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dieser Diplomarbeit an Eides statt.

Fabian Stöffler
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German Summary

Die effiziente Verplanung von Fahrzeugen und Fahrern zählt zu den
wichtigsten Aufgaben im öffentlichen Personennahverkehr. Besonders
die Zuweisung von Fahrern hat große ökonomische Bedeutung, da fast
die Hälfte des Budgets eines durchschnittlichen deutschen Verkehrsun-
ternehmens auf Personalkosten entfällt. Gesetzliche Bestimmungen für
den Fahrereinsatz, wie zum Beispiel Pausen- und Lenkzeitregelungen,
existieren weltweit und erschweren eine solche Zuteilung. Die Kon-
struktion einer Menge von täglichen Diensten, die sämtlichen Vorschrif-
ten genügen und die alle vordefinierten Fahrzeugtätigkeiten abdecken,
nennt man Dienstplanung.
Aufgrund seiner Problemstruktur ist das Dienstplanungsproblem NP-
schwer. In Deutschland umfassen durchschnittliche Dienstplanungs-
probleme aufgrund der komplizierten und umfangreichen Gesetzgebung
mehr als zehntausend abzudeckende Fahrzeugtätigkeiten und mehrere
Millionen möglicher Dienste.
Aktuell werden zur Lösung vor allem Column-Generation Techniken
eingesetzt, die auf einer Set-Partitioning Definition des Dienstplanungs-
problems beruhen. Ein Beispiel hierfür ist der Solver DS-Opt, der in
den Softwarepaketen BERTA und MICROBUS integriert ist.
Obwohl die Qualität der Lösungen zufriedenstellend ist und meist große
Kosteneinsparungen ermöglicht, ist die Anwendung solcher Lösungs-
verfahren sehr zeitintensiv und kann bei hinreichender Komplexität der
Instanzen und Regelungen scheitern.
In dieser Arbeit beschreiben wir FAST, eine neue Heuristik die eine
geeignete Relaxierung des Dienstplanungsproblems verwendet, um die
Laufzeit entscheidend zu reduzieren während die Qualität der Lösung
nahezu konstant bleibt.
Zuerst formulieren wir das Dienstplanungsproblem als graphentheo-
retisches Modell auf einen Digraphen D = (V,A). Die Knoten V stellen
Fahrzeugtätigkeiten dar und die Bögen A repräsentieren mögliche Ver-
knüpfungen dieser Tätigkeiten. Jeder potentielle Dienst kann durch
einen Pfad in D dargestellt werden. Nicht jeder Pfad entspricht je-
doch einem zulässigen Dienst. Gesucht ist also eine Menge von kno-
tendisjunkten Pfaden, die Dienste repräsentieren und die zusammen
alle Knoten abdecken.
Anschließend stellen wir einige interessante Dienstplanungsheuristiken
vor und passen diese an unser Modell an. Eine dieser Heuristiken,
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HASTUS-Micro, betrachten wir genauer, da diese eine Kernidee für
FAST liefert.
Im Hauptteil der Arbeit beschreiben wir FAST im Detail und präsen-
tieren sehr zufriedenstellende Rechenergebnisse. Im Vergleich zu DS-
Opt konnte auf einer Menge von 23 Probleminstanzen unterschiedlicher
Größe eine durchschnittliche Laufzeiteinsparung von 95.41% erreicht
werden. Die Zielfunktionswerte verschlechterten sich dabei durchschnit-
tlich um weniger als 3.50 %.
Mit diesen Ergebnissen erreicht FAST das gesetzte Ziel, schnelle, qual-
itativ gute Lösungen für Dienstplanungsprobleme zu ermöglichen.
Abschließend zeigen wir weiteres Verbesserungspotential in FAST auf,
sowohl bezüglich der Laufzeit als auch bezüglich der Lösungsqualität.
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Introduction

In public transit one of the most important operative planning deci-
sions is the effective routing of drivers and vehicles. The allocation of
drivers has enormous economic significance as the average German traf-
fic company spends nearly half of its budget on driver salaries. Legal
requirements concerning the scheduling of driver shifts, e.g. break- and
driving-time restrictions, complicate this task. The process of building
a set of daily duties which satisfy all regulations and together cover all
timetabled vehicle activities is called duty scheduling.
The Plauener Straßenbahn GmbH located in the small German city of
Plaue uses a very simple process to construct legal duty schedules for
their regional tram network.
First all vehicle work which has to be covered by driver shifts is rounded
in respect to a four hour time pattern. For each of the resulting time
frames a number of tasks, i.e. vehicle work which has to be covered,
is determined. Assume that the traffic company starts its working day
at four o’clock in the morning and ends operating at midnight. Before
driver duties are constructed, the number of required duties of different
duty groups, e.g. early duties, afternoon duties and evening duties, is
resolved. The number of evening duties equals the number of tasks in
the last time frame ending at midnight. These evening duties also cover
some of the tasks in the second last time frame The remaining tasks
indicate the number of afternoon duties. The first three time frames
are occupied similarly determining the number of early and split duties.
Afterwards duties are formed as indicated by the former grouping while
optimization of the schedule takes place during this construction.
Simple heuristics like the one described above, which has come to be
known as the Treiber-Heuristic, have been used for duty scheduling for
more than thirty years. Regional characteristics are exploited to reduce
the size of the problem and to construct duty schedules. It is obvious
that such methods discard many details of the problem.
As reductions have been unavoidable for early schedulers, recent math-
ematical research and increase in computing power overcomes this ne-
cessity. Up to date solution methods for duty scheduling mostly keep
all details of the problem to build huge models, consisting of more
than ten thousand tasks and many million possible duties, which can
then be solved using mathematical methods. An example is the solver
DS-Opt which uses a column generation approach based on a set par-
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titioning definition of the Duty Scheduling Problem to generate good
duty schedules.
Under this circumstances it is even more remarkable that the planers in
Plaue report very satisfying results for their planing network. Further-
more their simple heuristic eliminates the problem of longer runtimes
which occurs for approximation solvers such as DS-Opt. Plaue serves
as an example that clever saturation of the problem structure can still
match modern mathematical approaches.
In this thesis we study the question if a general problem reduction
approach can be adapted to speed up approximation solvers while al-
most maintaining the solution quality. We examine some older duty
scheduling heuristics for tricks and hints which can be used to reduce
the problem to a critical extract before the resulting problem is solved
with DS-Opt. As a result we describe a new heuristic which uses a
suitable relaxation of the problem to reduce the runtime.

Main Results

The duty scheduling heuristic FAST has been developed, implemented
and tested on more than 50 instances of real world duty scheduling
problems of different sizes. Complete results are presented for 35 of
these instances, while 23 instances of a sufficient size are relevant for
our main results.
For these 23 relevant instances FAST achieved runtime savings of
95.40% in average compared to DS-Opt.
Of the same instances FAST averaged only a 3.50% increase in the
objective value.
A total of 12 instances have been solved in less than 5% of the DS-Opt
runtime, while 5 instances could even be solved in less than 2%. The
best result was reported on a large instance which could be solved in
0.06% of the original runtime. Further 13 of the 23 instances reported
an objective value increase of less than 2%, while FAST even produced
slightly better solutions then DS-Opt for 4 instances. Furthermore,
FAST solved 3 instances which could not be solved by DS-Opt in the
maximum computation time of three days, set up for this benchmark.

Thesis-Overview

This thesis is subdivided into six chapters. In the first chapter we
describe the Duty Scheduling Problem in terms of an acyclic digraph
D = (V,A). The vertices V identify vehicle activities and the arcs
A represent possible connections between these activities. Each duty
corresponds to a path in D. The aim is to find a set of node-disjunct
paths in D covering all vertices.
Chapter two gives a literature overview on solution approaches toward
the problem. We provide a general overview and sort the methods into
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three categories. Further we give detailed descriptions for some of these
heuristics.
Chapter three solely presents the duty scheduling heuristic HASTUS-
Micro. This heuristic outlines the general approach used in our new
heuristic FAST.
All details of FAST are covered in the next two chapters. Chapter four
gives a complete description and provides algorithms used in FAST,
while all computational results and a short analysis of the parameters
are discussed in chapter five.
In the last chapter we evaluate the results and suggest some issues for
further research.
Finally Appendix A lists complete computational results and Appendix
B includes some Duty Scheduling Graphs.

Required Background

In this thesis we assume that the reader is familiar with basic terms
concerning graph theory, more precisely digraphs, paths, matchings and
flows, as well as linear and integer programming, most importantly with
the concepts of set covering, set partitioning and column generation.
Nice surveys on these terms are the books Linear Programming by
Vǎsek Chvátal [13] and Theory of Linear and Integer Programming
by Alexander Schrijver [44]. The notation used in this thesis is based
upon the lecture notes Graphen- und Netzwerkalgorithmen and Lineare
Optimierung by Martin Grötschel [29, 30].
Some parts of this thesis also discuss genetic algorithms and tabu
search. Overviews on tabu search are found in many books of Fred
Glover [26, 27]. Genetic algorithms are covered in the books of Lawrence
Davis [19] and David E. Goldberg [28].
Finally we assume that the reader is familiar with the economic problem
of duty scheduling and the associated mathematical methodology. [31]
provides a wonderful overview on alternative terms in duty scheduling
while [51] provides a short summary on duty scheduling heuristics.
The notations and terms used in this thesis are based on publications
of Ralf Borndörfer, Martin Grötschel, Andreas Löbel, et. al. [7, 8]. An-
other similar description is given in [43]. [7] also proposes a column
generation technique adapted to the Duty Scheduling Problem and de-
scribes the solver DS-Opt which is only outlined in this thesis, but is
used as a module in FAST.
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Notations

The following is an overview on the notations used in this thesis. Most
of the symbols are introduced to model the Duty Scheduling Problem
and are defined in chapter 1.

Base and Resource Constraint Modeling

K set of duty types
U set of duty resources
W set of base resources
ûk ∈ QU duty resource limits for every duty type k ∈ K
ŵ ∈ QW base resource limits
w̃k ∈ QW base resource consumption of duty type k ∈ K

Duty Scheduling Graph

D = (V,A) Duty Scheduling Graph
V tasks
T ⊆ V timetable tasks
S ⊆ V supplementary tasks
I ⊆ V artificial tasks
s ∈ I, e ∈ I start and end artificial tasks
A links
Ai ⊆ A type i links, i ∈ {1, 2, 3, 4}

Task and Link Labels for D = (V,A)

s̄t start time of task t ∈ V
ēt end time of task t ∈ V
v̄t block id of task t ∈ V
c̄t cost for task t ∈ V
ūtu consumption of duty resource u ∈ U of task t ∈ V
w̄tw consumption of base resource w ∈ W of task t ∈ V
ĉl cost for link l ∈ A
ûlu consumption of duty resource u ∈ U of links l ∈ A
ŵlw consumption of base resource w ∈ W of links l ∈ A
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Duties and Duty Schedules for D = (V,A)

PD,P set of all possible duties in D
cp cost for duty p ∈ PD

up duty resource consumption of duty p ∈ PD

wp base resource consumption of duty p ∈ PD

C̃D all duty schedules in D
CD all feasible duty schedules in D
C(C) cost of a duty schedule C ∈ C̃D

OC ⊂ T set of overcovered timetable tasks in C ∈ CD

Blocks and Duty Pieces for D = (V,A)

F(D) set of all blocks in D
Nm set of all possible duty pieces in a block m ∈ F(D)
N (D) set of all possible duty pieces in D
Ñ p set of the pieces of work contained in duty p ∈ PD

FAST Preparations

DMC = (V,A, z̃) Multi Cover Duty Scheduling Graph

S̃(t) ⊂ S set of associated supplementary tasks for t ∈ T
Td ⊂ T set of driving tasks
Tb ⊂ T set of break tasks
Tw ⊂ T set of working tasks
S−1 ⊂ S set of supplementary tasks with indication −1
S+1 ⊂ S set of supplementary tasks with indication +1
S0 ⊂ S set of supplementary tasks with indication 0

FAST Heuristic

r̄ ∈ N rounding parameter in seconds
Dr̄ r̄-Rounding of D = (V,A)
Dr̄

pos r̄-pos-Relaxation of D = (V,A)
O(l) ⊂ A set of original links for l ∈ Ar̄

pos

q̂ ∈ Q8 fix parameter vector for FAST
T start ⊂ T set of timetable task starting fixed pieces
T end ⊂ T set of timetable task ending fixed pieces

D(x̂,q̂)
fix x̂-q̂-FAST-Fix of D = (V,A)



1. The Duty Scheduling Problem

Abstract: We define the Duty Scheduling Problem (DSP) and associated terms such as blocks,
duty pieces and link types. Further we introduce a set covering and a set partitioning model of
the DSP.

Duty Scheduling is an important part of planning in public transit. Its
objective is to cover a set of predetermined tasks of vehicle work with a
set of legal driver shifts, minimizing the total cost of the needed shifts.
Due to labor agreements all shifts must respect certain constraints,
mostly regarding driving time, length of meal breaks and total duration
of service. Furthermore, the schedule formed by the selected shifts
sometimes has to satisfy certain global restrictions negotiated between
traffic companies and worker unions, see [8].

The definition of the Duty Scheduling Problem given in section 1.1 is
similar to a description used for airline crew scheduling in [11] adapted
to meet the needs of duty scheduling. Sections 1.2 and 1.3 introduce
some additional terms related to the problem, while sections 1.4 and
1.5 propose two integer program formulations.

Unfortunately, scheduling terminology differs between countries, be-
tween organizations and even within a single organization. Thus math-
ematical notation is far from being standardized. A widely accepted
glossary on alternative terms is [31]. In this thesis, we do not revise
terminology, but follow the set of scheduling terms used by Borndörfer,
Grötschel, Löbel, et. al. [7, 8].

1.1 Definition

We describe the Duty Scheduling Problem as the problem of covering
a set of vertices in an acyclic digraph using vertex-disjunct paths. The
vehicle work is represented by the vertices of this digraph. Duties are
represented by paths. Constraints are modeled using labels on the
vertices and arcs.

Let K indicate a set of duty types which have to satisfy different con-
straint sets. Common examples for such types are

• part time duties, i.e. short shifts without a long meal break,

• split duties, i.e. shifts consisting of two parts separated by a very
long break
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• and straight duties, i.e. shifts of normal length containing a meal
break.

Different labor agreements apply to different duty types.
Further, let U be a set of duty resources, e.g. driving time, break time
or working time, used to construct duty constraints. Let W be a set
of base resources used to formulate global restrictions. Restrictions
regarding base resources are called base constraints. Examples for base
constraints are limits on the maximum number of duties of a specific
duty type and duty mix restrictions. Such mix restrictions manage the
fraction of specific duty types in the total set of duties needed to cover
all vehicle work. The sets U and W usually contain different resources
to satisfy the requirement of different traffic companies.
For all duty types we define duty resource limits, which may not be
exceeded by a duty of this type. We define base resource limits, respec-
tively.

Definition 1.1.1 Let K be a set of duty types, k ∈ K and let U be a
set of duty resources. The vector ûk ∈ QU is called the duty resource
limit for the duty type k.

Definition 1.1.2 LetW be a set of base resources. The vector ŵ ∈ QW

is called the base resource limit.

Furthermore, we define base resource consumptions for each duty type
k ∈ K as follows.

Definition 1.1.3 Let K be a set of duty types, k ∈ K and let W be a
set of base resources. The vector w̃k ∈ QW is called the base resource
consumption of duty type k.

For example, to formulate a base constraint which limits the number
of duties of a specific duty type k ∈ K to a maximum of five duties,
we simply introduce a base resource L ∈ W and set (w̃k)L = 1 and
ŵL = 5.
Given duty types, resource sets and limits as defined above, we define
a digraph on which the Duty Scheduling Problem can be described.

Definition 1.1.4 Let K be a set of duty types and let U , W be duty
and base resource sets, respectively. A digraph D = (V,A) constructed
as follows is called a Duty Scheduling Graph. Its nodes t ∈ V are
called tasks and are subdivided into timetable tasks T ⊂ V representing
vehicle work, which has to be assigned to a driver, supplementary tasks
S ⊂ V modeling additive activities such as sign-on and sign-off and
into artificial tasks I ⊆ V. Tasks are labeled with start and end times
s̄, ē ∈ NV , block id’s v̄ ∈ NV , costs c̄ ∈ QV , duty resource consumptions
ū ∈ QV×U and base resource consumptions w̄ ∈ QV×W . The arcs A
are called links and connect tasks which can be performed consecutively
by the same driver. Links are labeled with costs ĉ ∈ QA, duty resource
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consumptions û ∈ QA×U and base resource consumptions ŵ ∈ QA×W .
D contains at least two artificial tasks s ∈ I and e ∈ I serving as start
and end for all shifts.

In any Duty Scheduling Graph D = (V,A) the set of supplementary
tasks S ⊂ V can be empty. We assume, that s̄t = ēt = v̄t = c̄t = 0,
ūt = (0, . . . , 0) and w̄t = (0, . . . , 0) for any artificial task t ∈ I. It would
be possible to spare the task labels c̄, ū and w̄ by setting ĉl = ĉl + c̄t1

for any link l = (t1, t2) ∈ A, û, ŵ respectively. For modeling reasons
we keep all task labels as defined above. In this thesis we usually
indicate tasks by t, t̃, t1 or tk and links by l, l̃, l1 or lk. Because links
only connect tasks, which can be performed consecutively by the same
driver, we assume that any Duty Scheduling Graph D is acyclic.
Whenever we use a Duty Scheduling Graph D = (V,A), we do not
explicitly mention the corresponding duty types K and resource sets
U and W, but assume that K, U and W as well as the corresponding
limits and duty type base resource consumptions are also defined 1.
A very small Duty Scheduling Graph D = (V,A) with |V| = 11, |A| =
20, I = {s, e} and S = ∅ is shown in Figure 1.1. D is acyclic and
timetable tasks are connected by links.

s e

t4

t5

t6

t1

t2

t3

t7

t8

t9

Figure 1.1: Duty Scheduling Graph D = (V,A)

Figure 1.2 displays another small Duty Scheduling Graph using the tool
DSVis, see Appendix B. This graph also contains supplementary tasks
t ∈ S. It is clearly visible that all supplementary tasks, represented
by small dots, are associated to a single timetable task t̃ ∈ T . The
different colors of the links are described in section 1.3. Further, Figure
1.3 enlarges a small extract of the Duty Scheduling Graph D = (V,A)
shown in Figure 1.2 to highlight the surroundings of a timetable tasks
t ∈ T . More Duty Scheduling Graphs for real world instances are part
of Appendix B.
1The number of duty types, duty resources and base resources is implicitly given by the length

of the labels in D.
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time

4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Figure 1.2: Duty Scheduling Graph D = (V,A), |V| = 423, |A| = 3168

6:00 7:00 8:00 9:00

Figure 1.3: Extract of the Duty Scheduling Graph in Figure 1.2
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Let D = (V,A) be a Duty Scheduling Graph and let p be a path in D
consisting of vertices V (p) and arcs A(p). The path p has cost

cp :=
∑

l∈A(p)

ĉl +
∑

t∈V (p)

c̄t ∈ Q (1.1.1)

and consumes duty resources

up :=
∑

l∈A(p)

ûT
l. +

∑

t∈V (p)

ūT
t. ∈ QU .

Instead of writing t ∈ V (p) and l ∈ A(p) we also write t ∈ p when
dealing with a task and l ∈ p when dealing with a link. We define a
duty in D = (V,A) as follows.

Definition 1.1.5 Let D = (V,A) be a Duty Scheduling Graph, let K be
the set of duty types and let ûk ∈ QU ∀ k ∈ K be the corresponding duty
resource limits. Further, let p be any (s, e)-path in D. If (up)L ≤ (ûk)L,
∀ L ∈ U for any duty type k ∈ K, p is called a duty of duty type k. The
set of all possible duties in D is denoted by PD or P.

For simplicity and because it applies to real situations, we further as-
sume that any duty p ∈ P is of at most a single duty type. Figure 1.4
displays a duty p ∈ P.
A duty p ∈ P of duty type k ∈ K has cost cp as defined in 1.1.1 and
consumes base resources

wp :=
∑

l∈A(p)

ŵT
l. +

∑

t∈V (p)

w̄T
t. + w̃k ∈ QW .

We now define a set of duties which covers all timetable tasks t ∈ T .

time

4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Figure 1.4: Example of a duty in D = (V,A)
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Definition 1.1.6 Let D = (V,A) be a Duty Scheduling Graph and let
C ⊂ P be a set of duties in D.
If ∀ t ∈ T : |{p ∈ C | t ∈ p}| ≥ 1, i.e. each timetable task is covered
by at least one duty, the set C is called a duty schedule. Its cost is
C(C) :=

∑

p∈C cp. The set of all duty schedules in D is denoted by C̃D.

A duty schedule as defined above must not be legal, because timetable
tasks may be covered more than once and potential base constraints
are not satisfied. Thus we define the following.

Definition 1.1.7 Let D = (V,A) be a Duty Scheduling Graph, let
ŵ ∈ QW be the corresponding base resource limits and let C be a duty
schedule in D. C is called feasible duty schedule, if and only if all the
following conditions are satisfied:

(i) ∀ t ∈ T : |{p ∈ C | t ∈ p}| = 1

(ii) ∀ L ∈ W : (wC)L :=
∑

p∈C(wp)L ≤ (ŵ)L

The set of all feasible duty schedules in D is denoted by CD.

Of course CD ⊂ C̃D for any Duty Scheduling Graph D. Each feasible
duty schedule covers each timetable task exactly once and respects all
base resource limits. We often say schedule instead of duty schedule
or feasible duty schedule when the circumstances do not matter. The
Duty Scheduling Problem can now be defined as follows.

Definition 1.1.8 Let D = (V,A) be a Duty Scheduling Graph and let
CD be the set of all feasible duty schedules. The problem of finding a
feasible duty schedule C ∈ CD satisfying

C(C) = min{C(C̃) | C̃ ∈ CD}

is called the Duty Scheduling Problem.

In this thesis, we refer to a Duty Scheduling Problem given a Duty
Scheduling Graph D = (V,A) as min{C(C) | C ∈ CD}. The set of base
resources W is empty for many duty scheduling instances.

1.2 Blocks and Duty Pieces

Let D = (V,A) be a Duty Scheduling Graph. Further assume that
D is simple, i.e. no parallel arcs are contained. The timetable tasks
t ∈ T represent work determined by a set of moving traffic vehicles,
e.g busses or trams. In real life situations these vehicles follow daily
round trips starting and ending at a depot and perform many of the
timetable tasks consecutively in-between. Each timetable task t ∈ T is
part of one such trip, indicated by its block id v̄t. Thus timetable tasks
t, t̃ ∈ V sharing the same block id, v̄t = v̄t̃ are part of the same trip.
We now partition T according to the underlying vehicle round trips.
A longest possible path containing only timetable tasks t ∈ T which
share the same block id v̄t is called a block.
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Definition 1.2.1 Let D = (V,A) be a Duty Scheduling Graph. A
(t1, tk)-path m in D is called a block with id i ∈ N, if and only if m
suffices the following two conditions:

(i) ∀ t ∈ V (m) ∩ V : t ∈ T ∧ v̄t = i

(ii) ∀ (t̃, t1), (tk, t̃) ∈ A : t̃ ∈ T ⇒ v̄t̃ 6= i

We denote the set of all blocks in D with F(D).

We assume that each timetable task t ∈ T is contained in exactly one
block, i.e. F(D) is a partitioning of T . This assumption suffices the
fact that no two overlapping timetable tasks can have the same block
id. Furthermore, each supplementary task t̃ ∈ S can be allocated to a
single block by its block id v̄t̃. We now define a duty piece as a subpath
of a block.

Definition 1.2.2 Let D = (V,A) be a Duty Scheduling Graph, let
F(D) be the set of all blocks and let m ∈ F(D). A subpath n of m
in D is called a duty piece. The set of all duty pieces in m is denoted
by Nm. The set of all duty pieces in the Duty Scheduling Graph D is
denoted by N (D).

This definition implies that each block can be subdivided into a set of
duty pieces in numerous ways. The number of possibilities to perform
such a subdivision on a block m depends on the number of timetable
tasks contained in the block |V (m) ∩ T |. We define the following.

Definition 1.2.3 Let D = (V,A) be a Duty Scheduling Graph, let
F(D) be the set of all blocks and let m ∈ F(D). A set of duty pieces

n1, . . . nk ∈ Nm with
⋃k

i=1 V (ni) = V (m) and V (ni) ∩ V (nj) = ∅, i 6= j
is called a duty piece partition of the block m.

Duty pieces and duty piece partitions as defined above are not to be
confused with pieces of work. Pieces of work are maximal subpaths of
a duty which are also subpaths of a block, i.e. parts of a duty which
are performed on the same vehicle, see [8]. Each piece of work is also
a duty piece, but not each duty piece is necessarily a piece of work in
a duty schedule. We denote the set of all pieces of work contained in
any duty p ∈ P by Ñ p.
In case the Duty Scheduling Graph D is not simple, blocks and duty
pieces are defined similarly, but parallel arcs are not considered during
the definition. Blocks and duty pieces are then only identified by the
contained tasks, i.e. it does not matter which of the parallel arcs is
used in the block or duty piece. Duty pieces and blocks play a very
important role in the following chapters of this thesis.

1.3 Link Types

Links connect tasks which can be performed consecutively. We par-
tition the set of links into four subsets according to which tasks they
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connect. Type 1 links must be contained in any duty schedule. Type 2
links can either connect successive timetable tasks of the same block or
timetable tasks and supplementary tasks representing work associated
with the same block id. A type 3 link connects tasks associated with
different blocks, while type 4 links connect tasks to the artifical tasks
s and e. The four sets are introduced in Definition 1.3.1.

Definition 1.3.1 Let D = (V,A) be a Duty Scheduling Graph. We
define the following subsets of A:

(i) The set of type 1 links A1 ⊂ A is defined as

A1 = {(t1, t2) ∈ A | t1, t2 ∈ T ∧ |δ
out(t1)| = 1 = |δin(t2)|}

(ii) The set of type 2 links A2 ⊂ A is defined as

A2 = {(t1, t2) ∈ A | (t1 ∈ S ∨ t2 ∈ S) ∧ v̄t1 = v̄t2}∪

{(t1, t2) | t1 ∈ T ∧ t2 ∈ T ∧ (t1, t2) /∈ A1 ∧ v̄t1 = v̄t2 ∧ ēt1 = s̄t2}

(iii) The set of type 3 links A3 ⊂ A is defined as

A3 = {(t1, t2) ∈ A | t1 6= s ∧ t2 6= e ∧ v̄t1 6= v̄t2}

(iv) The set of type 4 links A4 ⊂ A is defined as

A4 = {(t1, t2) ∈ A | t1 = s ∨ t2 = e}

Let D = (V,A) be a Duty Scheduling Graph and let C ∈ C̃D be a not
necessarily feasible duty schedule. Obviously

∀ l = (t1, t2) ∈ A1 ∃ p ∈ C : l ∈ A(p) ,

i.e. each type 1 link is contained in one of the duties in the duty schedule.
Further each duty p ∈ P starts and ends with a type 4 link.
We assume that for any Duty Scheduling Graph D = (V,A)

A = A1 ∪̇ A2 ∪̇ A3 ∪̇ A4 ,

i.e. the set of links can be partitioned into the four sets introduced in
Definition 1.3.1. In Figure 1.2 type 1 links are colored yellow, type 2
links are colored red, type 3 links are colored orange and type 4 links
are colored gray. This distinction is useful in chapter 4.

1.4 A Set Partitioning Model

We describe the Duty Scheduling Problem (DSP) defined in section 1.1
as a set partitioning problem (SPP) with side constraints. We further
relax the problem by softening the base constraints, i.e. the limit ŵ, for
feasible duty schedules, see definition 1.1.7.
Let D = (V,A) be a Duty Scheduling Graph and let P be the set of all
duties regarding D. For any p ∈ P introduce a binary variable xp to
decide whether the duty is contained in the final feasible duty schedule.
To soften the base resource limits, further define slack variables sb ∈ Q
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Model 1.1 (DSP-SPP)

min
∑

p∈P

cpxp +
∑

b∈W

cbsb

s.t.
∑

{p∈P|t ∈ p}

xp = 1 ∀ t ∈ V (1.4.2)

∑

p∈P

(wp)bxp − sb ≤ ŵb ∀ b ∈ W (1.4.3)

xp ∈ {0, 1} ∀ p ∈ P (1.4.4)

sb ≥ 0 ∀ b ∈ W (1.4.5)

and penalty cost cb ∈ Q for any base resource b ∈ W. The resulting
integer program (DSP-SPP) is shown in Model 1.1.
Each solution x ∈ {0, 1}P of Model 1.1 corresponds to a set of duties
{p ∈ P | xp = 1}. Constraint set 1.4.2 ensures that each timetable
task is covered exactly once, i.e. C = {p ∈ P | xp = 1} ⊂ P is a
duty schedule and also respects the first condition for feasible duty
schedules. If W is empty, C is a feasible duty schedule. Otherwise if
very high penalties cb are choosen, constraint set 1.4.3 guarantees that
C is nearly feasible. Still C may be infeasible with respect to some
base constraints. However we tolerate this in our model to guarantee
feasibility, i.e. the base constraints in this model are soft constraints.
The duty schedule C ∈ CD which corresponds to the optimal solution
of Model 1.1 is the duty schedule with minimal cost.

1.5 A Set Covering Model

We now propose a set covering model similar to Model 1.1, which gen-
erates a duty schedule in which tasks may be covered more than once,
i.e. the duty schedule must not be feasible. Such a model is interesting
because set covering concerns many less columns than set partitioning
and can be solved effectively.
For any not necessarily feasible duty schedule we define the following.

Definition 1.5.1 Let D = (V,A) be a Duty Scheduling Graph and
let C ⊂ P be any duty schedule. A timetable task t ∈ T is called
overcovered with respect to C if

|{p ∈ C| t ∈ p}| > 1 .

We denote the set of all overcovered tasks regarding C by OC.

Obviously OC = ∅ for any feasible duty schedule C. A duty schedule
with OC 6= ∅ has to be adjusted manually to achieve feasibility. Fortu-
nately, |OC | is likely to be small as the objective is to minimize total
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cost and if timetable tasks are covered more than once, the total cost
increases.
Model 1.2 is a set covering model (SCP) generating a duty schedule
with |OC | ≥ 0.

Model 1.2 (DSP-SCP)

min
∑

p∈P

cpxp +
∑

b∈W

cbsb

s.t.
∑

{p∈P|t ∈ p}

xp ≥ 1 ∀ t ∈ V (1.5.6)

∑

p∈P

(wp)bxp − sb ≤ ŵb ∀ b ∈ W (1.5.7)

xp ∈ {0, 1} ∀ p ∈ P (1.5.8)

sb ≥ 0 ∀ b ∈ W (1.5.9)

Solutions of Model 1.2 are treated similarly as solutions of Model 1.1,
but have to be adjusted to form feasible duty schedules. Model 1.2 does
not solve the Duty Scheduling Problem, but generates a duty schedule
which is very likely near the optimum. A general solution approach
toward the Duty Scheduling Problem is, to first solve Model 1.2 ob-
taining an optimal solution which defines a duty schedule C. Then all
duties covering tasks t ∈ OC are either shortened or the corresponding
work is substituted by breaks in all but one of the duties.



2. Solution Methods for the Duty Schedul-

ing Problem

Abstract: We give a literature overview on solution methods for the Duty Scheduling Problem.
Such methods can be grouped into three main categories. Mathematical programming heuristics,
set partitioning and set covering algorithms and meta heuristics. We cover methods from all three
categories, and point out some general approaches.

For a Duty Scheduling Graph D = (V,A) the number of duties |P|
is potentially exponential in the number of tasks. Further the pricing
problem, see section 2.4, and the Duty Scheduling Problem (DSP) it-
self are NP-hard, see [7, 43]. Currently no exact solution algorithm
for instances of relevant size is available and as a result, all methods
presented in this thesis are heuristic. It is useful to examine heuristics
to find a start solution or to improve known solutions to accelerate
lp-based algorithms such as DS-Opt, see 2.4.
Because of the economic importance of good duty schedules, many
different heuristic approaches have been studied and have been imple-
mented in various software planning packages.
Such approaches include mathematical programming heuristics based
on tricky relaxations and decompositions. Also optimized set covering
and set partitioning algorithms based on static or dynamic column
generation have been implemented. Finally, meta heuristics such as
genetic algorithms and tabu search procedures have been adapted to
suffice the DSP.
This chapter provides an overview on some efficient duty scheduling
heuristics, most of which marked the state-of-the-art during their de-
velopment.
Most duty scheduling heuristics are part of commercial scheduling mod-
ules. Detailed documentation is not necessarily available. Nevertheless
we outline the algorithms and point out general ideas of such methods
in the following sections.
Furthermore, recent enhancements and unpublished adaptions may have
been made to some of the heuristics, which are not discussed in this
thesis.

2.1 Overview

In general, duty scheduling heuristics relate to either one of three dif-
ferent mathematical fields as can be seen in Figure 2.1. In this study
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Figure 2.1: Duty Scheduling Heuristics

we further classify heuristics into seven different functional categories.

Simple methods include scheduling systems, where duties of a specific
length were cut from long blocks, while short blocks were combined with
the remaining slices to form additional duties. Due to their simplicity,
use of such methods was spread wide. We do not discuss such methods
in this thesis.

Many duty scheduling heuristics are based on mathematical program-
ming methods. Widely used procedures include matching- and flow-
based algorithms. Such approaches are covered in detail as we provide
successful examples in section 2.2 and in chapter 3.

Section 2.3 discusses another heuristic approach involving static column
generation algorithms to solve the set covering definition of the Duty
Scheduling Problem. First a huge number of potential duties is gener-
ated in advance and all other duties are discarded. Of course the set
of potential duties must be chosen smartly. In the second step the set
covering model (DSP-SCP), see Model 1.2, is formulated and solved
regarding only the subset of potential duties.

Dynamic column generation is an iterative method similar to the for-
mer approach. Potential duties are not just generated in advance, but
throughout the solution process. In each iteration a pricing routine
is used to determine new potential duties. These methods mark the
state-of-the-art in duty scheduling and are described in many recent
papers [7, 20, 22, 23, 48]. In this thesis we only outline dynamic col-
umn generation and give references to detailed descriptions, see section
2.4.

Meta heuristics have been used in many fields of applied combinatorial
mathematics for fast search of large solution spaces to solve NP-hard
optimization problems, see e.g. [2, 39]. Many authors claim, that better
solutions than other solvers could be constructed. Some of the most
frequently used meta frameworks for duty scheduling are genetic algo-
rithms and tabu search which have been successfully adapted to suffice
duty scheduling by some authors. We give a detailed description of
these methods in section 2.5 and section 2.6.
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It is worth mentioning that some recent developments focus on inte-
grated approaches of vehicle and duty scheduling. During such pro-
cesses, both the vehicle and duty schedule are obtained simultaneously,
allowing to adapt the schedules after every iteration. Such approaches
are the next step toward a total goal oriented solution process for oper-
ative planning in public transit. However, we do not discuss integrated
aspects in this thesis. Some recent publications are [9], [10] and [32].

2.2 Flow- and Matching-Based Algorithms

Most early approaches to solve the DSP were heuristics based on tricky
decompositions exploiting characteristics of the problem structure to
generate good solutions. Mathematical programming methods such as
matching- and flow algorithms or assignment methods were used to
assist in the planning process.

An example of such a strategy is implemented in the scheduling heuris-
tic described in [36], where the authors use a matching algorithm to
exploit a set of very strict lunch break rules. Further examples are the
dynamic programming based algorithm proposed in [4] and the assign-
ment heuristic contained in the scheduling software HOT II which is
discussed in section 2.2.1.

Of course it is not possible to mention all interesting methods in this
thesis. An overview is given in the proceedings of the conferences on
computer-aided scheduling [16, 17, 18, 21, 40, 49, 50]. Nevertheless
we outline a very widely used decomposition of the Duty Scheduling
Problem into a flow- and a matching problem which serves as base idea
for some heuristics, see also chapter 3.

Let D = (V,A) be a duty scheduling graph. In a first step the timetable
tasks T ⊂ V of each block m ∈ F(D) are sorted into sets such that
each block is partitioned into duty pieces, i.e. a duty piece partition
for each block is determined, see section 1.2. A flow algorithm can be
used to choose a good partition for each block with respect to the other
block partitions. These duty pieces are then regarded as the smallest
planning units, i.e. all links connecting other tasks to inner tasks of
these duty pieces are dropped. In a second step duties are formed by
connecting these pieces. Though it is very restrictive in practice, many
older heuristics bound the number of pieces of work contained in a duty,
e.g. ∀ p ∈ P |Ñ p| ≤ 3. In this case a matching or assignment procedure
can be used to form the duties by linking the duty pieces. Otherwise
a subset P̃ ⊂ P is generated concerning only remaining links and the
DSP is solved on this subset of duties.

A very successful example of this approach is HASTUS-Micro, de-
scribed in the next chapter. It outlines the general idea used in our
new heuristic FAST.
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2.2.1 HOT II

HOT II is a commercial scheduling package consisting of modules cov-
ering all planning operations of a public mass transit company. It has
been developed in Hamburg and was widely used in Germany. Descrip-
tions of HOT II can be found in [15] and [47]. An early description
of the assignment procedure used for duty scheduling described below
can be found in [37]. Unfortunately there is no exact description of the
current duty scheduling algorithm used in this package.

Given a duty scheduling graph D = (V,A), Algorithm 2.1 describes
the HOT II assignment heuristic used to build a feasible duty schedule
C ∈ CD. We assume that the set of base resources W is empty.

Algorithm 2.1 (HOT II)

Require: D = (V ,A)
1: F(D) = FM ∪̇ FA ∪̇ FE

2: A← ∅; B ← ∅
3: for F ∈ {FM ,FA,FE} do
4: for m = (t1, . . . , tk) ∈ F do
5: if ∃ p ∈ P , (t1, . . . , tj) ∈ Nm : {t1, . . . , tj} = V (p) ∩ T then
6: C ← C ∪ {p}
7: if V (m) \ V (p) 6= ∅ then
8: B ← B ∪ {m}
9: end if

10: else
11: A← A ∪ {m}
12: end if
13: end for
14: Solve an assignment problem on the sets A and B to form more duties
15: end for
16: Solve another assignment problem using the remaining duty pieces of morning,

afternoon and evening blocks to form split duties
17: return C ∈ CD

The set of blocks F(D) is partitioned into subsets according to the
start time of the first and the end time of the last contained timetable
task. The set FM ⊂ F(D) contains all morning blocks, beginning very
early and ending around midday. FA and FE contain all afternoon and
evening blocks, respectively.

A feasible duty schedule C ∈ CD is build up in three stages. In the first
stage early duties are built covering only morning blocks. In the second
and third stages afternoon and evening blocks are formed similarly
covering only afternoon and evening blocks. Finally, all duty pieces
not contained in any of the duties constructed in the three stages are
used to form additional split duties. We describe the construction of
morning duties.

First, each morning block m = (t1, . . . , tk) ∈ FM is examined. If a
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duty p ∈ P exists, consisting of a single piece of work n ∈ Nm ∩ Ñ p,
the duty p is added to the duty schedule1. The duty p must cover the
first j timetable tasks of m to be legal. Thus at most one uncovered
maximal duty piece ñ = (tj+1, . . . tk) ∈ Nm remains. If the duty p does
not cover the complete block m, m is added to a set B containing all
morning blocks which are just partly covered. The information which
duty piece n ∈ Nm is already contained in a duty is also stored.

The remaining morning blocks m ∈ FM for which no such duty can be
found due to insufficient break time or because the block is too short,
are stored in a set A.

An assignment procedure is now used to construct more morning duties
from the unused blocks and duty pieces of partly covered blocks. Blocks
contained in the set A are matched with residual duty pieces of the
blocks in B. The cost for the assignment of any two blocks m ∈ A
and m̃ ∈ B is determined by the existence of a duty p covering the
complete block m and the remaining duty piece of block m̃. If such a
duty p exists, the cost cp is used in the assignment procedure. If no
such duty exists the cost is set to∞. This is an unbalanced assignment
procedure and there are remaining duty pieces not yet covered by any
duty p chosen in this first stage.

Afternoon and evening duties are formed similarly from the sets FA and
FE. All remaining duty pieces not yet covered by the duties constructed
in the three stages are collected and split duties are formed covering all
these duty pieces. These split duties are also added to the final schedule,
which then covers all timetable tasks. HOT II does not support base
constraints. Any constraints regarding the duty mix must be implicitly
concerned throughout the procedure or need to be adjusted manually
afterwards by the planner.

The authors do not present computational data for HOT II.

2.3 Static Column Generation

Recall from section 1.5 the set covering model (DSP-SCP) of the DSP.
Unfortunately for real world instances D = (V,A) of average size the
number of possible duties |P| exceeds many million. As the model
contains a column for each possible duty, it is almost impossible to
explicitly solve it, because even the construction of the matrix is an
enumeration of all possible duties. Without any further reduction the
model has no practical use.

The development of static column generation techniques to construct
a reduced version of the model started alongside the constant improve-
ment of mathematical programming heuristics. Given a Duty Schedul-
ing Graph D = (V,A), static column generation approaches feature
the generation of a huge set of useful duties P ⊆ P. The set covering

1Each piece of work is a duty piece; Ñ p ⊂ N (D).
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Algorithm 2.2 (IMPACS)

Require: D = (V ,A), PD

1: for all m ∈ F(D) t1, t2 ∈ m do
2: if ∃(t1, t2) ∈ A2 and t1, t2 are not likely to be in different duties then
3: A ← A \ {{(t1, t̃) ∈ A|t̃ 6= t2} ∪ {(t̃, t2) ∈ A|t̃ 6= t1}}
4: end if
5: end for
6: Let P̃ ⊂ P be the set of duties in the modified Duty Scheduling Graph
D = (V ,A)

7: ∀ k ∈ K choose ûk stricter such that only favorable duties are possible
8: Generate P ⊂ P̃, |P | ∼ 10, 000∧ ∀ k ∈ K ∃ p ∈ P : up ≤ ûk

9: Delete inefficient duties p ∈ P
10: Solve (DSP-SCP) regarding only the remaining duties P̂

(ZIP Code Ryan 1980)

11: return C ∈ CD̃ where C ⊂ P̂

model (DSP-SCP) is then constructed only regarding this subset of
duties rather than all of them.
Two commercial systems using such approaches are IMPACS [38, 46,
52] and TRACS II [25, 33, 34], both developed and commonly used in
Great Britain. We discuss both systems in this section.

2.3.1 IMPACS

IMPACS is the crew scheduling component of the BUSMAN program
suite. It uses a static column generation method to generate a feasible
duty schedule.
Given a set of duties P corresponding to an original Duty Scheduling
Graph D = (V,A) it consists of two reduction phases where a subset

P̂ ⊂ P is generated. A feasible duty schedule is then constructed by
solving the set covering model (DSP-SCP) regarding the subset P̂ .
Algorithm 2.2 outlines this procedure.
The first reduction phase is described in the first loop in lines 1-5. All
blocks m ∈ F(D) are examined. If any two consecutive timetable tasks
t1, t2 ∈ V (m) ∩ T exist which are not likely to be covered by different
duties, these timetable tasks are fixed to be part of the same duty piece
in the solution. All outgoing links of t1 and all incoming links of t2 are
discarded. Only the type 2 link (t1, t2) ∈ A is maintained. This link
is now a type 1 link. This link reduction removes all duties p from P
where t1 and t2 are not contained in the same piece of work. Thus the
number of possible duties decreases as this reduction takes place. Let
P̃ ⊂ P be the set of remaining duties.
The second reduction phase generates a final set of potential duties P̂ ,
see lines 7-9. First the duty resource limits ûk are made stricter for any
duty type k ∈ K. Thus, inefficient duties are dropped from the set P̃ .
A huge number of favorable duties is then generated according to these
stricter limits, which is afterwards reduced as the least efficient duties
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Algorithm 2.3 (TRACS II)

Require: D = (V ,A)
/* Phase I */

1: Generate P ⊂ P such that P contains only suitable duties with respect to some
parameters.

2: Remove from P all duties which do not play a significant role in covering all
timetable tasks T . Let P̃0 be the set of remaining duties

3: Eventually generate more such sets P̃1, . . . P̃k using different parameters
4: P̃ ← P̃0 ∪ . . . ∪ P̃k

/* Phase II */
5: Use a heuristic to generate a set of duties C ⊂ P̃ which together cover all

timetable tasks
6: Solve the lp-relaxation of (DSP-SCP) concerning only the duties in C; Use a

column generation routine or steepest edge approach to add new duties p ∈ P̃
if |P̃ | is large

7: The solution x ∈ QP̃ provides a target number of duties N = |{p ∈ P̃ |xp > δ}|

8: Generate a feasible schedule C̃, |C̃| = N using branch and bound; If necessary
increase N

9: return C̃

are discarded. The resulting set of duties is P̂ .
Finally the integer linear program (DSP-SCP) is formulated regarding

all remaining duties p ∈ P̂ . It is solved by a variant of the RYAN ZIP
Code, see [42], to generate a duty schedule which is manually adjusted
to form a feasible duty schedule.
Due to a high competitive environment the authors do not present
useful computational results in any of the references [38, 46, 52].

2.3.2 TRACS II

The TRACS II scheduling suite is a commercial package for duty schedul-
ing, which also supports the scheduling of train drivers. It has been
developed as successor of IMPACS. We give a short overview in this
section.
Let D = (V,A) be a Duty Scheduling Graph and let P be the corre-
sponding set of duties. TRACS II is based upon a two phase approach
as outlined in Algorithm 2.3.
During the first phase, a huge number of feasible duties P ⊂ P is gener-
ated. All of these duties satisfy a set of previously defined requirements
in order to be suitable for a final schedule. Such constraints may be
a specified minimum spread time, a minimum driving time or a max-
imum meal break length. Duties, which do not satisfy all constraints
are prevented and not added to P . After this generation, P contains a
huge number of duties and is still too large. Thus P is reduced as du-
ties, which are not significant to cover all timetable tasks are dropped.
In this sense a duty p ∈ P , which covers only a part of the timetable
tasks covered by duty p̃ ∈ P having similar cost can be removed. All
remaining duties are stored in a set P̃0 ⊂ P.



24 2 Solution Methods for the Duty Scheduling Problem

Eventually more such duty sets P̃1, . . . P̃k are constructed regarding
different constraint sets, see line 3. All duties contained in any of these
sets are potential candidates for the final schedule and are added to the
duty set P̃ . This set is significantly smaller, i.e. |P̃ | ≪ |P|.
At the beginning of the second phase a heuristic is used to generate
a subset C ⊂ P̃ containing duties, which together cover all timetable
tasks. This set of duties is used to define the lp-relaxation of the set
covering model (DSP-SCP) which is solved as new duties from the set
P̃ are added to the problem in a column generation manner. If possible,
a steepest edge approach is used instead of a column generation tech-
nique. A fractional solution is obtained indicating a target number of
duties to be contained in the final duty schedule, see line 7. An integer
solution is generated using a Branch&Bound technique. This integer
solution corresponds to the final duty schedule C ∈ CD. Obviously C
uses only duties contained in the prior generated set P̃ .
[34] claims that TRACS II outperformed many established bus driver
scheduling systems by year 2000 in the generation of efficient schedules.
However the sizes of the presented problem instances are not provided.

2.4 Dynamic Column Generation

Dynamic column generation, mostly referred to as column generation,
is a very efficient and widely accepted iterative process to solve lin-
ear relaxations of general set partitioning models consisting of many
columns. Theoretical and practical descriptions of dynamic column
generation algorithms are found throughout the literature. An exam-
ple is the Branch&Price algorithm described in [3].
In every iteration, a so called restricted master linear problem (RMLP)
is solved along with one or more subproblems from which new columns
are generated. Each of the restricted master linear problems contains
only a subset of the original set of columns which changes dynamically
after each iteration as new columns are added and others are dropped.
Dynamic column generation can easily be adapted to suffice additional
side constraints and thus it can be used to tackle the linear relaxation
of (DSP-SPP), see section 1.4.
Let D = (V,A) be a Duty Scheduling Graph and let P be the cor-
responding set of duties. Algorithm 2.4 describes a general dynamic
column generation procedure to generate a feasible near optimal duty
schedule C ∈ CD.
First, an initial subset P̃ ⊂ P is generated similarly to static col-
umn generation procedures. P̃ must contain at least one feasible duty
schedule to ensure feasibility. The duties contained in P̃ can either be
known duties or they can be generated a priori as described in IM-
PACS or TRACS II. A good set P̃, i.e. a set of duties containing a
good feasible duty schedule, speeds up the solution process. The mas-
ter linear problem is the linear relaxation of (DSP-SPP). The current
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Algorithm 2.4 (Dynamic Column Generation)

Require: Duty Scheduling Graph D = (V ,A), P , λ ∈ Q

1: Define an initial subset P̃ ⊂ P which contains at least a duty schedule C ⊂ P̃
2: while TRUE do
3: x← Solve the (RMLP) regarding the subset P̃
4: lb← Calculate a lower bound on the objective using duality
5: ub← Calculate the objective regarding x. (upper bound)
6: if ub ≤ (1 + λ)lb then
7: break
8: else
9: Add duties p ∈ P \ P̃ with negative reduced cost to P̃

10: Eventually remove some unused duties from P̃
11: end if
12: end while
13: Generate a feasible duty schedule C̃ ∈ CD from the current fractional solution

x
14: return C̃

restricted master linear problem contains only columns associated with
duties which are contained in P̃ . An optimal solution is found using an
lp-solver such as CPLEX 10.0. The optimal solution x obtained, cor-
responds to a fractional duty schedule which is optimal for the given
set of duties P̃. The objective value regarding x is an upper bound for
the optimum of the master linear program. Subproblems are called to
generate duties with negative reduced costs. These routines are called
pricing problems. Depending on the kind of the pricing routine, a suit-
able method to generate such duties can be modelled using a resource
constrained shortest path problem, see for example [7, 43]. If no duties
with negative reduced cost exist, the current fractional solution x is
also optimal for the master linear problem. Otherwise, new columns
are added, i.e. the duties with negative reduced cost are added to P̃ and
the next iteration is performed. Theoretically, dynamic column gener-
ation always finds the optimal solution of the master linear problem.
However for problems related to real world data, optimal solutions are
seldom achieved in a satisfying time frame, because the pricing prob-
lem in NP-hard. Thus a parameter λ ∈ [0, 1] is introduced to abort
the iterative process when the current solution is provably near the op-
timum. Fortunately many methods exist to generate a feasible duty
schedule C̃ ∈ CD given a fractional schedule.

Some duty scheduling optimizers using the dynamic column genera-
tion approach are the PROB1 solver in the CARMEN system [48], the
CREW-Opt optimizer contained in the HASTUS system [20, 22, 23]
and DS-Opt [7, 8, 43].

CREW-Opt was one of the first solvers which implemented dynamic
column generation to solve duty scheduling problems. It replaced the
former heuristic HASTUS-Micro in the HASTUS scheduling package.

The DS-Opt optimizer developed at the Konrad Zuse Institute Berlin
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is integrated in the BERTA and MICROBUS systems, see [8]. It is
also used as an optimizer in our new heuristic FAST, see chapter 4.
Currently, dynamic column generation solvers as listed above mark the
state-of-the-art in duty scheduling. Some results for DS-Opt are listed
in Appendix A.

2.4.1 Dynamic Aggregation of Set Partitioning Constraints

Many duty scheduling heuristics are based on the approach to group
timetable tasks into duty pieces to reduce the size of the problem as
all associated links can be discarded. The resulting problems usually
can be solved much faster. This approach is backed by the fact that
most efficient duties consist of just a few pieces of work as a vehicle
change is costly and thus many consecutive timetable tasks of the same
block are contained in the same duty. A new approach described in [24]
exploits this characteristic to accelerate the dynamic column generation
process.
Recall, that large duty scheduling problems generally contain more than
ten thousand timetable tasks and specify more than one trillion feasible
duties. Thus the corresponding (DSP-SPP), see Model 1.1, consists of
equally huge numbers of set partitioning constraints and variables. Fur-
thermore, a feasible duty usually covers in average only around twenty
to thirty of the timetable tasks resulting in columns which contain only
this number of non-zero elements in the set partitioning section of the
model. Consequently, the restricted master linear problems associated
with the lp-relaxation of (DSP-SPP), i.e. the master linear problem,
are highly degenerated. This fact considerably slows down the column
generation process.
The dynamic constraint aggregation algorithm described in [24] over-
comes this degeneracy by grouping set partitioning constraints accord-
ing to an equivalence relation. Two timetable tasks t, t̃ ∈ T are said to
be equivalent, if each duty in the current set p ∈ P̃ contains either both
tasks t, t̃ or none of them. For each equivalence class a single partition-
ing constraint is added to represent all timetable tasks contained in
this set. The so declared groups of timetable tasks identify fixed duty
pieces, as timetable tasks of different blocks should never be contained
in the same equivalence class if the set P̃ is chosen reasonably.
Throughout the dynamic column generation process the restricted mas-
ter linear problems are substituted by aggregated master linear prob-
lems which are much easier and faster to solve as they contain much
less partitioning constraints.
To guarantee optimality, the aggregation is modified dynamically in
every iteration of the procedure.
The authors claim, that this method significantly reduces the size of the
master problem, degeneracy, and solution times, especially for larger in-
stances. In general for integrated vehicle and duty scheduling instances
they state a reduction of 39% in average of the number of constraints
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and 90% in average of the master problem solving time.
A detailed description of this recent approach, whose efficiency has not
yet been validated by other authors, is found in [24]. Certainly future
research in the area of duty scheduling will focus strongly on designing
and analyzing more sophisticated strategies using aggregation and to
adapt similar methodology to interior point methods.

2.5 Genetic Algorithms

Genetic algorithms are a general purpose solving strategy capable of
searching highly complex solution spaces because they do not get stuck
in local optima. Their analogy is with population genetics and evolution
as proposed by Charles Darwin’s theory. Often near optimal solutions
are found very fast while optimal solutions are almost never reached.
Due to the complexity of the corresponding solution space, duty schedul-
ing instances have been effectively solved by genetic algorithms. Several
authors have adapted and implemented genetic procedures to support
other methods or to serve as standalone duty scheduling heuristics.
Some publications regarding genetic algorithms and duty scheduling
are [14, 53, 34, 5].
[14] proposes a tailored genetic algorithm for duty scheduling. We
discuss this algorithm in section 2.5.2.

2.5.1 Basics

Some basic terms on genetic algorithms are reviewed in this section.
Useful overviews are [19] and [28].
A genetic algorithm is an iterative solving strategy. Each iteration
consists of a set of members forming a population P = {M1, . . . , Mn}.
Each member Mi ∈ P of the population represents a possible solution
in the solution space and has a specified value f(Mi) representing its
fitness, i.e. the quality of the solution. The fitness indicates how likely
the member is to survive and to recombine. It represents the competi-
tion for survival and competition to mate. The size of each generation
|P | is bounded by a value n representing the scarcity of the population.
For two members Mi, Mj ∈ P we define the generation of all possible
children as Cij = C(Mi, Mj) = {C1, . . . , Cl}. The general strategy of
any genetic algorithm is to replace the weakest members in the popu-
lation with the offspring of the fittest, while raising the average fitness
level.
Let Pk be the population of the current iteration. Two members
Mi, Mj ∈ Pk are chosen to mate with respect to the fitness values of
all members. Fitter members are more likely to be chosen than others.
Let Cij indicate the offspring. Some weak members of Pk are chosen
randomly and compared to members of Cij. Assume Cl ∈ Cij is a cho-

sen child and M̃ ∈ Pk a chosen weak member of the current population.
The standard replacement procedure is to compare the fitness value of
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Cl to those of M̃ , i.e. if f(Cl) > f(M̃), M̃ is discarded and replaced
by Cl resulting in the new population Pk+1 = Pk\M̃ ∪ Cl.
One advanced method to choose members for mating and discarding
from a population in a probabilistic manner is the roulette wheel se-
lection described in [19]. In this method each member is assigned a
probability based on its fitness. A population member is being selected
for mating or for being replaced with respect to this probability.
After a predefined number of iterations the best member of the current
population is determined. The associated solution is returned.
During the iterative process, fitter population members are more likely
to survive and to mate. Thus the average fitness level increases, as do
the chances that the best member represents a usable solution.

2.5.2 Greedy Genetic Algorithm

This section outlines one of the first implemented genetic duty schedul-
ing algorithms where a greedy procedure is used to choose population
members for mating and recombining. Duty schedules generated with
this algorithm are typically within the range of two to three duties near
the best known solution. The algorithm does not construct a feasible
duty schedule. A detailed description of the algorithm is found in [14].
Let D = (V,A) be a Duty Scheduling Graph and let the corresponding
set of base resources W be empty. Each population member Mi ∈ P is
a duty schedule C ∈ CD, i.e. we call each duty schedule a population
member. Members are represented by a chromosome structure, i.e. a
chain of 0 and 1, whose total size equals the number of duties p ∈ P.
Assume that P = {di|i = 1, . . . 12} and that the population member
Mi ∈ P is a duty schedule C = {d2, d6, d9, d12}, then Mi would be
represented by the chromosome 010001001001.
The length of each chromosome is equal, but the number of bits taking
value ’1’ may differ. The fitness value f(Mi) for each member Mi ∈ P
is the cost of the underlying duty schedule, C(C). We assume, that
a duty schedule which contains less duties is always fitter than duty
schedules containing more duties.
Given a target number of generations K and a value indicating the size
of each generation n, Algorithm 2.5 is an outline of the greedy genetic
algorithm.
Let Pk = {M1, . . . , Mn} indicate the population in iteration k ∈ N, i.e.
the k-th generation. The initial population P0 is obtained by generating
n random duty schedules, see lines 3-6. The roulette wheel method is
used in each iteration to choose two members Mi and Mj with rather
high fitness value for recombining, see lines 8 and 9. Each member is
given a probabilistic value indicating how likely the member is to be
picked depending on the actual fitness of the member relating to the
total fitness of the population. Similarly, a weak member with a low
fitness value is chosen to eventually be substituted by a child. The
currently best member is never chosen to be replaced and thus the best
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Algorithm 2.5 (Greedy Genetic Algorithm)

Require: Duty Scheduling Graph D = (V ,A), K ∈ N, n ∈ N

Ensure: K > 0
1: k ← 0
2: P0 ← {}
3: for i = 0 to n do
4: Mi ← Generate random duty schedule C ∈ CD

5: P0 ← P0 ∪Mi

6: end for
7: while k < K do
8: Mi ← Choose random member Mi ∈ Pk

9: Mj ← Choose random member Mj ∈ Pk \ {Mi}
10: Ci ← Generate a child Ci ∈ Cij

11: M̂ ← Choose a random weak member M̂ ∈ Pk

12: if f(Ci) > f(M̂) then
13: Pk+1 = Pk \ {M̂} ∪ Ci

14: end if
15: If Pk indicates convergence, replace most members M ∈ Pk with new ran-

dom schedules.
16: k ← k + 1
17: end while
18: return M̃ where f(M̃) = min{f(M)|M ∈ Pk−1}

duty schedule is always maintained in the population. This is known
as an elitist treatment.

A child Ci is generated by a chromosome crossover method. The bits
for the child chromosome are chosen randomly from both parents. A
0 is possible though both parents have bit 1 at the position. Thus the
child can have less duties than either of the parents. The possible child
chromosomes are implicitly given by the possible combinations of Mi

and Mj . Two possible child schedules are shown in Figure 2.2.

Parent Schedules

010001001000110100

100010001001011001

010010001000110100

100001001001011001

Child Schedules

Figure 2.2: Possible crossovers of two chromosomes

To generate a child by crossover, the authors propose some approaches
with the aim to pick a good child, rather than any. Assume, that the
set of timetable tasks T is ordered, and that Dt ⊂ P is the set of all
duties containing timetable task t ∈ T which are contained in either
one of the parent schedules.
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• random crossover - Run through the ordered set T and for each
yet uncovered timetable task t ∈ T choose a random duty p ∈ Dt.

• greedy crossover - Run through the ordered set T and for each
yet uncovered timetable task t ∈ T choose the duty p ∈ Dt, which
covers the most of yet uncovered timetable tasks.

• ip crossover - Generate and solve an integer program to generate
the optimal child schedule.

• permutated greedy crossover - Same as greedy crossover, but
rearrange the timetable tasks T after each call.

• variable greedy crossover - Diversify the greedy. Choose either
p ∈ Dt as in greedy crossover or choose p ∈ Dp according to how
much the remaining work is fractured.

The random crossover generates a different child for each different run,
while the greedy crossover always produces the same child. Choosing
a random child thus keeps the complexity of the search space, while
the greedy crossover simplifies it rapidly. As a result using the greedy
crossover creates good solutions very fast, but if the number of gener-
ations is high, the random crossover method catches up and overtakes
the greedy solutions. Integer linear program crossover is overtaken even
faster as it gets stuck very early on good solutions. The last two options
are attempts to randomize the greedy crossover to produce good solu-
tions in a short time, but keep the possibility to improve the solution
in later iterations. These two provided the best results.
Furthermore, whenever a convergence of the population is detected,
most population members are replaced by random schedules. The next
iteration continues with this modified population, see line 15. Because
the few remaining schedules are much fitter than the rest, the fitness
values are normalized. Therefore the new random members have the
chance to pass their genetic information onto later generations and thus
new duties are generated. To normalize, the fitness values are ordered
and the member with the highest fitness value gets a new fitness value
three times as high as the lowest member.
When the predefined number of generations is reached, the currently
best schedule is returned.
Results of the greedy genetic algorithm using different crossover strate-
gies are listed in [14]. However, the authors only state the number of
duties in the final schedule but do not describe the problem instances.

2.5.3 TRACS II - Hybrid Genetic Algorithm

Although TRACS II, outlined in section 2.3.2, provides good solutions,
it sometimes fails to generate an integer solution in the Branch&Bound
process. In such cases, parameters must be changed to modify the
set of potential duties P̃ . This requires a lot of insight and advanced
knowledge which is not always available.
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In [34] the authors propose a hybrid genetic algorithm (GA) to over-
come this disadvantage. If Branch&Bound fails to generate an integer
solution in the second phase of TRACS II, the GA constructs a duty
schedule out of the fractional set of duties {p1, . . . pn ∈ P|xpi

> 0},
obtained by solving the lp-relaxation of the set covering model. The
set of base resources must be empty for this algorithm. This procedure
never fails to generate a feasible duty schedule. Algorithm 3.4, more
precisely lines 10 to 18 show the embedment of the GA in TRACS II.
After TRACS II finished, the GA is used to find a feasible duty sched-
ule CGA. If |CGA| > N , the Branch&Bound process to determine an
integer solution in TRACS II is repeated with the new target number
of duties |CGA|. As long as feasible solutions are generated by this pro-
cess, the target number is reduced. Finally, the best of all generated
duty schedules is returned. We describe the GA in this section.

Algorithm 2.6 (TRACS II Hybrid GA)

Require: D = (V ,A) and P set of all feasible duties.
1: Generate P ⊂ P such that P contains only suitable duties.
2: Remove from P all duties which do not play a significant role in covering all

timetable tasks T . Let P̃0 be the set of remaining duties.
3: Eventually generate more such sets P̃1, . . . P̃k using different parameters.
4: P̃ ← P̃0 ∪ . . . ∪ P̃k

5: Use a heuristic to generate a set of duties C ⊂ P̃ which together cover all
timetable tasks.

6: Solve the lp-relaxation of (DSP-SCP) concerning only the duties in C. Use a
column generation routine or steepest edge approach to add new duties p ∈ P̃
if |P̃ | is large.

7: The solution x ∈ QP̃ provides a target number of duties N = |{p ∈ P̃ |xp > δ}|.

8: Generate a feasible schedule C̃, |C̃| = N using branch and bound. If necessary
increase N .

9: Ĉ ← {p ∈ P̃ | xp > 0.2}
10: CGA ← duty schedule generated by the GA regarding the fractional duty set

Ĉ.
11: if |C0

GA| > N then
12: N ← |C0

GA|
13: i← 1
14: while C̃i ← Generate feasible schedule C̃, |C̃| = N using Branch&Bound

do
15: N ← N − 1
16: i← i + 1
17: end while
18: end if.
19: return Best solution found out of CGA, C̃1, . . . C̃i, C̃ ⊂ P .

Once again let D = (V,A) be a Duty Scheduling Graph and let P
be the set of all corresponding feasible duties. We indicate the set of
potential duties, i.e. the set of duties generated in phase one of TRACS
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II by P̃ ⊂ P. Furthermore, let the set of preferred duties Ĉ ⊆ P̃ be

the set of duties corresponding to the fractional solution x ∈ [0, 1]P̃ as
mentioned above.
Let n be the size of the population in each iteration and let g indicate
the number of generations. The length of chromosomes representing
the population members is L ∈ N, where

L = |{p ∈ Ĉ|xp > 0.2}| ,

i.e. each preferred duty with a fractional value greater 0.2 is represented
by a gene. Each chromosome represents a partial duty schedule S̃i ⊂ Ĉ,
where gene i stores value 1 if the duty i is contained in this partial
schedule, 0 otherwise. The so defined partial duty schedules must not
cover all timetable tasks t ∈ T .
Each partial schedule S̃i can be augmented to form a full schedule
Ci ∈ CD by first adding duties p ∈ P̃ \ S̃i in a greedy manner and
discarding redundant duties after all timetable tasks t ∈ T have been
covered.
Each population member Mi ∈ P is a partial schedule and represented
by a chromosome. The fitness of Mi ∈ P is indicated by

f(Mi) =
∑

p∈Si

cp + M · |Si| M ∈ N M ≫ 0 .

Furthermore, for each member a set of so called trait duties, which are
always passed to the child generation, is indicated. These duties are
contained in the full schedule and are considered important, because
they are a cost effective combination and should be part of any child
schedule.
The initial population P0 = {M1, . . . , Mn} is constructed as n random
chromosomes are generated as follows. A value r ∈ Q, r ∼ 0.25 · L is
chosen randomly and for each chromosome r random genes are given
value 1, the rest is given value 0. The corresponding full schedules
C1, . . . , Cn ∈ CD are constructed, the fitness values f(M1), . . . f(Mn)
are calculated and the trait duties are identified.
The roulette wheel method is used to choose population members for
mating. Assume that two rather fit members Mi ∈ P and Mj ∈ P
have been chosen so. A single point crossover strategy on the parent
chromosomes, see Figure 2.3, is used to form two child chromosomes,
which again indicate partial schedules. These are augmented to form
full schedules by first adding all trait duties of one of the parents and
then executing the procedure mentioned above.
Everytime parents are chosen to mate, a random number r between
1 and g is generated. The number of generations the fittest member
survived is indicated by s. In the case of r ≤ s, mutation occurs before
the crossover. The requirement r ≤ s implies that mutation is more
likely to occur in later generations and thus discourages premature
convergence.
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Parent Schedules

010001001000110100

100010001001011001

010001001001011001

100010001000110100

Child Schedules

Figure 2.3: A single point crossover of two chromosomes

If mutation occurs, some of the genes which have equal values for both
parents are changed. Selection and the number of genes which are
changed are random.
To form a new generation Pi, the current parent population Pi−1 is
merged with all generated children and all members are ranked by
their fitness value. A proportion of this combined population, which is
selected by deterministically choosing fit members, survives, all other
members are discarded. New random members are added to the popu-
lation till the number of individuals equals n again.
The algorithm either stops at the predetermined number of generations
g or if the fittest member survives a certain number of generations.
TRACS II together with the hybrid GA always finds a feasible duty
schedule2. Results of TRACS II with GA are slightly lower than
TRACS II without GA. [34] also reports computational results showing
that the GA outperforms TRACS II for the biggest instances in the test
set. However, exact sizes of these instances are not provided.

2.6 Tabu Search

Tabu search is an iterative procedure designed for the solution of opti-
mization problems. It is a neighborhood search strategy which searches
the solution space while avoiding entrainment in cycles by maintaining
a list of previously visited solutions in a so called tabu list. An efficient
memory scheme is necessary to deal with such a list. Each solution
has an associated set of neighbored solutions which can be reached by
a specific move. These moves have to be defined for each tabu search
scheme and identify the neighborhood. Iteration moves which lead to
solutions stored in the tabu list are prohibited or penalized. Thus tabu
search ensures that new regions of the solution space are investigated
throughout the process, ultimately finding the desired solution. Tabu
search was invented by Glover [26, 27] and has been used to solve a wide
range of hard optimization problems such as job shop scheduling, graph
coloring, the traveling salesman problem and the capacitated arc rout-
ing problem. Recently it has also been used to solve duty scheduling
problems.
[12] proposes two tabu search based heuristics for the duty scheduling

2W = ∅.
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Algorithm 2.7 (Run-Ejection)

Require: Duty Scheduling Graph D = (V ,A)
1: Build an initial solution C1 ∈ CD, by first grouping the timetable tasks of each

block into duty pieces and afterwards forming a feasible duty schedule only
consisting of duties using at most two of these pieces

2: Build a non-bipartite graph G1 = (V1, A1) where each node corresponds to
a duty piece in the initial duty schedule C1 and each feasible two-piece-duty
p ∈ C1 is represented by an edge between two such nodes

3: i← 1
4: while TRUE do
5: Construct Gi+1 from Gi using the ejection chain method
6: Solve the Maximum Cardinality Matching Problem for Gi+1 using a greedy

procedure resulting in the next feasible duty schedule Ci+1 ∈ CD

7: if Current schedule Ci+1 is OK then
8: BREAK
9: else

10: i← i + 1
11: end if
12: end while
13: return Ci+1

problem. The first, tabu crew, uses a tabu search framework to improve
an initial solution constructed by a standard run-cutting procedure. In
each improvement step the most expensive duties are destroyed and
the resulting pieces are used to form new duties. This procedure may
pass through a sequence of incomplete solutions and thus represents a
form of strategic oscillation. The second and more successful heuristic
is called run ejection; discussed in section 2.6.1.
Another heuristic also based on a tailored tabu search framework,
HACS, is described in [45] and is also outlined in section 2.6.2. Both
algorithms do not support base constraints, i.e. W = ∅.

2.6.1 Run Ejection Algorithm

The run ejection algorithm is proposed in [12] and achieved good so-
lutions for instances of the Lisbon Metro Company. In these scenarios
feasible duties consist of either one or two pieces of work. Thus the
set of duties P is restricted to duties consisting of at most two pieces
of work. Furthermore the objective is not to minimize the total cost,
but the number of duties contained in the final schedule. Algorithm
2.7 outlines the run ejection algorithm.
It is a tabu search procedure where in each iteration a duty piece
partition of a Duty Scheduling Graph D = (V,A), i.e. for all blocks
m ∈ F(D), is determined and a good duty schedule using these duty
pieces is constructed. An initial solution is generated using a simple
heuristic, which also provides a duty piece partition for each block.
Each duty piece partition of D corresponds to a digraph Gi where the
duty pieces are vertices and all feasible two piece duties are arcs con-
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necting these vertices. The iterations are performed in a tabu search
manner. The tabu search neighborhood structure is embedded and
each move between two solutions consists of two steps. First the cur-
rent digraph Gi = (Vi, Ai) is transformed into Gi+1 = (Vi+1, Ai+1) using
a so called ejection chain method. New duty pieces are generated and
existing ones are replaced, resulting in a slightly different duty piece
partition for D. Then a feasible duty schedule, represented by a set of
arcs in Gi, is determined by solving a maximum cardinality matching
problem on the current digraph Gi+1.
We now describe the operations performed in the ejection chain method
to transform the digraph. Let Ñi ⊂ N (D) be the current set of duty
pieces and let Gi be the current digraph having a vertex for each duty
piece n ∈ Ñi. The ejection chain method consists of levels l = 1, . . . , L,
where in each level l a subgraph G̃l

i in Gl
i is deleted and replaced with

another subgraph Ĝl
i resulting in Gl+1

i = Gl
i\G̃

l
i ∪ Ĝl

i. We set G1
i = Gi.

Each delete/replace combination can be split into the following four
basic operations:

• shift-left: Two consecutive duty pieces of the same block ni =
(t1, . . . , tl), ñi = (tl+1, . . . , t̃k) ∈ Ñi are replaced by two duty pieces
ni+1 = (t1, . . . , tl+1), ñi+1 = (tl+2, . . . , tk) ∈ Ñi+1, transferring the
timetable task tl+1 ∈ T from the second to the first duty piece.

• shift-right: Similar to shift-left, transferring a task from the first
to the second duty piece.

• cut: Cut a single duty piece ni = (t1, . . . , tl) into two pieces ni+1 =
(t1, . . . , tk), ñi+1 = (tk+1, . . . , tl) ∈ Ñi+1.

• merge: Combine two adjacent duty pieces of the same block ni =
(t1, . . . , tl), ñi = (tl+1, . . . , t̃k) ∈ Ñi to form a single duty piece
ni+1 = (t1, . . . , tk) ∈ Ñi+1.

The operations in a chain are chosen randomly to secure a diversifica-
tion of the search. Further each duty piece n ∈ Ñi may only be modified
once in each ejection chain to propagate a search over the entire duty
schedule. Finally the objective for evaluation of a transmission from
Gl

i = (V l
i , Al

i) to Gl+1
i = (V l+1

i , Al+1
i ) is

F ′(Si) = |Al+1
i | − |A

l
i|

which favors the cut move and thus increases the number of arcs and
possible duties.
A feasible solution Ci+1 ∈ C

D is obtained by solving the maximum
cardinality matching problem on Gl∗

i+1 where l∗ represents the level of
the chain where the best value for F ′(Si) has been found. Gl∗

i+1 also
identifies the digraph which is further modified in the next iteration.
The matching problem is solved using a greedy procedure as follows. In
each iteration the duty piece with the lowest number of possible links
which is not yet contained in a duty, is linked together with another
duty piece generating a feasible two piece duty. This feasible duty
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exists, because the corresponding arc has been contained in the digraph
Gi. These duties together with the remaining trippers, see [31], form
the next feasible duty schedule.
A tabu list is kept of all reversing operations, i.e. if a cut operation
is performed, the reversing merge operation is stored and vice versa.
Each reverse move is kept in the tabu list for Θ iterations, where Θ is
chosen randomly from within an interval for each move.
The authors do not state when a current feasible duty schedule is sat-
isfying and thus the loop in lines 4-12 exits and the best solution is
returned. One method would be to indicate an upper bound on the
number of iterations of run ejection.
[12] states computational results for the run ejection algorithm. The
tested instances contained up to 26 blocks and up to 718 timetable
tasks. Compared to manual schedules, the run ejection algorithm re-
duced the number of duties for all instances.

2.6.2 HACS - Heuristic for Automatic Crew Scheduling

HACS is a driver scheduling heuristic based on tabu search developed by
the authors of TRACS II. First, an initial, not necessarily feasible, duty
schedule is constructed in a simple manner. The schedule is modified
using a tabu search routine to establish feasibility and to minimize the
cost. Below we take a closer look at the model and at the tailored tabu
search method used in this heuristic. However we do not discuss the
tabu tenure and the memory scheme of HACS here, but remark that
both issues are important for efficient runtimes of HACS. A detailed
description is given in [45]. Compared to TRACS II, HACS reports
slightly weaker solutions, but much better runtimes.
Let D = (V,A) be a Duty Scheduling Graph. As mentioned, HACS
uses infeasible duties and infeasible duty schedules while processing.
Thus we define P not as the set of all duties but as the set of all
[s, e] − paths in D. Furthermore, we define the set of all feasible duty
schedules CD based on this modified set P. Thus, a duty schedule is a
set of [s, e]− paths covering each timetable task exactly once, but the
duties must not respect any duty resource constraints.
For any duty pi ∈ P, let Ñ pi = {nij|j = 1, . . .m} be the set of contained
pieces of work. i.e. the contained maximal duty pieces.. Further, let
Lpi

= {lij |j = 1, . . .m + 1} ⊂ A identify the type 3 and type 4 links
contained in pi

3. The links li1 and lim+1 represent type 4 links, i.e. the
sign on and sign off activity.
An example of three duties p1, p2, p3 ∈ P covering two blocks m, m̃ ∈
F(D) is shown in Figure 2.4.
Associated with each duty p ∈ P are functions f(p) representing the
penalty and g(p) representing its cost. If p ∈ P is indeed a duty,
f(p) = 0.

3|Lpi
| = |Ñ pi | + 1.
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m 1 2 3 4 5

m̃ 6 7 8 9

p1
l11

1
d11 l12

3 4
n12 l13

9
n13 l14

p2
l21
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n21 l22

7 8
n22 l23

p3
l31

6
n31 l32

5
n32 l33

Figure 2.4: Example of 3 duties covering 2 blocks

A duty p with f(p) = 0 satisfies all duty resource constraints and thus
is feasible with respect to some duty type k ∈ K. For simplicity, the
penalty and cost of a duty p are stored on all its links l ∈ Lp, i.e.
f(l) = f(p) and g(l) = g(p).
The aim of HACS is to find a duty schedule C ∈ CD with f(C) =
∑

p∈C f(p) = 0 4 and with minimal cost g(C) =
∑

p∈C g(p) between all
such duty schedules. HACS is outlined in Algorithm 2.8.
HACS does not aim for a good initial solution and instead a simple
and quick method is used to obtain this first duty schedule. Let N =
V/(T −M) where V =

∑

t∈T ēt − s̄t indicates the total duration of all
timetable tasks and T and M identify the maximum spread time and
the minimum meal break time of a single duty. N is a lower bound
on the target number of duties. Further P = 2N and D = V/P are
assumptions for the number and average duration of duty pieces in a
duty schedule.
All timetable tasks of each block m ∈ F(D) are grouped to form duty
pieces of total duration D, resulting in at least P such pieces. P is
increased if necessary. Finally the duty pieces are paired with respect to
their starting time, i.e. the starting time of the first piece has to be lower
than the starting time of the second piece and the corresponding duties
containing only these pieces are added to the initial duty schedule.
If the number of pieces is odd, the last remaining duty piece will be
included in the initial schedule as a duty with a single piece of work.
Duties may be time infeasible and may have violated constraints.
The multi-neighborhood of the HACS tabu search procedure is identi-
fied indirectly by defining the following four swapping moves. Each of
the following moves modifies two duties p, p̃ in the current duty schedule
Ci to obtain a new schedule Ci+1.

• swapping links: Two links l1 = (t, t̃) ∈ Lp and l2 = (t1, t2) ∈ Lp̃

are removed and replaced by the crossover counterparts l̃1 = (t, t2)

4C is feasible because W is empty.
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Algorithm 2.8 (HACS)

Require: Duty Scheduling Graph D = (V ,A)
1: Construct an initial (infeasible) duty schedule C ∈ CD.
2: P ← |C|
3: while TRUE do
4: while f(C) < X do
5: X ← f(C)
6: C ← Perform tabu swapping move to modify C
7: end while
8: C̃ ← C
9: while g(C) < X do

10: X ← g(C)
11: C ← Perform tabu swapping move reducing the cost g(C)
12: end while
13: if C 6= C̃ then
14: NEXT;
15: else
16: if f(C) = 0 then
17: BREAK;
18: else
19: P ← P + 1
20: C ← C ∪ p̃ where p̃ is a new duty minimizing the penalty
21: end if
22: end if
23: end while
24: return C ∈ CD

and l̃2 = (t1, t̃), see Figure 2.5.

p1
l11

1
d11 l12

3 4
d12 l13

9
d13 l14

p3
l31

6
d31 l32

5
d32 l33

l̃31 l̃12

Figure 2.5: Swapping links l12 ∈ Lp1 and l31 ∈ Lp3

• swapping pieces: Two pieces are swapped between two duties,
i.e. two swapping links moves are performed simultaneously.

• inserting piece: A piece is taken from a duty p and inserted in
a duty p̃ by replacing (t1, t2) ∈ Lp, (t3, t4) ∈ Lp and (t5, t6) ∈ Lp̃

with the links (t1, t4) (t5, t2) and (t3, t6), see Figure 2.6.

• modifying pieces: The pieces as built in the initial schedule can
only be modified by this move. Assume that pieces nik and njl are
succeeding pieces in a block m ∈ F(D) and timetable task tj is
the last task contained in piece nik, then tj can be removed from
nik and inserted in njl. The same applies if tj is the first task
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Figure 2.6: Inserting n11 into D3

contained in njl. See Figure 2.7.
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Figure 2.7: Modified n1 and n2 after recutting block m1

The value of any move is defined as either f(S)− f(S̃) or g(S)− g(S̃)
depending on the objective of the current minimization procedure. Note
that f(S)− f(S̃) = f(l1i) + f(d2j)− f(l̃1i)− f(l̃2j)) and g(S)− g(S̃) =

g(l1i) + g(d2j − g(l̃1i)− g(l̃2j)) respectively.
Using these swapping moves, first the feasibility is reduced as far as
possible. Afterwards swapping operations are used to reduce the cost as
far as possible. If any change has been made during the cost reduction,
again, f(C) is reduced. Otherwise, if the current schedule is feasible, it
is returned. If and only if no feasible schedule is found with a specific
number of duties P ∈ N, P is increased, see Algorithm 2.8. A good
duty, minimzing the penalty, is added to the procedure and the process
is repeated.
Computational data for HACS is listed in [45]. HACS has been used
to solve instances with up to 999.101 potential duties and about 860
timetable tasks. For instances of this size HACS provided solutions
near the best known solutions.

2.7 Conclusions

In this chapter we discussed some duty scheduling heuristics from three
different mathematical fields. Many different ideas have been imple-
mented by various authors. However, only a few of the heuristics pre-
sented in this thesis can manage the whole complexity of the duty
scheduling problem. Often a lot of details of the problem are discarded
or the number of tasks and pieces of work contained in a duty is re-
stricted. In most cases the set of duties P is reduced. Further many of
the heuristics do not support base constraints, i.e. the set W has to be
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empty.
It is hard to compare the heuristics from a mathematical point of view
because most authors do not provide computational data and exact
descriptions of the evaluated instances. Still we summarize some basic
results.
HOT II and similar older heuristics such as HASTUS-Micro, see chapter
3, reduce the size of the Duty Scheduling Graph as far as possible. Due
to the lack of computational power at that time, such a reduction was
the only way to solve the problem. Related heuristics are still used
by some companies because with modern computing they provide fast
and often satisfying solutions. An example is the Treiber-Heuristic
described in the introdution of this thesis.
Static column generation approaches such as IMPACS and TRACS II
focus on a reduction of P. The set covering formulation is then solved
on the subset. For the methods mentioned in this thesis, no compu-
tational data is available. Dynamic column generation approaches, see
section 2.4, are likely to be superior as more duties can be considered.
The authors of meta heuristics claim that genetic algorithms and tabu
search are efficient in generating good duty schedules. Still most of the
presented results only consider small duty scheduling instances and do
not support base constraints. Hopefully future research enhances these
methods.
State-of-the-art solvers like DS-Opt and CREW-Opt are able to solve
duty scheduling instances with more than 10.000 timetable tasks, see
Appendix A. Furthermore by solving the set partitioning formulation
(DSP-SPP) the whole complexity of the problem is considered. For
today’s large duty scheduling instances however, column generation
procedures are time consuming.
One attempt to speed up the column generation process is done with the
dynamic constraint aggregation algorithm described in section 2.4.1.
The authors claim huge runtime savings. However no detailed descrip-
tion of this algorithm is available.
Further research in duty scheduling should focus on methods to speed
up the column generation process.
In chapter 4 we use a problem reduction approach based on ideas col-
lected from some of the heuristics described in this section. The aim
is to construct a duty scheduling heuristic able to solve large instances
faster then column generation solvers but supporting the whole com-
plexity of the problem.



3. HASTUS - A General Approach to Duty

Scheduling

Abstract: We describe the duty scheduling heuristic HASTUS-Micro, which uses the two phase
solution approach introduced in section 2.2. HASTUS-Micro provides the basic idea for our heuris-
tic FAST presented in the next chapter.

The first version of HASTUS, a package containing both vehicle and
duty scheduling modules, was developed in the early 80’s. For 25 years
its algorithms have been enhanced and improved, features have been
added and flexibility has been increased. Today HASTUS is one of the
world’s leading scheduling packages, used by more than 250 scheduling
companies from all over the world, see [1].
In this chapter we discuss HASTUS-Micro, a duty scheduling heuristic,
which has been part of the early HASTUS package. It is described
in [35] and [41]. Due to increased computational power and further
mathematical research, HASTUS-Micro has been substituted by the
column generation method CREW-Opt in later versions of HASTUS.
Still, it provides the general idea for our new duty scheduling heuristic
FAST. We take a closer look at HASTUS-Micro in this chapter.

3.1 The Approach

HASTUS-Micro follows the basic idea of splitting a Duty Scheduling
Problem min{C(C) | C ∈ CD} into two subproblems. First the size of
the Duty Scheduling Graph D is reduced. For each block m ∈ F(D)
a duty piece partition n1, . . . , nk ∈ Nm is determined. All links l ∈
A \ A1 connecting other tasks to inner tasks of these duty pieces are
discarded. As a result some of the type 2 links of the block m turn
into type 1 links. After this reduction, the Duty Scheduling Problem

min{C(C) | C ∈ CD̃} is solved, where D̃ = (Ṽ , Ã) indicates the reduced
Duty Scheduling Graph.
The difficulty arising from the procedure described above is to select a
good duty piece partition for each block. To perform a smart partition,
all details of the Duty Scheduling Graph are dropped and a relaxation of
the Duty Scheduling Problem, called HASTUS-Macro, is solved on this
reduced graph. The pieces of work used in the solution of HASTUS-
Macro are then used as a blueprint for a good duty schedule. The
blocks of the original problem are partitioned with respect to these
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Solve HASTUS−Macro Partition blocks

HASTUS−Micro

Relaxation of
min{C(C) | C ∈ CD} respect to x̃. Delete

m ∈ F(D) with

dispensable links.

D = (V,A) x̃ ∈ QP̃

D̃ = (Ṽ, Ã)C ∈ CD̃ ⊂ CD Solve
Select Ĉ ⊂ CD̃.

min{C(C) | C ∈ Ĉ}.

Figure 3.1: HASTUS-Micro

pieces of work1. Figure 3.1 gives an overview on HASTUS-Micro. The
next section describes HASTUS-Macro as a standalone procedure. In
section 3.3 we discuss HASTUS-Micro in more detail.

3.2 HASTUS-Macro

During negotiations with labor unions regarding new service rules for
drivers, cost-intense decisions must be made by transportation compa-
nies. Under these circumstances the companies need information on
the economical impact of possible rule changes.
In this context HASTUS-Macro was developed as a tool to evaluate
changing duty constraints and global restrictions for duty schedules.
The idea is to solve a time effective relaxation of the Duty Scheduling
Problem on a modified Duty Scheduling Graph multiple times regarding
different duty and base resource limits û and ŵ. Thus the cost of
different duty schedules can be compared providing valuable arguments
during negotiations.
Given a Duty Scheduling Graph D = (V,A), HASTUS-Macro first
rounds all tasks with respect to a value r̄ ∈ N. Then a linear model
is defined, which is a modification of min{C(C) | C ∈ CD}. This
modification ignores the position of all tasks and thus reduces the size
of the problem. The model can be solved in a very short time.

3.2.1 Rounding a Duty Scheduling Graph D = (V ,A)

We now discuss the rounding used in HASTUS-Macro. Let D = (V,A)
be a Duty Scheduling Graph. In this section we assume that S = ∅.
Let r̄ ∈ N be a value satisfying 86400

r̄
∈ N and set k = 86400

r̄
− 1. The

set

X = {[0, 1 · r̄] , [1 · r̄, 2 · r̄] , . . . , [k · r̄, 86400]} (3.2.1)

is a partition of the 24-hour day into intervals of r̄ seconds, the set

X̃ = {0, 1 · r̄, 2 · r̄, . . . , k · r̄, 86400} (3.2.2)
1Pieces of work are maximal duty pieces contained in a duty, see section 1.2.
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contains all relevant second values.
A rounding of D with respect to r̄ is constructed as follows. For all
tasks t ∈ V, the start time s̄t and the end time ēt are rounded to the
closest value contained in X̃ . Thus each task covers some succeeding
intervals [i, j] ∈ X . A task t may cover zero intervals, i.e. s̄t = ēt after
the rounding. The duty and base resource consumption of tasks and
links is adjusted to match the new start and end times. Let D̃ = (Ṽ, Ã)
be the resulting Duty Scheduling Graph, then |V| = |Ṽ| and |A| = |Ã|.
However, the set of possible second values for start and end times has
been reduced to |X̃ |. This fact is exploited by the HASTUS-Macro
relaxation.
Figure 3.2 displays a part of a Duty Scheduling Graph D = (V,A) and
the corresponding rounded Duty Scheduling Graph D̃ = (Ṽ, Ã). The
set of original timetable tasks t1, . . . t10 ∈ T = V \ I has been rounded
with respect to a rounding value r̄ = 600. Clearly s̄t̃2

= ēt̃2
= s̄t̃10

=
ēt̃10

= 1800 and s̄t̃8
= ēt̃8

= 1200.

D

D̃

0 600 1200 1800 2400

t1 t2 t3

t4 t5 t6

t7 t8 t9 t10

t̃1 t̃3

t̃4 t̃5 t̃6

t̃7 t̃9

Figure 3.2: HASTUS-Macro: Modification of D = (V,A)

3.2.2 The HASTUS-Macro Relaxation

Let D = (V,A) be a Duty Scheduling Graph with S = ∅ and let r̄ ∈ N

be a rounding value. Further let D̃ = (Ṽ, Ã) be the rounded Duty

Scheduling Graph and let PD̃ be the set of corresponding duties.
For each interval [i, j] ∈ X , we define the number of covering timetable
tasks z[i,j] ∈ N as

z[i,j] = |{t ∈ T̃ |s̄t ≤ i ∧ ēt ≥ j}| . (3.2.3)

As mentioned, the HASTUS-Macro relaxation discards the requirement

that each timetable task t ∈ T̃ is covered directly by a duty p ∈ PD̃,
i.e. the position of the tasks. However each interval [i, j] ∈ X must be
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covered by at least z[i,j] duties. Thus in a relaxed duty schedule the
number of duties matches the number of covering timetable tasks for
each interval, but the duties are not assigned to timetable tasks.
To model this requirement, we introduce another Duty Scheduling
Graph D̂ = (V̂, Â) which contains a single timetable task t[i,j] for each
interval [i, j] ∈ X . Timetable tasks t[i,j] and t[k,l] are connected by a
link if they either represent succeeding intervals, i.e. j = k, or if an
original link (t1, t2) ∈ Ã exists with ēt1 = j ∧ s̄t2 = k.

Let PD̂ be the set of duties in D̂. HASTUS-Macro only considers duties

p ∈ PD̂ which contain no more than three pieces of work, i.e. |Ñ p| ≤ 3.
Such duties may use no more than two type 3 links. Let

P̂ = {p ∈ PD̂ | |l ∈ Â3 ∩ A(p)| ≤ 2} .

indicate the subset of all such duties. To speed up runtime, HASTUS-
Macro only considers duties p ∈ P̂.
Finally, we do not use binary decision variables to indicate if a duty
is part of the resulting duty schedule. Instead, non-negative variables
xp ∈ Q are introduced for each duty p ∈ P̂ .
Model 3.1 describes the HASTUS-Macro relaxation of a Duty Schedul-
ing Problem min{C(C) | C ∈ CD} regarding a set of intervals X .

Model 3.1 (HASTUS-Macro)

min
∑

p∈P̂

cp · xp

s.t.
∑

{p∈P̂|t[i,j]∈p}

xp ≥ z[i,j] ∀ [i, j] ∈ X (3.2.4)

∑

p∈P̂

(wp)bxp ≤ ŵb ∀ b ∈ W (3.2.5)

∑

p∈P ij

xp ≥ f ij ∀ i ∀ j : f ij > 0 ∧ j − i ≤ f̂ (3.2.6)

∑

p∈P i

xp ≥ f i ∀ i ∃j : f ij > 0 (3.2.7)

xp ≥ 0 ∀ p ∈ P̂ (3.2.8)

Constraint set 3.2.4 ensures that each timetable task t[i,j] ∈ T̂ is covered
by as many duties as indicated by the value z[i,j]. Restrictions 3.2.5
ensure that the fractional duty schedule C = {p ∈ P̂ | xp > 0} satisfies
all base constraints.
To disallow abnormal duties and to ensure usability of the solution,
constraints 3.2.6 and 3.2.7 have been appended to the problem as fol-
lows.
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Let F(D̃) be the set of blocks in the rounded Duty Scheduling Graph
D̃ and let

F ij = {(t1, . . . , tk) ∈ F(D̃) | s̄t1 = i ∧ ētk = j} ⊂ F(D̃) (3.2.9)

be the subset of all blocks starting at i ∈ X̃ and ending at j ∈ X̃ .
Further let f ij = |F ij| indicate the number of blocks contained in F ij

and let

f i =
∑

{j∈X̃ |f ij>0}

f ij (3.2.10)

indicate the number of blocks starting in i ∈ X̃ .
Given a parameter f̂ ∈ N, a block m ∈ F ij is called a short block if
j − i ≤ f̂ . We now introduce two subsets of P̂. The set

P i = {p ∈ P̂|∃ (tk, . . . , tl) ∈ Ñ
p s̄tk = i} ⊂ P̂ (3.2.11)

indicates the set of duties containing a pieces of work starting at i ∈ X̃ .
The subset

P ij = {p ∈ P i|∃ (tk, . . . , tl) ∈ Ñ
p s̄tk = i ∧ ētl = j} ⊆ P i (3.2.12)

contains all duties containing pieces of work also ending at j ∈ X̃ .
Using the notation introduced above, the constraint set 3.2.6 requires
that for any combination i, j ∈ X̃ with j−i ≤ f̂ , the fractional schedule
contains at least as many pieces of work starting at i and ending at j as
short [i, j]-blocks are contained in the rounded Duty Scheduling Graph
D̃.
Similarly, constraint set 3.2.7 ensures that for any i ∈ X̃ the fractional
schedule contains more duty pieces starting in i than blocks that start
at i in D̃.
The objective of HASTUS-Macro is to minimize the total cost of all
fractional duties used to cover all intervals with respect to z[i.j].
More general information on HASTUS-Macro is found in [6].

3.3 Hastus-Micro

In the context of HASTUS-Micro, a HASTUS-Macro solution x̂ ∈ QP̂

is used as an outline for a good duty schedule in the original problem.
Each block is partitioned into a set of duty pieces with respect to x̂.
The objective is to find a partition that minimizes the total difference
between the pieces of work indicated by x̂ and the duty pieces used to
partition the blocks.
Recall, that HASTUS-Micro can be subdivided into two parts. First,
a flow algorithm is used to determine good partitions for the blocks.
All redundant links are discarded. Afterwards the Duty Scheduling
Problem is solved heuristically regarding the reduced Duty Scheduling
Graph.
This procedure is outlined by Algorithm 3.1. All steps are discussed in
more detail below.
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Algorithm 3.1 (HASTUS-Micro)

Require: D = (V ,A)

1: Solve (HASTUS-Macro) to attain a solution x̂ ∈ QP̂

2: Use a flow algorithm to partition the blocks into duty pieces with respect to x̂
3: Construct duties from the duty pieces using a matching procedure
4: return The best solution C ∈ CD

Throughout this section let D = (V,A) be a Duty Scheduling Graph
and let r̄, X , X̃ and D̃ = (Ṽ , Ã) be indicated as in section 3.2. Further

let x̂ ∈ QP̂ be a fractional solution of the HASTUS-Macro relaxation
of the Duty Scheduling Problem min{C(C) | C ∈ CD}.

3.3.1 Duty Piece Partitions for the Blocks

We now describe the flow algorithm used in HASTUS-Micro to partition
the blocks into duty pieces.
The problem to partition a single block into a set of duty pieces can be
modeled as a flow problem on a digraph D = (V, A) as follows. Assume
that m = (t1, . . . , tk) ∈ F(D) is a block consisting of k timetable tasks,
ti ∈ T . Define a set of vertices

V = {s, e} ∪ {vij|ti, tj ∈ m ∧ i + 1 = j}

where s and e identify the start and the end of the block m and vij ∈ V
identifies a type 1 or type 2 link (ti, tj) contained in the block. We
define the set of arcs as

A = {(t1, t2)|t1, t2 ∈ V ∧ t1 6= t2} ,

i.e. any two vertices are connected.
Figure 3.3 displays the relevant digraph D = (V, A) regarding a block
m = (t1, . . . , t4) ∈ F(D). Each (s, e)-flow in D identifies a partition of
m into duty pieces. Each arc used in the flow corresponds to one of the
duty pieces contained in the partition. The costs of the arcs identify
the costs of the corresponding duty pieces and are chosen with respect
to the HASTUS-Macro solution.

t1 t2 t3 t4
s v12 v23 v34 e

Figure 3.3: Partitioning a block into pieces using a flow algorithm

We now describe a non-linear model to generate a partition of all blocks
using a flow algorithm. Each solution corresponds to a simultaneous
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partition of all blocks into duty pieces. The optimal solution identifies
the duty piece partitions with the minimum difference to the given
HASTUS-Macro solution x̂.

Let F(D̃) be the set of all blocks contained in the rounded Duty
Scheduling Graph D̃ and let

I = {(i, j) ∈ N2|i, j ∈ X̃ i 6= j}

be a set containing all possible start-end combinations for duty pieces.
Further let P i and P ij be defined as in 3.2.11 and 3.2.12. Finally, for
each original block m̃ ∈ F(D) define a set

T m̃ = {i ∈ N|∃ t ∈ T̃ ∩ V (m̃) : s̄t = i ∨ ēt = i} (3.3.13)

containing the time values of the corresponding rounded block m̃ ∈
F(D̃). Obviously T m̃ ⊂ X̃ for all blocks m̃ ∈ F(D̃).

For any original block m̃ ∈ F(D) and any (i, j) ∈ I we introduce binary
variables ym

ij ∈ {0, 1} to decide if a duty piece starting at i and ending
at j is used in the partition of block m̃.

The times i, j ∈ X̃ are not the original starting and ending times of the
timetable tasks used in the block m̃. Introduce penalty costs dm̃

ij ∈ Q

to represent the adjustment that has to be made to use a duty piece
starting at i ∈ X̃ and ending in j ∈ X̃ to partition the original block
m̃. Set dm̃

ij =∞ if i /∈ T m̃ or j /∈ T m̃.

Model 3.2 generates a partition of all original blocks into duty pieces
with respect to the HASTUS-Macro solution x̂.

Model 3.2 (HASTUS-Micro Flow)

min
∑

(i,j)∈I

((
∑

p∈P ij

x̂p −
∑

m∈F(D̃)

ym
ij )2 +

∑

m∈F(D̃)

dm
ij ym

ij )

s.t.
∑

i∈T m

ym
ik −

∑

j∈T m

ym
kj =











−1 k = s̄t1

+1 k = ētl

0 else

∀ m = (t1..tl) ∈ F(D̃)∀ k ∈ T m

(3.3.14)

ym
ij ∈ {0, 1} ∀ m ∈ F(D̃), (i, j) ∈ I

(3.3.15)

Constraint set 3.3.14 represent flow constraints for each original block.
The objective is a non-linear function. HASTUS-Micro uses a heuristic
procedure to solve the model. Assume that all variables ym

ij not asso-
ciated with a specific block m̃ are fixed. The objective can then be
reduced as follows.
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∑

(i,j)∈I

(
∑

p∈P ij

x̂p −
∑

m∈F(D)

ym
ij )

2 +
∑

(i,j)∈I

∑

m∈F(D)

dm
ijy

m
ij

=
∑

(i,j)∈I

(
∑

p∈P ij

x̂p −
∑

m6=m̃

ym
ij − ym̃

ij )
2

+
∑

(i,j)∈I

∑

m6=m̃

dm
ijy

m
ij +

∑

(i,j)∈I

dm̃
ijy

m̃
ij

=
∑

(i,j)∈I

((
∑

p∈P ij

x̂p −
∑

m6=m̃

ym
ij )

2 − 2ym̃
ij (

∑

p∈P ij

x̂p −
∑

m6=m̃

ym
ij ) + (ym̃

ij )
2)

+
∑

(i,j)∈I

∑

m6=m̃

dm
ijy

m
ij +

∑

(i,j)∈I

dm̃
ijy

m̃
ij

Because ym̃
ij ∈ {0, 1}, condition (ym̃

ij )
2 = ym̃

ij holds. Removing all fixed
parts of the objective we get a new objective

min
∑

(i,j)∈I

cm̃
ijy

m̃
ij , cm̃

ij = −2(
∑

p∈P ij

x̂p −
∑

m6=m̃

ym
ij ) + 1 + dm̃

ij . (3.3.16)

Assuming that all other blocks are fixed we can define a flow problem
to determine a partition of block m̃ = (t1, . . . , tl), see Model 3.3.

Model 3.3 (FP m̃)

min
∑

(i,j)∈I

cm̃
ij ym̃

ij

s.t.
∑

i∈T m̃

ym̃
ik −

∑

j∈T m̃

ym̃
kj =











−1 k = s̄t1

+1 k = ētl

0 else

∀ k ∈ T m̃ (3.3.17)

ym̃
ij ∈ {0, 1} ∀ (i, j) ∈ I (3.3.18)

Model 3.3 is used to formulate a sub-optimal algorithm to solve Model
3.2. Let Kmax ∈ N be an upper bound on the number of improvement

iterations and let x̂ ∈ QP̂ be a fractional HASTUS-Macro solution.
Algorithm 3.2 is a heuristic to generate a good solution for (HASTUS-
Micro Flow) .
For initialization, any feasible solution of (HASTUS-Micro Flow) is
used. In each iteration of the loop in lines 4-16 a sub-optimal solution
is generated. Each block m ∈ F(D) is partitioned into the optimal set
of duty pieces assuming that all other block partitions are fixed. The
loop exits if no improvement has been made or if the upper bound on
the number of iterations Kmax is reached.
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Algorithm 3.2 (MINSG)

Require: D = (V ,A), x̂ ∈ QP̂ , Kmax ∈ N

/* Initial Solution */
1: k ← 1
2: ỹm

ij ← Any Solution of (HASTUS-Micro Flow)

3: Z0 ←
∑

(i,j)∈I((
∑

p∈P ij x̂p −
∑

m∈F(D) ỹm
ij )2 +

∑

m∈F(D) dm
ij ỹm

ij )

/* Improve Solution */
4: while k < Kmax do
5: k ← k + 1
6: for m ∈ F(D) do
7: ym

ij ← Solve (FPm) regarding x̂ and ỹm̃
ij

8: end for
9: for m ∈ F(D) do

10: ỹm
ij ← ym

ij ∀(i, j) ∈ I
11: end for
12: Zk ←

∑

(i,j)∈I((
∑

p∈P ij x̂p −
∑

m∈F(D) ỹm
ij )2 +

∑

m∈F(D) dm
ij ỹm

ij )
13: if Zk = Zk−1 then
14: BREAK
15: end if
16: end while
17: return ỹm

ij

Let {ỹm
ij | (i, j) ∈ I, m ∈ F(D)} be the solution returned by 3.2. For

each block m ∈ F(D), the variables {ỹm̃
ij | (i, j) ∈ I} define a partition

of m into duty pieces. Assume that m̃ = (t1. . . . , th, . . . , tn) ∈ F(D) is
a block, that ỹm̃

ij = ym̃
jv = 1 for fixed i, j, v ∈ X̃ and that ỹm̃

kl = 0 ∀ k, l ∈

X̃ (k, l) 6= (i, j), (j, v). Further, assume that s̄t1 has been rounded to
i, ēth has been rounded to j and ētn has been rounded to v. Then
the block m̃ partitions into the two duty pieces (t1. . . . , th) ∈ N m̃ and
(th+1, . . . , tn) ∈ N m̃. Let

Lm̃ = {(t, t̃) ∈ A \ A2|(t ∈ m̃ ∧ t 6= th ∧ t 6= tn)∨

(t̃ ∈ m̃ ∧ t̃ 6= t1 ∧ t̃ 6= th+1)} (3.3.19)

be the set of links connecting to inner tasks of these pieces of block m̃.
Each link l ∈ Lm̃ is redundant and is removed.
Thus the set of links A in the reduced original problem is

Ã = A \
⋃

m∈F(D)

Lm . (3.3.20)

Assume that D̃ = (Ṽ, Ã) is the reduced Duty Scheduling Graph, where
Ṽ = V, then we indicate the reduced Duty Scheduling Problem by

min{C(C) | C ∈ CD̃}.

3.3.2 Solving the Reduced Problem

Let D̃ = (Ṽ, Ã) be the reduced Duty Scheduling Graph obtained after

the first phase of HASTUS-Micro. Further let min{C(C) | C ∈ CD̃} be
the reduced Duty Scheduling Problem.
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In [35] the authors propose a maximum-weighted-matching formulation
and an assignment procedure to solve the reduced Duty Scheduling

Problem min{C(C) | C ∈ CD̃}. In both cases only duties with at most
two pieces of work are considered, i.e. all duties contained in the set

P̂ = {p ∈ PD̂ | |l ∈ Â3 ∩ V (p)| ≤ 1}

This is an enormous restriction and therefore we do not discuss the
exact procedure here. A general description can be found in [35].
The authors do not list computational results for HASTUS-Micro.



4. FAST - A Macro-Based Heuristic for Duty

Scheduling

Abstract: We dicuss the new heuristic FAST which is based upon a two phase approach. In the
first phase a relaxation of the Duty Scheduling Problem is solved. In the second phase the original
problem is reduced as links are removed according to the obtained relaxed solution. Finally the
reduced problem is solved by DS-Opt.

The aim of this thesis was to construct a new duty scheduling heuristic
to tackle large instances of the Duty Scheduling Problem and generate
good feasible duty schedules in a short time. After facing many dif-
ficulties, the new heuristic FAST has been developed. FAST can be
understood as a macro-based heuristic, relaxing all details of a Duty
Scheduling Problem while maintaing all essential structures.

The approach used in FAST is similar to the HASTUS approach de-
scribed in the previous chapter. In a first phase the Duty Schedul-
ing Graph D = (V,A) is modified and a relaxed version of the Duty
Scheduling Problem is solved on this modified graph. The solution
obtained is then used to reduce the size of the original Duty Schedul-
ing Graph to a critical extract such that the Duty Scheduling Problem
min{C(C) | C ∈ CD} can be solved much faster.

In the context of this work, FAST has been implemented and has
achieved very satisfying results. Solutions for all tested instances have
been compared to solutions generated by the approximation solver DS-
Opt, stating huge runtime savings while almost maintaining solution
quality.
We now discuss FAST in detail, while computational results and sta-
tistical data are listed in the next chapter and in Appendix A.

4.1 Outline

In this section we outline the two phase approach of FAST. Detailed
descriptions of the single steps are discussed in the later sections of this
chapter.
Let D = (V,A) be a Duty Scheduling Graph. For large real world
instances the number of links is extremely large, i.e. |A| > 106. The
number of possible duties which can be defined on a Duty Scheduling
Graph with so many links usually exceeds many million. Thus the
number of feasible duty schedules is also rather enormous, |CD| ≫ 109.



52 4 FAST - A Macro-Based Heuristic for Duty Scheduling

Given so many possibilities, the generation of near optimal solutions
using current solvers like DS-Opt can take several hours or even days.
The basic idea of FAST is, to first reduce the size of D to a very small
but critical fraction allowing to generate much faster solutions of similar
quality using DS-Opt. For each block m ∈ F(D), a duty piece partition
is chosen and all links and supplementary tasks connecting to the inner
tasks of these duty pieces are discarded.
As mentioned earlier, such a block partition to reduce the size of the
problem is further backed by the fact that good duty schedules usually
contain few type 3 links and therefore most of the type 3 links and
supplementary tasks contained in the problem are dispensable.
Let D̃ = (Ṽ, Ã) be the resulting Duty Scheduling Graph, then T̃ = T

but S̃ ⊂ S and Ã ⊂ A. Therefore, CD̃ ⊂ CD and the Duty Scheduling

Problem min{C(C) | C ∈ CD̃} is a reduction of the original problem.
Unfortunately, the number of possible partitions into duty pieces is
quite large for each block. Further, it is hard to identify critical type
3 links which are important to build efficient duties and should be
retained in the problem. Clearly we need more information on the
problem structure to perform a valuable partition of the blocks into
duty pieces. To gain such information, a relaxed version of the prob-
lem, maintaining all characteristics while disposing of all details, is
constructed and solved. Its solution serves as a delineation of a good
duty schedule and all original blocks are partitioned into duty pieces
with respect to this relaxed solution.
Figure 4.1 sketches the two phases of FAST. In phase one, a modified
Duty Scheduling Graph Dr̄

pos is constructed by rounding all timetable
tasks with respect to a value r̄. On this modified graph, a relaxation of
the set covering formulation of the Duty Scheduling Problem, see Model
1.5 is solved. This relaxation does not require a direct covering of the
timetable tasks but a multiple covering of a set of periods identified by
r̄.
The relaxed solution is used in phase two to reduce the size of the
original Duty Scheduling Graph D = (V,A) as duty piece partitions,
see Definition 1.2.3, are selected for each block and all corresponding
inner links are discarded. Finally, DS-Opt is used to solve the resulting
Duty Scheduling Problem.

4.2 Reducing a Duty Scheduling Graph

We now describe a modification of a Duty Scheduling GraphD = (V,A)
which retains all essentials such as peaks and block duration while all
details are discarded. This modification can be understood as a reduced
Duty Scheduling Graph, which uses a decreased level of complexity and
detail to describe the same problem.
First, a rounding parameter r̄ ∈ N satisfying 86400

r̄
∈ N is introduced

and for any task t ∈ V the corresponding start and end times s̄t, ēt
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Figure 4.1: The FAST-Heuristic

are rounded with respect to r̄. Any timetable task t ∈ T with s̄t = ēt

after the rounding operation, is deleted along with all adjacent links,
reducing the size of the graph D. Thus after the rounding we can
assume

∀ t ∈ T : s̄t = i · r̄ ∧ ēt = j · r̄ ∧ i 6= j . (4.2.1)

The composition of blocks is maintained by adding new links whenever
a timetable task in a block is deleted. If ti ∈ T is deleted and

m = (t1, . . . , ti−1, ti, ti+1, . . . , tn) ∈ F(D)

is the block containing ti then a new link l̃ = (ti−1, ti+1) is added to

preserve the block m. All links l̃ added in this manner are either type
1 or type 2 links. The exact construction of the rounding is described
in section 4.2.1.
Further, the parameter r̄ defines intervals

[0, 1 · r̄] , [1 · r̄, 2 · r̄] , . . . , [k · r̄, 86400]

of length r̄, where k = 86400
r̄
− 1. The intervals are a partitioning of the

86400-seconds day. Note that r̄ must be chosen as a divisor of 86400
in order to define intervals of equal length. Let

T [i,j] = {t ∈ T | s̄t ≤ i ∧ ēt ≥ j} (4.2.2)

indicate the set of all timetable tasks corresponding to an interval [i, j].
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For each interval [i, j] with |T [i,j]| > 0 the modified Duty Schedul-
ing Graph contains a single timetable task t along with the value
zt = |T [i,j]| ∈ N which indicates the total number of corresponding
timetable tasks. Finally, unnecessary links and supplementary tasks
are discarded. This construction is described in section 4.2.5, using
new partitions of T and S introduced in section 4.2.3 and 4.2.4.
The rounded Duty Scheduling Graph is a Duty Scheduling Graph D̃ =

(Ṽ, Ã) along with a vector z̃ ∈ QṼ ,

z̃t =

{

zt if t ∈ T̃ ,

0 otherwise,

which is defined in section 4.2.2 and which is the result of the algorithm
described in section 4.2.5.
We now discuss the construction outlined above in more detail.

4.2.1 The r̄-Rounding of a Duty Scheduling Graph

Let D = (V,A) be a Duty Scheduling Graph. For each timetable task
t ∈ T we define the set of associated supplementary tasks as

S̃(t) ={ t̃ ∈ S | ∃ (t̃, t)-path p in D ∨ ∃ (t, t̃)-path p in D :

(l ∈ A(p)⇒ l ∈ A2) ∧

(t1 ∈ V (p) \ {t} ⇒ t1 ∈ S)} .

(4.2.3)

We assume, that each supplementary task is associated to exactly one
timetable task, i.e.

∀ t̃ ∈ S : |{t ∈ T | t̃ ∈ S̃(t)}| = 1 .

Given a Duty Scheduling Graph D = (V,A) and a rounding parameter
r̄ ∈ N, Algorithm 4.1 constructs a modified Duty Scheduling Graph
D̃ = (Ṽ, Ã) which is a rounding of D with respect to r̄ 1. All time
parameters such as r̄ and s̄t are given in seconds.
The first loop in lines 2-15 runs through all blocks. All contained
timetable tasks t ∈ T are rounded with respect to the rounding value r̄.
Each timetable task is contained in exactly one of the blocks m ∈ F(D),
see section 1.2. If s̄t 6= ēt, the rounded timetable task t is kept, other-
wise, it is dropped. Whenever a timetable task t, which is not the first
or the last task contained in a block, is dropped, a new link connect-
ing adjacent timetable tasks is created to maintain the structure of the
block, see line 8.
Any supplementary task associated to one of the remaining timetable
tasks, is also rounded and added to the modified Duty Scheduling
Graph, see loop in lines 16-21. Finally, all links adjacent to a task,
which is not contained in the resulting graph, are discarded.
As a result we define the following

1We use conventions of the programming language C.
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Definition 4.2.1 Let D = (V,A) be a Duty Scheduling Graph and let
r̄ ∈ N, 86400

r̄
∈ N. The Duty Scheduling Graph Dr̄ = FAST-Round(D,r̄)

is called the r̄-Rounding of D.

Figures 4.2 and 4.3 show an original Duty Scheduling GraphD = (V,A)
and its corresponding 1800-Rounding D1800 = (V1800,A1800). Start and
end times of tasks t ∈ V1800 have been rounded to intervals of 1800
seconds. The number of tasks and links in the 1800-Rounding D1800 is
notably smaller.

4.2.2 The Multi-Cover Duty Scheduling Graph

An important part of FAST is the use of timetable tasks, which rep-
resent simultaneous work of more than one vehicle. We now introduce
another digraph, the Multi-Cover Duty Scheduling Graph, which is sim-
ilar to the original Duty Scheduling Graph but supports multiple cov-
ering of timetable tasks. Because the only difference toward Definition

Algorithm 4.1 (FAST-Round)

Require: Duty Scheduling Graph D = (V ,A), r̄ ∈ N

Ensure: 86400
r̄
∈ N

1: T̃ ← ∅; S̃ ← ∅; Ĩ ← I; Ã ← ∅
2: for (t1, . . . , tk) ∈ F(D) do
3: t̂← nil; missed← FALSE
4: for i = 1, . . . , k do
5: s̄ti

← r̄ · ⌊̃
s̄ti

r̄
+ 0.5⌋; ēti

← r̄ · ⌊̃
ēti

r̄
+ 0.5⌋

6: if s̄ti
6= ēti

then
7: if t̂ 6= nil ∧missed = TRUE then
8: Ã ← Ã ∪ {(t̂, ti)}
9: end if

10: T̃ ← T̃ ∪ {ti}; t̂← ti; missed← FALSE
11: else
12: missed← TRUE
13: end if
14: end for
15: end for
16: for t ∈ S do
17: s̄t ← r̄ · f̃( s̄t

r̄
); ēt ← r̄ · f̃( ēt

r̄
)

18: if t ∈ S̃(t̃) ∧ t̃ ∈ T̃ then
19: S̃ ← S̃ ∪ t
20: end if
21: end for
22: Ṽ ← T̃ ∪ S̃ ∪ Ĩ
23: for l̃ ∈ A do
24: if l̃ = (t1, t2) ∧ t1 ∈ Ṽ ∧ t2 ∈ Ṽ then
25: Ã ← Ã ∪ l̃
26: end if
27: end for
28: return D̃ = (Ṽ , Ã)
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Figure 4.2: D = (V,A), |V| = 423, |A| = 3168

1.1.4 is the labeling of the vertices, we simply adapt some of the task
labels for the new digraph.

Definition 4.2.2 Let D = (V,A) be a Duty Scheduling Graph. The
task labeling vector v̄ ∈ QV is removed and is replaced by a new labeling
vector z̃ ∈ NV , z̃t = 0 ∀ t /∈ T . z̃ indicates the number of vehicles
associated with a specific task. We write DMC = (V,A, z̃) and call
DMC a Multi-Cover Duty Scheduling Graph.

Because supplementary tasks t ∈ S and artificial tasks t ∈ I do not
need to be covered, the corresponding multi cover label is set to zero,
i.e. z̃t = 0 ∀ t ∈ V \ T .
Duties and duty schedules as defined in Definition 1.1.5 and Definition
1.1.6 are applicable for Multi-Cover Scheduling Graphs. Blocks and
link types are no longer available because the block id’s v̄ ∈ QV have
been removed.
Furthermore, Definitions 1.1.6, 1.1.7 and 1.1.8 can be easily adapted to
define the Duty Scheduling Problem on a Multi-Cover Duty Scheduling
Graph. However, in this chapter we only use an adaption of Model 1.2
which is introduced later.

4.2.3 A Partition of T

Let D = (V,A) be a Duty Scheduling Graph. Each timetable task
t ∈ T represents work associated with a vehicle, which has already
been routed and for which a driver has to be assigned. This work can
be partitioned into driving parts, break parts and working parts.
Driving parts represent actual driving operations. Break parts repre-
sent breaks predefined by the position of the vehicle, e.g. a ten minute
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Figure 4.3: D1800 = (V1800,A1800), |V1800| = 179, |A1800| = 1046

break to be taken at a terminal stop. Working parts represent addi-
tional work that has to be performed at the start or end of driving
parts, such as checking functions of the vehicle and engine warm-up.
FAST uses a Multi-Cover Duty Scheduling Graph to relax the position
of all timetable tasks t ∈ T by merging tasks t1, t2 ∈ T with s̄t1 = s̄t2

and ēt1 = ēt2 . However, we need to ensure that no timetable tasks
which represent different parts of work are merged. We pretend for any
Duty Scheduling Graph 2, that each timetable task t ∈ T represents
either a driving part, or a working part, or a break part. This as-
sumption is justified by the fact that each timetable task t̃ ∈ T , which
does not fulfill the requirement above, can be split into timetable tasks
representing its different parts which substitute t̃. Links are added to
connect succeeding timetable tasks resulting from such a split.
Hence we assume that for any Duty Scheduling Graph D = (V,A) and
any Multi-Cover Duty Scheduling Graph DMC = (V,A, z̃),

T = Td ∪̇ Tw ∪̇ Tb

is a partition of the timetable tasks where Td ⊂ T identifies the set of
driving tasks, Tw ⊂ T identifies the set of working tasks and Tb ⊂ T
identifies the set of break tasks.

4.2.4 A Partition of S

We now introduce a partition of the set of supplementary tasks. Let
D = (V,A) be a Duty Scheduling Graph, let S ⊂ V and let s, e ∈ I
indicate the start and end artificial tasks. For any timetable task t ∈ T
let S̃(t) be defined as in (4.2.3). Further recall that each supplementary
task can be associated to exactly one single timetable task with respect
to S̃(.).
2And because of Definition 4.2.2 any Multi-Cover Duty Scheduling Graph.
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We now decide whether a supplementary task t ∈ S is part of a
[

s, t̃
]

-path or part of a
[

t̃, e
]

-path, where t̃ ∈ T : t ∈ S̃(t̃). This distinction
is necessary to maintain the structure of the Duty Scheduling Graph in
the modification described in the next section.

Definition 4.2.3 Let D = (V,A) be a Duty Scheduling Graph. We
define the following subsets of S.

(i) The set of supplementary tasks with indication -1 is defined as

S−1 = {t ∈ S | ∃ t̃ ∈ T ,
[

s, t̃
]

-path p : t ∈ S̃(t̃) ∧ t ∈ p}

(ii) The set of supplementary tasks with indication +1 is defined as

S+1 = {t ∈ S | ∃ t̃ ∈ T ,
[

t̃, e
]

-path p : t ∈ S̃(t̃) ∧ t ∈ p}

(iii) The set of supplementary tasks with indication 0 is defined as

S0 = S \ {S+1 ∪ S−1}

We assume that for any Duty Scheduling Graph D = (V,A) the sets
S−1 and S+1 are disjunct. Definition 4.2.3 provides a partition of S,
i.e.

S = S−1∪̇ S0 ∪̇ S+1 .

Each supplementary task t ∈ S has either indication 0, indication −1
or indication +1.

4.2.5 The r̄-pos-Relaxation of a Duty Scheduling Graph

Given a Duty Scheduling Graph D = (V,A) and a rounding parameter
r̄, we now construct a Multi-Cover Duty Scheduling Graph used to
define a relaxation of the Duty Scheduling Problem in the next section.
Let Dr̄ = (V r̄,Ar̄) be the r̄-Rounding of D, i.e. all tasks have been
rounded with respect to r̄ ∈ N. Algorithm 4.2 describes the construc-
tion of the Multi-Cover Duty Scheduling Graph.
A set X consisting of all intervals indicated by the rounding parameter
r̄ is constructed in line 5. For each interval [i, j] ∈ X the number

of covering driving tasks |T [i,j]
d | is determined. If |T [i,j]

d > 0|, a new
timetable task t1 representing all driving tasks covering the interval
[i, j] is added to the returning Multi-Cover Duty Scheduling Graph,
see loop in lines 6-19 of Algorithm 4.2. The corresponding value zt1

identifies the number of represented driving tasks. Working tasks are
treated similarly.
Break tasks t ∈ T r̄

b and artificial tasks t ∈ I are copied, see line 3 and
line 21.
Supplementary tasks are sorted by indication and added to the resulting
Multi-Cover Duty Scheduling Graph, while redundancy is prevented
and thus the number of supplementary tasks is reduced, see lines 22-
32.
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Algorithm 4.2 (FAST-Relax)

Require: Duty Scheduling Graph D = (V ,A), r̄ ∈ N

1: Dr̄ = (V r̄,Ar̄)← FAST-Round(D, r̄)
2: T̃d ← ∅; T̃w ← ∅
3: T̃b ← T r̄

b ⊂ T
r̄ ⊂ V r̄

4: V r̄ ⊃ T r̄ = T r̄
d ∪ T

r̄
w ∪ T

r̄
b

5: X ← {[0, 1 · r̄] , [1 · r̄, 2 · r̄] , [2 · r̄, 3 · r̄] , . . . [k · r̄, 86400]}
6: for all [i, j] ∈ X do

7: T
[i,j]
d = {t ∈ T r̄

d |s̄t ≤ i ∧ ēt ≥ j}

8: T
[i,j]
w = {t ∈ T r̄

w |s̄t ≤ i ∧ ēt ≥ j}

9: if |T
[i,j]
d | > 0 then

10: t1 ← new(s̄t1 = i, ēt1 = j, zt1 = |T
[i,j]
d |)

11: z̃t1 ← zt1

12: T̃d ← T̃d ∪ {t1}
13: end if
14: if |T

[i,j]
w | > 0 then

15: t2 ← new(s̄t2 = i, ēt2 = j, zt2 = |T
[i,j]
w |)

16: z̃t2 ← zt2

17: T̃w ← T̃w ∪ {t2}
18: end if
19: end for
20: T̃ ← T̃d ∪ T̃w ∪ T̃b

21: Ĩ ← I
22: for t ∈ S do
23: if t ∈ S−1 ∧ ¬redundant(t, S̃−1) then
24: S̃−1 ← S̃−1 ∪ {t}
25: end if
26: if t ∈ S0 ∧ ¬redundant(t, S̃0) then
27: S̃0 ← S̃0 ∪ {t}
28: end if
29: if t ∈ S+1 ∧ ¬redundant(t, S̃+1) then
30: S̃+1 ← S̃+1 ∪ {t}
31: end if
32: end for
33: S̃ ← S̃−1 ∪ S̃0 ∪ S̃+1

34: Ṽ ← T̃ ∪ S̃ ∪ Ĩ
35: for t ∈ T̃d ∪ T̃w do
36: for t̃ ∈ T̃d ∪ T̃w ∪ T̃b ∧ ēt = s̄t̃ do
37: Ã ← Ã ∪ {(t, t̃)}
38: end for
39: end for
40: for t ∈ T̃b do
41: for t̃ ∈ T̃d ∪ T̃w ∧ ēt = s̄t̃ do
42: Ã ← Ã ∪ {(t, t̃)}
43: end for
44: end for
45: for l ∈ Ar̄ do
46: if l /∈ Ar̄

1 ∧ redundantL(l, Ã) = nil then
47: Ã ← Ã ∪ {getL(l)}
48: end if
49: end for
50: return D̃MC = (Ṽ , Ã, z̃)
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The function redundant(t, S̃), see line 23, decides if a supplementary
task t ∈ S is redundant because another supplementary task with the
same labels is already contained in S̃, i.e.

∃ t̃ ∈ S̃ : s̄t̃ = s̄t ∧ ēt̃ = ēt ∧ c̄t̃ = c̄t ∧ ūt̃ = ūt ∧ w̄t̃ = w̄t . (4.2.4)

For a further reduction of the number of supplementary tasks, state-
ment 4.2.4 can be modified into a relaxed version

∃ t̃ ∈ S̃ : s̄t̃ = s̄t ∧ ēt̃ = ēt ∧ c̄t̃ = c̄t ∧ ūt̃ ∼ ūt ∧ w̄t̃ ∼ w̄t .

If a supplementary task t is redundant with respect to t̃ ∈ S̃, then t is
dropped, but the information that t̃ is a placeholder for t is stored. All
links which were connected to t now connect to t̃.
In lines 35-44, links are added to connect succeeding timetable tasks
in the Multi-Cover Duty Scheduling Graph. However, break tasks are
never connected to other break tasks, because the length of breaks is
fixed.
Finally, all links l ∈ A are added to the resulting Multi-Cover Duty
Scheduling Graph D̃MC = (Ṽ , Ã, z̃) or are discarded due to redundancy;

see 46. The function redundantL(l, Ã) returns a link l̃ ∈ Ã if l is

redundant with respect to l̃. A link l ∈ A is only added to D̃MC ,
if redundantL(l, Ã) = nil. If a link is not redundant, the function
getL(l) returns a copy of the link which is connected to the correct
tasks in D̃MC , which is then added to Ã.
The r̄-pos-Relaxation of a Duty Scheduling Graph is now defined as
follows.

Definition 4.2.4 Let D = (V,A) be a Duty Scheduling Graph and let
r̄ ∈ N, 86400

r̄
∈ N. The Multi-Cover Duty Scheduling Graph

Dr̄
pos = (V r̄

pos,A
r̄
pos, z̃) = FAST-Relax(D, r̄)

is called the r̄-pos-Relaxation of D.

Figure 4.4 displays the 1800-pos-Relaxation of the Duty Scheduling
Graph displayed in Figure 4.2. There is at most one driving task in
each interval, while all light blue colored break tasks contained in the
1800-Rounding in Figure 4.3 are maintained. Note that the number of
tasks and links has been further reduced.

1

2

3

time

4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Figure 4.4: D1800
pos = (V1800

pos ,A1800
pos , z̃), |T 1800

pos | = 111, |A1800
pos | = 383
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4.3 The FAST-Relaxation

Let D = (V,A) be a Duty Scheduling Graph, r̄ ∈ N be a rounding
parameter and let Dr̄

pos = (V r̄
pos,A

r̄
pos, z̃) be the r̄-pos-Relaxation of D.

Dr̄
pos is a Multi-Cover Duty Scheduling Graph. Let P̃ indicate the set of

all duties in Dr̄
pos. For each p ∈ P̃ let xp indicate a non-negative variable

and for each base resource b ∈ W let cb indicate a penalty and let sb

be slack variables similar to those described in section 1.4. The FAST-
Relaxation (FR) of the Duty Scheduling Problem min{C(C) | C ∈ CD}
is the linear program 4.1.

Model 4.1 (FR-Dr̄
pos)

min
∑

p∈P̃

cpxp +
∑

b∈W

cbsb

s.t.
∑

{p∈P̃|t∈p}

xp ≥ z̃t ∀ t ∈ T r̄
pos (4.3.5)

∑

p∈P̃

(wp)bxp − sb ≤ ŵb ∀ b ∈ W (4.3.6)

xp ≥ 0 ∀ p ∈ P̃ (4.3.7)

sb ≥ 0 ∀ b ∈ W (4.3.8)

Model 4.1 is an adaption of Model 1.2. The constraint set 4.3.5 ensures
that each timetable task t is covered by at least z̃t fractional duties.
Constraints 4.3.6 are similar to Model 1.2. All duty variables are non-
negative, see constraints 4.3.7.

A solution x̂ ∈ QP̃ of (FR-Dr̄
pos) is very likely to be fractional. However,

FAST does not require an integer solution in the second phase.

4.3.1 RDSP - A Solver for the FAST-Relaxation

The FAST-Relaxation can be solved using RDSPî (relaxed DS-Opt),
which is an adaption of the column generation solver DS-Opt mentioned
in section 2.4. The parameter î ∈ N controls the number of iterations
performed in the column generation process.
Let (FR-Dr̄

pos) be a FAST-Relaxation and let P̃ be the set of all corre-
sponding duties. Similar to the DS-Opt column generation approach,
a subset P̃ 0 ⊂ P̃ is generated. A restricted lp based on 4.1 is solved by

CPLEX, providing a fractional solution x0 ∈ QP̃ 0
. If î = 0, then x0 is

already the final fractional solution which is returned by RDSPî.
Otherwise a number of iterations are performed and in each itera-
tion j ∈ {1, . . . , î} the dual variables regarding the previous solution
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xj−1 ∈ QP̃ j−1
are used to generate duties p ∈ P̃ \ P̃ j−1 with negative

reduced cost. These duties are then added to P̃ j−1 while inefficient
duties are dropped. The restricted master linear program of the FAST-
Relaxation, see Model 4.1, is then solved regarding the modified set of

duties P̃ j to generate a new fractional solution xj ∈ QP̃ j

The final solution x̂ = RDSPî(Dr̄
pos) ∈ P̃, where

x̂p =

{

xî
p if p ∈ P̃ î,

0 otherwise,

is returned. If î is increased to improve the quality of the final fractional
solution x̂ ∈ P̃, the runtime of RDSP also increases as more iterations
are performed.

4.3.2 A Fractional Solution x̂ of (FR-Dr̄
pos)

This section discusses some aspects of a fractional solution x̂ of the
FAST-Relaxation. Given a value h ∈ Q, 0 ≤ h < 1, the fractional

solution x̂ ∈ QP̃ corresponds to a set of duties

Ph
x̂ = {p ∈ P̃ | x̂p ≥ h}

which contains all duties with a value greater or equal h in the fractional
solution.
Because the x̂p variables are fractional, tasks and links are likely to be
contained in more than a single duty p ∈ P with x̂p ≥ h. We define
the set of all links in the fractional solution x̂ by

Ah
x̂ = {l ∈ Ar̄

pos | ∃ p ∈ Ph
x̂ : l ∈ A(p)} . (4.3.9)

Each link l ∈ Ar̄
pos corresponds to at least one link l̃ ∈ A in the original

problem. We define the following:

Definition 4.3.1 Let D = (V,A) be a Duty Scheduling Graph, let r̄
be a rounding parameter, let Dr̄ = (V r̄,Ar̄) be the r̄-Rounding and
let Dr̄

pos = (V r̄
pos,A

r̄
pos, z̃) be the r̄-pos-Relaxation of D. A link l ∈

Ar̄
pos represents l̃ ∈ A if l̃ ∈ Ar̄ ∧ l = redundantL(l̃,Ar̄

pos).

Given a link l ∈ Ar̄
pos we define the set of original links as

O(l) = {l̃ ∈ A | l represents l̃} .

Obviously each original link l̃ is only represented by a single link l ∈
Ar̄

pos, i.e.

|{l ∈ Ar̄
pos | l̃ ∈ O(l)}| = 1 ∀ l̃ ∈ A .

For any l ∈ Ah
x̂ we further define the relaxed count nl ∈ N and the

relaxed value rl ∈ Q of l as

nl = |{p ∈ Ph
x̂ | l ∈ p}| and rl =

∑

{p∈Ph
x̂
|l∈p}

x̂p . (4.3.10)

The relaxed count nl identifies the number of duties which contain the
link l, while the relaxed value rl identifies the total value of all these
duties.
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4.4 Fixing Duty Pieces in D = (V,A)

Throughout this section let D = (V,A) be a Duty Scheduling Graph
and let min{C(C) | C ∈ CD} be a Duty Scheduling Problem defined
on D. Further let Dr̄

pos = (V r̄
pos,A

r̄
pos, z̃) be the r̄-pos-Relaxation of D

and let P̃ indicate the set of all duties in Dr̄
pos. Finally, let x̂ ∈ QP̃ be

a fractional solution of the FAST-Relaxation of min{C(C) | C ∈ CD}.
In the second phase of FAST, the solution x̂ is used to generate a
subgraph D̃ = (Ṽ, Ã) of D where T̃ = T , but S̃ ⊂ S and Ã ⊂ A. Thus

CD̃ ⊂ CD and the Duty Scheduling Problem min{C(C) | C ∈ CD̃} is a
restriction of min{C(C) | C ∈ CD}. As mentioned in section 4.1, each
block m ∈ F(D) in the resulting subgraph D̃ = (Ṽ, Ã) is partitioned
into duty pieces.
Assume that for a block m = (t1, t2, t3, t4) ∈ F(D) we choose the two
duty pieces (t1, t2), (t3, t4) ∈ Nm which identify a duty piece partition
of m. Then the modified set of links A would be

Ã = A \ {(t, t̃) ∈ A|(t = t1 ∧ t̃ 6= t2) ∨ (t = t3 ∧ t̃ 6= t4)∨

(t 6= t1 ∧ t̃ = t2) ∨ (t 6= t3 ∧ t̃ = t4)}

and the links (t1, t2) and (t3, t4) would be type 1 links, i.e. the two duty
pieces are fixed.
These duty pieces are now the smallest units of work which have to be
assigned to the same driver. Fixed duty pieces can be merged to form
longer pieces of work in the final solution.
In section 4.4 we describe in detail how the restricted Duty Scheduling
Graph D̃ is constructed.

4.4.1 The Parameter Vector q̂

The construction of the restricted Duty Scheduling Graph can be ad-
justed by a set of parameters which we introduce in this section. Let x̂
be a fractional relaxed solution and let Ah

x̂ be the set of corresponding
links as defined in 4.3.9.
To partition the blocks into duty pieces we first determine a set of
critical links L̂ ⊂ A and then select two succeeding timetable tasks
t ∈ T and t̃ ∈ T of any block (t1, . . . , t, t̃, . . . tk) ∈ F(D) into the same
duty piece if

∀ (ti, tj) ∈ A : (ti = t ∨ tj = t̃)⇒ l /∈ L̂ ,

i.e. t is not a tail and t̃ is not a head of a critical link l ∈ L̂.
To decide whether a link l ∈ A is critical, we introduce two parameters
q̂1 ∈ N and q̂2 ∈ Q. A link l is critical, i.e. l ∈ L̂, if l ∈ O(l̃) and

nl̃ ≥ q̂1 or rl̃ ≥ q̂2 .

Thus, the parameters q̂1 and q̂2 ensure that only links with a sufficient
presence in the fractional relaxed solution x̂ are declared critical. By
choosing higher values for q̂1 and q̂2, e.g. q̂1 = 15 and q̂2 = 0.3, the
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number of critical links and therefore the number of fixed duty pieces
decreases.
Another parameter controls the length of the fixed duty pieces. Recall,
that each duty p ∈ P has to satisfy a set of constraints. Normally
these constraints declare a maximum length, e.g. dmax, and an optimal
length, e.g. dopt, for any piece of work used in a duty. Unfortunately the

chosen set of critical links L̂ does not ensure a feasible length for the
fixed duty pieces. Thus to ensure feasibility in this case we eventually
need to split some of the fixed duty pieces into smaller duty pieces. To
increase flexibility we introduce another parameter q̂3 ∈ Q, 0 < q̂3 < 2
and define the maximum length of any of the fixed duty pieces as q̂3·dopt.
Assume that a set of duty pieces has been fixed, and that n = (t1, . . . , tk)
is one of the fixed pieces. All links which connect one of the inner tasks
of n, t2, . . . tk−1 to tasks which are not contained in the duty piece are
discarded. For small instances this reduction may suffice to achieve
efficient runtimes, but for large instances runtimes are still high.
Normally each fixed duty piece would be connected to almost all of the
following duty pieces. Only some of these connections are cost efficient.
FAST uses this idea to delete some of the connections as follows.
First two parameters q̂7 ∈ N and q̂8 ∈ N are introduced which identify
short, middle and long connections between two duty pieces. These
parameters store time values in seconds.
Let p1 = (t1, . . . , tk) and p2 = (t̃1, . . . , t̃l) be two of the fixed pieces,
then a connection between p1 and p2 has length lp1p2 = s̄t̃1

− ētk . If
lp1p2 < q̂7 it is a short connection, if q̂7 ≤ lp1p2 ≤ q̂8 it is a middle
connection and if q̂8 < lp1p2 it is a long connection. Usual parameter
values are q̂7 = 1800, q̂8 = 5400, i.e. connections of length less than 30
minutes are short connections and connections with length up to 90
minutes are middle connections3.
To reduce the number of connections, we introduce upper limits q̂4, q̂5,
q̂6 ∈ N for the number of outgoing and incoming short, middle and long
connections for all duty pieces.
All parameters are stored in a vector q̂ ∈ Q8 which is part of the input
to FAST.

Definition 4.4.1 The vector q̂ = (q̂1, q̂2, q̂3, q̂4, q̂5, q̂6, q̂7, q̂8) ∈ Q8 con-
taining all parameters introduced in this section is called the fix-parameter
vector.

4.4.2 The Sets T start and T end

Let again D = (V,A) be a Duty Scheduling Graph and let x̂ be a
fractional solution of the FAST-Relaxation of min{C(C) | C ∈ CD}.
We now discuss how the set of critical links L̂ is used to fix some of the
duty pieces. As any duty piece is part of a block, it can be identified by
the first and the last contained task. Thus we only generate two sets

3Values stored in q̂7 and q̂8 are in seconds.
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T start ⊂ T and T end ⊂ T to identify all duty pieces. The set T start

contains all starting timetable tasks for the fixed duty pieces while set
T end contains all ending timetable tasks respectively.
Given the original Duty Scheduling Graph D, the set of links indicated
by x̂, Ah

x̂ and a fix-parameter vector q̂, the sets T start and T end are
generated by Algorithm 4.3 which consists of four main loops.
In the loop in lines 3-8 two values r̂, n̂ are calculated for each link l̃ ∈ A
used to determine if a link is critical. More precisely, a link l̃ ∈ A is
critical if n̂l̃ ≥ q̂1 or r̂l̃ ≥ q̂2. Recall, that each original link l̃ ∈ A is
represented by exacly one link l ∈ Ah

x̂.
In the second loop in lines 10-21 all timetable tasks t ∈ T which are
adjacent to a critical link l ∈ A are inserted into the correct set T start

or T end. All type 1 links and all critical type 2 links which connect two
timetable tasks are ignored because the adjacent timetable tasks must
be contained in the same duty piece.
Let t, t̃ be two succeeding timetable tasks of any block m ∈ F(D). It
might occur, that a critical link (t1, t̃) ∈ A, t1 6= t exists, but none of the
outgoing links of t except (t, t̃) is critical. Thus t̃ ∈ T start but t /∈ T end,
which results in an incomplete cutting of the block m. The third loop
in lines 22-29 overcomes such cases by adding relevant timetable tasks
into the correct sets, i.e. the task t from the example above would be
added into the set T end. As a result the sets T start, T end represent a
set of duty pieces which form a feasible and complete partitioning of
all blocks.
The last loop in lines 30-47 validates the complete duty piece partition
for each block. By using splitting operations, see line 40, it also ensures
that the length of any of the duty pieces does not exceed the predefined
value q̂3 · dopt.

4.4.3 The x̂-q̂-FAST-Fix

Given a Duty Scheduling Digraph D = (V,A) and the sets T start ⊂
T and T end ⊂ T identifying duty pieces partitioning all blocks, we
now remove all links redundant with respect to the fixed duty piece
partitions to create a subgraph of D. The construction of the subgraph
is described in Algorithm 4.4. We also reduce the number of connections
between the fixed duty pieces as stated in section 4.4.1.
First, Algorithm 4.3 is called to identify starting and ending timetable
tasks for all pieces, see line 2 in Algorithm 4.4. The statement in line
3 ensures that all type 1 links and all type 2 links connecting two
timetable tasks belonging to the same duty piece are kept.
Lines 5-7 of Algorithm 4.4 initialize counters for short, middle and
long connections for all timetable tasks. Only the counters for tasks
t ∈ T start ∪ T end are needed.
The first loop in lines 9-28 runs through all connections between piece
endings or artificial tasks and piece starting tasks, i.e. all

[

t̃, t
]

-paths

where t̃ ∈ T end ∪ I and t ∈ T start. Assume that the path p = (t̃, . . . t)
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Algorithm 4.3 (Generate-Pieces)

Require: Duty Scheduling Graph D = (V ,A), Ah
x̂, parameter vector q̂

1: r̂ ← (0, 0, . . . , 0) ∈ QA

2: n̂← (0, 0, . . . , 0) ∈ NA

3: for l ∈ Ah
x̂ do

4: for l̃ ∈ O(l) do
5: r̂l̃ ← rl

6: n̂l̃ ← nl

7: end for
8: end for
9: T start ← ∅, T end ← ∅

10: for l = (t1, t2) ∈ A \ A1 do
11: if r̂l ≥ q̂1 ∨ n̂l ≥ q̂2 then
12: if t1 ∈ T ∧ t2 /∈ T then
13: T end ← T end ∪ {t1}
14: else if t1 /∈ T ∧ t2 ∈ T then
15: T start ← T start ∪ {t2}
16: else if t1 ∈ T ∧ t2 ∈ T ∧ l ∈ A3 then
17: T end ← T end ∪ {t1}
18: T start ← T start ∪ {t2}
19: end if
20: end if
21: end for
22: for l = (t1, t2) ∈ A2 do
23: if t1 ∈ T end ∧ t2 /∈ T start then
24: T start ← T start ∪ {t2}
25: end if
26: if t1 /∈ T end ∧ t2 ∈ T

start then
27: T end ← T end ∪ {t1}
28: end if
29: end for
30: for m = (t1, . . . , tn) ∈ F(D) do
31: in← FALSE
32: temp← 0
33: for t1, . . . tn do
34: if in = FALSE then
35: if ti /∈ T start then
36: T start ← T start ∪ {ti}
37: end if
38: in← TRUE, temp← s̄ti

39: end if
40: if ti ∈ T end ∨ (ēti

− temp) ≥ q̂3 · dopt ∨ i = n then
41: if ti /∈ T end then
42: T end ← T end ∪ {ti}
43: end if
44: in← FALSE
45: end if
46: end for
47: end for
48: return (T start, T end)
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Algorithm 4.4 (FAST-Fix)

Require: Duty Scheduling Graph D = (V ,A), Ah
x̂, parameter vector q̂

1: /* identify start and end timetable tasks of pieces */
2: (T start, T end)← Generate-Pieces(D,Ah

x̂, q̂)

3: Ã ← A1 ∪ {l = (t1, t2) ∈ A2 | v̄t1 = v̄t2 ∧ t1, t2 ∈ T ∧ t1 /∈ T end}
4: S̃ ← ∅
5: sshort ← (0, . . . , 0) ∈ NT ; eshort ← (0, . . . , 0) ∈ NT

6: smiddle ← (0, . . . , 0) ∈ NT ; emiddle ← (0, . . . , 0) ∈ NT

7: slong ← (0, . . . , 0) ∈ NT ; elong ← (0, . . . , 0) ∈ NT

8: /* add links and supplementary tasks in chosen connections */
9: for t ∈ T start do

10: for
[

t̃, t
]

-path p in D : t̃ ∈ I ∪ T end do
11: length← (s̄t − ēt̃)
12: if t̃ ∈ I ∨ length = 0 then
13: S̃ ← S̃ ∪ {t̂ ∈ V ∩ p}; Ã ← Ã ∪ {l̂ ∈ A ∩ p}
14: else if length ≤ q̂7 ∧ (sshort

t̃
≤ q̂4 ∨ eshort

t ≤ q̂4) then

15: S̃ ← S̃ ∪ {t̂ ∈ V ∩ p}

16: Ã ← Ã ∪ {l̂ ∈ A ∩ p}
17: smiddle

t̃
← smiddle

t̃
+ 1; emiddle

t ← emiddle
t + 1

18: else if length ≤ q̂8 ∧ (smiddle
t̃

≤ q̂5 ∨ emiddle
t ≤ q̂5) then

19: S̃ ← S̃ ∪ {t̂ ∈ V ∩ p}

20: Ã ← Ã ∪ {l̂ ∈ A ∩ p}
21: sshort

t̃
← sshort

t̃
+ 1; eshort

t ← eshort
t + 1

22: else if slong

t̃
≤ q̂6 ∨ elong

t ≤ q̂6 then

23: S̃ ← S̃ ∪ {t̂ ∈ V ∩ p}

24: Ã ← Ã ∪ {l̂ ∈ A ∩ p}

25: slong

t̃
← slong

t̃
+ 1; elong

t ← elong
t + 1

26: end if
27: end for
28: end for
29: for t̃ ∈ T end do
30: for

[

t̃, t
]

-path p in D : t ∈ I ∪ T start do
31: length← (s̄t − ēt̃)
32: if t̃ ∈ I ∨ length = 0 then
33: S̃ ← S̃ ∪ {t̂ ∈ V ∩ p}; Ã ← Ã ∪ {l̂ ∈ A ∩ p}
34: else if length ≤ q̂7 ∧ (sshort

t̃
≤ q̂4 ∨ eshort

t ≤ q̂4) then

35: S̃ ← S̃ ∪ {t̂ ∈ V ∩ p}; Ã ← Ã ∪ {l̂ ∈ A ∩ p}
36: smiddle

t̃
← smiddle

t̃
+ 1; emiddle

t ← emiddle
t + 1

37: else if length ≤ q̂8 ∧ (smiddle
t̃

≤ q̂5 ∨ emiddle
t ≤ q̂5) then

38: S̃ ← S̃ ∪ {t̂ ∈ V ∩ p}; Ã ← Ã ∪ {l̂ ∈ A ∩ p}
39: sshort

t̃
← sshort

t̃
+ 1; eshort

t ← eshort
t + 1

40: else if slong

t̃
≤ q̂6 ∨ elong

t ≤ q̂6 then

41: S̃ ← S̃ ∪ {t̂ ∈ V ∩ p}; Ã ← Ã ∪ {l̂ ∈ A ∩ p}

42: slong

t̃
← slong

t̃
+ 1; elong

t ← elong
t + 1

43: end if
44: end for
45: end for
46: Ṽ ← T ∪ S̃ ∪ I
47: return D̃ = (Ṽ , Ã)
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indicates the current connection and let l̂ = s̄t− ēt̃ be the length of this
connection.
If l̂ = 0 or t̃ ∈ I, the connection is maintained to ensure feasibility and
to keep the block structure. Otherwise, the connection p is identified
as a long, middle or short connection and only kept if one of the as-
sociated counters has not reached the corresponding limit q̂4, q̂5 or q̂6.
If a connection p is chosen to be maintained, all contained links and
supplementary tasks are added to the reduced Duty Scheduling Graph
D̃ = (Ṽ, Ã).
The second loop in lines 29-45 is similar to the first loop. All connec-
tions between piece endings and artificial tasks or piece starting tasks
are concerned. Let p = (t̃, . . . t) again indicate the current path. The
path p has not been covered by the first loop if t ∈ I. However, if
t ∈ T start, p has already been covered by the first loop. Nevertheless,
all connections are considered a second time to ensure that the num-
ber of outgoing connections for any fixed duty piece equals the limit if
possible.
Of course the resulting Duty Scheduling Graph D̃ = (Ṽ, Ã) is a sub-
graph of D. We define the following.

Definition 4.4.2 Let D = (V,A) be a Duty Scheduling Graph and let
r̄ ∈ N. Further let x̂ be a fractional solution of the FAST-Relaxation
(FR-Dr̄

pos) and let q̂ be a fix-parameter vector. The Duty Scheduling
Graph

D(x̂,q̂)
fix = FAST-Fix (D,Ah

x̂, q̂)

is called the x̂-q̂-FAST-Fix of D.

Let q̂ = (14, 0.05, 0.7, 14, 9, 4, 5400, 1800) be a fix-parameter vector and
let r̄ = 1800 be a rounding value. Figure 4.5 displays the corresponding
x̂-q̂-FAST-Fix for the instance in Figure 4.2.

4.5 The Heuristic FAST(D, r̄, q̂)

We now merge the results from the last three sections to provide an
exact description of FAST. Let again D = (V,A) be a Duty Scheduling
Graph.
Recall from section 4.1 that FAST comprises of two phases. The first
phase consists of the construction of the r̄-pos-Relaxation of D and of
the generation of a solution x̂ of the FAST-Relaxation (FR-Dr̄

pos) using

RDSP2. The second phase builds the x̂-q̂-FAST-Fix, a subgraph D(x̂,q̂)
fix

of the former Duty Scheduling Graph D containing only a small but
critical part. Finally the Duty Scheduling Problem

min{C(C) | C ∈ CD
(x̂,q̂)
fix }

is solved using the solver DS-Opt.
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Figure 4.5: D
(x̂,q̂)
fix

, |V| = 257, |A| = 888

Algorithm 4.5 (FAST)

Require: Duty Scheduling Graph D = (V ,A), rounding value r̄, fix-parameter
vector q̂

1: /* Phase 1: create and solve the FAST-Relaxation */
2: Dr̄

pos ← FAST-Relax(D, r̄)

3: x̂← RDSP2(Dr̄
pos)

4: /* Phase 2: create and solve the FAST-Fix */
5: h← 0.001
6: D

(x̂,q̂)
fix ← FAST-Fix(D,Ah

x̂, q̂)

7: C ← DS-Opt(D
(x̂,q̂)
fix )

8: return C

An outline of FAST was given in section 4.1 and in Figure 4.1. Algo-
rithm 4.5 is a description of the FAST heuristic.
Computational results are presented in the next chapter.
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5. Computational Results

Abstract: FAST has been tested on more than 50 instances of the Duty Scheduling Problem. We
present detailed computational results for ten of these instances. Runtimes and objective values of
FAST are compared to those of DS-Opt and state over 95% runtime savings for relevant instances.
We further investigate the impact of different parameter sets on the size of the x̂-q̂-FAST-Fix and
on the runtime.

5.1 Hardware and Software

The FAST heuristic has been implemented using the programming lan-
guages Java 1.5.1 and C++. The test and research version of DS-Opt
which is used for comparison is implemented in C++.
All FAST and DS-Opt runs have been performed on an Intel(R) Pen-
tium(R) 4 with a 3.20GHz CPU, 512 KB Cache and 2GB RAM using
the system software Suse Linux 10.0.

5.2 Problem Instances D = (V,A)

For the FAST benchmark, a library of 60 real world instances of the
Duty Scheduling Problem representing bus and tram driver scheduling
problems of several German and international traffic companies has
been set up.
This diversified library contains small instances, consisting of less than
100 tasks and 5,000 links, medium instances, usually Duty Scheduling
Graphs with about 10,000 to 30,000 tasks and more than 200,000 links,
and large instances consisting of up to 42,724 tasks and 1,776,858 links.
A complete list of all 60 instances can be found in Appendix A.
Associated with each instance are different sets of duty types K, which
are also listed in the tables, and duty and base resources U and W.
For some instances the set of base resources W is empty, i.e. no base
constraints are defined in this case. There are also cases were base con-
straints are defined, but do not significantly restrict the mix of duties,
see section 1.1. Some of the instances are based upon the same bus or
tram network.
For simple examples the number of different duty types is rather small,
i.e. 1 ≤ |K| ≤ 3, while other instances correspond to up to 13 different
duty types. Instances with more different duty types are not necessarily
harder to solve.
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DSP - Instances

Instance |K| |T | |S| |V \ I| |A1| |A2| |A3| |A4| |A| |F|

ivu05 3 1561 2946 4507 714 3751 65134 3658 73257 42
ivu27 3 2191 5949 8140 1538 6578 35299 4760 48175 26
ivu58 1 694 3611 4305 236 4060 5748 2702 12746 11
ivu06 3 2187 4038 6225 1010 5164 123235 5044 134453 372
ivu07 3 3269 3269 6538 1519 7664 275251 7492 291926 423
ivu10 6 873 55443 56316 622 55688 17916 46351 120577 8
ivu08 3 5021 7673 12694 2499 10064 552733 10158 575454 500
ivu29 4 2247 23808 26055 1183 24818 231440 14659 272100 56
ivu35 4 2247 22035 24282 1183 23045 223084 14659 261971 56
ivu39 4 1182 22885 24067 299 23749 78421 14088 116557 21

Table 5.1: Set of 10 instances D = (V,A)

All but four of the instances in the library have been run with DS-Opt
and 45 have been solved successfully. Five instances with a computation
time of more than three days for our research version of DS-Opt have
been aborted. For six instances DS-Opt failed to generate a feasible
duty schedule. A complete list of all DS-Opt solutions and runtimes is
also contained in Appendix A.

Although FAST has successfully solved three of the large instances
which could not be solved in a reasonable time by DS-Opt, we only
survey instances also solved by DS-Opt for the runtime analysis of
FAST.

For the FAST benchmark a subset of 35 of the instances has been
selected. All of these have been solved multiple times regarding different
FAST fix-parameter vectors and rounding values. Complete results
are again part of Appendix A, while results for selected instances are
outlined in the next section.

It is further necessary to distinguish between instances. We call an in-
stance relevant, if the runtime of DS-Opt exceeded 40 minutes. Of the
35 chosen instances, 23 are relevant. FAST runtimes for not relevant
instances are not expected to be significantly lower than the correspond-
ing DS-Opt runtime, as these instances can already be solved efficiently
using DS-Opt.

Table 5.1 lists a set of ten instances picked from the 23 relevant in-
stances along with the number of tasks, links and blocks. The set of
artifical tasks I is not part of the problem data but is generated prior
to the solution process. Results for these ten instances are discussed in
more detail in the following sections.

Table 5.2 lists the runtime and objective value of DS-Opt solutions for
the ten chosen instances. As all solutions do not contain any slacks,
they indeed represent feasible duty schedules. The DS-Opt runtime for
all instances exceeds 40 minutes and thus all instances are relevant.
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DS-Opt Solutions

Instance Value |C| Runtime Duty Pieces Slacks EstLowBound

ivu05 97.75 73 00:59:15 155 0 97.51
ivu27 69.14 49 02:51:42 125 0 68.95
ivu58 27.75 14 00:58:51 27 0 27.64
ivu06 137.72 106 07:32:55 461 0 137.37
ivu07 190.15 146 10:25:29 584 0 189.95
ivu10 27.26 19 02:38:33 61 0 27.48
ivu08 315.42 232 09:29:21 713 0 314.73
ivu29 67.16 61 19:09:34 225 0 66.89
ivu35 115.23 62 06:24:17 180 0 114.92
ivu39 32.41 27 04:07:14 49 0 32.25

Table 5.2: DS-Opt solutions for instances D = (V,A)

5.3 Results

We now discuss the results obtained during the FAST benchmark and
present the solutions for the ten instances specified in the previous
section. Complete computational results, solutions and averages are
listed in Appendix A.
After an analysis of the impact of different parameters on runtime and
solution quality and with respect to the experience gained from more
than 500 FAST runs performed before the actual benchmark started,
six different parameter sets have been chosen for the FAST benchmark.

According to these parameter sets we define the following six versions
of FAST used during the benchmark.

• FAST-ver1: r̄ = 2400, q̂ = (14, 0.05, 0.85, 13, 8, 3, 1800, 5400)

• FAST-ver2: r̄ = 2400, q̂ = (13, 0.04, 0.7, 14, 9, 4, 1800, 5400)

• FAST-ver3: r̄ = 1800, q̂ = (15, 0.2, 0.8, 12, 8, 4, 1800, 5400)

• FAST-ver4: r̄ = 1800, q̂ = (14, 0.05, 0.7, 14, 9, 4, 1800, 5400)

• FAST-ver5: r̄ = 2400, q̂ = (15, 0.2, 0.8, 12, 8, 4, 1800, 5400)

• FAST-ver6: r̄ = 3000, q̂ = (20, 0.3, 0.9, 10, 4, 2, 1800, 5400)

Some issues on the impact of different parameters which lead to these
six final parameter sets are discussed in the next section.

All 35 instances have been solved with all six FAST versions. Also the
results for non-relevant instances have been included in this analysis.
Averages only regarding relevant instances are presented for the best
of the six versions later. We give a short overview on the performance
of the six versions compared to DS-Opt below.
FAST-ver1 achieved the second best results of all six versions using only
7.98% in average of the DS-Opt runtime while almost maintaining the
objective value. More precisely FAST-ver1 reported an average 3.34%
increase in the objective value. This version failed to generate feasible
duty schedules for instances ivu34 and ivu51.

The second version FAST-ver2 reported the best objective values, av-
eraging just a 2.41% increase. Furthermore feasible schedules have
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been found for all instances. However, the achieved runtimes were sig-
nificantly weaker than those of FAST-ver1, as 12.48% of the original
runtime was averaged.

FAST-ver4 uses similar fix parameters but a lower rounding param-
eter than FAST-ver2. It performed worse than FAST-ver2, resulting
in higher runtimes, 14.20% in average, and higher objectives, 2.65%
increase in average. It also failed to find a feasible duty schedule for
instance ivu51.

FAST-ver6 has been chosen using extreme values for all parameters.
As expected, this resulted in the highest reduction, the average size of

the fixed Duty Scheduling Graph D(3000,(20,0.3,0.9,10,4,2,1800,5400))
fix was only

14.80% of the original size, and in very fast average runtimes of 5.98%.
Furthermore unexpectly all but two instances could be solved and the
average objective value increase was only 4.52%.

The last two versions FAST-ver3 and FAST-ver5 reported average re-
sults compared to the versions discussed above. For more details please
refer to Appendix A.

Recall, that the objective of FAST is the generation of very fast so-
lutions and that thus FAST-ver6, which reported significantly faster
solutions than the other versions, has achieved the best results.

On the set of relevant instances, all versions provided far better results.
The average runtime of FAST-ver6 on the 23 relevant instances was
4,59% while the average objective increase could be lowered to 3.48%.
The size of the fixed graph was only 12.72% of the original size. Obvi-
ously FAST performs much better on large instances.

Figure 5.1 and Figure 5.2 visualize the runtimes and the objective values
of all six FAST versions and DS-Opt.

Of the 23 relevant instances twelve could be solved by FAST-ver6 using
less than 5% of the DS-Opt runtime, while five could even be solved
by less than 2%. Instance ivu28 with a DS-Opt runtime of more than
19 hours could be solved in 48 seconds, i.e. in 0.06% of the DS-Opt
runtime. For some instances FAST did not achieve a runtime saving as
huge as indicated by the average. Instance ivu30 needed 59.48% of the
DS-Opt runtime. A total of five of the 23 instances needed more than
20%. However, only two of these needed more than 23%.

Although maintaining the objective value is only the second goal, it is
neat that 13 of the 23 instances report an objective increase of less than
2%.

To summarize these results, we list the FAST-ver6 solution for the ten
selected instances in Table 5.3. Our statements are always based on
the geometrical average of all percentages. The solution tables pre-
sented in this thesis also include the arithmetic average and the total
percentage of size, value and runtime of all listed instances. However
the geometrical average is the best choice to compare the results in our
case.
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FAST - Solutions - r̄ = 3000 q̂ = (20, 0.3, 0.9, 10, 4, 2, 1800, 5400)

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

Instance |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

ivu05 4507 73257 267 1049 2235 5966 8.14 71 0 97.5 99.74 00:00:38 1.06
ivu27 8140 48175 209 752 4721 10728 22.26 48 0 68.6 99.21 00:12:08 7.06
ivu58 4305 12746 269 567 1539 2459 19.29 14 0 27.79 100.14 00:01:23 2.35
ivu06 6225 134453 295 1105 3953 17429 12.96 108 0 139.69 101.43 00:32:50 7.24
ivu07 6538 291926 316 1322 5456 23249 7.96 149 0 192.78 101.38 00:18:14 2.91
ivu10 56316 120577 1065 2356 24938 46691 38.72 21 0 29.46 108.07 00:05:03 3.18
ivu08 12694 575454 408 2145 7724 32638 5.67 238 0 319.85 101.40 00:21:51 3.83
ivu29 26055 272100 592 2954 10972 25002 9.18 62 0 68.08 101.36 00:18:15 1.58
ivu35 24282 261971 711 3227 10343 24421 9.32 64 0 119.33 103.55 00:25:03 6.51
ivu39 24067 116557 1579 4037 5011 9208 7.89 28 0 33.86 104.47 00:01:18 0.52

Arith-Ave 14.14 102.07 3.63
Geom-Ave 11.82 102.04 2.75
Total % 10.37 101.56 3.52

Table 5.3: FAST solutions for 10 chosen instances
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5.4 Parameter Analysis

The parameter sets for the FAST versions used in the benchmark for
which results are presented in the previous section have been selected af-
ter an analysis of the impact of different parameter sets on the runtime.
During this analysis more than 1,000 FAST runs have been performed
and compared to each other. We discuss the results of this parameter
analysis in this section.

5.4.1 The Rounding Parameter r̄

The rounding parameter r̄ is used to round starting and ending times of
tasks. It directly affects the number of tasks and links contained in the
r̄-pos-Relaxation of a Duty Scheduling Graph D = (V,A). Obviously,
choosing a high value for the parameter r̄ should result in a small r̄-
pos-Relaxation and thus the FAST-Relaxation should be solved faster.
On the other hand the r̄-pos-Relaxation needs to retain the essential
structures of the problem. Choosing a high rounding parameter r̄ obvi-
ously discards much of this information. Thus r̄ must be selected in a
manner which allows fast runtimes but still keeps enough information
on the problem structure.
In our analysis we used roundings from five minutes up to more than
one hour. The value is given in seconds, i.e. r̄ = 300 means that all
tasks are rounded to the nearest five minute mark. All tested instances
showed similar results for different rounding parameters.
Table 5.4 shows different FAST solutions and the corresponding run-
times regarding different rounding parameters r̄ for ivu05 which is a
medium size bus driver scheduling instance. All other parameters are
equal for all runs.
The runtime for small values r̄ < 900 does not satisfy the target of less
than 7% of the DS-Opt runtime. For a rounding parameter of r̄ = 300
the size of the x̂-q̂-FAST-Fix is still 22.21% of the original problem. Re-
call that the average size achieved by FAST-ver6 on relevant instances
was 12.72%. A further increase of r̄ is necessary. Although it is not
our aim to keep the objective value of DS-Opt, it is welcome that the
solutions for this instance are even better than the solutions provided
by DS-Opt. As we further increase the rounding parameter, the size of
the fix levels off at 10% of the original size. This is due to the fact that
each link contained in the relaxation represents many more original
links and thus more links may be fixed because they attain the criti-
cal value or count. Runtimes are satisfying for values r̄ = 1, 800 and
r̄ = 3, 000. In general also a rounding parameter r̄ = 2, 400 produced
great runtimes, though for instance ivu05 the runtime was 13.33% with
the used parameter set.
Figure 5.3 shows the size of the r̄-pos-Relaxation and the x̂-q̂-FAST-Fix
regarding different rounding parameters r̄. It is obvious that the size of
the r̄-pos-Relaxation steadily declines while the size of the x̂-q̂-FAST-
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FAST - ivu05

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

r̄ |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

300 4507 73257 2071 18822 3065 16273 22.21 71 0 96.76 98.98 00:18:06 30.54
600 4507 73257 1137 9817 2673 11331 15.46 72 0 97.07 99.30 00:13:06 22.10
900 4507 73257 825 8290 2689 11456 15.63 72 0 96.82 99.04 00:04:30 7.59
1200 4507 73257 635 5875 2617 10880 14.85 72 0 97.01 99.24 00:02:55 4.92
1500 4507 73257 530 4575 2467 9382 12.80 72 0 97.13 99.36 00:03:11 5.37
1800 4507 73257 439 3425 2371 8592 11.72 72 0 96.91 99.14 00:02:45 4.64
2100 4507 73257 384 2663 2369 8663 11.82 71 0 97.08 99.31 00:01:22 2.30
2400 4507 73257 311 1932 2299 8008 10.93 72 0 97.18 99.41 00:07:54 13.33
2700 4507 73257 288 1469 2289 7816 10.66 72 0 97.33 99.57 00:03:59 6.72
3000 4507 73257 268 1049 2281 7844 10.70 72 0 97.4 99.64 00:02:28 4.16
3300 4507 73257 236 733 2281 7823 10.67 72 0 97.29 99.52 00:01:35 2.67
3600 4507 73257 226 586 2281 7903 10.78 72 0 97.21 99.44 00:00:60 1.68

Table 5.4: Analysis of the rounding parameter r̄ for problem ivu05
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Figure 5.3: Size of r̄-pos-Relaxation and x̂-q̂-FAST-Fix of instance ivu05 for different rounding parame-
ters r̄
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Figure 5.4: FAST runtimes and objective values for instance ivu05 and different rounding parameters r̄

Fix closes in on the 10% mark.
The development of runtime and objective values for ivu05 and different
rounding parameters is displayed in Figure 5.4. The objective values do
not change much. Rounding parameters in the range of 1, 200− 2, 100
and 2, 700− 3, 600 produced satisfying runtime savings.
Although rounding parameters r̄ > 3, 000 show very fast runtimes for
this instance, some instances could not be solved because too much de-
tails have been dropped. Oddly no substantial increase in the objective
value occurs in any of the instances using higher rounding parameters.
A rather high rounding still carries enough information on the structure
of the problem to generate an efficient fix of the problem.
Best overall results have been achieved using values r̄ = 1800 and
r̄ = 2400, i.e. rounding all task with respect to a 30 or 40 minute
time pattern. Therefore these values have been chosen for the FAST
benchmark.

5.4.2 The Fixing Parameters q̂

The set of fixing parameters contains six important values. All six
parameters have an impact on the choice of links contained in the x̂-q̂-
FAST-Fix.
The first two parameters q̂1 and q̂2 control, which links are used to
determine the duty pieces, see section 4.4.1. For our analysis we used
lower bounds for fixing links in the ranges 0.04 ≤ q̂2 ≤ 0.2 and 10 ≤
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q̂1 ≤ 20. Obviously the possible combinations for these values are huge.
In general, low values in this range ensure that less links are considered
during the block partition and thus less duty pieces are fixed. Each
duty piece consists of more timetable tasks and many more links are
discarded. However, if the lower bounds are set too high, this may result
in the loss of some critical relief opportunities and thus in much longer
runtimes and higher objective values. On the other hand choosing
very low bounds ends up in many duty pieces and less reduction in
the fix, i.e. longer FAST runtimes. The six FAST versions defined for
the benchmark use different values q̂2 and q̂1 out of the range specified
above. FAST-ver6 even uses an extreme value of q̂2 = 0.3.
The value q̂3 controls the maximum duration of the fixed duty pieces.
Any fixed duty piece with a longer duration as indicated by q̂3 · dopt,
is prohibited and cut into smaller pieces. dopt indicates the optimal
duty piece duration. Thus parameter q̂3 controls the number and size
of the duty pieces contained in the fix. We choose to set this parameter
between 0.7 and 1.2. For values of q̂3 < 0.7 many of the fixed duty
pieces needed to be cut into smaller pieces. As a result the reduction
achieved by choosing high lower bounds q̂1 and q̂2 is reversed. On the
other hand, if the value q̂3 is set too high, it is likely that the reduced
problem is infeasible because very long duty pieces are fixed and a
feasible duty schedule covering all duty pieces is much harder to find.
Eventually the duty pieces cannot be properly matched to form duties.
The last three parameters q̂4, q̂5 and q̂6 define optimal values for the
number of incoming and outgoing short, middle and long connections
between the fixed duty pieces.
Choosing low optimal values for these parameters results in many less
path connections and thus less links and supplementary tasks are con-
tained in the x̂-q̂-FAST-Fix. However, if to few connections are in-
cluded, the problem may become infeasible. High values on the other
hand allow many more connections but also result in longer runtimes
because the set of possible duties P is not reduced to a reasonable size.
In order to attain satisfying runtimes for large instances, parameters
8 ≤ q̂4 ≤ 18, 5 ≤ q̂5 ≤ 12 and 2 ≤ q̂6 ≤ 5 have been chosen.
Table 5.5 lists ten different fix parameter sets. For the first sets the fix
parameters have been selected such that the reduction is rather small
and not many details are dropped. The amount of details dropped
increases through the sets one to ten. The last set should result in an
enormous reduction and very fast runtimes.
Instance ivu05 has been run in FAST with all parameter sets. Figure
5.5 displays the results. Only set ten did not result in a feasible duty
schedule.
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FixPar - Analyse

r̄ q̂

set 1 3000 (8.0, 0.01, 0.3, 20.0, 10.0, 8.0, 1800, 5400)
set 2 3000 (10.0, 0.03, 0.5, 16.0, 8.0, 6.0, 1800, 5400)
set 3 3000 (12.0, 0.04, 0.7, 14.0, 8.0, 6.0, 1800, 5400)
set 4 3000 (13.0, 0.05, 0.8, 14.0, 8.0, 4.0, 1800, 5400)
set 5 3000 (14.0, 0.07, 0.85, 14.0, 6.0, 4.0, 1800, 5400)
set 6 3000 (15.0, 0.1, 0.9, 12.0, 6.0, 4.0, 1800, 5400)
set 7 3000 (17.0, 0.15, 0.95, 12.0, 6.0, 2.0, 1800, 5400)
set 8 3000 (18.0, 0.2, 1.0, 12.0, 6.0, 2.0, 1800, 5400)
set 9 3000 (19.0, 0.25, 1.1, 11.0, 5.0, 2.0, 1800, 5400)
set 10 3000 (20.0, 0.3, 1.2, 10.0, 4.0, 2.0, 1800, 5400)

Table 5.5: Fix parameter sets for analyse
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6. Conclusions

Abstract: We evaluate the results achieved with FAST and suggest some matters for enhance-
ment and further research.

State-of-the-art solvers for the Duty Scheduling Problem, e.g. the ap-
proximation solver DS-Opt, produce satisfying solutions but take a long
time to solve large instances and sometimes even fail to generate feasi-
ble duty schedules. The aim of this thesis was to develop a fast heuristic
for duty scheduling which can be used to generate initial solutions or
even as a standalone application.

FAST, the heuristic proposed in this thesis, uses a two phase approach
toward duty scheduling implemented likewise in the duty scheduling
heuristic HASTUS-Micro, see chapter 3. In a first phase, a relaxation of
the Duty Scheduling Problem is solved on a modified Duty Scheduling
Graph. Subsequently the relaxed solution is used to choose duty piece
partitions, see section 1.2, for each block contained in the original Duty
Scheduling Graph. A set of critical links is identified and the fixed duty
pieces are chosen with respect to these links. A fixed Duty Scheduling
Graph is obtained as links and supplementary tasks not associated with
the selected partitions are discarded. The Duty Scheduling Problem
defined on the so reduced graph can be solved decisively faster.

Six versions of FAST based upon six different parameter sets indicating
different reduction levels, see section 5.3, achieved remarkable results
on a large set of bus and tram scheduling instances. Compared to DS-
Opt, solutions of the best FAST version report an average of 95.40%
runtime savings with only a 3.48% average objective increase. These
results topped the aimed percentages of about 90% and 5%.

Due to the immense problem reduction performed in the second phase
of FAST, in average only 12.72% of the original links remained, cur-
rently no feasible solution can be guaranteed. However cases where
no feasible duty schedule was found were uncommon. This statement
holds even for high reduction levels. More precisely the best FAST ver-
sion generated feasible duty schedules for all but one of the 23 relevant
instances and all but two of all 35 instances used in the benchmark.

The average runtime savings of FAST were 95.40%. Still for some of
the tested instances no reasonable savings could be achieved. Reasons
for this observation are currently unclear, but should be found in the
complexity of these instances. Eventually the reduction deletes some
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critical driver relief opportunities such that the lessening has only a
small effect on the runtime because good solutions are hard to be found.
However, only five of the 23 relevant instances required a runtime of
more than 10% while eleven even stayed below the 5% mark.
These results show that the approach used in FAST heuristic is suc-
cessful and that FAST heavily outperforms DS-Opt in runtime for all
instances in the test set. Clearly even for high reduction levels enough
information on the problem structure is maintained in the relaxation.
A fractional solution of the relaxation suffices as a blueprint for a good
duty schedule. The idea to choose the set of critical links individually
rather than considering whole duties in the fractional duty schedule
proved to be very efficient.

6.1 Further Research

It is even more notably, that these results have been achieved although
the current implementation of FAST uses only basic strategies. Further
research is required to enhance FAST, to ensure feasible duty schedules
and to adapt the heuristic to similar problems such as the Airline Crew
Scheduling Problem.
The issues concerning infeasible duty schedules and low runtime savings
for some instances can be tackled by a simple adaption. If no feasible
duty schedule could be generated by FAST, then some of the fixed
duty pieces cannot be covered. Such duty pieces are then split into
smaller pieces and adjacent links are reinserted. DS-Opt is then run
again on the resulting Duty Scheduling Graph. Inserting this recut
operation as a loop at the end of the FAST heuristic leads to the original
problem in the worst case. Thus it ensures feasible duty schedules if
the original problem was feasible. Furthermore such a recut can also be
executed if the approximated runtime of the DS-Opt run on the fixed
Duty Scheduling Graph exceeds a specific limit.
The current version of FAST is based on a single rounding parameter
used to round start and end times of all tasks. An interesting sugges-
tion is to use additive smaller rounding parameters for morning and
afternoon peaks. Such a rounding would keep more essential details in
the peak hours while most of the structure in between is discarded.
The largest value used for the rounding parameter during the FAST
benchmark was 3, 600. Such high rounding parameters resulted in ulti-
mately fast runtimes but seldom feasible duty schedules could be con-
structed as far too many details are dropped. Too many links from
the original problem are discarded. However, if a process would be
executed before calling DS-Opt in the second phase of FAST, which
reinserts some links into the graph such that feasibility is ensured if
possible, such high rounding parameters and therefore faster runtimes
would be possible.
Another improvement can be achieved during the selection of critical
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links. The currently used method is very simple as all links with a
sufficient presence in the relaxed solution are considered critical, see
section 4.4.2. Eventually this step could be enhanced as not all but
only a selected set of these links is fixed, e.g. expensive links which can
be substituted by cheaper links are removed.
In the current version of FAST, the level of reduction has to be chosen
in advance. However, for large instances, higher reduction levels might
be necessary to achieve fast runtimes while for smaller instances such
high levels result in infeasibility. Thus, it is an interesting suggestion
to choose the reduction level, i.e. the rounding parameter and the fix
parameters, according to the size of the instance. Hopefully such an
adaption would also support the aim to ensure feasibility of the duty
schedule generated by FAST.
Finally, the approach used in FAST is a general problem reduction ap-
proach which can easily be adapted to similar optimization problems.
The problem of scheduling airline crews is closely related to the prob-
lem of duty scheduling. Thus we complete this chapter with the final
indiction that some of the suggestions mentioned above could be imple-
mented and that FAST could also be adjusted to suit the Airline Crew
Scheduling Problem.
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Appendix A - Complete Result Tables

The following tables give a complete overview on the results achieved
in the FAST benchmark and provide averages on the runtime of the
different FAST versions used in the test.
Table A.1 list all 60 instances D = (V,A) contained in the library.
Instance ivu52 has been removed from the list because of a data error.
Table A.2 lists the corresponding DS-Opt solutions. DS-Opt was not
able to solve some instances (ivu09, ivu17, ivu18, ivu19, ivu20, ivu21 )
as not all timetable tasks could be covered with duties using a feasible
duty schedule. Some runs (ivu43, ivu45, ivu49, ivu59, trier) have been
aborted after running several days. The instances ivu44, ivu46, ivu48
and ivu47 have not been run with DS-Opt due to a lack of time. Thus
a total of 45 instances has been solved with DS-Opt.
Table A.3 represents the runtime savings achieved by FAST. Runtimes,
objective values and averages are listed for the best overall FAST ver-
sion on instances of relevant size, i.e. instances solved by DS-Opt in
more than 50 minutes.
The remaining tables (A.4-A.9) similarly list runtimes, objective values
and averages for all FAST versions and all chosen 35 instances used in
the benchmark.



DSP - Instances

Instance |K| |T | |S| |V \ I| |A1| |A2| |A3| |A4| |A| |F|

ivu01 3 153 270 423 72 406 2348 342 3168 13
ivu02 3 369 740 1109 184 913 2801 925 4823 12
ivu03 3 369 370 739 184 543 2801 555 4083 12
ivu04 3 620 1254 1874 274 1904 21729 1528 25435 21
ivu05 3 1561 2946 4507 714 3751 65134 3658 73257 42
ivu06 3 2187 4038 6225 1010 5164 123235 5044 134453 372
ivu07 3 3269 3269 6538 1519 7664 275251 7492 291926 423
ivu08 3 5021 7673 12694 2499 10064 552733 10158 575454 500
ivu09 6 816 52133 52949 580 52362 15940 43583 112465 9
ivu10 6 873 55443 56316 622 55688 17916 46351 120577 8
ivu11 1 873 777 1650 622 1022 4407 389 6440 8
ivu12 6 873 8224 9097 622 8469 16402 4377 29870 8
ivu13 1 1131 9949 11080 575 10481 196537 3342 210935 26
ivu14 2 873 4839 5712 622 5084 8156 2677 16539 8
ivu15 7 143 1775 1918 70 1843 1300 1332 4545 7
ivu16 6 968 21720 22688 660 22010 128777 10852 162299 20
ivu17 6 1934 47302 49236 1253 47938 620832 23486 693509 47
ivu18 6 1934 47302 49236 1253 47938 620832 23486 693509 47
ivu19 6 1934 47302 49236 1253 47938 620832 23486 693509 47
ivu20 6 1934 47302 49236 1253 47938 620832 23486 693509 47
ivu21 6 1934 47302 49236 1253 47938 620832 23486 693509 47
ivu22 6 558 12502 13060 377 12668 40020 6178 59243 17
ivu23 6 558 12502 13060 377 12668 40020 6178 59243 17
ivu24 2 1118 2545 3663 762 2881 9792 1894 15329 22
ivu25 2 1118 2545 3663 762 2881 9792 1894 15329 22
ivu26 2 2191 4641 6832 1538 5270 34336 3452 44596 26
ivu27 3 2191 5949 8140 1538 6578 35299 4760 48175 26
ivu28 2 1888 4742 6630 594 6026 173016 4736 184372 12
ivu29 4 2247 23808 26055 1183 24818 231440 14659 272100 56
ivu30 2 1863 5172 7035 1137 5837 82839 3846 93659 63
ivu31 2 1863 5172 7035 1137 5837 82905 3846 93725 63
ivu32 2 1872 5234 7106 1137 5899 84226 3892 95154 72
ivu33 3 2251 13216 15467 1183 14226 227916 9372 252697 60
ivu34 7 34093 10887 44980 32163 12758 497750 10600 553271 61
ivu35 4 2247 22035 24282 1183 23045 223084 14659 261971 56
ivu36 9 34860 16975 51835 32883 18894 249877 16514 318168 60
ivu37 7 34860 11042 45902 32883 12961 247785 10830 304459 60
ivu38 9 34752 16734 51486 32785 18645 209817 16434 277681 58
ivu39 4 1182 22885 24067 299 23749 78421 14088 116557 21
ivu40 3 1337 4614 5951 502 5372 37878 4434 48186 79
ivu41 3 10715 51681 62396 7146 54955 219187 31644 312932 297
ivu42 3 1704 10013 11717 1008 10643 25176 6150 42977 68
ivu43 3 1337 4661 5998 501 5417 40509 4474 50901 80
ivu44 2 10712 33490 44202 7146 36763 135800 20918 200627 293
ivu45 3 10269 40938 51207 6933 44000 1671926 25224 1748083 274
ivu46 3 1248 7355 8603 486 8055 27747 6834 43122 62
ivu47 3 1049 3218 4267 870 3390 2010 1561 7831 7
ivu48 4 8840 62491 71331 5826 65254 868281 38340 977701 251
ivu49 2 656 2672 3328 0 3316 44560 2624 50500 12
ivu50 10 6093 53171 59264 3451 55644 628262 49475 736832 171
ivu51 10 2694 15374 18068 1608 16393 165237 14736 197974 69
ivu53 13 3689 39190 42879 1269 41535 361263 38314 442381 77
ivu54 13 5152 31709 36861 3324 33400 221204 29952 287880 139
ivu55 13 7333 46085 53418 4724 48510 485344 43684 582262 186
ivu56 1 471 359 830 298 527 5430 348 6603 7
ivu57 1 1220 1485 2705 484 2217 19763 1474 23938 6
ivu58 1 694 3611 4305 236 4060 5748 2702 12746 11
ivu59 3 3807 38917 42724 201 41155 1713502 22000 1776858 1368
bonn 2 1444 3289 4733 982 3724 19943 1851 26500 27
trier 3 4609 120901 125510 1742 123688 699779 92869 918078 80

Table A.1: List of Instances D = (V,A), V = T ∪ S ∪ I, A = A1 ∪ A2 ∪ A3 ∪ A4, F = F(D)
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DS-Opt Solutions

Instance Value |C| Runtime Duty Pieces Slacks EstLowBound

ivu01 14.26 10 00:00:25 20 0 14.25
ivu02 30.1 23 00:02:26 56 0 29.91
ivu03 29.44 22 00:04:04 43 0 29.3
ivu04 45.04 34 00:15:39 63 0 44.82
ivu05 97.75 73 00:59:15 155 0 97.51
ivu06 137.72 106 07:32:55 461 0 137.37
ivu07 190.15 146 10:25:29 584 0 189.95
ivu08 315.42 232 09:29:21 713 0 314.73
ivu09 32.95 17 01:44:35 43 1 32.8
ivu10 27.26 19 02:38:33 61 0 27.48
ivu11 26.93 19 00:11:37 44 0 26.89
ivu12 26.13 18 00:41:57 47 0 25.86
ivu13 45.28 28 05:31:18 82 0 45.18
ivu14 26.38 18 00:17:44 48 0 26.37
ivu15 5.77 4 00:00:26 9 0 5.77
ivu16 37.57 28 00:10:48 56 0 37.32
ivu17 88.46 67 01:36:14 142 25 88.14
ivu18 81.4 59 01:27:46 103 2 81.24
ivu19 84.17 59 01:22:40 138 2 83.92
ivu20 81.81 59 02:59:20 129 2 81.59
ivu21 81.26 59 01:36:24 117 2 81.15
ivu22 26.98 20 00:02:05 47 0 26.92
ivu23 26.74 20 00:02:22 38 0 26.74
ivu24 43.17 32 00:54:04 81 0 43.1
ivu25 43.13 32 00:38:21 90 0 43.03
ivu26 69.08 49 01:51:25 124 0 68.81
ivu27 69.14 49 02:51:42 125 0 68.95
ivu28 53.11 29 19:15:12 82 0 53.09
ivu29 67.16 61 19:09:34 225 0 66.89
ivu30 113.79 83 02:47:58 183 0 113.47
ivu31 83.95 83 03:57:50 183 0 83.77
ivu32 87.58 85 01:52:35 222 0 87.34
ivu33 90.49 63 08:35:48 175 0 90.28
ivu34 136.56 120 05:41:04 229 0 136.33
ivu35 115.23 62 06:24:17 180 0 114.92
ivu36 134.14 117 04:35:14 242 0 133.75
ivu37 138.51 123 04:54:06 253 0 138.39
ivu38 146.82 113 04:34:20 201 0 146.81
ivu39 32.41 27 04:07:14 49 0 32.25
ivu40 84.8 57 04:56:15 130 0 84.7
ivu41 446.53 416 02:36:43 586 0 445.82
ivu42 101.24 90 00:08:39 141 0 101.22
ivu43 aborted
ivu44 skipped
ivu45 aborted
ivu46 skipped
ivu47 skipped
ivu48 skipped
ivu49 aborted
ivu50 350.9 262 02:19:00 470 0 350.3
ivu51 146.94 108 00:30:53 174 0 146.67
ivu53 263.38 122 03:44:42 168 0 263.16
ivu54 433.67 196 02:08:06 306 0 432.4
ivu55 594.23 268 03:28:19 420 0 592.58
ivu56 23.9 14 00:00:44 15 0 23.88
ivu57 23.79 13 02:09:47 32 0 23.79
ivu58 27.75 14 00:58:51 27 0 27.64
ivu59 aborted
bonn 64.56 53 00:15:18 92 0 64.4
trier aborted

Table A.2: DS-Opt Solutions for instances D = (V,A). Slacks indicate uncovered duty pieces.

99



FAST - Solutions - r̄ = 3000 q̂ = (20, 0.3, 0.9, 10, 4, 2, 1800, 5400)

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

Instance |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

ivu05 4507 73257 267 1049 2235 5966 8.14 71 0 97.5 99.74 00:00:38 1.06
ivu06 6225 134453 295 1105 3953 17429 12.96 108 0 139.69 101.43 00:32:50 7.24
ivu07 6538 291926 316 1322 5456 23249 7.96 149 0 192.78 101.38 00:18:14 2.91
ivu08 12694 575454 408 2145 7724 32638 5.67 238 0 319.85 101.40 00:21:51 3.83
ivu10 56316 120577 1065 2356 24938 46691 38.72 21 0 29.46 108.07 00:05:03 3.18
ivu12 9097 29870 834 1638 4627 8361 27.99 19 0 27.19 104.05 00:02:04 4.92
ivu13 11080 210935 537 3158 3648 7697 3.64 29 0 46.67 103.06 00:03:38 1.09
ivu24 3663 15329 176 531 2338 4915 32.06 32 0 42.98 99.55 00:05:16 9.74
ivu25 3663 15329 176 531 2359 4976 32.46 32 0 43.42 100.67 00:02:10 5.64
ivu26 6832 44596 209 723 4176 9598 21.52 48 0 69.11 100.04 00:10:24 9.33
ivu27 8140 48175 209 752 4721 10728 22.26 48 0 68.6 99.21 00:12:08 7.06
ivu28 6630 184372 102 1015 2260 3390 1.83 31 0 55.22 103.97 00:00:48 0.06
ivu29 26055 272100 592 2954 10972 25002 9.18 62 0 68.08 101.36 00:18:15 1.58
ivu30 7035 93659 324 842 4890 17256 18.42 83 0 113.41 99.66 01:39:55 59.48
ivu31 7035 93725 324 842 4868 17205 18.35 83 0 84.38 100.51 00:50:08 21.07
ivu32 7106 95154 340 939 4931 17465 18.35 85 0 88.45 100.99 00:23:57 21.27
ivu34 44980 553271 82 259 36153 42786 7.73 154 4 184.86 135.36 00:17:33 5.14
ivu35 24282 261971 711 3227 10343 24421 9.32 64 0 119.33 103.55 00:25:03 6.51
ivu39 24067 116557 1579 4037 5011 9208 7.89 28 0 33.86 104.47 00:01:18 0.52
ivu41 62396 312932 1943 6143 41947 96381 30.79 418 0 472.26 105.76 01:05:51 42.01
ivu53 42879 442381 1005 6212 12179 24731 5.59 127 0 281.21 106.76 00:06:10 2.74
ivu55 53418 582262 1279 8801 31431 79890 13.72 276 0 616.21 103.69 00:47:47 22.93
ivu58 4305 12746 269 567 1539 2459 19.29 14 0 27.79 100.14 00:01:23 2.35

Arith-Ave 16.25 103.69 10.51
Geom-Ave 12.72 103.48 4.59
Total % 11.62 104.42 6.69

Table A.3: FAST-Solutions FAST(D, r̄, q̂) for relevant instances D = (V,A)

1
0
0



FAST - Solutions - r̄ = 2400 q̂ = (14, 0.05, 0.85, 13, 8, 3, 1800, 5400)

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

Instance |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

ivu01 423 3168 87 257 231 579 18.27 11 0 15.14 106.17 00:00:04 16.00
ivu02 1109 4823 153 361 741 1888 39.14 23 0 30.19 100.29 00:00:16 10.95
ivu03 739 4083 120 472 543 1409 34.50 21 0 29.77 101.12 00:00:32 13.11
ivu04 1874 25435 215 918 1000 3831 15.06 33 0 45.69 101.44 00:00:49 5.21
ivu05 4507 73257 310 1932 2283 7401 10.10 71 0 97.34 99.58 00:00:55 1.54
ivu06 6225 134453 352 2015 4031 23171 17.23 106 0 138.46 100.53 00:37:15 8.22
ivu07 6538 291926 392 2564 5522 30928 10.59 147 0 191.64 100.78 00:33:47 5.40
ivu08 12694 575454 523 3644 7784 43956 7.63 234 0 315.98 100.17 00:25:49 4.53
ivu10 56316 120577 1418 3485 26990 51348 42.58 20 0 28.6 104.91 00:05:58 3.76
ivu11 1650 6440 168 422 1264 2523 39.17 20 0 27.89 103.56 00:00:13 1.86
ivu12 9097 29870 1082 2450 4623 8927 29.88 18 0 26.73 102.29 00:03:19 7.90
ivu13 11080 210935 785 6077 3900 10145 4.80 29 0 46.25 102.14 00:02:07 0.63
ivu14 5712 16539 839 1660 3147 6176 37.34 18 0 26.79 101.55 00:01:54 10.71
ivu15 1918 4545 210 507 864 1563 34.38 5 0 6.33 109.70 00:00:16 61.53
ivu16 22688 162299 1682 4348 11473 22392 13.79 31 0 40.68 108.27 00:01:15 11.57
ivu24 3663 15329 232 826 2354 5400 35.22 32 0 43.25 100.18 00:04:35 8.47
ivu25 3663 15329 232 826 2371 5481 35.75 32 0 43.37 100.55 00:04:01 10.47
ivu26 6832 44596 254 1075 4232 11156 25.01 48 0 68.75 99.52 00:13:00 11.66
ivu27 8140 48175 254 1108 4801 12395 25.72 48 0 68.51 99.08 00:07:57 4.63
ivu28 6630 184372 137 2163 2272 3605 1.95 31 0 56.12 105.66 00:00:31 0.04
ivu29 26055 272100 817 5454 11403 30686 11.27 61 0 67.12 99.94 00:59:53 5.20
ivu30 7035 93659 445 1219 5109 23072 24.63 83 0 113.32 99.58 02:34:55 92.23
ivu31 7035 93725 445 1219 5044 22598 24.11 83 0 84.27 100.38 01:31:18 38.38
ivu32 7106 95154 473 1399 5130 23147 24.32 85 0 88.13 100.62 00:37:55 33.67
ivu34 44980 553271 97 451 36251 45926 8.30 141 2 154.55 113.17 00:53:53 15.79
ivu35 24282 261971 976 5821 10680 29638 11.31 64 0 118.37 102.72 00:12:13 3.17
ivu39 24067 116557 1868 5875 5375 10555 9.05 28 0 33.75 104.13 00:09:58 4.03
ivu41 62396 312932 2387 8579 43232 115285 36.84 417 0 472.06 105.71 00:41:45 26.64
ivu42 11717 42977 864 2108 7234 16372 38.09 88 0 108.14 106.81 00:11:35 133.91
ivu51 18068 197974 575 11548 7648 16756 8.46 121 1 172.91 117.67 00:01:03 3.39
ivu53 42879 442381 1377 12760 12194 27009 6.10 126 0 279.0 105.93 00:17:07 7.61
ivu55 53418 582262 1689 16422 33012 98471 16.91 273 0 607.98 102.31 00:28:40 13.76
ivu56 830 6603 148 351 568 875 13.25 14 0 23.95 100.20 00:00:21 47.72
ivu58 4305 12746 355 770 1487 2271 17.81 15 0 28.67 103.31 00:03:19 5.63
bonn 4733 26500 353 1602 2590 4920 18.56 56 0 70.95 109.89 00:00:38 4.13

Arith-Ave 21.35 103.42 18.10
Geom-Ave 17.40 103.34 7.98
Total % 14.20 103.64 9.32

Table A.4: FAST version 1 - FAST(D, 2400, (14, 0.05, 0.85, 13, 8, 3, 1800, 5400)) Solutions and averages

1
0
1



FAST - Solutions - r̄ = 2400 q̂ = (13, 0.04, 0.7, 14, 9, 4, 1800, 5400)

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

Instance |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

ivu01 423 3168 86 257 253 897 28.31 11 0 14.57 102.17 00:00:04 16.00
ivu02 1109 4823 152 361 773 2138 44.32 23 0 30.26 100.53 00:00:25 17.12
ivu03 739 4083 119 472 559 1621 39.70 22 0 29.7 100.88 00:00:18 7.37
ivu04 1874 25435 214 918 1074 5572 21.90 33 0 45.28 100.53 00:00:46 4.89
ivu05 4507 73257 310 1932 2377 9735 13.28 72 0 97.11 99.34 00:05:32 9.33
ivu06 6225 134453 352 2015 4119 26646 19.81 107 0 138.23 100.37 00:42:45 9.43
ivu07 6538 291926 392 2564 5644 35775 12.25 149 0 192.37 101.16 00:60:22 9.65
ivu08 12694 575454 523 3644 7944 54756 9.51 237 0 317.16 100.55 00:37:50 6.64
ivu10 56316 120577 1418 3485 30542 58669 48.65 20 0 28.45 104.36 00:08:47 5.53
ivu11 1650 6440 168 422 1310 2799 43.46 20 0 27.77 103.11 00:01:51 15.92
ivu12 9097 29870 1082 2450 4986 10078 33.73 18 0 26.55 101.60 00:00:51 2.02
ivu13 11080 210935 785 6077 4476 13290 6.30 29 0 46.28 102.20 00:11:38 3.51
ivu14 5712 16539 839 1660 3324 6754 40.83 19 0 27.02 102.42 00:02:57 16.63
ivu15 1918 4545 210 507 1056 2020 44.44 4 0 5.83 101.03 00:00:16 61.53
ivu16 22688 162299 1682 4348 12224 24785 15.27 31 0 40.81 108.62 00:04:55 45.52
ivu24 3663 15329 232 826 2449 5929 38.67 32 0 43.2 100.06 00:06:03 11.18
ivu25 3663 15329 232 826 2503 6211 40.51 32 0 43.29 100.37 00:08:05 21.07
ivu26 6832 44596 254 1075 4367 12074 27.07 48 0 68.96 99.82 00:14:28 12.98
ivu27 8140 48175 254 1108 4962 13339 27.68 49 0 68.88 99.62 00:10:06 5.88
ivu28 6630 184372 137 2163 2339 4104 2.22 31 0 55.3 104.12 00:12:35 1.08
ivu29 26055 272100 817 5454 12266 35810 13.16 61 0 67.19 100.04 00:50:56 4.43
ivu30 7035 93659 445 1219 6040 33032 35.26 83 0 113.57 99.80 03:56:57 141.06
ivu31 7035 93725 445 1219 5956 32300 34.46 83 0 83.95 100.00 03:00:18 75.80
ivu32 7106 95154 473 1399 6026 32813 34.48 85 0 87.79 100.23 00:50:50 45.15
ivu34 44980 553271 97 451 36566 49191 8.89 137 0 148.86 109.00 00:18:24 5.39
ivu35 24282 261971 976 5821 11486 34605 13.20 63 0 117.68 102.12 00:17:53 4.65
ivu39 24067 116557 1868 5875 5843 12024 10.31 28 0 33.82 104.35 00:08:51 3.57
ivu41 62396 312932 2387 8579 46070 131289 41.95 420 0 471.91 105.68 01:29:55 57.37
ivu42 11717 42977 864 2108 7568 17349 40.36 88 0 108.27 106.94 00:10:54 126.01
ivu51 18068 197974 575 11548 8501 20871 10.54 115 0 162.2 110.38 00:02:17 7.39
ivu53 42879 442381 1377 12760 11931 25918 5.85 126 0 279.18 105.99 00:21:09 9.41
ivu55 53418 582262 1689 16422 37846 125858 21.61 271 0 603.62 101.58 00:36:47 17.65
ivu56 830 6603 148 351 582 1010 15.29 14 0 23.95 100.20 00:00:23 52.27
ivu58 4305 12746 355 770 1573 2483 19.48 15 0 28.38 102.27 00:03:57 6.71
bonn 4733 26500 353 1602 2879 6337 23.91 54 0 67.42 104.42 00:01:53 12.30

Arith-Ave 25.33 102.45 24.36
Geom-Ave 20.71 102.41 12.48
Total % 16.88 102.93 13.40

Table A.5: FAST version 2 - FAST(D, 2400, (13, 0.04, 0.7, 14, 9, 4, 1800, 5400)) Solutions and averages

1
0
2



FAST - Solutions - r̄ = 1800 q̂ = (15, 0.2, 0.8, 12, 8, 4, 1800, 5400)

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

Instance |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

ivu01 423 3168 111 383 243 615 19.41 11 0 14.98 105.04 00:00:07 28.00
ivu02 1109 4823 197 486 765 2053 42.56 23 0 30.41 101.02 00:00:50 34.24
ivu03 739 4083 161 660 551 1466 35.90 21 0 29.76 101.08 00:00:31 12.70
ivu04 1874 25435 338 1491 1018 4143 16.28 34 0 45.42 100.84 00:01:34 10.01
ivu05 4507 73257 438 3425 2371 8275 11.29 72 0 96.95 99.18 00:01:32 2.58
ivu06 6225 134453 479 3507 4115 23642 17.58 107 0 138.48 100.55 00:32:45 7.23
ivu07 6538 291926 526 4877 5594 31278 10.71 149 0 192.49 101.23 00:32:28 5.19
ivu08 12694 575454 666 6593 7908 44676 7.76 238 0 318.37 100.93 00:30:46 5.40
ivu10 56316 120577 1998 5185 27746 52995 43.95 19 0 28.67 105.17 00:05:45 3.62
ivu11 1650 6440 247 686 1262 2556 39.68 21 0 28.46 105.68 00:01:57 16.78
ivu12 9097 29870 1533 3883 4797 9531 31.90 18 0 26.92 103.02 00:04:18 10.25
ivu13 11080 210935 1165 13270 4008 10711 5.07 28 0 46.08 101.76 00:04:49 1.45
ivu14 5712 16539 1184 2562 3069 6025 36.42 18 0 27.14 102.88 00:02:23 13.43
ivu15 1918 4545 293 762 864 1609 35.40 4 0 5.91 102.42 00:00:17 65.38
ivu16 22688 162299 2364 6196 12446 24676 15.20 31 0 40.72 108.38 00:21:41 200.77
ivu24 3663 15329 315 1564 2418 5708 37.23 32 0 43.1 99.83 00:03:47 6.99
ivu25 3663 15329 315 1564 2482 6090 39.72 32 0 43.28 100.34 00:04:24 11.47
ivu26 6832 44596 371 2178 4344 11873 26.62 49 0 68.76 99.53 00:19:01 17.06
ivu27 8140 48175 371 2227 4954 13183 27.36 49 0 68.53 99.11 00:07:27 4.33
ivu28 6630 184372 171 4494 2304 3839 2.08 31 0 55.23 103.99 00:02:53 0.24
ivu29 26055 272100 1183 10283 11910 33249 12.21 61 0 67.15 99.98 01:37:51 8.51
ivu30 ? ? ? ? ? ? ? ? ? ? 0.0 ? 0.0
ivu31 7035 93725 580 1686 5361 25461 27.16 83 0 84.31 100.42 00:54:24 22.87
ivu32 ? ? ? ? ? ? ? ? ? ? 0.0 ? 0.0
ivu34 ? ? ? ? ? ? ? ? ? ? 0.0 ? 0.0
ivu35 24282 261971 1413 10792 11444 33247 12.69 63 0 117.56 102.02 00:21:47 5.66
ivu39 24067 116557 2424 9325 5947 12232 10.49 28 0 33.77 104.19 00:08:09 3.29
ivu41 ? ? ? ? ? ? ? ? ? ? 0.0 ? 0.0
ivu42 11717 42977 1222 3351 7567 17639 41.04 87 0 109.36 108.02 00:05:53 68.01
ivu51 18068 197974 677 18410 7819 17853 9.01 118 1 181.16 123.28 00:03:35 11.60
ivu53 42879 442381 1758 23696 12744 29415 6.64 126 0 277.91 105.51 00:12:33 5.58
ivu55 53418 582262 2104 29025 34087 104300 17.91 273 0 611.19 102.85 00:57:03 27.38
ivu56 830 6603 179 675 594 1189 18.00 14 0 23.97 100.29 00:00:14 31.81
ivu58 4305 12746 464 1099 1531 2453 19.24 15 0 28.38 102.27 00:03:14 5.49
bonn 4733 26500 599 2801 2734 5511 20.79 55 0 71.89 111.35 00:02:21 15.35

Arith-Ave 22.49 103.30 21.38
Geom-Ave 18.31 103.20 10.19
Total % 13.59 103.60 6.97

Table A.6: FAST version 3 - FAST(D, 1800, (15, 0.2, 0.8, 12, 8, 4, 1800, 5400)) Solutions and averages

1
0
3



FAST - Solutions - r̄ = 1800 q̂ = (14, 0.05, 0.7, 14, 9, 4, 1800, 5400)

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

Instance |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

ivu01 423 3168 111 383 257 888 28.03 11 0 14.83 103.99 00:00:08 32.00
ivu02 1109 4823 197 486 797 2313 47.95 23 0 30.31 100.69 00:01:20 54.79
ivu03 739 4083 161 660 571 1732 42.41 22 0 29.86 101.42 00:02:28 60.65
ivu04 1874 25435 338 1491 1072 5385 21.17 33 0 45.24 100.44 00:00:50 5.32
ivu05 4507 73257 438 3425 2437 10041 13.70 71 0 96.89 99.12 00:09:13 15.55
ivu06 6225 134453 479 3507 4183 27020 20.09 107 0 138.45 100.53 00:29:39 6.54
ivu07 6538 291926 526 4877 5688 36095 12.36 149 0 192.38 101.17 01:08:14 10.90
ivu08 12694 575454 666 6593 8014 55010 9.55 239 0 317.38 100.62 00:42:00 7.37
ivu10 56316 120577 1998 5185 29858 57298 47.51 19 0 28.51 104.58 00:07:24 4.66
ivu11 1650 6440 247 686 1300 2735 42.46 21 0 28.65 106.38 00:01:49 15.63
ivu12 9097 29870 1533 3883 5086 10382 34.75 18 0 26.83 102.67 00:02:39 6.31
ivu13 11080 210935 1165 13270 4404 12931 6.13 28 0 45.97 101.52 00:10:36 3.19
ivu14 5712 16539 1184 2562 3269 6595 39.87 19 0 27.08 102.65 00:01:42 9.58
ivu15 1918 4545 293 762 1080 2099 46.18 4 0 5.8 100.51 00:00:21 80.76
ivu16 22688 162299 2364 6196 12646 25889 15.95 30 0 40.06 106.62 00:03:37 33.48
ivu24 3663 15329 315 1564 2476 6080 39.66 32 0 43.04 99.69 00:03:41 6.81
ivu25 3663 15329 315 1564 2560 6544 42.69 32 0 43.37 100.55 00:08:49 22.99
ivu26 6832 44596 371 2178 4427 12470 27.96 48 0 69.01 99.89 00:20:08 18.07
ivu27 8140 48175 371 2227 5055 13865 28.78 48 0 68.56 99.16 00:13:32 7.88
ivu28 6630 184372 171 4494 2373 4459 2.41 30 0 54.42 102.46 00:05:23 0.46
ivu29 26055 272100 1183 10283 12473 36922 13.56 61 0 67.21 100.07 00:52:08 4.53
ivu30 7035 93659 580 1685 6041 33050 35.28 83 0 113.48 99.72 01:51:19 66.27
ivu31 7035 93725 580 1686 5952 32240 34.39 83 0 84.22 100.32 03:07:17 78.74
ivu32 7106 95154 602 1817 6019 32666 34.32 85 0 87.88 100.34 00:47:12 41.92
ivu34 44980 553271 140 827 36604 49878 9.01 138 0 149.6 109.54 00:14:34 4.27
ivu35 24282 261971 1413 10792 11906 36494 13.93 63 0 117.27 101.77 00:31:48 8.27
ivu39 24067 116557 2424 9325 6701 14468 12.41 27 0 33.2 102.43 00:19:21 7.82
ivu41 62396 312932 3513 13243 46287 132191 42.24 420 0 473.48 106.03 01:18:31 50.10
ivu42 11717 42977 1222 3351 7867 18552 43.16 87 0 109.11 107.77 00:06:44 77.84
ivu51 18068 197974 677 18410 8522 20985 10.59 114 1 169.49 115.34 00:03:40 11.87
ivu53 42879 442381 1758 23696 13839 34080 7.70 125 0 273.83 103.96 00:32:28 14.44
ivu55 53418 582262 2104 29025 37760 125464 21.54 271 0 603.38 101.53 01:02:58 30.22
ivu56 830 6603 179 675 600 1227 18.58 14 0 23.93 100.12 00:00:14 31.81
ivu58 4305 12746 464 1099 1685 2904 22.78 15 0 28.34 102.12 00:02:19 3.93
bonn 4733 26500 599 2801 2814 5963 22.50 56 0 70.3 108.89 00:02:34 16.77

Arith-Ave 26.05 102.70 24.34
Geom-Ave 21.51 102.65 14.20
Total % 17.25 103.11 12.35

Table A.7: FAST version 4 - FAST(D, 1800, (14, 0.05, 0.7, 14, 9, 4, 1800, 5400)) Solutions and averages

1
0
4



FAST - Solutions - r̄ = 2400 q̂ = (15, 0.2, 0.8, 12, 8, 4, 1800, 5400)

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

Instance |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

ivu01 423 3168 86 257 239 632 19.94 11 0 15.1 105.89 00:00:04 16.00
ivu02 1109 4823 152 361 737 1853 38.42 23 0 30.33 100.76 00:00:27 18.49
ivu03 739 4083 119 472 547 1449 35.48 22 0 29.87 101.46 00:00:20 8.19
ivu04 1874 25435 214 918 1016 4168 16.38 34 0 45.7 101.46 00:00:21 2.23
ivu05 4507 73257 310 1932 2299 7745 10.57 72 0 97.06 99.29 00:01:31 2.55
ivu06 6225 134453 352 2015 4043 23106 17.18 107 0 138.57 100.61 00:32:30 7.17
ivu07 6538 291926 392 2564 5546 30812 10.55 148 0 192.38 101.17 00:38:02 6.08
ivu08 12694 575454 523 3644 7818 43955 7.63 237 0 317.51 100.66 00:35:24 6.21
ivu10 56316 120577 1418 3485 27338 52162 43.26 20 0 28.71 105.31 00:06:04 3.82
ivu11 1650 6440 168 422 1278 2655 41.22 20 0 27.71 102.89 00:00:45 6.45
ivu12 9097 29870 1082 2450 4658 9205 30.81 18 0 26.77 102.44 00:01:57 4.64
ivu13 11080 210935 785 6077 4098 11095 5.25 29 0 46.7 103.13 00:06:48 2.05
ivu14 5712 16539 839 1660 3174 6356 38.43 18 0 26.84 101.74 00:01:32 8.64
ivu15 1918 4545 210 507 888 1640 36.08 4 0 5.83 101.03 00:00:10 38.46
ivu16 22688 162299 1682 4348 12036 23750 14.63 30 0 40.08 106.68 00:01:24 12.96
ivu24 3663 15329 232 826 2370 5487 35.79 32 0 43.2 100.06 00:05:41 10.51
ivu25 3663 15329 232 826 2411 5677 37.03 32 0 43.53 100.92 00:08:08 21.20
ivu26 6832 44596 254 1075 4290 11490 25.76 49 0 68.8 99.59 00:08:08 7.29
ivu27 8140 48175 254 1108 4856 12694 26.34 49 0 68.64 99.27 00:16:20 9.51
ivu28 6630 184372 137 2163 2274 3586 1.94 31 0 55.91 105.27 00:00:42 0.06
ivu29 26055 272100 817 5454 11723 32389 11.90 61 0 67.18 100.02 01:38:37 8.57
ivu30 7035 93659 445 1219 5433 26071 27.83 83 0 113.47 99.71 02:45:48 98.71
ivu31 7035 93725 445 1219 5368 25554 27.26 83 0 84.45 100.59 02:07:06 53.44
ivu32 7106 95154 473 1399 5438 26014 27.33 85 0 88.16 100.66 00:38:28 34.16
ivu34 44980 553271 97 451 36326 46970 8.48 139 0 149.4 109.40 00:20:45 6.08
ivu35 24282 261971 976 5821 11010 31401 11.98 63 0 117.89 102.30 00:14:19 3.72
ivu39 24067 116557 1868 5875 5505 10970 9.41 28 0 33.5 103.36 00:09:05 3.67
ivu41 62396 312932 2387 8579 44370 121059 38.68 421 0 475.27 106.43 01:08:41 43.82
ivu42 11717 42977 864 2108 7228 16342 38.02 88 0 108.56 107.23 00:08:11 94.60
ivu51 18068 197974 575 11548 7858 18030 9.10 119 1 178.59 121.53 00:02:26 7.87
ivu53 42879 442381 1377 12760 12763 29428 6.65 126 0 278.04 105.56 00:12:04 5.37
ivu55 53418 582262 1689 16422 34217 104926 18.02 274 0 610.41 102.72 00:52:18 25.10
ivu56 830 6603 148 351 580 984 14.90 14 0 23.98 100.33 00:00:23 52.27
ivu58 4305 12746 355 770 1535 2397 18.80 15 0 28.35 102.16 00:01:08 1.92
bonn 4733 26500 353 1602 2829 5975 22.54 55 0 70.12 108.61 00:03:57 25.81

Arith-Ave 22.39 103.15 18.79
Geom-Ave 18.32 103.07 9.19
Total % 14.91 103.80 11.00

Table A.8: FAST version 5 - FAST(D, 2400, (15, 0.2, 0.8, 12, 8, 4, 1800, 5400)) Solutions and averages
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FAST - Solutions - r̄ = 3000 q̂ = (20, 0.3, 0.9, 10, 4, 2, 1800, 5400)

D = (V ,A) Dr̄
pos D

(r̄,q̂)
fix

Solution

Instance |V \ I| |A| |V \ I| |A| |V \ I| |A| Size% |C| Slacks Value Value% Runtime Runtime%

ivu01 423 3168 69 166 227 515 16.25 13 0 16.16 113.32 00:00:03 12.00
ivu02 1109 4823 121 280 689 1585 32.86 23 0 30.67 101.89 00:00:06 4.10
ivu03 739 4083 101 290 515 1162 28.45 22 0 29.95 101.73 00:00:12 4.91
ivu04 1874 25435 175 566 960 2991 11.75 33 0 45.89 101.88 00:00:35 3.72
ivu05 4507 73257 267 1049 2235 5966 8.14 71 0 97.5 99.74 00:00:38 1.06
ivu06 6225 134453 295 1105 3953 17429 12.96 108 0 139.69 101.43 00:32:50 7.24
ivu07 6538 291926 316 1322 5456 23249 7.96 149 0 192.78 101.38 00:18:14 2.91
ivu08 12694 575454 408 2145 7724 32638 5.67 238 0 319.85 101.40 00:21:51 3.83
ivu10 56316 120577 1065 2356 24938 46691 38.72 21 0 29.46 108.07 00:05:03 3.18
ivu11 1650 6440 134 267 1252 2328 36.14 20 0 27.96 103.82 00:00:14 2.00
ivu12 9097 29870 834 1638 4627 8361 27.99 19 0 27.19 104.05 00:02:04 4.92
ivu13 11080 210935 537 3158 3648 7697 3.64 29 0 46.67 103.06 00:03:38 1.09
ivu14 5712 16539 653 1165 3027 5507 33.29 19 0 27.4 103.86 00:01:13 6.86
ivu15 1918 4545 190 464 792 1413 31.08 4 0 5.81 100.69 00:00:08 30.76
ivu16 22688 162299 1339 3048 11452 20551 12.66 30 0 41.56 110.62 00:04:31 41.82
ivu24 3663 15329 176 531 2338 4915 32.06 32 0 42.98 99.55 00:05:16 9.74
ivu25 3663 15329 176 531 2359 4976 32.46 32 0 43.42 100.67 00:02:10 5.64
ivu26 6832 44596 209 723 4176 9598 21.52 48 0 69.11 100.04 00:10:24 9.33
ivu27 8140 48175 209 752 4721 10728 22.26 48 0 68.6 99.21 00:12:08 7.06
ivu28 6630 184372 102 1015 2260 3390 1.83 31 0 55.22 103.97 00:00:48 0.06
ivu29 26055 272100 592 2954 10972 25002 9.18 62 0 68.08 101.36 00:18:15 1.58
ivu30 7035 93659 324 842 4890 17256 18.42 83 0 113.41 99.66 01:39:55 59.48
ivu31 7035 93725 324 842 4868 17205 18.35 83 0 84.38 100.51 00:50:08 21.07
ivu32 7106 95154 340 939 4931 17465 18.35 85 0 88.45 100.99 00:23:57 21.27
ivu34 44980 553271 82 259 36153 42786 7.73 154 4 184.86 135.36 00:17:33 5.14
ivu35 24282 261971 711 3227 10343 24421 9.32 64 0 119.33 103.55 00:25:03 6.51
ivu39 24067 116557 1579 4037 5011 9208 7.89 28 0 33.86 104.47 00:01:18 0.52
ivu41 62396 312932 1943 6143 41947 96381 30.79 418 0 472.26 105.76 01:05:51 42.01
ivu42 11717 42977 716 1696 7081 14514 33.77 88 0 108.41 107.08 00:05:48 67.05
ivu51 18068 197974 433 6671 7440 14687 7.41 126 2 188.03 127.96 00:04:01 13.00
ivu53 42879 442381 1005 6212 12179 24731 5.59 127 0 281.21 106.76 00:06:10 2.74
ivu55 53418 582262 1279 8801 31431 79890 13.72 276 0 616.21 103.69 00:47:47 22.93
ivu56 830 6603 117 327 564 825 12.49 14 0 23.94 100.16 00:00:07 15.90
ivu58 4305 12746 269 567 1539 2459 19.29 14 0 27.79 100.14 00:01:23 2.35
bonn 4733 26500 319 1038 2551 4380 16.52 57 0 70.05 108.50 00:00:37 4.03

Arith-Ave 18.47 104.75 12.80
Geom-Ave 14.88 104.52 5.98
Total % 11.86 105.50 6.82

Table A.9: FAST version 6 - FAST(D, 3000, (20, 0.3, 0.9, 10, 4, 2, 1800, 5400)) Solutions and averages
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Appendix B - Duty Scheduling Graphs

To visualize Duty Scheduling Graphs, duties and duty schedules, the
visualization tool DSVis has been developed alongside the work on this
thesis. DSVis is programmed in Java and uses the JavaView library,
see www.javaview.de.
DSVis can be used to display Duty Scheduling Graphs D = (V,A),
or parts of these graphs. It provides a huge set of functions to hide
components of the graph, i.e. specific timetable tasks, supplementary
tasks or links of a certain type. Furthermore, duties and duty schedules
or parts of duty schedules regarding D = (V,A) can be visualized.
The visualization of duties supports different coloring of the contained
timetable tasks and links as well as fading of not contained timetable
tasks.
DSVis supports functions such as zoom and rotate to analyse the com-
ponents. Thus extracts of D = (V,A) can be enlarged. The display of
tasks and links is controlled by setting a list of configuration variables.
Such variables include sizes, colors, ordering and labeling of tasks and
links.
Standard coloring for links is as follows. Type 4 links connecting to
artificial tasks I are colored gray. Type 3 links are colored orange,
type 2 links are colored red and type 1 links yellow. Supplementary
tasks are displayed as dots while timetable tasks are displayed as boxes
of a size indicated by the starting end ending time of the task.
The following Figures B.1-B.4 have been produced with DSVis to vi-
sualize the amount of reduction achieved in the x̂-q̂-FAST-Fix for the
instances bonn and ivu05. The timetable tasks are sorted by block and
thus type 1 links and many type 2 links are invisible. Especially the
number of type 3 and type 4 links is reduced as can be seen in Figure
B.2 and Figure B.4, which represent the fixed Duty Scheduling Graphs
of the graphs displayed in the other two figures.
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Figure B.1: Problem bonn, |V| = 4733, |A| = 26500
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Figure B.2: Problem bonn fixed, r̄ = 2400, |V| = 2879, |A| = 6457
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Figure B.3: Instance ivu05, |V| = 4507, |A| = 73257
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Figure B.4: Instance ivu05 fixed - r̄ = 1800, |V| = 2587, |A| = 13765
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