken
into account, an objective function is Lo be minimized, ete. The design rules strongly
depend on the given layout style and specily, for instance, the distance two nets must
stay aparl, whether certain cells are preassigned to certain locations and so on. This
applies especially to the objective function. Usually, the primary goal is to minimize the
whole area of the chip or, if the chip area is fixed in advance, to guarantce routability,
i.c., Lo solve the problem of placing the cells on the chip such that there exists u feasible
solution to the routing problem.

However, routability can hardly be measured and expressed in (erms ol an objective
function. Thus, minimizing the total length ol all routes is very oflen used jnstead,
Another reason for minimizing the routing length is that an clectronic circuit with small
routing length usually needs little area on the whole. Thus, minimizing the overall arca
is (somehow) implicitly taken into account by minimizing the routing length,

Any reasonably precisc version ol the physical design problem is AP-hard, even very
simple models are. Morcover, most real world problem instances involve several thou-
sands of cells and nets, so that today’s algorithmic knowledge makes it very improbable
that they can be solved to oplimality. Therelore, Lhe physical design problem is (heuris-
tically) decomposed into subproblems. The first subproblem typically consists of finding
appropriate locations for the cells (placement problem). Subscquently, the nets must be
realized by wiring the appropriate terminals (rowting problem) and finally, 8 compaction
step is performed if required. This process is iterated with dilferent parameters il the
final result is not satisfactory.

In this paper we will [ocus on the routing problem in more detnil, We survey in Section
2 different types of routing models used in practice and relate them Lo the packing of
Steiner trees in certain graphs. In Scetion 3 we state an integer programming formulation
of the Steiner trec packing problem and describe severul classes of valid and facel-
defining incqualitics for the assaciated Steiner tree packing polyhedron, Specializing
this model to swilchbox routing we distinguish between routing in knock-knee and
Manhattan style by using an additional class of inequalitics (the Manhattan inequalities)
to meet the requirements of the latter routing style.

In Section 4 we report on our computational experiments with a culling plane algo-
rithm that we designed and implemented for switchbox routing in Manhattan style; and
we compare these in Scelion 5 with our results for the same instances when knock-knees
are allowed,

2. The routing problem in VLSI design: A short survey

We assume in this scction that the placement problem has been solved, We seek for a
solution of the routing problem. In technicul terms, we are given a list of nets, Bach nel

M. Griétschel et al./Mathematical Programming 78 (1997) 265-281 267

consists of a set of terminals. The terminals specify the points at which wires have to
contact the cells. The routing problem is to connect the nets by wires on the routing area
subject to certain technical side constraints, As mentioned above, the objective usually
is to minimize Lhe overall wiring length.

We say a nct is routed if its terminals are connected by (electric) wires. We speak
of a k-terminal net, if k is the number of terminals of the net. If & > 2, the term
multiterminal net is often used. In the following we will not distinguish between a net
and the route of a net unless this may lead to confusion.

The routing itself takes place on so-called layers. If some net changes a layer, a
hole, called vic, must be “drilled”. Usually, each layer is subdivided into horizontal and
vertical lines, so-called fracks o which the wires of the nets must be assigned. If there
does not exist such a division into tracks we speak of a free or grid-free routing. Further
side constraints include, for instance, the distance two wires must stay apart from each
other, how long two dilferent nets may run on top of each other on two different layers,
or that some witres must not exceed a certain length. o

In practice, the routing problem itself is also decomposed because of its mherer-xt
complexity and large scale. In the global routing phase the homatopy of the nets is
determined, i.¢., it is determined how the wires “maneuver around the cells”. Thereafter,
in the detailed routing phase the wires are assigned to the layers and tracks according
lo the homotopy specified in the global routing step. . .

The routing problems arising in both phases are usually expressed in graph-theoret%c
terminology. To describe these models precisely, we introduce some graph-theoretic
nolation.

We denole graphs by G = (Y E), where V is the node set and E the edge set. All
graphs we consider are undirected and finite. For a given edge set F C E, we denote
by V(F) all nodes that are incident to an edge in F. We ca]lia'sequence ?f nodes and
cdges K = (00, €1, 01,62, + 1 V=11 €l v;), where each edge e{ is u.mxdcnt with the nodes
v~y and v; Tor i = 1,...,l, and where the edges are pairw‘se different and the nOde‘sf
distinet (except possibly vp and vy), & path from v to v, if vo # lf" and a fyc.le, i
vg =y and {2 2, We call a graph G a complete rectangulfzr h >< b grid graph, if it can
be embedded in the plane by h horizontal lines and b vertical lines such that the sz;s
of V are represented by the intersections of the lines and the edges _are re;zresent y
the conneclions of the intersections. A grid graph is 2 graph that is oblta.med from a
complete rectangular grid graph by de]eting)some edges and removing isolated nodes

i 5 not incident to any edge). .
(L:::im()?dc: L(h‘?lE‘;rebc a graph and Tyg V a node set of G: An edge set § is call;-.d
n Steiner tree for T in G, if the subgraph (V(S) ,8) 'con'tams a path‘from s to“t Toz
all poirs of nodes 5,6 € T,s # & Following the notnuorx in VLSI-dcsxgr'l. we cd T
terminal set or a net and cach t €7 a terminal. “Routing some net T in a grap

i i { i g i both
means in graph-theoretic terms, “finding a Steiner tree for T in G". We will use

phrases in the [ollowing.
Note that our definition of a Steiner tree
the literature. A Steiner tree is usually supposed to

differs from the standard terminology used in
be a tree. For our purposes, however,
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the above definition is more convenient for our polyhedral investigations. A Steiner tree

that is a tree and whosc leaves are terminals is called edge-minimal. Observe that, since

objective functions in practice are positive, every shortest Steiner trec is edge-minimal,

There are many ways to model the global routing problem as a graph-theoretic
problem. Usually, the routing area is subdivided into subarcas. This is done in a way
such that the resulting subareas have certain special properties, [or instance, they contain
no holes (i.c., there are no cells located within the arcas) or they have simple shapes

(lor example, rectangles). These subarens are represented by the nodes or the edges

of some graph. We deseribe the node representation. Here, two nodes are connected

by un edge, it the corresponding subarens are adjacent. Additionally, a capacily is
assigned to an cdge limiling the number of nets that may run between the subareas

associated with the two endnodes of this edge. The weight of an edge corresponds (o

the distance between the two midpoints of the according subareas. Every terminal of a

nel is assigned to that node, whose corresponding subarea contains the terminal or s

closest to the position of the terminal, The global routing problem consists in routing all

nets in the graph constructed this way (or in graph-theoretic Lerms, {Inding a Steiner tree

for cach terminal set) such that the capacity constrainls are satisficd nndd the 8] witing

length (that is the sum of the weights of the Steiner trees) is as small as possible.
Aller having solved the global routing problem cvery subaren that corresponds (o

a node in the global routing graph must be routed in detai). The number of different

detailed routing models which are studied in the lilerature or which are used in practice is

tremendous. Usually, the problems coming up are formulated in a grid graph. We restrict
ourselves 1o this case, too. The detailed routing problems can be clussified nccording to
two criteria (see (1) und (2) below) which are independent of cach other, We introduce

Lhese classiflications now and discuss a few important subeases, For a more complele

and detailed treatment we refer Lo | 137,

(1} The detailed routing problems are distinguished according to the shape of the
routing vrea and the locations of the terminals. As mentioned belore, the nodes in
the globul routing graph represent suburess of the whole routing area, Depending
on the subdivision, dilferent shapes of detailed routing arcas arise. At the end
of the global routing phase it is known which nets go across which subarens,
Suppose, some net crosses the border of two adjacent subareas, Of course, from
the information of the global routing solution it is not clear at which point the net
meets the border, Huch such crossing point is interpreted us o “pseudo®lerminal,
In order to solve the routing problems for cach ol these subareas (ndepen dently,
locations for the pscudo-terminals must be determined . This usually is done by
upplying heuristics. Concerning the shape of the routing area and the locntions
of the terminals the following detailed routing models are ol particular intercst in
practice.

(n) (Channel routing) Here, we are given a complete reclangular grid graph. The
terminals of the nets sre exclusively locuted on the lower and upper border
(see Fig. 1). It is possible to vary the height (= number of horizontul tracks)
of the channel. Hence, the size of the routing area is not fixed in advance.
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Fig. I. Channel routing.
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Flg. 2. Swilchbox routing.

(b) (Switchbox routing) Again, we are given a complete rectangular grid graph.
The terminals may be located on all four sides of the grid graph (see Fig. 2).
Thus, the size of the rouling area is fixed.

(¢) (General routing) In this case, an arbitrary grid graph is considered. The
terminals are located at any hole of the grid (see Fig. 3). Here, the homotopy
of the nels must be taken into account {which is trivial in (a) and (b)).

(2) The detailed routing pro bems are d'stinguished by the extent to which the layers

are laken into account when the wires of the nets are assigned to the tralcks.

(a) (Multiple layer model) Given a k-dimensional grid graph (that is a graph
obtained by stacking k copies of & grid graph on top of each other and
connecting corresponding nodes by perpendicular lines), vl/l?ex"e k derfotes the
number of layers. The nets have to be routed in a node dx.s_|olnt fashm.n. The
multiple layer model is well suiled to reflect reality. The disadvantage is that,
in general, the resulting graphs are very large.

(b) (Manhattan model) Given some ( planar) grid graph. The nets must be routed
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Fig. 3. General routing,
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Fly. 4. Knock-knee,

in an edge disjoint fashion with the additional restriction that nets that meet
at some node are not allowed to bend al this node, i.e., so-called knock-knees
(cf. Fig. 4) arc not allowed, This restriclion guarantees that the resulting
routing can be laid out on two layers at the possible expense of causing long
detours,

(Knock-knee model) Again, some (planar) grid graph is given and the (ask
is to find an cdge disjoint routing of the nets. In this model knock-knees arc
possible. Very frequently, the wiring length ol & solution in this case is smaller
than in the Manhatlan model, The main drawback is that (he assignment (o
layers is neglected. Brady and Brown [ 1] have designed an algorithm thal
guarantees that any solution in this model can be routed on four layers Il
was shown in [ 15] that it is AMP-complete Lo decide whether a realization on
three layers is possible.

The models coming out ol these two kinds of classifications can be combined in all
possible ways. For cxample, combining | (b) and 2 (¢) we obtain n switchbox routing
problem in the knock-knee model, or in graph-theorctic terms, the problem of finding

—~
(e}
~
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edge disjoint Steiner trees in a complete rectangular grid graph, where all terminals
are located on the outer face. Moreover, depending on the model, different objective
functions arc considered. Possible objective functions are, for example, minimizing the
rouling arca or minimizing the routing length. Minimizing the routing area is typically the
objective in channel routing problems, whereas the routing length is usually minimized,
il the routing arca is fixed in advance.

It is not surprising that most of these routing problems are AP-hard. For example, the
problem of finding a (with respect to some weighting of the edges) minimum Steiner
tree in a graph G for some terminal set T is AP-hard (see [12,3]). Even the problem
of deciding whether there exists a feasible solution for the switchbox routing problem
in the knock-knee model [18] or in the Manhattan model [19], respectively, is AP-
complete. In the next section we present a model that is applicable to the global routing
problem and the switchbox rouling problem in the knock-knee model and Manhattan
madel, respectively, and attack it from a polyhedral point of view.

3, A polyhedral approach to the knock knee and Manhattan routing model

To gel started let us Formally introduce the Steiner tree packing problem.

Problem 3.1. (The weighted Steiner tree packing problem)

Instance: .
A graph G = (VE) with posilive, integer capacities ¢, € N and nonnegative
weights w, € Ry, ¢ € E.

A net list N = {T],....TN}. N2 1, withT, CV for all k=1,...,N.

Problen:

Find edge scts S1,..., 8y € E such that
(i) Si is a Steiner trec in G for 7y for allk=1,...,N,

N
() Yo 1sen{e} e forall e € B,
kel

N
(iii) Z Z w, is minimal,
kal ¢GSk
It requirement (jii) in Problem 3.1 is omitted we call the corresponding proble;'n
the Steiner tree puacking problem without the prefix “w:.:xghted . Wc call an N-tuple
(S1,....8x) of edge scts a Steiner tree packing or packing of Steiner t'mes if thsfse;s
Svv.., Sy satisly (i) and (if) of Problem 3.1. We will refer ’to an instance O .1 e
weighted Steiner tree pucking problem by (G, N, ¢, w) and to an instance of the Steiner
tree packing problem by (G, N, c). _
We assume throughout the paper that every terminal set O
eardinality two and that N > 1. .
Many routing problems introduced in the pr
ner (ree packing problems in cerlain graphs Wi

f the net list v has at least

evious section can be formulated as Stei-
ith, possibly, some additional constraints
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reflecting the design rules. In this section we focus in detail on two such cases

s the switchbox routing problem in the knock-knee style and

e the switchbox routing problem in the Manhatlan style.

We start with modelling the switchbox routing problem in the knock-knce style as an
integer program. Before doing so let us fix some further notation.

We are given a graph G = (VE) with capacitics ¢, € N for all e € E and a nel list
N ={T,....Tv}, N > 1. Let RV*¥ denote the N « |E| - dimensional vector space
RE x ... x R¥, where the components of cach veetor x € RV*# are incexed by xf
for k € {1,...,N}, e € E. Moreover, for a vector x € RVXE ynd k € {l,... N},
we denole by x¥ & R” the vector (x%),gg, and, for notational simplicity, we write x =
(x', . .. xM) instead of x = ((x)7,..., (x"))T, For an cdge set F € E, y* denotes
the incidence vector of F. The incidence vector of a Steiner tree packing (S1y...,8y)
is denoted by (x%,...,x%).

With every ¢ € E and k € {I,..., N} we associnte o Boolean variable xX with the
interpretation x& = 1 if edge ¢ is used to conneet terminal set 75 and x¥ = 0 otherwise,
Then it is casy o sce that each incidence veetor of a Steiner Lree packing satisfies the
constraints (3.1) (i)-(iv), and vice versa, each vector x € RVX# satislying (3.1) (i)-
(iv) is the incidence vector ol a Steiner tree packing. Hence, (3.1) is an integer
programming {ormulation for the weighted Steiner tree pucking problem.

N
I

min
k=1 ¢GE
M > Azl Al WK WNT % 0,
rEAW)
(VAWINT =0, k=1,...,N (3.0
N
(y S <o, foralleek
k=1
iy o<1, forallec B k=1,...,N.
(iv) x¥e{0,1}, foralleek, k=1,...,N

The incqualities (3.1) (i) are called Steiner cut inequalities, incqualities (3.1) (it)
arc called capacity inequalities and the ones in (3.1) (iii) trivial inequalities.

We define the Steiner tree packing polyhedron STP (G, N, ¢) as the convex hull of
all incidence vectors of Steiner tree packings, i.c.,

STP (G, N, ¢) = conv {x € RV*¥ | x satisties (3.1) (D)-(iv)}.

II' G is a complete rectangular grid graph, then every edge-minimal solution ol (3.1)
is obviously a switchbox routing in the knock knee style, and vice versa,

To model the Manhattan routing style, where knock-knees are not allowed, we have
Lo introduce additional incqualities that make it impossible for two Steiner trees to bend
al Llhe sume node.
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Let G be a grid graph and 1w, uw be two consecutive horizontal (or vertical) edges.
Let N1, Nz be a partition of {1,...,N}. Then, the constraint

PIEAEDIEAS

kEN, kEM

(32)

is called Manhattan inequality.

Again it is casy to see that if G is a complete rectangular grid graph, then every
edge-minimal pucking of Steiner trees that satisfies, for every pair of consecutive edges
and for every 2-parlition of the set of nets, the corresponding Manhattan inequality (3.2)
and the constraints (3.1) (i)-(iv) corresponds to a feasible switchbox routing in the
Manhattan style. Conversely, the incidence vector of a switchbox routing in Manhattan
style satis(ies the incqualities (3.1) (i)-(iv) and all Manhattan inequalities. We define
the Steiner tree packing polyhedron in Manhattan style STPy (G, N, c) as

STPu (G, N, c) i=conv {x € STP (G, N,¢) | x satisfies all inequalities (3.2)}.

In the remainder of this section we present some inequalities that are valid for
STP (G, N, ¢). Since STPy(G,N,c) C STP(G,N,c), every inequality that is valid
for STP (G, N, ¢) is valid for STPy (G, N,c) as well. For a detailed discussion under
which conditions some of these inequalities define facets of STP (G,N,c), we refer to
[71.

The Steiner partition inequalities

Let u graph G = (VE) and a set of terminals T C ¥ IT] > 2 be given. A partition
VieooaVp p 22,00 V is called a Steiner partition (with respect to T) if ;T # @ for
I=1,...,p. The inequality

X6V, W) 2p =1

induced by a Steiner partition ¥,..., ¥ is called a Steiner partition inequality. (I~‘Iolc
that & Steiner cut incquality is the special case, where p =2.) Obviously, each Steiner
pattition inequality is vatid for STP (G, {T},1) (cf. [6]).

The alternating cycle inequalities .

Let G = (VE) be u graph and AV = {T}, T2} a net list. We call a cycle F in G an
alternating cycle with respect to T\, Ty, if F C [T1: T3] and V(F) N Tl‘ NTy=0 (see
Fig. 5). Morcover, let Fy € E(T3) and F3 € E(T) be two sets of diagonals of the
uliernating cycle F with respect to Ty, T2, The inequality

(Xh‘\(lfu"'l)‘Xﬁ\(lful"z))'l'x > 5—|F| —~1

is called an alternating cycle inequality. . o

1t is not difficult to see that the basic form of an alternating cycle mt?.quahty, ie,
Ry = Fy =1, is valid for STP (G, 1), but in general, it is not facet—dcﬁmng. Thc? sets
Fy and F, are used Lo strengthen the basic form; in fact, choosing them lapproprmtely
we can obtain valid and even facet-defining inequalities (see [7] for details) .
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Fig. §. Alternating cycle. g 6. 3 x 2 grid.

The next type of inequalities Lo be considered here are the so-called grid inequalities,

The grid inequalities
Let G = (VE) be a graph and N = {7, 72} o net list. Furlhermore, let &= (¥, B)

be a subgraph ol G such that € is a complete rectangular /o x 2 grid graph with £ 2 3,

Assume that the nodes of 'V are numbered such that U={( ) i=1hj=12)
Morcover, Jet (1, 1), (n2) € 77 and (1,2), (0, 1) € Ta. We call the inequality

(/‘,n\l«)’ Xl'.'\/:')'l'.‘, 3

an it x 2 grid inequality (see Fig, 6) In (7] we derived (very technicnl) conditions
for an i x 2 grid incquality to define a fucet, The following (hearem charucterizes (he
conditions under which an /i x 2 grid inequality is valid.

Theorem 34, Lot & = (¥, £) be n complete rectangular & x 2 grid graph with & 23,
Let M = {71, Ty} he v net list where 77 = {(1, 1) (A, 2)} and % = {C1,2) (h D}
Furthermore, let G = (Y1) be a graph with # ¢ ¥ £ ¢ 1 such tha the [ollowing sel of
horizontal edges {ue & £ | there exists an i ¢ {1, A} witha= (i, 1) and v = (1,2}
is acul in G. Set = £ and lel 7, Fy ¢ E\F, then the inequality

( Xl;\(/v'u/-n . X:-.'\(}-'x.u-'n Yzl

is valid Tor STP (G, A, 1) il and only it Fy and /5 sutisty the following properties:
(1) For all v & V(F), n # p there does nol exist o path from u o o in (K F) for
k=12
(ii) Fy and A are maximal with respect (o property (1),

The critical cut inequalities

Finally, let us deseribe the so-called eritical cut inequalities introduced in [ 7. LetG=
(W E) be a geaph with edge capacitios ¢, € N, ¢ € £ Mowows let V= {%,..., Tv)
be o net list. Yor o node set W ¢, V, we deline S(W) = {k ¢ {1, N} |TiNW %
B, Te N (V\W) % @}, We call & cut induced by u node set W critical for (G N if
S(W) = c(B(W)) — [S(W)] € L, Le il the sum ol the capucities of the edyes leaving
W exceeds the number of nets (hat must use ot least ane cdge leaving W by al most |
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Suppose that Vi, V4, W is a partition of V such that 8(W) is a critical cut. Moreover,
assume that, for some j € {1,...,N}, TNV =@ and ;N V; # @ for i =2,3. Then,
the inequality

(VoW 21

is called a critical cut inequality with respect to Tj.

It is easy lo sce that the critical cut inequality with respect to Tj is valid for
STP (G, N, ¢).

4. Computational results for the Manhattan model

In this section we present the computational results we obtained with our cutting plane
algorithm for the switchbox routing problem in Manhattan mode. The Steiner partition
inequalilies, the alternating cycle inequalities, the grid and the critical cut inequalities
together with the Manhattan inequalities form the basis of our cutting plane algorithm.

Our code is an cxtension and modification of the cutting plane algorithm for switch
box routing in knock-knee style that we described in [8]. We could use all separation
routines for the Steiner partition inequalities the alternating cycle inequalities, the grid
and the crilical cul inequalities, all special features {preprocessing, ...) and implemen-
iational tricks (perturbation, ...) developed for the routing problem in the knock-knee
model. In addition, we designed and implemented a separation routine for the Manhattan
Inequalities (3.2), and some (minor) dianges were needed or useful to apply the code
to Manhattan routing problems.

Our procedure for separating Manhaltan inequalities works as follows. Let us assume
that that the capacity inequalities are satisfied (of course, this can be chef:ked in linear
lime). Let we € E and vw € E be two horizontal edges that are incident to node
v &€ V (lhe same arguments apply lo the case of two consecutive vertical edges). For
every net k & {1,...,N}, wedetermiine max{xk,xk ) . Set Ny = {ke{l,....N}|
# > xk ) and N o= {k € {1,....N} | b} I N =0or N2 =0, we can
conclude that no violated Manhattan inequality exists, since the capacity 1n.equahu'cs
are all satisfied, Otherwise, Ny, Nz is a partition of {1....,N}.and the mequa.hty
2okeN, xt + Yiem xk, < lisa Manhattan inequality with maximal lef; Illzndhst(tj:l;
This procedure obviously solves the separation problem for the class of Manhal

T .
l w&/tﬂ:lllllslssmodiﬁed the LP-based primal heuristic described in [8] to guafamee that o.nly
re feasible that contain no knock-knees. We omit the technical

Steiner wee packings a
details here.

Moreover we exploil the fa
fix variables at the initial phase of the code. If two t
! are localed at the same corner
input data specifies which of the two ¢
the two nets. For example, in Fig. 7(a

ct that nets must not bend against each other in order to
erminals of diferentnes & and
pof begrd grap,ie.v € T,,vE€T thefl the
dges that are incident to v is used by which of
) edge v must be used by net k and edge vw
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k

() (b)

Fig. 7. Possible fixings in the Manhattan model.

Table |
Input datn

Example h w N Distribution of the nets Ref.
2 1 4 5 6
Uifticult switchbox 15 23 24 15 3 4 1 | 12]
more difficatl switchhox 15 2 24 15 R} 5 l |4]
terminal intensive switchbox 16 23 24 ] 7 5 ] [16]
dense switchbox 17 15 19 ki {1 5 |16]
nugmented dense switehbox 18 16 19 3 I 5 |16]
modified dense switchbox 17 6 19 3 I 5 |4]
pecigegical switchbox 16 15 n 14 4 4 |4]

must be used by net /. Since the capacities ol the edges are equal o one, ull varlables
ap e {L o GNINTD and xh, Ge { T N {AD) ean be lixed 1o vero.

Furthermore, suppose o terminal ¢ of net & is not loeated at any corner ol the grid
geaph. Then the edge ¢ that is incident w 7 but not include in the outer fuce cycle
cannot be used by any nel, excepl &, Henee, the variubles x4, i ¢ {1,..., N} \ {£}, can
be fixed to zero, This situation is ilustrated in Fig, 7(b),

Many variables can be fixed by using eriticnl cuts andd logical implications clerived
from them. How these can be found is deseribed in | 8],

The problem instances o which we applied our code are taken from VLST literatuse,
Table | summarizes the data, Colunmn 1 presents the name used in the literature, In
column 2 and 3 the height and width of (he underlying gric graph &5 given, Column 4
conlaing the number of nets, Columns § o 9 provide information about the distribution
ol the nets; more precisely, column 5 gives the number of 2-terminul nels, column
6 gives the number of 3-terminal nets und so on. Finally, the lust column states the
reference to the paper the example is taken from,

The standard input format for switchbox routing problems used in the lHierature
differs slightly Irom the representation in this paper. The input graph in the lierature
is obtained Irom n complete rectangular grid graph by removing the ouler cycle, sce
llig. #(u). Hence, every terminal is incident to o unique edge, and obviously, every
Steiner tree must contain this cdge. I is easy 1o see that by contracting all pending
edges an equivalent problem is obtained, see g, 8(b), The gruph resulting this way Is
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1 31 2
‘ 5 6,1 31 23
1 1 1 1
2 2 2 2
4 4 4 4
. 5 51 2 4 5 65

(a) (b)

Fig. 8. Reduction of the input graph.

Table 2

Results for the Manhatian model

Exnmple Best Sol. LP Value Gap Iter. B&C CPU-time
difficull switchbox 469 469 0.0% 167 3 3452:55
more difficult switchbox 461 461 0.0% 124 5 3540f 14
terminal intensive switchhox 537 537 0.0% 29 1 422;&;
densie switchhox - oq - 20 1 ;83:50
nugmented dense switchbox 469 469 0.0% 30 1 685:27
madified dense switehhox - ) - 48 1 5230..35
pedagogicnt switchbox 343 4l 0.6% 615 7 :

i i i is i ce is the
a complete rectangulur grid graph with terminals on the outer face. This instance

input Lo our problem. . . -
In Table 2 we present the computational results we have obtained with our branch ai

cut algorithm, In Column 2 the objeetive function value of the best feasible solution we

found is shown. The entries in Column 3 correspond to the objectiv'e function Values. of
the linear program when no further violated constra'u.xts are found, 1.e.,dwhfen :J;an::ﬁi
is performed for the [irst time, These values are fJbVlOuSly lower bmfn sﬁor ; ;B hole
problem, Column 4 contains the percental derivation of t.hc best solllmon. om o
bound. Column § (resp. 6) gives the number of cutting plane iteratons (resp '
number of nodes in the branching tree). Finally, the last column reports on the running
times. The values are stated in minutes obtained on a SUN 4/50. o
For all instances we could cither find an optimal solution or prove that t},l,c ;:11: ] cmdxis—
infeasibic. The latter siluation occurred in the Lwo cases “dense switchbox hn n;;s .
ficd dense switchbox™, To our knowledge, it wdaslufp tothm:: ;;;::n;}s]ct:z utﬂﬁ.:: te]; s
packing ol Steiner trees in the Manhattan model for the ; h]; o
xamples “nodificd dense switchbox” and “augmented dense switchbox :
‘:)l' lh(l,:l problem “dense switchbox™ in which additional lrack.s are a:df;o(d:fxi\;img:;z:
dense swilchbox” has an additional vertical track on the right an
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Table 3

Deviation of the lower bound from the optimal solution

Example 5% 2% 1% 0%
difficult swilchbox 2:48 54:59 248:02 1383:06
more difficult switchbox 2:35 35:20 268:43 1471:21
terminal intensive swilchbox 4:11 26:52 99:48 343:00
augmented dense switchbox 1:38 1:38 146:13 583:50
pedagogical switchbax 2:15 84:19 199:38 5230:35

switchbox” has an additional vertical track near the middle and an additionul horizoutal
track at the boltom). In fact, these modifications have been introduced, because no
routing algorithm could find a feasible solution lor “dense switchbox™ in any routing
style. Whereas a Manhattan routing is known (or the problem “augmented dense switch-
box”, the heuristics described in literature were unable to find one lor “modified dense
switchbox”. Our algorithm yields a mathematical proof that, indeed, no routing routine
can ever be successful for the latter example.

Sccond, the results show that except for the exumple “pedugogical switchbox" the
objective function value of an optimal solution, provided it exists, was found without
branching. The optimal LP-solution was, however, [tactional and in two cases it look o
few branching steps to find a feasible solution with the same value, Only for the test
instance “pedagogical swilchbox” the objective function value of the root LP differed
from the optimal objective function value by 0.6%. This gup was closed by applying
the enumerative phase of our cade.

In all these cascs the number of branch and cut nodes needed to solve the problems
is very small (below 10). This indicates that the cutting plancs we use as well as the
corresponding separation routines perform quile well at least for the cose ol switchbox
routing problems in Manhattan style.

Of course, there is a price to pay: the high running times, The reason for that is that
we aimed at finding an optimal solution or proving that no solution exists at all, If we
just look at the time (measured in minutes) after which the lower bound deviates by nt
most §, 2, 1 or 0 pereent from the optimul value, the resuls bo k much more fien di,
Table 3 shows in particular that in all these instances Tor which a [easible solution exists,
the lower bound deviates at most 5% (rom the optimal objective [unction value within
4: 11 minutes.

5, Knock knce versus Manhattan: A comparison

From a practical point of view o very interesting question with probubly never ending
discussions is the question which model should be preferred: the knock-knee model or
the Manhattan model. The theory says that in the knock-knee model two layers may not
suffice, whereas in the Manhattan model they do. On the other hand, one can expeet
that the wiring length that is needed when Steiner trees are pucked in the knock-knee
maodel is smaller than in case of the Manhattan model. But, does the knock-knee model

_4
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Tnble 4
Comparing lower and upper bounds

Example Knock-knee model Manhattan model
lower bd upper bd lower bd upper bd

ditficult switchbox 464 464 469 469
more difficult switchbox 452 452 461 461
terminal Intensive swilchbox 536 Rxy) 537 537
densc switchbox 438 441 oo -
augmented dense switchbox 467 469 469 469
modified dense switchbox 452 452 oo -
pedugogicnl swilchbox 3l k) 341 343

substantiandly provide shorter wiring lengths? We have tried to answer these ques.tions
for the problem instances introduced in the last section. In [8] we report in detail on
our computational experiences for the knock-knee madel, The best lower and upper
bounds we have obtained are summarized in Columns 2 and 3 of Table 4, We are able
lo solve all problem instances to optimality except the examples “dense switchbox”
and “uugmented dense switchbox”, For comparison, the corresponding results for the
Manhattan model are shown in Columns 4 and 5.

The results arc quite different for different instances. For two of the examples the
wiring length in the Manhattan model is just the same as in the kr}ock—knee model thc.)ugh
(he solutions reported in {7] have knock-knees indeed (for pllctures of the solutions,
see [171). For three other problem instances the wiring length in the' Man}atta.n mo denl
exceeds that in the knock-knee model by a gmall amount (for “difficult swmtchb(.:x
by 5 (= 1.1%), for “more difficult switchbox" by 9 (= 2.0‘%4)) and for “pedagogn;all
switchbox” by 12 (= 3.6%)). Of course, the shorter lengths. in the kxlmckjknee mode
must be paid by additional layers, Since the percenta Iincrease 1 kn gtE is quite s_m;l‘lJ on:.
may lend Lo prefer the Manhattan model. However, for the examples “dense switc .ox
mnd "modilicd dense switchbox”, for which we could prove that th_ere does 'no[ e.)ust a
feasible solution in the Manhattan model, we are able to find fe.asllble solutions in the
koc k knee mode L This makes the knock knee model more attractive.

Comparing the running times we observe similar phenomena (see Tilzle ,{5‘) t tsor:: (:);
amples arc quite casy for the knock-knee model but rather hard for theM a ':ﬁ ank. th;
and vice versa, some are solved quite fast in the Manhattfm model, but are dxd clu' in "
knock-knee style. Based on these results we cannot decide whether one mode t1"srsu1::rs
rior to the other. The issuc of choosing the “correct” model r.nust be lleft to practition
and depends on the chosen fabrication technology and t.he given :e;xtgr:arr\uﬂris .In Table 6

Finully, we have compared our results with those published in the lite .

- anhattan
we summarize the objective function values of the - to our knowledge ~ best M

did not find
solution reported in the literature (Column 2). No entry means that we

i i ished in
any Manhattan solution for the corresponding problem instance tha}: was ;);?]1:; :mat
the literawre. In Column 3 the objective function vz?lue of the Man attagﬂcd fion e
was obtained by our code is shown. The values differ from those rep
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Tuble S
Compuring the running times

Exumple CPU time (minsec)
Knock knee Munhattn

difficult switchbox 1564:15 3432:55
mare difficult switchbox 983:23 3540:14
terminal intensive switchbox 375544 480:18
dense swilchbox 1017:43 122:29
nugmented dense switchbox 4561:41 SR3:50
muodilied dense swilchbox IRT0N 080:27
pedagogicnl swilehhox 251558 523035

Tahle 6
Best solutions Tor the Munhattnn model

Exmnple Best Munhatan Solution {ron
the Literuture our Code

dilficult switchbox §47 | 10] 535
mare difficult switehbox - 527
terminal intensive switchbox 632 |16} ol8
dense switchbox *
augmented dense swilchbox 520 [ 16] RRD]
niaditied dense switehhox "
pedugogienl switchbox - 400

2 und Table 4, respectively, by the total number ol terminals of the original dat due
to preprocessing (see Section 4, page 276 for [urther explanuntions). Por the instances
“dense switchbox™ and “modilied dense switchbox™ no Manhattun solution exists which
is expressed by the symbol " in Column 3. Vor the problem instunce “augmented
dense switehbox™ the solution given in [16] is aptimal, whereas for the twe problems
“difficult switchbox™ and “terminal intensive switchbox™ the solution found by our code
improves (he best solution reported in the liternture by 2.2% and 2.7%, respectively,
OF course, there are Turther routing algorithms presented in the VIS likerature, To
our knowledge, ll of them apply to the 2-layer model (i.e., the multiple layer model on
a 2-dimensional grid graph), see, lor instance, [ 14,11,4,10.5,20]. A comparison of the
knock-knee or Manhattan model o the 2-layer model s dilficult, In the 2-layer model
twa dilTerent nets may run on the sume horizontal or vertical edges o the two luyers, The
number ol conseeutive edges thut sre used on bolh layers is usually limited in order 10
avoid] so-called eross-talk problems, The value of this upper hound depends un the design
rules und technological constraints, but is mostly neglected by the routing ulgorithms,
The [uct that the wires can run on top of cach other along urbitrury lengths may
lead to routings with shorter wiring lengths than in the Manhattan model, because o
solution {n the Munhattan model is feasible for the 2-layer model. Nevertheless, we
have compared our Manhatlan solutions o the best 2-layer solutions reported in the
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literature for the instances described in Section 4. It turns out that for all examples
for which a Manhattan solution exists, the objective function values are at most 1%
worse than the objective function values of the corresponding 2-layer solutions. In fact,
for the two examples “terminal intensive switchbox™ and “gugmented dense switchbox”
(he Manhattan solution provides the same wiring length, and for the switchbox “more
difficult switchbox™ we even find a better solution. For one of two examples (“modified
dense swilchbox™) lor which a Manhattan solution does not exist, the wiring length of
the best 2-layer solution is by a value of 2 shorter than the one of the optimal knock-
knee solution. For the instance “dense switchbox”, we are not aware of any feasible
routing that can be realized on (wo layers.
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