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Zusammenfassung

Zur Lösung einer Vielzahl NP-schwerer kombinatorischer Optimierungsprobleme werden
erfolgreich Methoden der Linearen Programmierung, wie z.B. Branch-and-Cut-Algorith-
men, eingesetzt. Da in Branch-and-Cut-Algorithmen Schnittebenenverfahren zum Ein-
satz kommen, ist ein gutes Verständnis der Facettialstruktur der konvexen Hülle der
Inzidenzvektoren der zulässigen Lösungen eines gegebenen Optimierungsproblems sehr
nützlich. Ein bekanntes Beispiel zur Lösung eines kombinatorischen Optimierungspro-
blems mittels dieses Ansatzes ist das Traveling Salesman Problem. Ferner ist das ver-
wandte Problem in einem Graphen oder Digraphen einen kürzesten Kreis mit Hilfe dieses
Ansatzes zu finden, bereits weitgehend untersucht worden.

Die vorliegende Diplomarbeit befaßt sich mit dem längenbeschränkten gerichteten
Kreisproblem, d.h. dem Problem, in einem gerichteten Graphen D = (V, A) mit Bo-
gengewichten ca ∈ R, a ∈ A, einen gerichteten Kreis C einer zulässigen Länge |C| ∈ L
mit minimalem Gewicht

∑

a∈C ca zu bestimmen. Dabei ist L die Menge der zulässigen
Kreislängen. Das zugehörige Polytop ist das Polytop P L

C (D) der längenbeschränkten
gerichteten Kreise C in einem Digraphen D, das ist die konvexe Hülle der Inzidenzvek-
toren der gerichteten Kreise C, die eine zulässige Länge |C| haben.

In speziellen Fällen, z.B. wenn nur eine bestimmte Kreislänge k ∈ N zugelassen wird,
kann das Problem in polynomialer Zeit gelöst werden. Aber im allgemeinen ist das Prob-
lem NP-schwer, weil wir für L = {|V |} das Asymmetrische Traveling Salesman Problem
erhalten.

Die Diplomarbeit ist wie folgt aufgebaut:
In Kapitel 1 geben wir eine Einführung in die Problemstellung, diskutieren die Kom-

plexität des längenbeschränkten gerichteten Kreisproblems und präsentieren die Haupt-
ergebnisse der vorliegenden Diplomarbeit.

Kapitel 2 dokumentiert die bisherigen Ergebnisse der polyedrischen Untersuchung des
gerichteten Kreispolytops, d.h. dem Polytop der gerichteten Kreise ohne Längenbeschrän-
kung. Insbesondere sind alle facetteninduzierenden Ungleichungen der Form aT x ≥ a0

mit a0 ≥ 0 bekannt. Wir werden jedoch ergänzen, dass durch diese Ungleichungen die
Dominante des Kreispolytops nicht vollständig charakterisiert ist.

Kapitel 3 umfaßt die Untersuchung der Facettialstruktur des Polytops P L
C (D). Dabei

setzen wir voraus, dass D ein vollständiger Digraph ist. Wir bestimmen die Dimension
des Polytops in Abhängigkeit der Längenbeschränkung L und der Ordnung des Digraphen
|V |, beschäftigen uns mit dem Problem wie man es als ganzzahliges Programm schreiben
kann und geben eine vollständige Klassifizierung der Ungleichungen, die Bestandteil der
IP-Formulierung sind, d.h. in Abhängigkeit von L und der Ordnung des Digraphen werden
wir ermitteln, ob eine Ungleichung der IP-Formulierung für P L

C (D) facettendefinierend ist

i



ii Chapter -1. Zusammenfassung

oder nicht.
Ferner werden wir uns mit der Verwandtschaft des Polytops der längenbeschränkten

gerichteten Kreise und seines symmetrischen Pendants, d.h. des Polytops der längenbe-
schränkten Kreise über einen Graphen, auseinandersetzen. Basierend auf den partiellen
Beschreibungen für (längenbeschränkte und nicht längenbeschränkte) Kreispolytope über
einen Graphen leiten wir weitere Facetten von P L

C (D) her. Allerdings werden wir die
Ungleichungen nicht vollständig klassifizieren, weil die Beweise immer sehr lang und wenig
spannend wären.

Außerdem werden wir eine Verbindung zum Polytop der längenbeschränkten gerich-
teten s-t-Wege ziehen, das ist die konvexe Hülle der Inzidenzvektoren der gerichteten Wege
P mit Startknoten s und Endknoten t, die eine zulässige Länge haben. Dieses Polytop
kann - einen geeigneten Digraphen vorrausgesetzt - als Facette von P L

C (D) interpretiert
werden. Basierend auf den vorangegangenen Ergebnissen können wir die Dimension dieses
Polytops bestimmen und Facetten dieses Polytops zum Polytop P L

C (D) liften.
Schließlich werden wir uns mit dem Separierungsproblem für das Polytop der längen-

beschränkten gerichteten Kreise beschäftigen. Das Separierungsproblem ist das Problem
für einen gegebenen Punkt y ∈ RA zu entscheiden, ob er alle (facetteninduzierenden)
Ungleichungen einer gegebenen Klasse erfüllt, und falls nicht, mindestens eine Unglei-
chung aus der Klasse anzugeben, die von y verletzt wird. In Kapitel 4 werden wir das
Separierungsproblem für die in den vorangegangenen Kapiteln erörterten Ungleichungen
untersuchen.

Schlüsselwörter: Polytop der längenbeschränkten gerichtete Kreise, Dimension, Ganz-
zahlige Programmierung, Facetten, Liftung von Facetten, Separierung.



Preface

In this thesis I investigate the polyhedral approach to length restricted directed circuit
problems as an instance of a combinatorial optimization problem with additional restric-
tions. The thesis, titled Polytopes associated with length restricted directed circuits, is
motivated originally from the line planning in public and rail transport. The problems
appearing in this field are frequently conjoint with length restricted paths. But since the
polytopes of directed circuits as well as of undirected circuits without length restrictions
are already well studied, I prefer it to build on these results and to investigate the closely
related length restricted directed circuits.

I give no explanation of standard terminology and notations or basic concepts of
polyhedral theory and optimization. Instead, I have tried to resort to standard and
in particular to the book Grötschel, Lovász, and Schrijver, Geometric Algorithms and
Combinatorial Optimization, Springer Verlag, Berlin 1988.

Relating to this thesis I especially thank to Ralf Borndörfer, Volker Kaibel, Hermann
Abesser, and Marc Pfetsch for reading the preliminary versions, their professional advice,
and their encouragement.

I further wish to thank Martin Grötschel for supervising this thesis.

Berlin, March 2005 Rüdiger Stephan
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Chapter 1

Introduction

One of the most successfull attempts to solve NP-hard combinatorial optimization prob-
lems using Linear Programming methods has been the development of a brunch and cut
algorithm for the traveling salesman problem which is based on the partial knowledge of
the facets of the traveling salesman polytope, that is, the convex hull of the incidence
vectors of tours. Further, the related problem to find in a graph or digraph a shortest
circuit by means of this approach is already well investigated (See Bauer [7], Balas and
Oosten [6]).

This thesis is about the length restricted directed circuit problem: Given a digraph
D = (V, A) on n nodes, a set of lengths L ⊆ {2, . . . , n}, and costs or weights ca, a ∈ A,
the L-restricted circuit problem (LRCP) is to find a circuit C∗ with |C∗| ∈ L such that
∑

a∈C∗ ca is minimum.

The LRCP is a generalization of the (weighted) circuit problem (CP) which we obtain
for L = {2, . . . , n}. The LRCP is NP-hard, because for L = {n} we obtain the asymmetric
traveling salesman problem, which is the problem of finding a minimum cost tour in D.
However, there are polynomially solvable cases of the LRCP, for example, when L = {k}
for k fixed.

Likewise the CP is NP-hard, as it subsumes the asymmetric traveling salesman prob-
lem as a special case, but it can be solved in O(n3) by application of shortest-path
algorithms if all circuits have nonnegative cost: Find for each arc (i, j) the shortest path
from j to i in D \{(i, j)} (with respect to the objective function d) and add to it dij. This
yields the shortest circuit Cij containing (i, j), and hence, choosing the shortest among
the circuits Cij, (i, j) ∈ A, solves the problem.

As is usually done in polyhedral combinatorics, we define a polytope whose vertices
correspond to the feasible solutions of the LRCP. Then it is well-known from Linear
Programming that the solution of a particular instance of the LRCP is equivalent to
minimizing a linear objective function over this polytope.

Let D = (V, A) be a digraph on n nodes and L ⊆ {2, . . . , n} a set of lengths. Then
we denote by

CL(D) := {C ∈ CL(D) | |C| ∈ L}

the set of all circuits of D with a feasible length with respect to L and by

P L
C (D) := conv{χC | C ∈ CL(D)}

1



2 Chapter 1. Introduction

the L-restricted circuit polytope, i.e., P L
C (D) is the convex hull of the incidence vectors of

all circuits C ∈ CL(D). Since the LRCP is NP-hard, we may not expect to have a decent
description of the inequalities determining P L

C (D). That is, the separation problem for
P L

C (D) is NP-hard. So we have to be contend with finding some valid inequalities, as
possible facets, of P L

C (Dn).

Let us fix the notation for some cases of L. Clearly, by definition, P L
C (D) = PC(D)

and CL(D) = C(D) if L = {2, . . . , n}.

If







L = {k}
L = {2, . . . , k}
L = {k, . . . , n}






we write







P k
C(D)

P≤k
C (D)

P≥k
C (D)






instead of







P
{k}
C (D)

P
{2,...,k}
C (D)

P
{k,...,n}
C (D)







.

Analogous we define C(D), Ck(D), C≤k(D), and C≥k(D). Further we denote by P odd
C (Dn)

and P even
C (Dn) the convex hull of the incidence vectors of odd and even circuits, respec-

tively.

A directed circuit will be considered as a set of arcs and will be denoted by its arcset or
by an ordered list of nodes between parenthesis whose origin and terminus are identical.
Analogous, a directed will be considered as a set of arcs and will be denoted by its arcset
or by an ordered list of nodes between parenthesis.

This thesis deals with some more polytopes. The symmetric counterpart of P L
C (D) is

the L-restricted circuit polytope

P L
C (G) := conv{χC ∈ RE | C ∈ CL(G)}

of a graph G = (V, E). Here, L ⊆ {3, . . . , n}, and CL(G) denotes the set of all circuits C
in G with |C| ∈ L.

Analogous to CL(D) and CL(G) we define

PL(D) := {P | P is a s − t path in D, |P | ∈ L},

PL(G) := {P | P is a s − t path in G, |P | ∈ L},

and analogous to P L
C (D) and P L

C (G) we define the s − t path polytopes

P L
s−t path(D) := conv{χP ∈ RA | P ∈ PL(D)},

P L
s−t path(G) := conv{χP ∈ RE | P ∈ PL(G)}.

Moreover, let us denote by WL(D) the set of all closed walks W (not necessary diwalks)
in D,with |W | ∈ L and with the property that the origin and all internal nodes of such a
walk are different; in other words, W is an undirected circuit in the digraph D. Then the
polytope

P L
W (D) := conv({χW ∈ RA | W ∈ WL(D)})

is called the polytope of undirected L-restricted circuits of D.

Note that we restrict ourselves mostly to the complete digraph Dn = (V, A) on n
nodes.
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1.1 Survey of the main results

1.1.1 Dimension and universally valid inequalities for PL
C (Dn)

It is well known that the dimension of the circuit polytope PC(Dn) is equal to (n − 1)2

[6]. The dimension of P L
C (Dn) in dependence of L is given in Table 1.1.

Table 1.1. Dimension of PL
C (Dn)

P k
C(Dn), n ≥ 5

Polytope P 2
C(Dn) P 3

C(D4) 3 ≤ k < n
Pn

C(Dn) PL
C (Dn), |L| ≥ 2

Dimension 1
2n(n − 1) − 1 6 dim PC(Dn) − 1 dimPC(Dn) − n dimPC(Dn)

In generally we have not found an integer programming formulation in arc variables. So
we suggest an extended formulation (see 3.1). However, integer programming formulations

for the circuit polytope P
{k,...,l}
C (Dn) can be given in arc variables:

(i) x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V
(ii) x(δ+(v)) ≤ 1 ∀ v ∈ V
(iii) x(δ+(p)) + x(δ+(q)) − x(δ+(S)) ≤ 1 ∀ S ⊂ V, 2 ≤ |S| ≤ n − 2,

p ∈ S, q ∈ V \ S
(iv) x(A) ≥ k
(v) x(A) ≤ l.
(vi) x ∈ {0, 1}A

The flow constraints (i) and the degree constraints (ii) are satisfied by the incidence vectors
of all cycles and the zero vector. The cardinality constraints (iv) and (v) ensure that all
circuits are of length at least k and at most l. In particular, constraint (iv) excludes the
zero vector. The disjoint circuits elimination constraints (iii) (short dce-constraints) are
satisfied by all circuits, but violated by the union of circuits with more than one member.

For k = 2 the cardinality constraint (iv) can be substituted by the linear ordering
constraints

(vii)
n−1∑

i=1

n∑

j=i+1

xπ(i),π(j) ≥ 1 ∀ permutations π of V.

Table 1.2 Characteristics of overall valid inequalities for PL
C (Dn)

Inequality class Facet defining? Separation Complexity

degree if L 6= {k}, k = 2, 3, n polynomial

only if 2 ∈ L, |L| ≥ 2,
linear ordering

n ≈ 2k − 2 where k := min{l ∈ L|l > 2}
NP-hard

for certain cases, e.g.,
dce

|S|, |T | ≥ k where k = min{l ∈ L|l > 2}
polynomial

nonnegativity if PL
C (Dn) 6= P 4

C(D4) polynomial

x(A) ≥ min L if |L| ≥ 2,min L > 2 polynomial

x(A) ≤ maxL if |L| ≥ 2,max L < n polynomial
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The integer points of P k
C(Dn), k ∈ {2, . . . , n}, are characterized by (i)-(iii),(vi), and

x(A) = k.

It is well known that the inequalities (ii),(iii),(vii) as well as the nonnegativity con-
straints xa ≥ 0, a ∈ A, define facets of the circuit polytope PC(Dn) (see Balas and Oosten
[6]), but they define in generally also facets of P L

C (Dn) and can be separated in polynomial
time, with the exception of the linear ordering constraints (see Table 1.2).

There are some more known classes of facet defining inequalities for PC(Dn) which
can be derived from the asymmetric traveling salesman polytope P n

C(Dn) by facet lifting.
The resulting inequalities are often specific to the polytope P≥k

C (Dn), e.g., the primitive
SD inequalities and the clique tree inequalities (see Table 1.5).

1.1.2 The relations to other polytopes

To generate facets for P L
C (Dn) it is very useful to investigate the relations to other poly-

topes whose facial structure is well studied. The relationships between P L
C (Dn) and some

other polytopes is illustrated in Figure 1.1. An arrow here means that a facet defining
inequality for the polytope at the tail of the arrow can be lifted1 (projected) to (into) a
facet defining inequality for the polytope at the head of the arrow, or they are equivalent.
The dashed arrow between P L

C (Dn) and P L
W (Dn) means that an additional criterion must

be satisfied while the arrow between P L
C (Kn) and P L

C (Kn)|δ(w) means that the problem is
not sufficient investigated.

PL
s−t path(D′)PL

C (Dn)|δ+(w)

PL
C (Dn)

PL
W (Dn)

PL
C (Kn)

PL
C (Kn)|δ(w)PL

s−t path(G′)

1/∈L
⇔

1,2/∈L
⇔

LIFT ?

LIFT ? LIFT

LIFT

PROJ

PL
C (Dn)|δ+(v) := {x ∈ PL

C (Dn) | x(δ+(v)) = 1}

PL
C (Kn)|δ(v) := {x ∈ PL

C (Kn) | x(δ(v)) = 2}

Figure 1.1

As already mentioned Balas and Oosten [6] studied the directed circuit polytope
PC(Dn). Bauer [7] and Salazar González [16] gave a partial description of the symmetric

1We use standard sequential lifting (see 3.4)
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counterpart, i.e., the circuit polytope PC(Kn) of the complete graph Kn. Further, the
undirected cardinality constrained circuit polytope P≤k

C (Kn) has been studied by Bauer,
Linderoth, and Svelsbergh [8].

The connection between length restricted circuit and path polytopes

As already adumbrated, the LRCP can be solved by means of shortest path algorithms
by finding for each arc (t, s) the shortest s − t path. A further possibility to solve the
LRCP is to find for each node v the shortest circuit C in D, with |C| ∈ L, containing v.
This can be interpreted in the following fashion as a shortest path problem: let us denote
by D′ the digraph obtained by substituting the node v by two new nodes s and t and
identifying δ+(v) with δ+(s) and δ−(v) with δ−(t). Then each circuit in D containing v
is equivalent to a s − t path in D′. Hence, a solution of the LRCP can be obtained by
solving n times a length restricted shortest path problem.

This connection admits it to identify the polytopes P L
s−t path(D

′) and

P L
C (D)|δ+(v) := {x ∈ P L

C (D) | x(δ+(v)) = 1}.

Further, in case D = Dn the degree constraint x(δ+(v)) ≤ 1 defines in generally a facet
of P L

C (Dn). Based on this observation we can determine the dimension of P L
s−t path(D

′).
Moreover, we can apply sequential lifting to generate facets of P L

C (Dn) from those for
P L

s−t path(D
′).

The connections between P L
C (Dn), P L

W (Dn), and P L
C (Kn)

It would be desirable to transform facet defining inequalities for P L
C (Dn) into facet defining

inequalities for P L
C (Kn), and conversely. For the first direction we can give a partial

answer. The link between both polytopes is the polytope P L
W (Dn). On the one hand we

will show namely that facets of P L
C (Kn) are in 1-1 correspondence with those of P L

W (Dn)
if they are not induced by a nonnegativity constraint. On the other hand P L

C (Dn) is
obviously a subset of P L

W (Dn). However, P L
C (Dn) is not a face of P L

W (Dn); so we have
no general working lifting procedure. But we will show that a facet defining inequality
bT x ≤ b0 for P L

C (Dn) is also facet defining for P L
W (Dn) if it is symmetric, i.e., bij = bji for

all i, j ∈ V , i 6= j, or if it is equivalent to a symmetric inequality.

1.1.3 Facets derived from the polytopes PC(Kn) and P≤k
C (Kn)

Many facet defining inequalities for the circuit polytopes PC(Kn) and P≤k
C (Kn) can be

transformed into facet defining inequalities for the corresponding (directed) circuit poly-
topes PC(Dn) and P≤k

C (Dn), respectively. Moreover, the combinatorial idea of these in-
equalities is often transferable to other length restricted circuit polytopes. In the following
we present the results of these reflections.

(a) The class of bipartition inequalities relies on the fact that an odd circuit C has an
even number of arcs in (S : T )∪ (T : S) and an odd number of arcs in A(S)∪A(T )
for any bipartition V = S ∪ T .2 In the notation specific to P≤k

C (Dn), k odd, they

2For any X, Y ⊂ V we denote by (X : Y ) the set of arcs (u, v) ∈ A such that u ∈ X and v ∈ Y .
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can be formulated as

x((S : T )) ≤
k − 1

2
,

where (S : T ) := {(s, t) ∈ A | s ∈ S, t ∈ T}, while in the notion for P≥k
C they reads

as follows:

x(A(S)) + x(A(T )) + x((T : S)) ≥
k + 1

2
.

These both representations are equivalent for P k
C(Dn). The bipartition inequalities

are facet defining for P k
C(Dn), k odd, if |S|, |T | ≥ k+1

2
, and hence they can be lifted

into facet defining inequalities for the polytopes P L
C (Dn), where L ⊆ {2, . . . , k} or

L ⊆ {k, . . . , n}, since P k
C(Dn) is a facet of those polytopes P L

C (Dn).

(b) The generalized linear ordering constraint in the notation specific to P≥k
C (Dn) says

that a circuit of length at least k uses at least one arc in (Vi : Vj), i < j, where
⋃m

i=1 Vi is a partition of the nodeset V such that |Vi| ≤ k − 1 for all i:

m−1∑

i=1

m∑

j=i+1

x((Vi : Vj)) ≥ 1.

For m = n this is exactly a linear ordering constraint. For P k
C(Dn) the generalized

linear ordering constraints are equivalent to the asymmetric k-partition inequalities
which are specific to the polytope P≤k

C (Dn) and whose symmetric counterpart (for
P≤k

C (Kn)) were introduced by Bauer, Linderoth, and Savelsbergh [8]:

m∑

i=1

x(A(Vi)) +
m−1∑

i=1

m∑

j=i+1

x((Vi : Vj) ≤ (k − 1)

The generalized linear ordering constraints are in generally facet defining for P k
C(Dn),

and hence they can be lifted into facet defining inequalities for the polytopes P L
C (Dn),

where L ⊆ {2, . . . , k} or L ⊆ {k, . . . , n}.

(c) Bauer, Linderoth, and Savelsbergh [8] introduced the class of cardinality-path in-
equalities for the circuit polytope P≤k

C (Kn) which says, that a circuit C of length
at most k never uses more edges of a path P of length k than inner nodes of P .
This is a class of facet defining inequalities for P≤k

C (Kn), and the corresponding
symmetric inequality is also facet inducing for P≤k

C (Dn). Some experiments with
PORTA indicates that these inequalities could be also facet inducing for P k

C(Dn).

Bauer, Linderoth, and Savelsbergh [8] introduced a further class of facet defining
inequalities for the undirected circuit polytope P≤k

C (Kn) they called cardinality-tree in-
equalities. We have not investigated whether the corresponding symmetric inequality is
also facet defining for P≤k

C (Dn) or not.

1.1.4 Overview: Facets of P k
C(Dn), P

{3,...,k}
C (Dn), and P≥k

C (Dn)

For some typical length restricted circuit polytopes we give in the following an overview
of known facet defining inequalities.
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Table 1.3 Facet inducing inequalities for P k
C(Dn), 4 ≤ k < n

Inequality class Facet defining? Separation Complexity

degree yes polynomial

dce if |S|, |T | ≥ k polynomial

nonnegativity yes polynomial

bipartition if k odd and |S|, |T | ≥ k+1
2 NP-hard

generalized
linear ordering

if |Vi| + |Vj | ≥ k, 1 ≤ i < j ≤ m NP-hard

cardinality-path ? NP-hard

parity if k ≤ n − 2 polynomial

cut if |S| ≥ k + 1, |T | ≥ k polynomial

Table 1.4 Facet defining inequalities for P
{3,...,k}
C (Dn), 4 ≤ k < n

Inequality class Facet defining? Separation Complexity

degree yes polynomial

dce if |S|, |T | ≥ 3 polynomial

nonnegativity yes polynomial

cardinality only x(A) ≤ k polynomial

bipartition yes NP-hard

Asym. maximal set if s ≥ 2 and |Vi| ≥ 2 ?

k-partition if |Vi| + |Vj | ≥ k, 1 ≤ i < j ≤ m NP-hard

generalized
linear ordering

if |Vi| + |Vj | ≥ 3, 1 ≤ i < j ≤ m NP-hard

cardinality-path yes NP-hard

cardinality-tree ? ?

Table 1.5 Facet defining inequalities for P≥k
C (Dn), 3 ≤ k < n

Inequality class Facet defining? Separation Complexity

degree yes polynomial

dce if |S|, |T | ≥ k polynomial

nonnegativity yes polynomial

x(A) ≥ k if n ≥ 5 polynomial

primitive SD under certain conditions ?

clique tree under certain conditions ?

bipartition if |S|, |T | ≥ k+1
2 NP-hard

generalized
linear ordering

if |Vi| + |Vj | ≥ k, 1 ≤ i < j ≤ m NP-hard

lifted cardinality-path ? NP-hard
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Chapter 2

The circuit polytope PC(Dn) and
associated polyhedra

Summary. This chapter tries to survey the results so far, with respect to the circuit
polytope PC(Dn) and associated polyhedra. An integer programming formulation as well
as some facet lifting procedures for the circuit polytope PC(Dn) are presented. While the
facets of PC(Dn) which are defined by inequalities of the form aT x ≥ b0 with b0 ≥ 0 are all
known, we will show that the dominant of PC(Dn) is not completely described by these
inequalities.

2.1 Survey: The circuit polytope PC(Dn)

Let us start with an integer programming formulation for the circuit polytope PC(Dn)
introduced by Balas and Oosten [6].

Theorem 2.1 (IP-formulation, [6]). The integer points in PC(Dn) are characterized by
the system

x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V (2.1)

x(δ+(v)) ≤ 1 ∀ v ∈ V (2.2)
n−1∑

i=1

n∑

j=i+1

xij ≥ 1 (2.3)

x(δ+(p)) + x(δ+(q)) − x((S : V \ S)) ≤ 1 ∀ S ⊂ V, 2 ≤ |S| ≤ n − 2, (2.4)

p ∈ S, q ∈ V \ S

xa ∈ {0, 1} ∀ a ∈ A. (2.5)

Moreover, all given inequalities as well as the nonnegativity constraints

xa ≥ 0 ∀ a ∈ A (2.6)

define facets of PC(Dn) for n ≥ 4.
�

9
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The flow constraints (2.1) and the degree constraints (2.2) are satisfied by the incidence
vectors of all cycles and the zero vector. Constraint (2.3) excludes the zero vector, and
the disjoint circuits elimination constraints (2.4) (short dce-constraints) are satisfied by
all circuits, but violated by the union of circuits with more than one member. In Chapter
3 we will delve into the inequalities of the IP-formulation with respect to the length
restricted circuit polytope P L

C (Dn).
The flow constraints give already some information about the dimension of PC(Dn).

As is easily seen, the matrix associated to the flow constraints is of rank n − 1, since the
rows corresponding to the first n − 1 degree equations

x(δ+(v)) − x(δ−(v)) = 0, v = 1, . . . , n − 1,

are linearly independent and the last equation of the flow constraints is the sum of the
former. Thus the rank of the equality set of PC(Dn) is at least n−1, i.e., dim (PC(Dn)) ≤
|A| − (n − 1). Indeed, Balas and Oosten showed [6] that dim PC(Dn) = |A| − (n − 1) =
(n − 1)2. A proof is also given in 2.1.

Constraint (2.3) can be extended to a large class of facet defining inequalities, since
for any ordering of the nodes an analogous statement holds.

Theorem 2.2 ([6]). For any permutation π of the nodeset V , the inequality

n−1∑

i=1

n∑

j=i+1

xπ(i),π(j) ≥ 1 (2.7)

defines a facet of PC(Dn), n ≥ 3.
�

Let us call the inequalities (2.7) linear ordering constraints. Notice that the class (2.7)
contains n! facets of PC(Dn), one for each linear ordering of V . We have already mentioned
that Balas and Oosten investigated successfully the ”lower” side of the circuit polytope
PC(Dn). Indeed, they showed that the nonnegativity constraints (2.6) and the linear
ordering constraints (2.7) are the only facet inducing inequalities of the form bT x ≥ b0,
with b0 ≥ 0. This strong result we hold on in a theorem.

Theorem 2.3 ([6]). Let bT x ≥ b0 with b0 ≥ 0 be a facet defining inequality for PC(Dn).
Then it is equivalent to a nonnegativity constraint (2.6) or to some linear ordering con-
straint (2.7).

�

Note that no such characterization is known for the circuit polytope of an undirected
graph. Several classes of such facets for the latter polytope are identified (see Bauer [7]),
but it seems at this point in time to be out of reach to give an exhaustive characterization.

Adding to (2.3) the analogous inequality

n−1∑

i=1

n∑

j=i+1

xji ≥ 1

yields exactly the inequality x(A) ≥ 2, i.e., x(A) ≥ 2 is not facet defining for PC(Dn).
Likewise xa ≤ 1 defines not a facet of PC(Dn). If we take any arc a = (u, v) ∈ A and
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sum up the inequalities x(δ+(u)) ≤ 1 and −xuw ≤ 0 for all w ∈ V \ {u, v} we get the
inequality xa ≤ 1.

There is a direct relationship between the circuit polytope and the asymmetric trav-
eling salesman polytope P n

C(Dn). The latter is namely a face of the former, since it is the
restriction of PC(Dn) to the hyperplane defined by

x(A) = n.

The circuit polytope PC(Dn) is also closely related to the circuit-and-loops polytope
P0(D

0
n) which is defined to be the convex hull (of incidence vectors) of spanning disjoint

unions of a circuit and loops on a complete digraph on n nodes with loops, P0(D
0
n) :=

(V, A ∪ L), where L := {(1, 1), (2, 2), . . . , (n, n)} is the set of loops. It can be interpreted
as a restriction of the assignment polytope which is the convex hull of spanning unions of
disjoint circuits. An IP-formulation of P0(D

0
n) is given in the next theorem.

Theorem 2.4 ([6]). The circuit-and-loops polytope P0(D
0
n) of D0

n is the convex hull of

points

(
x
y

)

, x ∈ {0, 1}A, y ∈ {0, 1}L, satisfying

x(δ+(v)) + yv = 1 ∀ v ∈ V (2.8)

x(δ−(v)) + yv = 1 ∀ v ∈ V (2.9)

x(A) ≥ 2 (2.10)

x(A(S)) +
∑

v∈S\{p}

yv − yq ≤ |S| − 1 ∀ S ⊂ V, 2 ≤ |S| ≤ n − 2, (2.11)

p ∈ S, q ∈ V \ S.

�

In [6] the authors showed that PC(Dn) is the projection into the x-space of P0(D
0
n).

Moreover, the facets of PC(Dn) are in 1-1 correspondence with those of P0(D
0
n).

Theorem 2.5 ([6]). Let aT x + bT y ≤ a0 be a facet defining inequality for the circuit-and-
loops polytope P0(D

0
n). Then, the inequality

∑

u∈V

∑

v∈V \{u}

(auv − bu)xuv ≤ a0 −
∑

v∈V

bv, (2.12)

which is the projection of aT x+bT y ≤ a0 onto the subspace of x, defines a facet of PC(Dn).
�

Note that this in general is not the case. When a polyhedron Π is projected onto a
subspace, facets of Π do not necessarily project into facets of the subspace-polyhedron.
There is a further interesting point of view. As is easily seen, the facets induced by
the inequalities (2.11) projects into facets defined by the dce-constraints (2.4), but the
inequalities (2.11) corresponds obviously to the well known subtour elimination constraints

x(A(S)) ≤ |S| − 1

for the asymmetric traveling salesman polytope P n
C(Dn).
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Lifting Procedures

Balas and Fischetti [5] presented a procedure, which is called cloning, to lift a facet
inducing inequality aT x ≤ a0 for P n

C(Dn) into a facet defining inequality for P n+1
C (Dn+1)

and was extended in [4] to a lifting procedure for the circuit-and-loops polytope. Here,
we will only sketch the procedure.

Two nodes p, q ∈ V , p 6= q, are called clones with respect to a valid inequality bT x ≤ b0

for the asymmetric traveling salesman polytope P n
C(Dn) if

(a) bvp = bvq and bpv = bqv for all v ∈ V \ {p, q},

(b) bpq = bqp = max{buq = bqv − buv | u, v ∈ V \ {p, q}},

(c) the restriction b̃T x ≤ b̃0 of bT x ≤ b0 to D̃ := Dn \ {p}, with b̃0 := b0 − bpq, is valid
for P n−1

C (D̃).

We say a valid inequality bT x ≤ b0 for P n
C(Dn) is primitive if Dn has no clones with

respect to bT x ≤ b0. Notice, Balas and Fischetti [5] showed that if all the primitive
members of a family F of inequalities define regular facets of the asymmetric traveling
salesman polytope, then so do all the members of F . (Here, a facet is regular unless it is
trivial or defined by xij + xji ≤ 1.)

In the cloning procedure one obtains from a facet defining inequality aT x ≤ a0 for
P n

C(Dn), Dn = (V, A), a facet defining inequality

bT x +

n∑

i=1

bi,n+1xi,n+1 +

n∑

i=1

bn+1,ixn+1,i

for P n+1
C (Dn+1) by setting

buv = auv ∀ (u, v) ∈ A,

and making the new node n+1 a clone of some node p ∈ V . Applying cloning repeatedly
leads to cliques of clones.

A modified version of the cloning procedure can be applied also to P0(D
0
n). Given a

facet defining inequality
n∑

i,j=1

bijxij ≤ b0

for P0(D
0
n), a node p ∈ V , and a new node n + 1, the lifting coefficients bv,n+1, bn+1,v,

v = 1, . . . , n, are determined in conformity with conditions (a), (b), and (c), but, in
addition,

(d) bn+1,n+1 := max{bu,n+1 + bn+1,v − buv | u, v ∈ V \ {p, n + 1}}.

Note that the coefficient bn+1,n+1 is not necessarily the same as the coefficient bpp. Hence,
node n + 1 is called a quasi-clone of p.

Using the fact that the facets of P0(D
0
n) and PC(Dn) are in the above 1-1 correspon-

dence, the cloning procedure can be embedded in a lifting procedure by starting with a
facet of P n

C(Dn) and ending with a facet of PC(Dn).
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Procedure 2.6 ([6]).

INPUT: A facet defining inequality aT x ≤ a0 for P n
C(Dn).

OUTPUT: A facet defining inequality for PC(Dn).

1. Find the primitive inequality bT x′ ≤ b0 for P k
C(D) defined on some induced subgraph

D of Dn (k := |D|), from which aT x ≤ a0 can be derived by cloning.

2. Derive from bT x′ ≤ b0 the primitive facet inducing inequality bT x′ + cT y′ ≤ b0 for
P k

C(D0) defined on the digraph D0 with loops.

3. Apply the cloning procedure to bT x′ + cT y′ ≤ b0 to obtain a facet inducing inequality
aT x + c̃T y ≤ a0 for P0(D

0
n).

4. Substitute for y to obtain the corresponding facet inducing inequality dTx ≤ d0 for
P n

C(Dn).

Unfortunately the procedure has been not carried out for a complete family of inequal-
ities for the asymmetric traveling salesman polytope but only for the primitive members
of some classes, since step 3 seems to be a hard task (not for a member of a family but
for the whole family).

First we lift the primitive members of the clique tree inequalities to the circuit polytope.
A clique tree CLIQ of Dn is a strongly connected subgraph of Dn composed of two
collections of cliques Hi, i = 1, . . . , h and Tj , j = 1, . . . , t, called handles and teeth,
respectively, satisfying the following conditions:

(i) The teeth are pairwise disjoint.

(ii) The handles are pairwise disjoint.

(iii) For each handle, the number of teeth intersecting it is odd and at least three.

(iv) Every tooth has at least one node not contained in any handle.

(v) If a tooth T and a handle H have a nonempty intersection, then CLIQ−(H ∩ T ) is
disconnected.

The associated clique tree inequality

h∑

i=1

x(A(Hi)) +
t∑

j=1

x(A(Tj)) ≤
h∑

i=1

|Hi| +
t∑

j=1

(|Tj| − tj) − (t + 1)/2

where tj denotes the number of handles intersecting a tooth Tj is known to be facet
defining for the asymmetric traveling salesman polytope P n

C(Dn), n ≥ 7 [13].
A clique tree CLIQ is said to be primitive if it has the additional properties:

(vi) Every tooth has exactly one node not contained in any handle.
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(vii) Every nonempty intersection of a handle and a tooth contains exactly one node.

(viii) Every handle has at most one node not contained in any tooth.

(ix) Dn has at most one node not contained in CLIQ.

Balas lifted the primitive clique tree inequalities to the circuit-and-loops polytope
P0(D

0
n) by adding to the left side the sum

∑h
i=1 y(Hi) of loop variables, i.e.,

h∑

i=1

x(A(Hi)) +
t∑

j=1

x(A(Tj)) +
h∑

i=1

y(Hi) ≤
h∑

i=1

|Hi| +
t∑

j=1

(|Tj | − tj) − (t + 1)/2

and showed that they are facet defining for n ≥ 7 [4].
To this result we add that for a primitive clique tree |Tj| − tj = 1, j = 1, . . . , t.

Moreover, projecting out the loop variables results in:

Theorem 2.7. Let n ≥ 7. Then the primitive clique tree inequality

h∑

i=1

x(A(Hi)) +
t∑

j=1

x(A(Tj)) −
h∑

i=1

∑

v∈Hi

x(δ+(v)) ≤ (t − 1)/2

is facet defining for PC(Dn). �

Next we consider the SD inequalities (SD for source-destination) for P n
C(Dn) intro-

duced by Balas and Fischetti [5], which generalizes the well-known comb (see Grötschel
[17]) and odd CAT inequalities (see Balas [2]). The primitive members of the family are
defined on a partition V = S∪D∪W ∪I∪E∪Q of the nodeset V and induce in generally
facets of P n

C(Dn). The partition has the following properties:

• S is a (possibly empty) set of sources

• D is a (possibly empty) set of destinations

• H := W ∪ I is the (nonempty) handle, with 0 ≤ |W | ≤ 1 and |I| = s ≥ 1

• I := {u1, . . . , us}

• E := {v1, . . . , vs}

• Tj := {uj, vj}, j = 1, . . . , s are the teeth

• 0 ≤ |Q| ≤ 1

• |S| + |D| + s is odd.

Then, lifting the primitive SD inequality

x((S ∪ H : H ∪ D)) +

s∑

j=1

x(A(Tj)) ≤ (|S| + |D| + 2|H| + s − 1)/2

to the circuit-and-loops polytope P0(D
0
n) (that can be done by adding to the left side the

sum
∑

i∈H yi of loop variables) and projecting out the loop variables yields:
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Theorem 2.8 ([6]). Let n ≥ 7, |S|+ |D|+ s ≥ 3, and ||S| − |D|| ≤ max{0, s− 3}. Then
the primitive SD inequality

x((S : H ∪ D)) +

s∑

j=1

x(A(Tj)) − x((H : V \ (D ∪ H))) ≤ (|S| + |D| + s − 1)/2 (2.13)

defines a facet of PC(Dn). �

Finally, we turn to the lifted cycle inequalities. Two known members of this family
are the D+

k and D−
k inequalities (see Grötschel and Padberg [20]), where k is any integer

satisfying 3 ≤ k ≤ n − 2:

k−1∑

j=1

xvj ,vj+1
+ xvk ,v1 + 2x((v1 : {v3, . . . , vk}))

+

k∑

j=4

x((vj : {v3, . . . , vj−1})) ≤ k − 1

and

k−1∑

j=1

xvj ,vj+1
+ xvk ,v1 + 2x(({v2, . . . , vk−1} : v1))

+

k−1∑

j=3

x((vj : {v2, . . . , vj−1})) ≤ k − 1

These inequalities are strictly speaking not primitive, but their only clones are isolated
nodes. Applying the lifting procedure to D+

k inequalities yields:

Theorem 2.9 ([6]). For any k ∈ {3, . . . , n − 2} and any l ∈ {k + 1, . . . , n}, the D+
k

inequality

xv2v3 + xv3v4 + xvkv1

+ x((v1 : {v3, . . . , vk})) + x(δ+(vl)) − x((v1 : V \ {v2, . . . , vk}))

−
k∑

j=4

x((vj : V \ {v3, . . . , vj−1, vj+1}))

− x((v1 : V \ {v2, . . . , vk−1})) − x(δ+(v3)) ≤ 1

(2.14)

defines a facet of PC(Dn). �

An analogous result can be derived for the D−
k inequalities [6].

Balas and Oosten [6] gave also a procedure whereby facet defining inequalities with
respect to PC(Dn) defined on the complete digraph Dn = (V, A) can be lifted into facet
defining inequalities for PC(Dn+1) defined on the complete digraph Dn+1 on n + 1 nodes.
It based on the fact that PC(Dn) is a face of PC(Dn+1):

PC(Dn) = {x ∈ PC(Dn+1) | xv,n+1 = xn+1,v = 0 ∀ v ∈ V }.
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Let dT x ≤ d0 be a valid inequality that defines a nontrivial facet Fd of PC(Dn). For
our purposes here, a lifting of dTx ≤ d0 is an inequality

dT x +

n∑

i=1

bixi,n+1 +

n∑

j=1

cjxn+1,j ≤ d0, (2.15)

which is valid. The polyhedron

LIFTd :=

{ (
b
c

)

∈ R2n | (2.15) is valid

}

is called the lifting set of dT x ≤ d0. LIFTd is fulldimensional, and it can be shown that

LIFTd =

{ (
b
c

)

∈ R2n

∣
∣
∣
∣

bi + cj ≤ aij ∀ (i, j) ∈ A
bi + ci ≤ a0 ∀ i ∈ N

}

.

Balas and Oosten proved that a lifting (2.15) defines a facet of PC(Dn+1) if and only if
(bT , cT ) lies on a one-dimensional face of LIFTd. This characterization leads to a sequential
lifting procedure for generating all the liftings (2.15) of dT x ≤ d0 in O(n2) time for each
inequality.

Procedure 2.10 ([6]).

INPUT: p, q ∈ {1, 2, . . . , n}, a valid and facet defining inequality for PC(Dn)
dTx ≤ d0, a permutation π of (b1, b2, . . . , bn, c1, c2, . . . , cn), with
π1 = cp and π2 = bq.

OUTPUT: A facet defining lifting (2.15) for PC(Dn+1).

1. Set cp := 0.

2. FOR k = 2, 3, . . . , 2n DO:

(a) IF πk = bi, THEN

bi = min
j
{dij − cj | cj = πl for some l < k};

(b) IF πk = cj, THEN

cj = min
i
{dij − bi | bi = πl for some l < k},

where dii = djj = a0.

�

We have 2n variables b1, b2, . . . , bn, c1, c2, . . . , cn, but the rank of the system defining
LIFTd is 2n − 1. So we can fix the value of one variable, say cp, to zero. The sequence
produces a solution satisfying 2n − 1 linearly independent inequalities at equality. Thus
(bT , cT ) lies on a one-dimensional face of LIFTd, and hence, (2.15) defines a facet of
PC(Dn+1). Moreover, all liftings of the form (2.15) are obtainable this way by choice of
an appropriate permutation.
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2.2 Related circuit polyhedra

We will study now some extensions of the circuit polytope PC(D), namely the circuit
cone, the upper circuit polyhedron and the dominant. They are of interest, since some
instances of the CP correspond to the problem to minimize an objective function over one
of these polyhedra.

2.2.1 The dominant of the circuit polytope

Let D = (V, A) be a digraph. The dominant dmt(PC(D)) of the circuit polytope PC(D)
is defined by dmt(PC(D)) := PC(D) + RA

+. Clearly, the dominant of the circuit polytope
PC(D) ⊆ RA

+ is a fulldimensional polyhedron.
If we have a linear objective function c : A → R with nonnegative coefficients ca ≥ 0,

a ∈ A, then the CP is equivalent to minimizing cT x over its dominant dmt(PC(D)). Since
the minimizing problem

min
C∈C(D)

∑

a∈C

ca

is solvable in polynomial time, we have some hope to find a complete and tractable linear
description of dmt(PC(D)) and this all the more as the ”lower” side of the circuit poly-
tope PC(D) is determined by the nonnegativity constraints (2.6) and the linear ordering
constraints (2.7). However, up to now, no such description is known. Clearly, it is not
hard to see that the nonnegativity constraints and the linear ordering constraints define
facets of dmt(PC(Dn)), but we will later show that these both classes of inequalities do not
determine the dmt(PC(Dn)). This negative result is at first view astonishing. However,
if (2.6) and (2.7) would determine dmt(PC(Dn)), one could conclude P=NP.

To see this we consider the linear ordering problem (LOP) and apply some results of
the theory of blocking polyhedra. We suggest Grötschel, Jünger, and Reinelt [18] as a
reference for the LOP and Borndörfer [9] as well as Schrijver [25] as a reference for the
blocking theory.

A polyhedron P in the Euclidean space Rm is of blocking type if P ⊆ Rm
+ and if

y ≥ x ∈ P implies y ∈ P . It follows directly that a polyhedron P in Rm is of blocking
type if and only if there are vectors c1, . . . , cp in Rm such that P = conv{c1, . . . , cp}+Rm

+ .
For any polyhedron P in Rm, the blocking polyhedron bl(P ) is defined by

bl(P ) := {x ∈ Rm
+ | yTx ≥ 1 ∀ y ∈ P},

and blocking theory says that

bl(P ) := {x ∈ Rm
+ | xT ci ≥ 1 for i = 1, . . . , p}

and bl(bl(P )) = P if P is of blocking type, i.e., P = conv{c1, . . . , cp}+ Rm
+ (see Schrijver

[25]).
We bend now the bow to the linear ordering problem. Let Dn = (V, A) be the

complete digraph on n nodes. A tournament is a subset of A containing for each pair of
nodes i, j ∈ V either the arc (i, j) or the arc (j, i), but no circuit. The linear ordering
problem (LOP) is to find a tournament of maximum weight. The LOP is known to be
NP-hard. The associated linear ordering polytope PLO(Dn) is defined as the convex hull of
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the incidence vectors of tournaments in Dn. By definition, each tournament corresponds
to exactly one linear ordering constraint (2.7), since the arcset of the support graph of a
linear ordering constraint is a tournament. Since the cardinality of each tournament is
equal to |A|/2, one can assume w.l.o.g. that the objective function is nonnegative, that is,
we can assume that we optimize over the dominant dmt(PLO(Dn)) of the linear ordering
polytope.

The blocking polyhedron bl(dmt(PLO(Dn))) is determined by the nonnegativity con-
straints (2.6) and the linear ordering constraints (2.7), i.e.,

bl(dmt(PLO(Dn))) = {x ∈ RA | x satisfies (2.6) and (2.7)}.

Assuming that dmt(PC(Dn)) is determined by (2.6) and (2.7) would imply that

bl(dmt(PLO(Dn))) = dmt(PC(Dn)).

Since dmt(PLO(Dn)) is of blocking type, it follows that

dmt(PLO(Dn)) = bl(bl(dmt(PLO(Dn)))) = bl(dmt(PC(Dn))).

Also bl(dmt(PC(Dn))) is of blocking type, and hence

dmt(PLO(Dn)) = {z ∈ RA
+ | zT v ≥ 1 for all vertices v of PC(Dn)},

i.e.,
dmt(PLO(Dn)) = {z ∈ RA

+ | zT χC ≥ 1 ∀ C ∈ C(Dn)}.

The optimization problem over dmt(PLO(Dn)) is NP-hard, the circuit inequalities
zT χC ≥ 1 can be separated in polynomial time, but optimization and separation over a
polyhedron are polynomially equivalent (see Grötschel, Lovász, and Schrijver[19]), i.e.,
dmt(PC(Dn)) = {x | x satisfies (2.6), (2.7)} would imply P=NP.

To prove that the dominant dmt(PC(Dn)) is not determined by the nonnegativity
constraints and the linear ordering constraints consider the case n = 6. We examine the
point

xM :=
1

2
[e21 + e14 + e43 + e32 + e36 + e65 + e54 + e52 + e16],

whose support graph G is illustrated in Figure 2.1. The support graph of 2xM is known
as Möbius ladder. Clearly, xM satisfies the nonnegativity constraints, but it is not hard
to see that it also satisfies the linear ordering constraints: Suppose that there is any order
π of the nodeset V = {1, . . . , 6} such that the associated linear ordering constraint is
violated. Then follows immediately that π(3) < π(2) or π(5) < π(2), since xM

23 + xM
25 = 1.

First suppose that π(3) < π(2) < π(5). Then follows further π(4)|π(3) and π(1) <
π(4), but then π(1) < π(2) < π(5), and xM would satisfy the linear ordering constraint
associated to π. Analogous is the case π(5) < π(2) < π(3), because then follows imme-
diately π(1) < π(6) < π(5) < π(2) < π(3). Hence, π(3) < π(2) and π(5) < π(2) and
analogous π(1) < π(4), π(5) < π(4), and π(1) < π(6), π(3) < π(6). But then for any
order of the nodes 2, 4, and 6, the associated linear ordering constraint is satisfied by
xM . Let for example π(2) < π(4) < π(6). Then xM

π(5),π(6) + xM
π(1),π(2) = 1. The other five

possibilities yield similar results by reasons of symmetry.
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Figure 2.1 Möbius ladder

Now we show that xM is not in the dominant dmt(PC(Dn)). Suppose, for the sake
of contradiction, that xM ∈ dmt(PC(Dn)). Then there are x ∈ PC(Dn) and z ≥ 0 with
xM = x + z, where x is a convex combination of circuits in G, that is, x =

∑m
i=1 λiχ

Ci,
∑m

i=1 λi = 1, λi ≥ 0, i = 1, . . . , m.
The point x satisfies the flow constraints (2.1) at each point. Thus,

z14 + z16 ≥ 1/2
z14 + z54 ≥ 1/2

z32 + z36 ≥ 1/2
z32 + z52 ≥ 1/2

z16 + z36 ≥ 1/2
z54 + z52 ≥ 1/2,

⇒ 2 · 1T z ≥ 3
⇒ 1T z ≥ 3

2

⇒ 1T x = 1T xM − 1T z
= 9

2
− 1T z

≤ 9
2
− 3

2
= 3.

But each circuit in G is of length at least four, and thus 1T x ≥ 4. Contradiction.

Theorem 2.11. Let Dn = (V, A), n ≥ 2, be the complete digraph on n nodes. Then the
nonnegativity constraints (2.6) and the linear ordering constraints (2.7) define facets of
dmt(PC(Dn)).

Proof. The inequalities(2.6) and (2.7) are valid, since they are valid for PC(Dn) and since
all coefficients of them are nonnegative.

In order to show that xa ≥ 0, a ∈ A, induces a facet F of dmt(PC(Dn)), consider the
incidence vector x∗ of a 2-circuit not containing the arc a and the points yi := x∗ + ei,
i = 1, . . . , |A|, i 6= a, where ei is the i-th unit vector in RA. All given points are in F,
and the vectors yi, i = 1, . . . , |A|, i 6= a, are linearly independent. Next we show that x∗

is affinely independent of the vectors yi, i = 1, . . . , |A|, i 6= a. Suppose, for the sake of
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contradiction, that

x∗ =

|A|
∑

i=1
i6=a

λiy
i, (2.16)

with

|A|
∑

i=1
i6=a

λi = 1 (2.17)

Then, it follows from (2.16) that

x∗ =
|A|∑

i=1
i6=a

λix
∗ +

|A|∑

i=1
i6=a

λiei

= x∗ +
|A|∑

i=1
i6=a

λiei

⇒
|A|∑

i=1
i6=a

λiei = 0

⇒ λi = 0, i = 1, . . . , |A|, i 6= a

⇒
|A|∑

i=1
i6=a

λi = 0. Contradiction to (2.17)!

Hence, the nonnegativity constraint xa ≥ 0 defines a facet of dmt(PC(Dn)).

To prove the facet defining property of (2.3) is easy. We assume w.l.o.g. that

(π(1), . . . , π(n)) = (1, . . . , n), that is, (2.7) is (2.3). The |A|
2

incidence vectors xij of
the 2-circuits {(i, j), (j, i)}, 1 ≤ i < j ≤ n, are linearly independent and satisfy (2.3)

at equality. The |A|
2

points yij := xij + eji, 1 ≤ i < j ≤ n, where eji is the ji-th unit
vector, are also linearly independent and satisfy (2.3) at equality. Since they are also
linearly independent of the former points, we constructed |A| linearly independent points
satisfying (2.3) at equality.

It is possible to make some statements about the coefficients of a facet defining in-
equality dT x ≥ d0 with respect to dmt(PC(Dn)).

Theorem 2.12. Let

dTx ≥ d0 (2.18)

be a facet defining inequality for dmt(PC(Dn)). Then da ≥ 0 for all a ∈ A and d0 ≥ 0.
Moreover, the following statements are valid:

(a) If d0 = 0, then (2.18) is equivalent to a nonnegativity constraint.

(b) If d0 > 0, then dij + dji = d0 for all i, j ∈ V , i 6= j. Moreover, there are n− 1 pairs
of nodes i, j with dij = 0 and dji = d0.
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Proof. First we show that da ≥ 0 for all a ∈ A and d0 ≥ 0. Since the incidence vectors of
all 2-circuits are in dmt(PC(Dn)), it follows that dij + dji ≥ d0. Suppose, for the sake of
contradiction, that there is (i, j) ∈ A with dij < 0. Then the point x∗ := χ(i,j)(j,i) +λeij ∈

dmt(PC(Dn)), where eij is the ij-th unit vector and λ = 1 +
d0−dij−dji

dij
, violates dT x ≥ d0,

since dij + dji ≥ d0. Further, dTx ≥ d0 defines a facet, and thus d0 ≥ 0.

(a): Clearly, there is at least one coefficient da, a ∈ A, with da > 0, and, as is easily seen,
this implies {x ∈ dmt(PC(Dn)) | dT x = 0} ⊆ {x ∈ dmt(PC(Dn)) | xa = 0}. Since (2.18)
defines a facet, we get even {x ∈ dmt(PC(Dn)) |dT x = d0} = {x ∈ dmt(PC(Dn)) |xa = 0},
i.e., (2.18) is equivalent to the nonnegativity constraint xa ≥ 0, a ∈ A.

(b): Recall that

(i) dij + dji ≥ d0 for all i, j ∈ V , i 6= j.

Further, the inequality dT x ≥ d0 is obviously not equivalent to a nonnegativity constraint,
as d0 > 0 and dmt(PC(Dn)) is full-dimensional, and hence

(ii) dij ≤ d0 for all (i, j) ∈ A.

Moreover, for each arc (i, j) there exists x′ ∈ dmt(PC(Dn)), with x′
ij > 0, satisfying

dT x′ = d0. Let now i, j ∈ V , i 6= j.

Case 1: dij = 0 or dji = 0
Let w.l.o.g. dij = 0. Then (i) and (ii) imply directly dji = d0, and thus we obtain

dij + dji = d0.

Case 2: dij > 0 and dji > 0
First we show that there are circuits Cij , Cji ∈ C(Dn), with (i, j) ∈ Cij and (j, i) ∈ Cji,

whose incidence vectors yij := χCij

and yij := χCij

satisfy (2.18) at equality, i.e.,

(iii) dT yij = d0 and dT yji = d0.

To see this, suppose, for the sake of contradiction, that dT χC = d0 implies (i, j) /∈ C for all
C ∈ C(Dn). Now let y′ + z′ ∈ dmt(PC(Dn)), with (y′ + z′)ij>0, satisfying dT (y′ + z′) = d0.
This implies, in particular, dT y′ = d0, and thus, by the assumption, y′

ij = 0, since
y′ ∈ PC(Dn). So we conclude z′ij > 0, which contradicts dT (y′ + z′) = d0, since dij > 0.
Thus there is such a circuit Cij . Analogous follows that there is a circuit Cji satisfying
the above conditions.

It remains to be shown that dij +dji = d0. If Cij = Cji, then follows immediately that
Cij = Cji = {(i, j), (j, i)}, and hence,

dij + dji = dT yij (iii)
= d0.

Finally, let Cij 6= Cji. Then it follows immediately that Cij 6= {(i, j), (j, i)} 6= Cji.
Now we can continue as Balas and Oosten in [6]. Let us denote by P1 the path in Cij

running from j to i, and by P2 the path in Cji running from i to j. The union of P1 and
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P2 can be interpreted as the union of (possibly overlapping) circuits, say K1, . . . , Ks, and
thus

2d0 = dT (yij + yji)
= (dij + dji) + [dTyij + dT yji − (dij + dji)]
= (dij + dji) +

∑

(u,v)∈P1

duv +
∑

(u,v)∈P2

duv

= (dij + dji) +
s∑

r=1

∑

(u,v)∈Kr

duv

︸ ︷︷ ︸

≥d0

≥ (dij + dji) + d0
(i)

≥ 2d0,

that is, all terms are equal. In particular,

2d0 = (dij + dji) + d0

⇔ d0 = dij + dji.

Now dT x ≥ d0, with d0 > 0, is facet defining for dmt(PC(Dn)), but there are at most
n2 − 2n + 2 affinely independent circuits satisfying (2.18) at equality. In fact, it is not
hard to see that there are at most n2 − 2n + 1 affinely independent circuits satisfying
(2.18) at equality. Otherwise there would be a equation with right side greater than zero
which is valid for all x ∈ PC(D). Thus there are at least n− 1 arcs (i.j) with dij = 0, and
this implies that there are at least n− 1 pairs of nodes i, j with dij = 0 and dji = d0.

2.2.2 The circuit cone

For a digraph D, the circuit cone CC(D) is the cone generated by the incidence vectors of
all (directed) circuits of D. Clearly, the dimension of the circuit cone CC(D) is equal to
that of PC(D). A complete linear description of the circuit cone CC(G) of an undirected
graph G = (V, E) was given by Seymour [27] by so called cut inequalities (see 3.6) and
the nonnegativity constraints xe ≥ 0, e ∈ E. We will show that the circuit cone of a
directed graph is determined by the degree equalities and the nonnegativity constraints.

Theorem 2.13. Let D = (V, A) be a digraph. A complete linear description of the circuit
cone CC(D) is given by

(i) x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V,
(ii) xa ≥ 0 ∀ a ∈ A.

Proof. We have to show CC(D) = {x ∈ RA | x satisfies (i) and (ii)}.

”⊆”: Trivial.

”⊇”: Let x ∈ RA satisfying (i) and (ii). If x = 0 then x ∈ CC(D). Otherwise set x0 := x
and generate a sequence of points xi by

xi+1 := xi − λiχ
C
i ,
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while supp(xi) 6= ∅, whereat λi := min{xi
a | a ∈ supp(xi)} and Ci a circuit on

the support of xi, i.e., C ⊆ supp(xi). First, observe that for each point xi, with
supp(xi) 6= ∅, such a circuit exist, since with xi−1(δ+(v)) − xi−1(δ−(v)) = 0 follows
xi(δ+(v))−xi(δ−(v)) = 0. Secondly, note that each λi is greater than zero. Finally,
the sequence is finite, because |supp(xi+1)| < |supp(xi)|, and thus the last point,
say xk, is the zero vector. Hence,

k−1∑

i=0

λiχ
C
i =

k−1∑

i=0

xi − xi+1 = x0 − xk = x,

i.e., x ∈ CC(D).

Given the optimization problem

min dTx, x ∈ CC(D), (2.19)

the minimum is equal to zero if dT χC ≥ 0 for all C ∈ C(D) and unbounded below if there
is a circuit with negative cost, i.e., the optimization problem (2.19) corresponds to the
decision problem whether there exists a circuit with negative cost or not.

2.2.3 The upper circuit polyhedron

The upper circuit polyhedron UC(D) of a digraph D is the sum of the circuit polytope
PC(D) and the circuit cone CC(D), i.e., UC(D) := PC(D) + CC(D). Given a linear
objective function d with the property dTχC ≥ 0 for all C ∈ C(D), the CP is equivalent
to minimizing dT x over the vertices of UC(D).

Between the dominant dmt(PC(D)) and the upper circuit polyhedron UC(D) we have
the following connection:

Theorem 2.14. Let D = (V, A) be a digraph on n nodes. Then

UC(D) = {x ∈ dmt(PC(D)) | x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V }.

Proof.
” ⊆ ” : Let x ∈ UC(D). Then there are y ∈ PC(D) and z ∈ CC(D) with x = y + z.
The flow constraints (2.1) are satisfied by y and z, and thus also by x. Moreover, z ≥ 0.
Hence, x ∈ dmt(PC(D)), and x satisfies the flow constraints.

” ⊇ ” : Let x ∈ dmt(PC(D)) satisfying the flow constraints (2.1), and x = y + z,
y ∈ PC(D), z ≥ 0. Since x and y satisfy the flow constraints (2.1), also z satisfies the
flow constraints (2.1). Thus x ∈ UC(D).

That is, in particular, if we have a linear description of dmt(PC(D)) then we have also
a linear characterization of UC(D).
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Chapter 3

Length restricted circuit polytopes
PL

C (Dn)

Summary. This is the main part of the thesis. As is usually done by study of facets of
polytopes defined on graphs, we restrict ourselves to the complete digraph Dn = (V, A).
We determine the dimension of P L

C (Dn) subject to L and n, give adequate integer pro-
gramming formulations, so far as possible, for P L

C (Dn), and classify the inequalities given
in the IP-formulation 2.1 in view of validity and study in which cases they are facet
defining. Further, we derive facets from the circuit polytopes PC(Kn) and P≤k

C (Kn), from
the asymmetric traveling salesman polytope P n

C(Dn), and from specific path polytopes.
Moreover, we investigate the relations between P L

C (Dn) and these polytopes.

3.1 Integer programming formulations for P L
C (Dn)

In 2.1 we presented an integer programming formulation for the circuit polytope PC(D)
of a digraph D = (V, A). It can be extended to an IP-formulation for the polytopes

P
{k,...,l}
C (D) trouble-free.

Theorem 3.1 (IP-formulation).

The integer points in P
{k,...,l}
C (Dn), 2 ≤ k ≤ l ≤ n, are determined by the system

x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V (2.1)

x(δ+(v)) ≤ 1 ∀ v ∈ V (2.2)

x(δ+(p)) + x(δ+(q)) − x((S : V \ S)) ≤ 1 ∀ S ⊂ V, 2 ≤ |S| ≤ n − 2, (2.4)

p ∈ S, q ∈ V \ S

xa ∈ {0, 1} ∀ a ∈ A (2.5)

x(A) ≥ k (3.1)

x(A) ≤ l. (3.2)

25
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C
(Dn)

In particular, the integer points of P k
C(Dn), k ∈ {2, . . . , n}, are characterized by (2.1),

(2.2), (2.4), (2.5), and

x(A) = k. (3.3)

�

For P 3
C(Dn) constraint (2.4) is redundant, and for P 2

C(Dn) we give a complete linear
description.

Theorem 3.2. P 2
C(Dn) is determined by the system

n−1∑

i=1

n∑

j=i+1

xij = 1 (3.4)

xij − xji = 0 ∀ (i, j) ∈ A (3.5)

xij ≥ 0 ∀ (i, j) ∈ A. (3.6)

Proof. Clearly, each vector in P 2
C(Dn) satisfies (3.4) - (3.6) and each vector x∗ satisfying

(3.4) - (3.6) is a convex combination of the incidence vectors of 2-circuits, because

x∗ (3.5)
=

n−1∑

i=1

n∑

j=i+1

x∗
ijχ

{(i,j),(j,i)},

1
(3.4)
=

n−1∑

i=1

n∑

j=i+1

x∗
ij ,

x∗
ij

(3.6)

≥ 0.

To model general length restricted circuit polytopes we suggest an extended formula-
tion. The background yields the theory of disjunctive programming which is optimization
over unions of polyhedra. A short review article about disjunctive programming is given
in [3]. For our purposes here, we give only the extended formulation.

Theorem 3.3 (Extended formulation).

The integer points in P L
C (Dn) are those vectors x ∈ {0, 1}A for which there exist vectors

(
yk

λk

)

∈ {0, 1}A+1, k ∈ L, satisfying

x −
∑

k∈L

λky
k = 0

∑

k∈L

λk = 1

yk satisfies (2.1), (2.2), (2.4), and yk(A) = k ∀ k ∈ L

�
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Of course, if L is given by an union of integer intervals, say L =
⋃m

j=1 Ij, where
Ij := {kj, . . . , lj}, then one can give also an extended formulation similar to the above.

There is yet another possibility of an IP-formulation if L can be interpreted as a coset
with respect to a number k ∈ {2, . . . , n}. Let us denote by

[m] := {z ∈ {2, . . . , n} | ∃p ∈ N : z = pk + m}

the (finite) cosets, m = 0, . . . , k − 1. For P
[0]
C (D) the model is:

Theorem 3.4. Let D = (V, A) be a digraph with nodeset V = {v1, . . . , vn}, k ∈ {2, . . . , n},
and L the coset [0] with respect to k. Let V0, . . . , Vk−1 be copies of V and s, t two additional
nodes. Define the digraph D′ := (V ′, A′) by

V ′ := {s, t} ∪

(
k−1⋃

j=0

Vj

)

,

A′ := (s, V0) ∪ (V0, t) ∪

(
k−1⋃

j=0

(Vj , Vj+1)

)

where Vk := V0 and

(s, V0) := {(s, vi0) | i = 1, . . . , n},

(V0, t) := {(vim, t) | i = 1, . . . , n}, and

(Vj, Vj+1) := {(vpj
, vqj+1

) | (vp, vq) ∈ A}, j = 0, . . . , k − 1.

Then y is an integer point of P
[0]
C (D) if and only if there is x ∈ {0, 1}A′

satisfying

n∑

i=1

xs,vi0
= 1 (3.7)

xvi0
,t − xs,vi0

= 0 i = 1, . . . , n (3.8)

x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V ′ \ {s, t} (3.9)
k−1∑

j=0

x(δ+(vij )) − xs,vi0
≤ 1 i = 1, . . . , n (3.10)

k−1∑

j=0

x(δ+(vpj
)) +

k−1∑

j=0

x(δ+(vqj
))

−xvp0 ,t − xvq0 ,t − x((S : V ′ \ (S ∪ {s, t})) ≤ 1 ∀ S ⊂ V ′ \ {s, t}, (3.11)

vpj
∈ S, vqj

∈ V ′ \ (S ∪ {s, t}),

vi0 ∈ S ⇔ vij ∈ S,

j = 0, . . . , k − 1

x(A′) ≥ k + 2. (3.12)
k−1∑

l=0

xvil
,vjl+1

− yvi,vj
= 0 ∀ (vi, vj) ∈ A. (3.13)
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Proof. Necessity. Let y∗ be an integer point of P L
C (D). Then there is a circuit C =

(v(1), . . . , v(tk)) ∈ C[0](D), t ∈ {1, . . . , ⌊n
k
⌋}, with y∗ = χC . Set v(tk+1) := v(1), and define

the coefficients of a vector x∗ ∈ RA′

by

x∗

v
(sk+i)
i−1 ,v

(sk+i+1)
i

= 1 s = 0, . . . , t − 1, i = 1, . . . , k,

and otherwise zero. Then x∗ is an integer point, which satisfies (3.7)-(3.10), (3.12), and
(3.13). Constraint (3.11) is a subclass of the dce constraints and thus satisfied.

Suffiency. Consider first the following system on the digraph D′′ = (V ′′, A′′) :=
D′ \ {s, t}:

x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V ′′ (3.14)
k−1∑

j=0

x(δ+(vij )) ≤ 1 i = 1, . . . , n (3.15)

k−1∑

j=0

x(δ+(vpj
)) +

k−1∑

j=0

x(δ+(vqj
))

−x((S : V ′′ \ S) ≤ 1 ∀ S ⊂ V ′′, (3.16)

vpj
∈ S, vqj

∈ V ′′ \ S,

vi0 ∈ S ⇔ vij ∈ S,

j = 0, . . . , k − 1

x(A′′) ≥ k. (3.17)
k−1∑

l=0

xvil
,vjl+1

− yvi,vj
= 0 ∀ (vi, vj) ∈ A. (3.18)

Constraints (3.14) and (3.15) are satisfied by the zero vector and the incidence vectors
of unions of circuits of length l ∈ [0] such that at most one copy of each node vj, j =
0, . . . , k − 1, is covered. Constraint (3.17) excludes the zero vector. Constraints (3.16)
are satisfied by all circuits of length l ∈ [0] covering at most one copy of vp and vq,
respectively, but violated by unions of those circuits with more than one member. Hence,
x is the incidence vector of a circuit (in D”) of length l ∈ [0] which covers at most one
copy of each node vj , j = 0, . . . , k−1. By definition of y, it follows that y is the incidence
vector of a circuit (in D) of length l ∈ [0].

The modified system (3.7)-(3.13) ensures that the circuit corresponding to x starts
end ends with a node in V0.

For the polytopes P
[m]
C (D), m = 1, . . . , k − 1, we give a (s, t)-path model:

Theorem 3.5. Let D = (V, A) be a digraph with nodeset V = {v1, . . . , vn}, k ∈ {2, . . . , n},
and L := [m], m ∈ {1, . . . , k − 1}, a coset with respect to k. Let V0, . . . , Vk−1 be copies of
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V , s, t two additional nodes, and define the digraph D′ := (V ′, A′) by

V ′ := {s, t} ∪

(
k−1⋃

j=0

Vj

)

,

A′ := (s, V0) ∪ (Vm, t) ∪

(
k−1⋃

j=0

(Vj, Vj+1)

)

where Vk := V0 and

(s, V0) := {(s, vi0) | i = 1, . . . , n},

(Vm, t) := {(vim, t) | i = 1, . . . , n}, and

(Vj, Vj+1) := {(vpj
, vqj+1

) | (vp, vq) ∈ A}, j = 0, . . . , k − 1.

Then y is an integer point of P L
C (D) if and only if there is x ∈ {0, 1}A′

satisfying

n∑

i=1

xs,vi0
= 1 (3.19)

xvim ,t − xs,vi0
= 0 i = 1, . . . , n (3.20)

x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V ′ \ {s, t} (3.21)
k−1∑

j=0

x(δ+(vij )) − xs,vi0
≤ 1 i = 1, . . . , n (3.22)

x(A′(S)) ≤ |S| − 1 ∀S ⊆ V ′ \ {s, t} ∃ p ∈ {1, . . . , ⌊
n

k
⌋} with (3.23)

|S ∩ Vj| = p, j = 0, . . . , k − 1, and

i, j = 0, . . . , k − 1, i 6= j
k−1∑

l=0

xvil
,vjl+1

− yvi,vj
= 0 ∀ (vi, vj) ∈ A. (3.24)

Proof.
Necessity. Let y∗ be an integer point of P L

C (D). Then there is a circuit C =
(v(1), . . . , v(qk+m)) ∈ C[m](D), q ∈ {0, . . . , ⌊n

k
⌋}, with y∗ = χC . Set v(qk+m+1) := v(1),

and define the coefficients of a vector x∗ ∈ RA′

by

x∗

s,v
(1)
0

= x∗

v
(1)
m ,t

= 1,

x∗
s,vi0

= x∗
vim ,t = 0 ∀ vi ∈ V, vi 6= v(1),

x∗

v
(pk+i)
i−1 ,v

(pk+i+1)
i

= 1 p = 0, . . . , q − 1, i = 1, . . . , k;

x∗

v
(qk+i)
i−1 ,v

(qk+i+1)
i

= 1 i = 1, . . . , m − 1;

all other coefficients set to zero. The point x∗ is integer and satisfies obviously (3.19)-
(3.22) and (3.24). Constraints (3.23) are a choice of the subtour elimination constraints,
and hence x∗ satisfies also (3.23).

Suffiency. Let x ∈ {0, 1}A′

satisfying the constraints (3.19)-(3.24). Constraints
(3.19),(3.20), and (3.22) ensure that x is the sum of incidence vectors of a (s,t)-path P and
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circuits C1, . . . , Cf . Clearly, there is exactly one r ∈ {1, . . . , n} with (s, vr0), (vrm
, t) ∈ P .

Constraint (3.21) ensures that for each i ∈ {1, . . . , n} at most one copy of a node vi is
covered by P ∪f

j=1 Cj excepting vr; there are exactly two copies which are covered, both
by the path P . Constraint (3.23) excludes the circuits C1, . . . , Cf , and hence, y is an
incidence vector of a circuit of length l ∈ L by definition (3.24).

3.2 Equivalence of inequalities

The polytope P L
C (Dn) is obviously not full dimensional, since all x ∈ P L

C (Dn) satisfy the
flow constraints (2.1). Thus, two valid inequalities can define the same face of P L

C (Dn),
although they may be quite different in appearance. So it is very helpful to define a
canonical form of valid inequalities for P L

C (Dn).
A system Cx = d of linear equations whose solution set is the affine hull of a polyhedron

P is said to be an equality subsystem of P . Two valid inequalities for P are equivalent
if one can be obtained from the other by multiplication with a positive scalar and then
adding appropriate multiples of the equality subsystem. For our purpose it is sufficient
to know that the flow constraints (2.1) are a subset of the equality subsystem. We will
show that a valid inequality can be brought in such a form that the arcs corresponding to
coefficients which are equal to zero contain a set T ⊆ A whose induced underlying graph
builds a spanning tree.

Definition 3.6. Let Dn = (V, A) be the complete digraph on n nodes and T a subset of
A with the properties

(a) ∀ u, v ∈ V , u 6= v: (u, v) ∈ T ⇒ (v, u) /∈ T ,

(b) the underlying graph of D′ := (V (T ), T ) is a spanning tree. In particular, V (T ) = V .

Then a valid inequality bT x ≤ b0 for P L
C (Dn) is said to be in T -rooted form (or simply

T -rooted) if

(i) ba = 0 for all a ∈ T

(ii) the coefficients ba, b0 are relatively prime integers.

In particular, for T = δ−(h) for some h ∈ V , bT x ≤ b0 is said to be in h-rooted form (or
simply h-rooted) if it satifies (i) and (ii) (see Balas and Oosten [6]).

Theorem 3.7. Let Dn = (V, A) be the complete digraph on n nodes and T a subset of
A with the in Definition 3.6 required properties. Then, every valid inequality for P L

C (Dn)
can be transformed to a T -rooted inequality.

Proof. Let T = {a1, . . . , an−1}, and let bT x ≤ b0 be a valid inequality for PC(Dn). Since
T is weakly connected, we can choose an ordering π of T such that the arcsets Tk :=
{aπ(j) | j = 1, . . . , k} are weakly connected for all k ∈ {1, . . . , n − 1}. Let v1 be one
endnode of aπ(1) and denote by vk the node incident with aπ(k) not belonging to the
nodeset of Tk−1, k = 2, . . . , n − 1. (Note that this implies an ordering of the nodeset V .)
Now, apply the following algorithm:
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1. Set b0 := b and b0
0 := b0.

2. For k = 1, . . . , n − 1 add to (bk−1)T x ≤ bk−1
0 the equation

−bk−1
api(k)

(x(δ+(vk)) − x(δ−(vk))) = 0

if vk is the tail of aπ(k), and the equation

−bk−1
aπ(k)

(x(δ−(vk)) − x(δ+(vk)))

if vk is the head of aπ(k), and denote the resulting inequality by (bk)T x ≤ bk
0.

Then bn−1
a = 0 for all a ∈ T , bn−1

0 = b0, and

∑

a∈A

bn−1
a =

∑

a∈A

= ba.

By multiplying (bn−1)Tx ≤ b0
n−1 by an appropriate real number yields an inequality in

T -rooted form.

An interesting question is whether a face F of P L
C (Dn) can be defined by a unique

T -rooted inequality or not. We will not discuss it here, but in the next section we will see,
for example, that dim P L

C (Dn) = dim PC(Dn) for |L| ≥ 2. This implies that the equality
subsystem of those polytopes consists only the flow constraints. Along the lines of the
argumentation of Balas and Oosten in [6] one could show that then for a given tree T ,
the face F is defined by a unique T -rooted inequality if F is a facet.

3.3 Dimension

The dimension of the circuit polytope PC(Dn) is equal to (n− 1)2 (see Balas and Oosten
[6]), while the dimension of P L

C (Dn) depends on both n and L. First we will study

the dimension of the polytopes P 3
C(Dn) and P

{2,3}
C (Dn) in order to ascertain that the

dimension of the polytope P≤k
C (Dn), 3 ≤ k < n, is equal to (n − 1)2. After that we are

prepared to specify the dimension of P k
C(Dn), 3 ≤ k < n. Finally we will investigate

the general case, dim P L
C (Dn), L ⊆ {2, . . . , n}. Clearly, dim P L

C (Dn) ≤ dim PC(Dn), since
P L

C (Dn) ⊆ PC(Dn).
In order to simplify the next proofs we introduce two useful lemmas.

Lemma 3.8. Let D be a digraph on n nodes and x1, x2, . . . , xp ∈ P k
C(D), p ∈ N, affinely

independent points. Then they are even linearly independent.

Proof. Assume that the points are not linearly independent. Then exist a point, say xp,
and real numbers λ1, λ2, . . . , λp−1 such that

xp =

p−1
∑

i=1

λixi.
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Then it follows:

k = 1T xp =
p−1∑

i=1

λi 1
T xi
︸︷︷︸

=k

= k
p−1∑

i=1

λi

⇒
p−1∑

i=1

λi = 1. Contradiction!

Lemma 3.9. Let k, l ∈ L, k 6= l, x1, x2, . . . , xp ∈ P k
C(Dn), p ∈ N, and y ∈ P l

C(Dn). Then
y is not in the affine hull of {x1, x2, . . . , xp}.

Proof. Assume that y =
∑p

i=1 λixi such that
∑p

i=1 λi = 1. Knowing 1T xi = k, i =
1, 2, . . . , p, and 1T y = l yields the following contradiction:

y =

p
∑

i=1

λixi

⇒ l = 1T y =

p
∑

i=1

λi1
T xi = k

p
∑

i=1

λi = k,

contrary to the assumption that k 6= l.

Theorem 3.10.

(a) dim P 2
C(Dn) = 1

2
n(n − 1) − 1 ∀ n ≥ 2.

(b) dim P 3
C(Dn) =







1 if n = 3,
6 if n = 4,
dim PC(Dn) − 1 if n ≥ 5.

(c) dim(P
{2,3}
C (Dn)) = dim PC(Dn) for all n ≥ 3.

Proof.

(a) It exist precise 1
2
n(n−1) 2-circuits whose incidence vectors are linearly independent.

Thus dim P 2
C(Dn) = 1

2
n(n − 1) − 1 for all n ≥ 2.

(b) Clearly, dim P 3
C(D3) = 1 For n = 4 assure yourself of the correctness of the state-

ment.

Now we show that dim P 3
C(Dn) = dim PC(Dn) − 1 for n ≥ 5. It is an easy con-

sequence of Lemma 3.9 that dim P 3
C(Dn) ≤ dim PC(Dn) − 1: suppose, for the

sake of contradiction, that dim P 3
C(Dn) = dim PC(Dn). Since any k-circuit, with

k 6= 3, is affinely independent of all 3-circuits, it follows that dim P
{3,k}
C (Dn) =

dim PC(Dn) + 1, but this contradicts dim P
{3,k}
C (Dn) ≤ dim PC(Dn).

In order to show that dim P 3
C(Dn) ≥ dim PC(Dn) − 1 for n ≥ 5, we prove per

induction on the number of nodes n that the rank of the set S(Dn) of all incidence
vectors of 3-circuits is at least (n − 1)2. Then the claim follows immediately.
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For n = 5 assure yourself of the correctness of the statement! Let the assertion be
true for n ≥ 5. Then, we show it is also true for n + 1.

Let S(Dn+1) be the set of all incidence vectors of 3-circuits of Dn+1, let Sn+1 the
set of all incidence vectors of 3-circuits entering node n + 1, and S̄n+1 the set of all
incidence vectors of 3-circuits not entering node n+1. Further, let Dn = (V ′, A′) be
the complete subdigraph of Dn+1 induced by the n first nodes. From the assumption
by induction we know that rank(S̄n+1) = (n − 1)2.

From Sn+1 we construct the set Rn+1 by removing in each to an incidence vector
corresponding circuit the arc (i, j) ∈ A′, i.e.,

Rn+1 := {χ{(i,n+1),(n+1,j)} | (i, j) ∈ A′}.

We will show in two steps that rank(Rn+1) = 2n − 1.

Claim 1: rank(Rn+1) =rank(R̃n+1), where R̃n+1 := {χ{(i,n+1),(n+1,j)} | i, j ∈ V ′}.

That can be seen as follows. Obviously is Rn+1 a subset of R̃n+1. It remains to be
shown that χ{(i,n+1),(n+1,i)} ∈ lin(Rn+1) for all i ∈ V ′. But this follows from the
following equation for arbitrary nodes i, j, k ∈ V ′, i 6= j 6= k 6= i:

χ{(i,n+1),(n+1,i)} = χ{(i,n+1),(n+1,j)} − χ{(k,n+1),(n+1,j)} + χ{(k,n+1),(n+1,i)}.

Claim 2: rank(Rn+1) = 2n − 1.

R̃n+1 can be interpreted as the set of incidence vectors of the complete bipartite
graph with nodeset V ′∪V ′′, where V ′′ is a copy of V ′ and the bipartition is (V ′ : V ′′).
It is well known that the rank of such a set is 2n− 1. Together with Claim 1 we get
rank(Rn+1) = 2n − 1.

As can easily be seen, lin(S̄n+1)∩ lin(Rn+1) = {0}, and thus rank(S̄n+1∪Rn+1) = n2

which completes the proof for (b).

(c) For n = 3 the claim follows, since P
{2,3}
C (Dn) = PC(D3). For n ≥ 4 the statement

follows directly from (b) and Lemma 3.9.

Corollary 3.11. dim P≤k
C (Dn) = (n − 1)2 for all n ≥ 3, 3 ≤ k < n.

�

Theorem 3.12. Let n ≥ 5 and 3 ≤ k < n. Then the cardinality constraint

x(A) ≤ k (3.25)

is facet defining for P≤k
C (Dn).

Proof. For k = 3 the claim follows from Theorem 3.10 (b). If k ≥ 4, we assume that
there is an inequality bT x ≤ b0, b ∈ RA, b 6= 0, which is valid for P≤k

C (Dn) and satisfies
{x ∈ P≤k

C (Dn) | x(A) = k} ⊆ {x ∈ P≤k
C (Dn) | bT x = b0}. Let w.l.o.g. bT ≤ b0 in 1-rooted

form, i.e., bi1 = 0 for all i ∈ {2, 3, . . . , n}.
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Let u, v, w ∈ V \ {1}, and let C be a circuit of cardinality k containing the arcs (u, v)
and (v, 1), but not the node w. With C̃ = (C \ {(u, v), (v, 1)})∪ {(u, w), (w, 1)}, we have

bT χC = bT χC̃ = b0 and thus

buv + bv1 = buw + bw1

⇔ buv = buw.

Since u, v, w ∈ V \ {1} were arbitrary chosen, it follows

bu2 = bu3 = · · · = bu,u−1 = bu,u+1 = · · · = bun

for all u ∈ {2, 3, . . . , n}.

Next, let p, q, r, s ∈ V \ {1} four arbitrary nodes such that (p, q) and (r, s) are not
adjacent arcs. We show bpq = brs. Consider the circuits C := (1, v1, v2, . . . , vk−3, p, q) and

Ĉ := (1, v1, v2, . . . , vk−3, q, r). C and Ĉ are circuits of cardinality k. Since bq1 = br1 = 0
and bk−3,p = bk−3,q, we have bpq = bqr. Analogously follows bqr = brs, and thus bpq = brs.
Also we have buv = bvu for all u, v ∈ V \ {1}.

This immediately yields bij = b0
k

for all i, j ∈ V \ {1} by considering a circuit of
cardinality k which contains not the node 1. To prove b1i = 2

k
b0, i = 2, 3, . . . , n consider

a circuit of cardinality k which contains the arc (1, i). Assuming b0 = 0 implies b = 0
which is a contradiction. Consequently b0 6= 0 and thus bT x ≤ b0 is a positive multiple of
x(A) ≤ k up till rooting.

Theorem 3.13. Let Dn = (V, A), n ≥ 4, be the complete digraph on n nodes. Then

dim P
{2,n}
C (Dn) = dim PC(Dn).

To prove the theorem requires a higher amount of technical detail, because the di-
mensions of the both polytopes P 2

C(Dn) and P n
C(Dn) lie wide under (n − 1)2. We set

dn := dim P n
C(Dn) = n2 −3n+1. The foundation of the proof builds the following lemma

which is actually clear by the considerations in Chapter 2.

Lemma 3.14. Let P0(D
0
n) be the circuit-and-loops polytope, and let

(
x1

y1

)

, . . . ,

(
xp

yp

)

∈

P0(D
0
n), p ∈ N. Then the following statements are equivalent.

(a) x1, x2, . . . , xp are affinely independent.

(b)

(
x1

y1

)

,

(
x2

y2

)

, . . . ,

(
xp

yp

)

are affinely independent.

Proof.

”(a) ⇒ (b)”: Trivial.

”(b) ⇒ (a)”: Suppose, for the sake of contradiction, that the points x1, . . . , xp are not
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affinely independent, say, e.g., xp =
p−1∑

i=1

λix
i,

p−1∑

i=1

λi = 1. Then follows

yp =








1 − xp(δ+(1))
1 − xp(δ+(2))

...
1 − xp(δ+(n))








=














1 −
p−1∑

i=1

xi(δ+(1))

1 −
p−1∑

i=1

xi(δ+(2))

...

1 −
p−1∑

i=1

xi(δ+(n))














=

p−1
∑

i=1

λi








1 − xi(δ+(1))
1 − xi(δ+(2))

...
1 − xi(δ+(n))








=

p−1
∑

i=1

λiy
i,

and hence
(

xp

yp

)

=

n−1∑

i=1

λi

(
xi

yi

)

.

Contradiction!

Proof of Theorem 3.13
Since dim P n

C(Dn) = dim PC(Dn)−n, there are dn+1 = n2−3n+2 linearly independent

vectors

(
xr

yr

)

∈ P0(D
0
n) such that yr = 0, r = 1, 2, . . . , dn + 1.

Next consider the point

(
x23

y23

)

where x23 is the incidence vector of the 2-circuit C23 =

{(2, 3), (3, 2)}, and n − 1 further points

(
x1i

y1i

)

where x1i the incidence vector of the 2-

circuit C1i = {(1, i), (i, 1)}, i = 2, 3, . . . , n.
The incidence matrix Z whose rows are the vectors ((xr)T , (yr)T ), r = 1, 2, . . . , dn + 1,

((x23)T , (y23)T ), and ((x1i)T , (y1i)T ), i = 2, 3, . . . , n, is of the form

Z =

(
X 0
Y L

)

,

where

L =

(
1 0 0 1 · · ·1
0 E − I

)

.

E is the (n − 1) × (n − 1) matrix of all ones and I the (n − 1) × (n − 1) identity
matrix. E − I is nonsingular, and thus L is of rank n. A is of rank dn + 1, and hence
rank (Z) = dn + 1 + n = n2 − 2n + 2. This yields together with Lemma 3.14 the desired
result.

�

We summarise the results and add some easy conclusions.

Corollary 3.15.

(a) dim P 2
C(Dn) = 1

2
n(n − 1) − 1 ∀ n ≥ 2.

(b) dim P 3
C(Dn) =







1 if n = 3,
6 if n = 4,
dim PC(Dn) − 1 if n ≥ 5.
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(c) dim P k
C(Dn) =

{
dim PC(Dn) − n if n = k,
dim PC(Dn) − 1 if n > k,

∀ k ∈ N, k ≥ 4.

(d) If |L| ≥ 2, then dim P L
C (Dn) = dim PC(Dn) ∀ n ≥ 3.

Proof.

(i),(ii) See Theorem 3.10.

(iii) If n = k then P k
C(Dn) is the asymmetric traveling salesman polytope, which has

dimension n2 − 3n + 1 = dimPC(Dn) − n (see Grötschel [17]). For n > k apply
Theorem 3.12. There we have shown that P k

C(Dn) is a facet of PC(Dn); hence,
dim P k

C(Dn) = dim PC(Dn) − 1.

(iv) Because |L| ≥ 2, it exist i, j ∈ {2, 3, . . . , n}, i < j with i, j ∈ L. If i = 2 and
j = 3, we are ready. Otherwise let in the first instance 4 ≤ j < n. So we know that
arank(Cj(Dn)) = (n − 1)2. Then follows from Lemma 3.9 that x /∈ aff(Cj(Dn)) for
any x ∈ Ci(Dn). This implies dim P L

C (Dn) = dim PC(Dn).

Now let j = n. If 2 < i < j = n and n ≥ 5, we can reverse the roles of i and j in
the above proof of contradiction. If i = 3 and n = 4, i.e., j = 4, then assure yourself
of the correctness of the statement. Otherwise is i = 2 and j = n, n ≥ 4. But then
follows the proposition from Theorem 3.13.

3.4 Inequalities from the circuit polytope PC(Dn)

It would be nice to transform facet defining inequalities for the circuit polytope PC(Dn)
into those for a length restricted circuit polytope P L

C (Dn). But this seems to be a hard
problem, since P L

C (Dn) is in generally not a face of PC(Dn). In this thesis we will not
discuss the problems, but only make some remarks.

For the symmetric counterpart Bauer [7] gives a criterion when a facet defining in-
equality for PC(Kn) is also facet defining for P≤k

C (Dn), with 4 ≤ k < n, but I do not
understand it. She states that

• if an inequality bT x ≤ b0 is facet defining for PC(Kn),

• if there is a complete subgraph G = (V ′, E ′) of Kn with at most k nodes such that
the restriction of bT x ≤ b0 is also facet defining for PC(G),

• and if for each edge e /∈ E ′ there is a circuit C with e ∈ C, |C| ≤ k, and bT χCx = b0,

then bT x ≤ b0 is also facet defining for P≤k
C (Dn). The proof of this statement is unfortu-

nately deficient. Even though the criterion is true, we cannot be sure if a similar criterion
is true for the directed case.

Hence we prefer it to investigate for each facet defining inequality for PC(Dn) sepa-
rately on which conditions it is also facet defining for P L

C (Dn). We begin with the in-
equalities of the IP-formulation 2.1 and give a complete classification of these inequalities.
Before starting let us make some easy observations:
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Lemma 3.16. Let aT x ≤ a0 be a valid inequality with respect to a polyhedron P ⊆ Rm

and F := {x ∈ P | aT x = a0} 6= ∅ the induced face. Then

F = aff(F ) ∩ P.

Proof.

”⊆”: Trivial.

”⊇”:

y ∈ aff(F )

⇒ ∃ x1, . . . , xk ∈ F, λ1, . . . , λk ∈ R : y =
k∑

i=1

λixi,
k∑

i=1

λi = 1

⇒ ∃ x1, . . . , xk ∈ F, λ1, . . . , λk ∈ R : aT y =
k∑

i=1

λi a
T xi
︸︷︷︸

=a0

= a0

k∑

i=1

λi

︸ ︷︷ ︸

=1

= a0

y∈P
⇒ y ∈ F.

Lemma 3.17. Let cT x ≤ c0 define a facet F of P L
C (Dn) which is not equivalent to a

nonnegativity constraint. Then the following statements are valid.

(a) To each arc a ∈ A there is a point x∗ ∈ F with x∗
a > 0.

(b) For any two arcs a, b ∈ A, a 6= b, there are at least two points xa, xb ∈ F such that
xa

a > 0, xa
b = 0 and xb

b > 0, xb
a = 0.

Proof.

(a) Assume there is an arc a such that xa = 0 for all x ∈ F . Then follows F ⊆
{x ∈ P L

C (Dn) | xj = 0}, contrary to the assumption that F is not induced by a
nonnegativity constraint.

(b) Due to (i) there are points xa, xb ∈ F with xa
a > 0 and xb

b > 0. Assume that xa = xb

for all x ∈ F . Then exist λ > 0 and x∗ ∈ P L
C \ F such that

(i) dT x := cT x + λxa − λxb ≤ c0 is valid for P L
C (Dn) and

(ii) cT x∗ + λx∗
a − λx∗

b = c0.

But since dTx = c0 for all x ∈ F , it follows F ( {x ∈ P L
C (Dn) | dTx = c0}. Hence,

F is not a facet of P L
C (Dn). Contradiction!
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Nonnegativity constraints

First we investigate when a nonnegativity constraint defines a facet of P k
C(Dn). In order

to simplify the proof of the next theorem we introduce a definition and a useful lemma.

Definition 3.18. Let D = (V, A) be a digraph, u, v ∈ V , Cu a circuit containing u, and Cv

a circuit containing v. Then we say that Cu and Cv are [u, v]-adjacent if Cu\{u} = Cv\{v}.

Lemma 3.19. Let Dn = (V, A), n ≥ 6, be the complete digraph on n nodes, a ∈ A,
and k ∈ {4, . . . , n − 1}. Let us denote by Ck

a (Dn) the set of circuits in Dn of length k
containing arc a and by Ck

¬a(Dn) the set of circuits in Dn of length k not containing arc
a.

(a) Let p, q ∈ V and Cp, Cq ∈ Ck
a (Dn) be [p, q]-adjacent circuits. Then the incidence

vector of Cp is in the affine hull of the incidence vectors generated by {Cq}∪C
k
¬a(Dn),

and, vice versa, the incidence vector of Cq is in the affine hull of the incidence vectors
generated by {Cp} ∪ Ck

¬a(Dn).

(b) Let C1, C2, . . . , Cp ∈ Ck
a (Dn), p ∈ N, p ≥ 2, vi ∈ V (Ci) for i = 1, . . . , p, and Cj and

Cj+1 be [vj , vj+1]-adjacent for j = 1, . . . , p−1. Then the incidence vector of C1 is in
the affine hull of the incidence vectors generated by {Cp}∪Ck

¬a(Dn), and, vice versa,
the incidence vector of Cp is in the affine hull of the incidence vectors generated by
{C1} ∪ Ck

¬a(Dn).

Proof.

(a) For 4 ≤ k < n, let

Cp = (v1, v2, . . . , vi−1, p, vi+1, . . . , vk, v1)

Cq = (v1, v2, . . . , vi−1, q, vi+1, . . . , vk, v1), 2 ≤ i ≤ k − 1

and let w.l.o.g. a = (vk, v1). We show Cp ∈ aff({Cq}∪C
k
¬a(Dn)). The other direction

follows analogously. If Cp = Cq it is nothing to show. So let Cp 6= Cq. For k = 4
exists at least one further node z ∈ V \ (V (Cp) ∪ V (Cq)), since n ≥ 6. Cp can be
generated by adding to Cq the circuit C∗ = (vi−1, p, vi+1, z, vi−1) and subtracting the
circuit C ′ = (vi−1, q, vi+1, z, vi−1). For 5 ≤ k < n, Cp can be generated by adding to
Cq the circuit C∗ = (vi−1, p, vi+1, vi−2, vi−3, . . . , v1, vk, . . . , vi+2, vi−1) and subtracting
the circuit C ′ = (vi−1, q, vi+1, vi−2, vi−3, . . . , v1, vk, . . . , vi+2, vi−1). This implies (a).

(b) This follows immediately from (a) by induction.

Theorem 3.20. Let Dn = (V, A), n ≥ 3, be the complete digraph on n nodes and k ∈
{2, . . . , n}. Then the inequality xa ≥ 0, a ∈ A, defines a facet of P k

C(Dn) if and only if
P k

C(Dn) 6= P 4
C(D4).
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Proof. Necessity. Suppose that P k
C(Dn) = P 4

C(D4). If xa ≥ 0 would be a facet of P 4
C(D4),

there had to be five linearly independent 4-circuits not containing a. But there are only
four linearly independent 4-circuits not containing a.

Suffiency. The statement is obviously true if k = 2. For n = k 6= 4, Grötschel gave in
[17] a constructive proof that the nonnegativity constraints xa, a ∈ A, define facets.

Let now k ∈ {3, . . . , n−1}. Denote by F the face induced by xa ≥ 0. As F is a proper
face, we have dim F < dim P k

C(Dn). Let C∗ ∈ Ck(Dn) be any circuit containing the arc
a, and set as above Ck

a (Dn) := {C ∈ Ck(Dn) | a ∈ C} and Ck
¬a(Dn) := {C ∈ Ck(Dn) | a /∈

C}. First we will show for k ≥ 4 and n ≥ 6 that the remaining circuits C containing the
arc a are in the affine hull of {C∗} ∪ Ck

¬a(Dn). That proves dim F ≥ dim P k
C(Dn) − 1.

Let w.l.o.g. a = (1, 2) and C∗ be the circuit (1, 2, 3, . . . , k, 1). Further, let C =
(v1, v2, v3, . . . , vk, v1), C 6= C∗, be any circuit of length k with v1 = 1 and v2 = 2. In
a first step we show that the incidence vector of C is in the affine hull of the incidence
vectors generated by {Cπ}∪Ck

¬a(Dn) where π is a permutation of 1, 2, . . . , k such that the
circuit Cπ := (vπ(1), vπ(2), vπ(3), . . . , vπ(k), vπ(1)) satisfies vπ(j) < vπ(j+1), j = 1, 2, . . . , k − 1.
(It follows immediately vπ(1) = 1, vπ(2) = 2 and vk > v1.) That can be seen as follows.
Let vj > vj+1 for any j ∈ {1, 2, . . . , k − 1}. Since k < n, it exist a node u ∈ V \
V (C). We set vk+1 := v1 = 1. Consider the sequence of circuits generated by C1 := C,
C2 := (v2, . . . , vj−1, u, vj+1, . . . , vk+1, v2), C3 := (v2, . . . , vj−1, u, vj, vj+2, . . . , vk+1, v2) and
C4 := (v2, . . . , vj−1, vj+1, vj, vj+2, . . . , vk+1, v2). This sequence fullfills the conditions of
Lemma 3.19 (b). Thus, the incidence vector of C is in the affine hull of the incidence
vectors generated by {C4} ∪ Ck

¬a. After at most (k − 2)! repetitions of node-exchanges we
obtain the desired result.

Next, we show that χCπ is in the affine hull the incidence vectors generated by {C∗}∪
Ck
¬a(Dn). Let us redefine Cπ by Cπ := (1, 2, w3, . . . , wk, 1). If Cπ = C∗ it is nothing more

to show. Otherwise we know especially that wk > k. Let j∗ be the first number with
wj∗ > j∗. It follows j∗ ≥ 3. Generate for j = j∗ to k the sequences

[(2, . . . , j − 1, wj, wj+1, . . . , wk+1, 2), (1, 2, . . . , j − 1, j, wj+1, . . . , wk+1, 1)],

where wk+1 := 1. By Lemma 3.19 (b) follows the claim, and thus holds Theorem 3.20 if
5 ≤ k < n.

In case k = 4 and n = 5 a computer verification with PORTA shows that dimF =
14 = dim P 4

C(D5) − 1.
Finally, let k = 3. In case n = 4 and n = 5 assure yourself of the correctness of the

claim. For n ≥ 6 let C = (1, 2, i, 1) 6= C∗ be any circuit containing the arc (1, 2). By
taking two further nodes j, k ∈ V \ {1, 2, 3, i}, j 6= k, the following equation completes
the proof, where the incidence vectors are denoted by sums of unit vectors.

e12+e2i+ei1 = e12+e23+e31

+e2i+eij+ej2

+ei1+e1k+eki

+e3j+ek3+ejk

−e23 −ej2 −e3j

−e31 −e1k −ek3

−eij −eki −ejk
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Theorem 3.21. Let Dn = (V, A), n ≥ 3, be the complete digraph on n nodes, and let
|L| ≥ 2. Then the inequality xuv ≥ 0, (u, v) ∈ A, defines a facet of P L

C (Dn).

Proof.
Case 1: L 6= {2, n}

Since |L| ≥ 2 and L 6= {2, n}, it exist k ∈ L∩{3, . . . , n− 1}, l ∈ L \ {k}. By Theorem
3.20, there are n2−2n linearly independent k-circuits not containing (u, v), and by Lemma
3.9, any l-circuit not containing (u, v) is affinely independent of them. This proves the
claim.

Case 2: L = {2, n}
Let w.l.o.g. (u, v) = (1, 2). The statement is evidently true for n = 3. Now let n ≥ 4.

By Theorem 3.20, it exist n2 − 3n + 1 linearly independent incidence vectors xr of tours
satisfying xr

uv = 0. Further, the incidence vectors xpq of the 2-circuits on {2, 3}, {3, 4},
and {1, i}, i = 3, . . . , n, satisfy xpq

12 = 0.

Let us consider now the corresponding circuit-and-loops polytope P
{2,n}
0 (D0

n). Denote
by yr and ypq the associated loops vectors. Then the matrix B whose rows are the vectors
(

xr

yr

)T

, r = 1, . . . , n2 − 3n + 1,

(
x23

y23

)T

,

(
x34

y34

)T

,

(
x1i

y1i

)T

, i = 3, . . . , n, is of the form

B =

(
X 0
Y Z

)

where Z is of the form

Z =





1 0 0 1 1 . . . 1
1 1 0 0 1 . . . 1
0 1 E − I



 .

Here, E is the (n − 2) × (n − 2) matrix of all ones and I the (n − 2) × (n − 2) incidence
matrix. It is easy to see that the affine rank of Z is n. Thus, the affine rank of B is
n2 − 2n + 1, and hence, by Lemma 3.14, x12 ≥ 0 defines a facet of P

{2,n}
C (Dn).

Degree constraints

Theorem 3.22. Let n ≥ 5, Dn = (V, A) be the complete digraph on n nodes, v ∈ V , and
k ∈ {2, . . . , n}. Then the degree constraint

x(δ+(v)) ≤ 1

induces a facet of P k
C(Dn) if and only if 4 ≤ k < n.

Proof. Necessity. Suppose that k ∈ {2, 3}. The number of 2-circuits containing a chosen
node v is n− 1; the number of 3-circuits containing a node v is (n− 1)(n− 2). For these
reasons, (2.2) is not facet defining for P k

C(Dn) for k ∈ {2, 3}.
Suppose that k = n. Then all x ∈ P n

C(Dn) satisfy (2.2) at equality, and thus (2.2) is
not a facet defining inequality.

Suffiency. Let w.l.o.g. v = 1. We denote the face induced by x(δ+(1)) ≤ 1 by F .
Since it is a proper face of P k

C(Dn), it follows that dim F < n2 − 2n. We set

Ck
1 (Dn) := {C ∈ Ck(Dn) | 1 ∈ V (C)}
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and prepare the main step of the proof by two claims.

Claim 1: Let 4 ≤ k < n, u, v ∈ V , and Cu, Cv ∈ Ck(Dn) be [u, v]-adjacent circuits. Then

χCu ∈ aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}}

if and only if

χCv ∈ aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}}.

Let us denote by Π = (w1, w2, . . . , wk−1) the path Cu \ {u} = Cv \ {v}. Clearly, the
claim holds if 1 ∈ V (Π). Otherwise holds the equation

χCv = χCu + χ(1,wk−1,v,w1,...,wk−3,1) − χ(1,wk−1,u,w1,...,wk−3,1),

which proves just so the assertion.

Claim 2: Let n ≥ 6, 4 ≤ k < n, Π be any path of length k − 3, p the origin and q the
terminus of Π, and u, v ∈ V \ V (Π). Further, set Cuv := {(u, v), (v, p), (q, u)} ∪ Π and
Cvu := {(v, u), (u, p), (q, v)} ∪ Π. Then

χCuv ∈ aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}}

if and only if

χCvu ∈ affχC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}}.

Let Π = (w1, w2, . . . , wk−2). Clearly, the claim holds if 1 ∈ {u, v} ∪ V (Π). Otherwise
we have for k ≥ 5

χ(v,u,Π,v) = χ(u,v,Π,u) + χ(1,wk−2,v,u,w1,...,wk−4,1) − χ(1,wk−2,u,v,w1,...,wk−4,1).

Thus, the claim holds if k ≥ 5. If k = 4 then we proceed as depicted in Figure 3.1.
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Figure 3.1

We prove now the statement of the Theorem by showing

aff{χC | C ∈ Ck(Dn)} = aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, 4, . . . , k + 1, 2)}}.

This proves dim F ≥ n2 − 2n − 1, and hence it follows the statement.
”⊇”: trivial.
”⊆”: In case k = 4, n = 5 a verification with PORTA shows that the statement is true.
Otherwise let C ′ = (v1, v2, . . . , vk, v1) be any circuit of length k, and in order to avoid
trivial cases we assume that 1 /∈ V (C ′) and C ′ 6= (2, 3, . . . , k + 1, 2). By an iterated
application of the node-exchange in Claim 2 it follows that

χC′

∈ aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}}

⇔ χ{(vπ(1),vπ(2),...,vπ(n),vπ(1))} ∈ aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}}.

for any permutation π, in particular for the permutation with

vπ(j) < vπ(j+1), j = 1, 2, . . . , k − 1.

Finally, for i = 1, 2, . . . , k exchange vπ(i) with i + 1, i.e.,

(2, . . . , i, vπ(i), vπ(i+1), . . . , vπ(k), 2) −→ (2, . . . , i, i + 1, vπ(i+1), . . . , vπ(k), 2).

This yields

χC′

∈ aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}}

⇔ χ(vπ(1),vπ(2),...,vπ(n),vπ(1)) ∈ aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}}

⇔ χ(2,3,...,k+1,2) ∈ aff{χC | C ∈ Ck
1 (Dn) ∪ {(2, 3, . . . , k + 1, 2)}},

which is a true statement.
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Theorem 3.23. For |L| ≥ 2 the degree constraint

x(δ+(v)) ≤ 1

induces a facet of P L
C (Dn).

Proof. We distinguish four cases.

(1) Let L = {k, l} with 4 ≤ l < n and 2 ≤ k < l.

Constraint (2.2) defines a facet of P l
C(Dn) and dim P l

C(Dn) = dim P L
C (Dn) − 1.

Hence, with Lemma 3.9 follows the statement.

(2) Let L = {2, 3}.

Assume that there is an inequality bT x ≤ b0, b ∈ RA, b 6= 0, which is valid for
P

{2,3}
C (Dn) and satisfies {x ∈ P

{2,3}
C (Dn) | x(δ+(v)) = 1} ⊆ {x ∈ P

{2,3}
C | bT x =

b0}. Let w.l.o.g. v = 1, and let bT ≤ b0 in 1-rooted form, i.e., bi1 = 0 for all
i ∈ {2, 3, . . . , n}. From the 2-circuits on {1, i} we derive b1i = b0, i = 2, 3, . . . , n.
This implies immediately bij = 0 for all (i, j) ∈ A, i 6= 1 6= j, by considering the
3-circuits (1, i, j, 1). Further, b 6= 0 implies b0 6= 0, and together with the fact that
bT x ≤ b0 must be valid for χ{(2,3,2)} it follows the claim.

(3) Let L = {2, n}, n ≥ 4.

Let w.l.o.g. v = 1. We consider the corresponding circuit-and-loops polytope
P

{2,n}
0 (D0

n).

Since all tours satisfy (2.2) at equality, there are n2 − 3n + 2 linearly independent

vectors

(
xr

yr

)

∈ P
{2,n}
0 (D0

n), with yr = 0 for all r.

Further, the 2-circuits on {1, i}, i ∈ {2, . . . , n}, satisfy (2.2) at equality. Thus, there

are n − 1 linearly independent vectors

(
x1i

y1i

)

∈ P
{2,n}
0 (D0

n), with x1i = χ{(1,i,1)}.

It is easy to see now that the matrix whose columns are the vectors

(
xr

yr

)

, r =

1, . . . , n2 − 3n + 2,

(
x1i

y1i

)

, i = 2, . . . , n, is fulldimensional, i.e., by Lemma 3.14,

the n2 − 2n + 1 vectors xr, r = 1, . . . , n2 − 3n + 2, x1i, i = 2, . . . , n, are affinely
independent.

(4) Let |L| ≥ 3.

Then the claim follows immediately by (1), (2), and (3).

These results imply that the subtour elimination constraint xij + xji ≤ 1, which is
valid for all circuit polytopes P L

C (Dn) with 2 /∈ L, does in generally not define a facet of
P L

C (Dn), since each circuit C ∈ CL(Dn) containing (i, j) or (j, i) satisfies x(δ+(i)) = 1 as
well as x(δ+(j)) = 1. They are only facet defining for the asymmetric traveling salesman
polytope P n

C(Dn) (see Grötschel [17]). This is possible, since the degree constraints (2.2)
are satisfied at equality by all tours in Dn.
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Linear ordering constraints

Theorem 3.24. Let Dn = (V, A) be the complete digraph on n nodes. For any permuta-
tion π of the nodeset V , the inequality (2.7)

n−1∑

i=1

n∑

j=i+1

xπ(i),π(j) ≥ 1

defines a facet of P L
C (Dn) if and only if one of the following conditions holds:

(i) P L
C (Dn) = PC(D3).

(ii) k ≥ 4, L = {2, k}, and n ≥ 2k − 2.

(iii) 2 ∈ L, |L| ≥ 3, and n ≥ 2k − 3 where k := min{l ∈ L | l > 2}.

Proof. Assume w.l.o.g. that (π(1), . . . , π(n)) = (1, . . . , n), that is, that (2.7) is (2.3).
Further, set A∗ := {(3, 2), . . . , (n, n − 1)}.

Sufficiency.

(i): Constraint (2.3) defines obviously a facet of PC(D3).

(ii) and (iii): Every 2-circuit satisfies (2.3) at equality, .i.e., buv +bvu = b0 for all (u, v) ∈ A;
hence, (2.3) defines a nonempty face F of P L

C (Dn). In order to show that F is a facet of

P
{2,k}
C (Dn), assume that there is a valid inequality bT x ≥ b0, b ∈ RA, b 6= 0, in 1-rooted

form satisfying

{x ∈ P L
C (Dn) |

n−1∑

i=1

n∑

j=i+1

xij = 1} ⊆ {x ∈ P L
C (Dn) | bT x = b0}.

First, consider the coefficients b1v, v = 2, . . . , n. Since b1v + bv1 = 0 and bv1 = 0, we get
b1v = b0 for all v ∈ {2, . . . , n}.

Next consider the coefficients ba, a ∈ A∗.
If (ii) is true, we consider the k-circuits (n − 1, n − 2, . . . , n − k + 3, v + 1, v, 1, n − 1)

and (n, n − 1, . . . , n − k + 3, v + 1, 1, n) for v = 2, . . . , k − 1. We obtain bv+1,v = bn,n−1,
v = 2, . . . , k − 1, and thus b32 = · · · = bk,k−1. The circuit (k, k − 1, . . . , 1, k) yields then
b32 = · · · = bk,k−1 = 0, since b1k = b0 and b21 = 0, and with the circuits (v, v − 1, . . . , v −
k + 2, 1, v), v = k + 1, . . . , n, we can conclude successive bv,v−1 = 0, v = k + 1, . . . , n.

If (iii) is true, we consider the k-circuits (n − 1, n− 2, . . . , n− k + 3, v + 1, v, 1, n− 1)
and (n, n − 1, . . . , n − k + 3, v + 1, 1, n) for v = 2, . . . , k − 2. We obtain

b32 = · · · = bk−1,k−2 = bn,n−1. (3.26)

Further, we derive from the circuits (w, w−1, . . . , w−k+4, 3, 2, 1, w) and (w+1, w, . . . , w−
k + 4, 3, 1, w + 1) for w = k, . . . , n − 1

b32 = bk+1,k = · · · = bn,n−1. (3.27)
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By (3.26) and (3.27), it follows that

b32 = · · · = bk−1,k−2 = bk+1,k = · · · = bn,n−1. (3.28)

Since there is m ∈ L with m > k, we derive from the circuits (k, k − 1, . . . , 1, k) and
(m, m − 1, . . . , 1, m)

m−1∑

i=k

bi+1,i = 0

(3.27)
⇒ bi+1,i = 0, i = k, . . . , m − 1

(3.28)
⇒ bi+1,i = 0, i = 2, . . . , k − 2, k, . . . , m − 1,

and again the circuit (k, k − 1, . . . , 1, k) yields also bk,k−1 = 0.
Next, consider the coefficients buv and bvu for 1 < u < v ≤ n such that 2 ≤ v − u ≤

n − k + 2. Since the nodeset {1, . . . , u, v, . . . , n} is of cardinality at least k, there is a
k-circuit containing (v, u) whose remaining arcs are in

(A∗ \ {(v, v − 1), . . . , (u + 1, u)}) ∪ {(2, 1), . . . , (u, 1)} ∪ {(1, v), . . . , (1, n)}.

Clearly, it follows immediately that bvu = 0, and hence we conclude buv = b0.
Finally, consider the coefficients buv and bvu for 1 < u < v ≤ n such that n − k + 3 ≤

v−u ≤ n. The nodeset {u, u+1, . . . , v} is of cardinality at least k+1. From the k-circuit
(v, v − 1, . . . , v − k + 2, u, v) we obtain buv = b0, since bv,v−1 = · · · = bv−k+3,v−k+2 =
bv−k+2,u = 0. Moreover, this implies bvu = 0.

Clearly, b0 > 0, and hence we have shown that the inequality bT x ≥ b0 is equivalent to
(2.3) up to multiplication with a positive scalar. This proves that (2.3), and hence, (2.7),
is facet defining.

Necessity. For 2 ≤ n ≤ 3 the statement is obviously true. Hence let n ≥ 4, and let us
suppose, for the sake of contradiction, that (ii) or (iii) is not true.

a) Assume that 2 /∈ L.
Then there is no point x ∈ F with x12 > 0, contrary to Lemma 3.17 (a).

b) Assume that |L| = 1.
Since 2 ∈ L, it follows L = {2}. But then (2.3) is satisfied at equality by all x ∈

P 2
C(Dn). Thus it is not a facet defining inequality and hence |L| ≥ 2.

c) Assume that k ≤ n ≤ 2k − 4.
Consider the arcs (u, v) and (v, u) given by u := 2 and v := n − k + 4. Since 2 ≤

v − u = n − k + 2 ≤ k − 2, there is for any l, m ∈ L, with l, m ≥ k, neither a l-circuit
containing (u, v) nor a m-circuit containing (v, u) whose incidence vectors satisfy (2.3) at
equality, that is, only the 2-circuit on {(u, v, u)} satisfies (2.3) at equality. But this is a
contradiction to Lemma 3.17 (b).

d) Suppose that n = 2k − 3 and L = {2, k}.
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We consider the polytope P ∗ defined by

P ∗ := conv(P L
C (Dn) ∪ C∗)

where C∗ is the triangle (1, 3, 2, 1). Note that dim P ∗ = dim P L
C (Dn). We will first show

that inequality (2.3) defines a facet F ∗ of P ∗ and then that it is not facet defining for

P
{2,k}
C (Dn).

Let us assume that bT x ≥ b0, b ∈ RA, b 6= 0, is a valid inequality for P ∗, with

{x ∈ P ∗ | x satisfies (2.3) at equality} ⊆ {x ∈ P ∗ | bT x = b0}.

As is easily seen, it follows b1v = b0, v = 2, . . . , n. In order to show bv+1,v = 0,
v = 2, . . . , n − 1, consider the k-circuits

(n − 1, n − 2, . . . , n − k + 3, v + 1, v, 1, n − 1),
(n, n − 1, . . . , n − k + 3, v + 1, 1, n),

v = 2, . . . , k − 2.

We obtain bn,n−1 = b32 = b43 = · · · = bk−1,k−2. Now the triangle (1, 3, 2, 1) yields b32 = 0,
and hence bn,n−1 = b32 = b43 = · · · = bk−1,k−2 = 0. Further, the circuit (k, k − 1, . . . , 1, k)
yields bk,k−1 = 0.

The remaining coefficients can be determined as in the part Sufficiency, (ii) and (iii),
since all arguments hold also for n = 2k − 3 and L = {2, k}. Hence, F ∗ is a facet of P ∗.

Now we will prove that (2.3) is not facet defining for P L
C (Dn), n = 2k − 3, by showing

that C∗ /∈ aff(F ). The crucial point is, that for n = 2k − 3 the k-circuits satisfying (2.3)
at equality are linearly independent of the 2-circuits. For n ≥ 2k − 2 this is no longer
true.

Let us denote by F (k) the k-circuits whose incidence vectors satisfying (2.3) at equality.
Suppose, for the sake of contradiction, that

χ(1,3,2,1) =

n−1∑

i=1

n∑

j=i+1

λijχ
{(i,j,i)} +

∑

C∈F (k)

µCχC

and

n−1∑

i=1

n∑

j=i+1

λij +
∑

C∈F (k)

µC = 1.

Since the component 13 is contained only in the incidence vectors of the circuits (1, 3, 2, 1)

and {(1, 3, 1)}, it follows λ13 = 1. However, χ
(1,3,2,1)
ij = 0 and {C ∈ F (k) | (i, j) ∈ C} = ∅

for all 1 ≤ i < j ≤ n, (i, j) 6= (1, 3), with j − i ≤ k − 1, and hence λij = 0 for those
components ij. Analogous follows λij = 0 for all 1 ≤ i < j ≤ n with j − i ≥ k, since

χ
(1,3,2,1)
ij = 0 and {C ∈ F (k) | (i, j) ∈ C} = ∅ for those components ij. Thus,

χ(1,3,2,1) = χ{(1,3,1)} +
∑

C∈F (k)

µCχC

⇔ e32 + e21 − e31 =
∑

C∈F (k)

µCχC
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⇒ 1 = 1T
∑

C∈F (k)

µCχC

⇒ 1 =
∑

C∈F (k)

µC 1T χC

︸ ︷︷ ︸

=k

⇒ 1 = k
∑

C∈F (k)

µC

︸ ︷︷ ︸

=0

⇒ 1 = 0. Contradiction!

Disjoint circuits elimination constraints

As we have already mentioned in Chapter 2, the subtour elimination constraints (2.4)

x(δ+(p)) + x(δ+(q)) − x((S : T )) ≤ 1 S ⊆ V, T = V \ S, p ∈ S, q ∈ T

are related to the subtour elimination constraints for the asymmetric traveling salesman
polytope, and equivalent to them if P L

C (Dn) = P n
C(Dn). Moreover, the subtour elimination

constraints are known to be facet defining for P n
C(Dn) if 2 ≤ |S| ≤ n − 2 (see Grötschel

[17]).
First we investigate in which cases constraints (2.4) define facets of P k

C(Dn). If S = ∅
or S = {p} then (2.4) is equivalent to x(δ+(q)) ≤ 1 (respectively x(δ+(p)) ≤ 1 for T = ∅
or T = {q}). Hence we assume for this section 2 ≤ |S| ≤ n − 2 and thus n ≥ 4.

Theorem 3.25. Let Dn = (V, A), n ≥ 4, be the complete digraph on n nodes, k ∈
{2, . . . , n}, S, T be a bipartition of V , 2 ≤ |S| ≤ n − 2, p ∈ S, and q ∈ T . Then the
inequalities (2.4) define facets of P k

C(Dn) if and only if

(i) k = n, or

(ii) 4 ≤ k < n and |S|, |T | ≥ k.

Proof. Set

Xk
p := {χC | C ∈ Ck(Dn), p ∈ V (C) ⊆ S},

Xk
q := {χC | C ∈ Ck(Dn), q ∈ V (C) ⊆ T}, and

Xk
pq := {χC | C ∈ Ck(Dn), p, q ∈ V (C), |C ∩ (S : T )| = 1}.

A vector χC , C ∈ Ck(Dn), satisfies (2.4) at equality if χC ∈ Xk
p ∪ Xk

q ∪ Xk
pq.

Necessity. Suppose that k = 2. Then the inequalities (2.4) are not facet defining for
P 2

C(Dn), n ≥ 4, since the cardinality of X2
p ∪ X2

q ∪ X2
pq is only n − 1. Contradiction.

Similar is the situation for k = 3. The cardinality of X3
p ∪ X3

q ∪ X3
pq is less than

dim P 3
C(Dn). Contradiction.

Next, suppose, for the sake of contradiction, that 4 ≤ k ≤ n − 1 and 2 ≤ |S| ≤ k − 1
or 2 ≤ |T | ≤ k − 1. Let w.l.o.g. 2 ≤ |T | ≤ k − 1. Then follows that Xk

q = ∅, and thus

F := conv(Xk
p ∪ Xk

pq) ⊆ {x ∈ P k
C(Dn) | x(δ+(p)) = 1}.
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However, x ∈ P k
C(Dn), with x(δ+(p)) = 1, x(δ+(q)) = 0, and x((S : T )) = 1, is not in the

affine hull of F . Hence, by Lemma 3.16, dim F < dim{x ∈ P k
C(Dn) | x(δ+(p)) = 1} and

thus not a facet.

Suffiency. If k = n, then the theorem holds obviously. So let (ii) be true. Note that
(ii) implies n ≥ 2k.

Set S ′ := S \ {p} and T ′ := T \ {q}. In order to show that F is a facet of P k
C(Dn) we

consider the polytope P ∗ defined by

P ∗ := conv(P k
C(Dn) ∪ {C∗})

where C∗ is a triangle (p, q, t∗, p) for some t∗ ∈ T ′. First we will show that the face F ∗

which is the convex hull of all incidence vectors satisfying (2.4) is a facet of P ∗. This
implies immediately that F is a facet of P k

C(Dn).

Suppose that we have a valid inequality bT x ≥ b0, b ∈ RA, b 6= 0, such that

{x ∈ P ∗ | x satisfies (2.4) at equality} ⊆ {x ∈ P ∗ | bT x = b0},

and we may assume that bT x ≥ b0 is in p-rooted form. The p-rooted form of (2.4) is
illustrated in Figure 3.2.

p q

≤ 1

Figure 3.2

First we show that

bpq + bqi = b0 ∀ i ∈ S′ ∪ T ′. (3.29)

Let i ∈ S′∪T ′, and consider any circuit C ∈ Ck(Dn), with (q, i), (i, p) ∈ C and t∗ /∈ V (C), whose
incidence vector satisfies (2.4) at equality. Such C obviously exists for all k ∈ {4, . . . , n − 1}.
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Then the circuit C ′ := (C \ {(q, i), (i, p)}) ∪ {(q, t∗), (t∗, p)} is in Ck(Dn) and satisfies also (2.4)
at equality. Thus,

bqi + bip
︸︷︷︸

=0

= bqt∗ + bt∗p
︸︷︷︸

=0

⇔ bqi = bqt∗ .

Since bT χC∗
= b0 and bt∗p = 0, we obtain bpq + bqt∗ = b0 and consequently the desired result.

Next we show that

ba = 0 ∀ a ∈ A∗ := A(S′) ∪ A(T ′) ∪ (T ′ : S′). (3.30)

Let (i, j), (g, h) ∈ A∗, and let C ∈ Cl(Dn) be any circuit satisfying (2.4) at equality, with
(q, i), (i, j), (j, p) ∈ C and u, v /∈ V (C)\{i, j}. We may assume that (j, g) /∈ (S′ : T ′). (Otherwise
(g, j) /∈ (S′ : T ′), and we reverse the roles of (i, j) and (g, h).) If g = i then the circuit
Ci := (C \ {(i, j), (j, p)}) ∪ {(i, h), (h, p)} satisfies (2.4) at equality, and thus

bij + bjp = bih + bhp
3.31
⇔ bij = bgh.

If g = j then the circuit Cj := (C \ {(q, i), (i, j), (j, p)}) ∪ {(q, j), (j, h), (h, p)} yields bgh = bij.
Finally, if g /∈ {i, j} then the circuit C ′ := (C \ {(q, i), (i, j), (j, p)}) ∪ {(q, j), (j, g), (g, p)} yields
bjg = bij . Analogous follows bgh = bgj , and thus, bgh = bij. Hence, a circuit C̃ satisfying (2.4)
at equality, with (s, p), (p, q), (p, t) ∈ C̃ for some s ∈ S′, t ∈ T ′, and all other arcs in A∗ yields
ba = 0 for all a ∈ A∗, since bsp = 0, bpq + bqt = b0, and bij = bgh for all (i, j), (g, h) ∈ A∗.

The remaining coefficients can be easily determined. One can show by considering appro-
priate circuits C ∈ Ck(Dn) satisfying (2.4) at equality (in brackets)

bpi = b0 ∀ i ∈ S′, ((p, i) ∈ C, V (C) ⊆ S)
bpq = 0 ∀ i ∈ S′, ((i, q), (q, p) ∈ C, V (C) \ {q} ⊆ S)
bqi = 0 ∀ i ∈ S′ ∪ T ′, ((q, i), (i, p) ∈ C, V (C) \ {q, i} ⊆ S)
biq = b0 ∀ i ∈ T ′ ∪ {p}, ((i, k + 1) ∈ C, V (C) ⊆ T ∪ {p})
bpi = 0 ∀i ∈ T ′, ((p, i), (i, q) ∈ C, V (C) ⊆ T ∪ {p})
bij = −b0 ∀ i ∈ S′, j ∈ T ′. ((p, i), (i, j), (j, q) ∈ C, V (C) \ {p, i} ⊆ T )

Finally, it follows immediately that b0 > 0, and thus, bT x ≤ b0 is equivalent to (2.4). This
proves that F ∗ is a facet of the polytope P ∗. That is, F ∗ contains n2−2n+1 affinely independent
vertices and exactly one of them is χC∗. Thus, the other vertices in F ∗ are incidence vectors of
k-circuits. This implies that F is a facet of P k

C(Dn).

Next, let us consider the case |L| ≥ 2.

Theorem 3.26. Let Dn = (V, A), n ≥ 4, be the complete digraph on n nodes, S, T be a
bipartition of V , 2 ≤ |S| ≤ n−2, p ∈ S, q ∈ T , and |L| ≥ 2. Further, set k := min{l ∈ L}.
Then the inequalities (2.4) define facets of P L

C (Dn) if and only if

(a) k = 2 and {2, 3} 6= L 6= {2, n}, or

(b) k ≥ 3 and |S|, |T | ≥ k.

Proof.
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Necessity. Suppose that L = {2, 3}. Then it is easy to see that the face F induced by
(2.4) is not a facet, since for any a ∈ A not incident with p and q we have

F ⊆ {x ∈ P
{2,3}
C | xa = 0}.

Further, suppose that L = {2, n}. Then an inequality (2.4), with 2 ≤ |S| ≤ n − 2,

defines not a facet of P
{2,n}
C (Dn), since the number of affinely independent tours in Xn

p ∪
Xn

q ∪ Xn
pq is equal to n2 − 3n + 1, the number of 2-circuits in X2

p ∪ X2
q ∪ X2

pq is equal to
n − 1, and thus we have only n2 − 2n affinely independent circuits in F .

Finally, suppose that k ≥ 3 and |S| ≤ k − 1 or |T | ≤ k − 1. Then an analogous
argument holds as in the proof to Theorem 3.25.

Suffiency. Let (a) be true. Since {2, 3} 6= L 6= {2, n}, there is l ∈ L, 4 ≤ l ≤ n − 1. Set
S ′ := S \ {p} and T ′ := T \ {q}. Further, since n ≥ 5, |S ′| or |T ′| is of cardinality greater
than or equal to 2, say |T ′|. In order to show that (2.4) defines a facet of P L

C (Dn) we
suppose that we have a valid inequality bT x ≥ b0, b ∈ RA, b 6= 0, such that

{x ∈ P L
C (Dn) | x satisfies (2.4) at equality} ⊆ {x ∈ P L

C (Dn) | bT x = b0},

and we may assume that bT x ≥ b0 is in p-rooted form, i.e.,

bip = 0 ∀ i ∈ V \ {p}. (3.31)

Since bpi + bip = b0 and bip = 0 for all i ∈ S ′ ∪ {q}, we conclude bpi = b0.
Now we show

bqi = bqj ∀ i, j ∈ S ′ ∪ T ′. (3.32)

Let i, j ∈ S ′ ∪ T ′, and consider any circuit C ∈ Cl(Dn), with (q, i), (i, p) ∈ C and j /∈
V (C), whose incidence vector satisfies (2.4) at equality. Such C obviously exists for all
l ∈ {4, . . . , n− 1}. Then the circuit C ′ := (C \ {(q, i), (i, p)})∪ {(q, j), (j, p)} is in Cl(Dn)
and satisfies also (2.4) at equality. Thus,

bqi + bip
︸︷︷︸

=0

= bqj + bjp
︸︷︷︸

=0

⇔ bqi = bqj .

Further, since bhq + bqh = b0 for all h ∈ T ′ and bqi = bqj for all i, j ∈ S ′ ∪T ′ it follows that
buq + bqv = b0 for all u ∈ T ′, v ∈ S ′ ∪ T ′. Moreover, we obtain

biq = bjq ∀ i, j ∈ T ′. (3.33)

Now one can show

bgh = bij ∀ (g, h), (i, j) ∈ A∗ := A(S ′) ∪ A(T ′) ∪ (T ′ : S ′) (3.34)

as in the proof to Theorem 3.25.
In order to show ba = 0 for all a ∈ A∗ consider a circuit C ∈ Cl(Dn) satisfying

(2.4) at equality, with (t, q), (q, u), (u, p) ∈ C for some t, u ∈ T ′. Then the circuit C ′ :=
(C \ {(t, q), (q, u), (u, p)})∪ {(t, u), (u, q), (q, p)} satisfies also (2.4) at equality, and thus

btq + bqu + bup = btu + buq + bqp
3.31
⇔ btq + bqu = btu + buq
3.33
⇔ bqu = btu.
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Hence, a circuit C∗ satisfying (2.4) at equality, with (p, q) ∈ C, (s, p) ∈ C for some s ∈ S ′,
and all other arcs in A∗ yields ba = 0 for all a ∈ A∗.

The remaining coefficients can be easily determined. Then it follows immediately that
(2.4) defines a facet of P L

C (Dn).

Now let (b) be true.

Case 1: L = {3, n}
Let w.l.o.g. {1, 2} ⊆ S and p /∈ {1, 2}. Since (2.4) defines a facet of P n

C(Dn) and
dim P n

C(Dn) = n2 − 3n + 1, there are n2 − 3n + 1 linearly independent vectors xu ∈

P
{3,n}
C (Dn) satisfying (2.4) at equality.

Next consider any xp ∈ X3
p , xq ∈ X3

q , and n − 2 further points xv ∈ X2
pq, one for each

v ∈ V \ {p, q, 1, 2}, such that xv is the incidence vector of the triangle (p, v, q, p). Then
xp, xq, and all xv satisfy (2.4) at equality.

We bear that in mind that to each point x ∈ PC(Dn) exists a point

(
x
y

)

∈ P0(D
0
n).

It is now easy to see that the matrix whose rows are the extended incidence vectors is of
the form

Z =

(
T 0
X Y

)

,

where T is the matrix whose rows are the n2 − 3n + 1 linearly independent tours, (X, Y )

the matrix whose rows are the vectors

(
xq

yq

)T

,

(
xp

yp

)T

, and

(
xv

yv

)T

, v ∈ V \ {p, q}. Y is

of the form

Y =







q p

1 0
0 1

∗

0 0 (E − I)(n−k+1)×(n−k+1)







after a suitable arrangement of the columns, where E is the matrix of all ones and I is
the identity matrix. Y is of rank n and thus Z of rank n2 − 2n + 1. Thus, by Lemma
3.16, (2.4) defines a facet of P

{3,n}
C (Dn).

Case 2: L 6= {3, n}
If k ≥ 4 then the claim follows by Theorem 3.25 and Lemma 3.9. If k = 3 and

L 6= {3, n} then we know that there is m ∈ L, 4 ≤ m ≤ n − 1. Thus we can apply
Theorem 3.25 and Lemma 3.9 again.

From the remaining classes of inequalities considered in 2.1 we investigate only the
lifted primitive SD and the clique tree inequalities.

Primitive SD inequalities

The next theorem is easily obtained by looking for the shortest circuit satisfying a prim-
itive SD inequality at equality.
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Theorem 3.27. Let n ≥ 7, ||S| − |D|| ≤ max{0, s − 3}, and

l := 2 min{|S|, |D|}+ 3||S| − |D|| + 4
s − 1 − ||S| − |D||

2
.

Then the primitive SD inequality (2.13)

x((S : H ∪ D)) +

s∑

j=1

x(A(Tj)) − x((H : V \ (D ∪ H))) ≤ (|S| + |D| + s − 1)/2

defines a facet of P≥k
C (Dn) for all k ∈ {2, . . . , l}.

Proof. By Theorem 2.8, (2.13) is facet defining for PC(Dn). To complete the proof we
show that each circuit satisfying (2.13) at equality is of length at least l.

A circuit of minimum length satisfying (2.13) at equality contains exactly (|S|+ |D|+
s− 1)/2 arcs whose associated coefficients are equal to 1, no arcs with coefficient −1, and
as less as possible arcs with coefficients equal to zero. Let us denote by G the digraph
obtained from Dn by removing all arcs with coefficient equal to −1.

Since the arcs with coefficient equal to 1 are only the arcs in T := {(vj , uj)|j = 1, . . . , s}
and the arcs in (S : H ∪D), the arcset C ∩ (S : H ∪D)∩T is disconnected for any circuit
C.

To join two disconnected arcs (u, v) ∈ (S : D), (w, z) ∈ (S : D ∪ H) ∪ T in G requires
at least one arc and joining two disconnected arcs (u, v) ∈ (S : H)∪T, (w, z) ∈ (S : H)∪T
in G requires at least two arcs. However, if a circuit C contains more than |D| arcs in
(S : D) ∪ T , then joining two arcs (u, v), (w, z) ∈ T or (u, v) ∈ (S : D ∪ H), (w, z) ∈ T
requires for some of such pairs at least three arcs.

Case 1: |S| ≥ |D|
Let C be a circuit in G with |D| arcs in (S : D), |S| − |D| arcs in (S : H), and

(s − 1 + |D| − |S|)/2 arcs in T . (Note that (s − 1 + |D| − |S|)/2 is nonnegative.) Then
C contains exactly (|S| + |D| + s − 1)/2 arcs whose associated coefficients are equal to 1

and its length is at least 2|D| + 3(|S| − |D|) + 4 s−1+|D|−|S|
2

= l.

Case 2: |D| ≥ |S|
Then there is a circuit C in G with |S| arcs in (S : D) and (s − 1 + |D| − |S|)/2 arcs

in T . Again, C contains exactly (|S| + |D| + s − 1)/2 arcs whose associated coefficients

are equal to 1 and its length is at least 2|S| + 3(|D| − |S|) + 4 s−1+|S|−|D|
2

= l.

Clique tree inequalities

Theorem 3.28. Let n ≥ 7 and l = 3 t−1
2

+ 1. Then the primitive clique tree inequality

t∑

j=1

x(A(Tj)) −
h∑

i=1

∑

v∈Hi

x((v : V \ Hi)) ≤
t − 1

2
(3.35)

defines a facet of P≥k
C (Dn) for all k ∈ {2, . . . , l}.
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Proof. Recall, each tooth Tj of a primitive clique tree has exactly one node rj not contained
in any handle and every nonempty intersection of a handle Hi and Tj contains exactly one
node sij . Now it is not hard to see that a coefficient of the inequality (3.35) associated to
an arc a is equal to one if and only if a = (rj , sij) for some i ∈ {1, . . . , h}, j ∈ {1, . . . , t}.

Clearly, a circuit C of minimum length satisfying (3.35) at equality contains exactly
(t − 1)/2 arcs of the form (rj , sij), no arcs whose associated coefficients are equal to
−1, and a minimum number of arcs whose associated coefficients are equal to zero. In
particular, such a circuit C covers no node which is not contained in any tooth. Further,
since a circuit cannot contain an arc (rj , si1j) and at the same time an arc (rj, si2j), C
covers exactly (t − 1)/2 nodes rj, say rj, j = 1, . . . , (t − 1)/2, such that (rj, sij) ∈ C for
an appropriate i.

Now define the subgraph D = (V ′, A′) of Dn by removing all nodes not contained in
any tooth and all arcs whose associated coefficients are equal to −1. In this digraph two
disconnected arcs (rj1, si1,j1), (rj2, si2,j2) can be always joined to a directed path by three
arcs (si1,j1, si1,j3), (si1,j3, rj3), and (rj3, rj2) for some rj3 6= rj2 . But they can be joined to a
directed path by only two arcs if i1 6= i2 and Tj2 ∩ Hi1 6= ∅.

Thus, if there are t−1
2

arcs (rjp
, sij) which can be joined to a directed path P in D of

length 3 t−1
2

− 2, then there is a circuit satisfying (3.35) at equality which contains only
3 t−1

2
+ 1 arcs. Clearly, this result can be strengthened, since in generally there are not so

many arcs (rjp
, sij) which can be joined to a directed path in D of length 3 t−1

2
− 2.

3.5 The connection between directed and undirected

circuit polytopes

To study the relation between directed and undirected circuit polytopes is an important
matter, since it could be useful to generate facet defining inequalities for a circuit polytope
of a directed graph from facet defining inequalities for the corresponding circuit polytope
of an undirected graph, and conversely. For valid inequalities there is an easy connection
which we will elaborate first of all.

A valid inequality aT x ≤ a0 for P L
C (Dn) is called symmetric when aij = aji for all

i, j ∈ V , i 6= j. Symmetric inequalities can be thought of as derived from valid inequalities
for P L

C (Kn). Given a valid inequality bT y ≤ b0 for P L
C (Kn), it can be transformed into

a valid inequality for P L
C (Dn) by simply replacing ye by xij + xji and setting for all

e = [i, j] ∈ E. (Note 2 /∈ L.) This produces the symmetric inequality b̃T x ≤ b̃0, where
b̃ij = b̃ji = b[i,j] for all i, j ∈ V , i 6= j, and b̃0 = b0. Conversely, every symmetric inequality
bT x ≤ b0 which is valid for P L

C (Dn) corresponds to the inequality
∑

[i,j]∈E bijy[i,j] ≤ b0.

Moreover, each inequality which is valid for P L
C (Dn), 2 /∈ L, can be transformed into a

valid inequality for P L
C (Kn):

Theorem 3.29. Let 2 /∈ L and bT x ≤ b0 be a valid inequality for P L
C (Dn). Then the

inequality
n−1∑

i=1

n∑

j=i+1

(bij + bji)y[i,j] ≤ 2b0

is valid for P L
C (Kn).
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Proof.
∑

(i,j)∈A

bijxij ≤ b0 valid for P L
C (Dn) (i)

⇔
∑

(i,j)∈A

bjixij ≤ b0 valid for P L
C (Dn) (ii)

(i)+(ii)
⇒

∑

(i,j)∈A

[bij + bji]xij ≤ 2b0 valid for P L
C (Dn) (iii)

sym.
⇔

∑

[i,j]∈E

[bij + bji]y[i,j] ≤ 2b0 valid for P L
C (Kn) (iv)

However, if an inequality bT y ≤ b0 is facet defining for P L
C (Kn), then the corresponding

symmetric inequality b̃T x ≤ b̃0 is not necessary facet defining. For example, the matching
inequality (see 3.6)

y(E) − y12 − y34 − y56 ≥ 2

is facet defining for PC(Kn), but the corresponding symmetric inequality

x(A) − x12 − x21 − x34 − x43 − x56 − x65 ≥ 2

is not facet defining for P≥3
C (Dn). Conversely the same: the inequality

2x21 − 2x32 + 2x25 − 2x52 + x43 + x35 + 2x45 − x54 ≤ 2

is facet inducing for P≥3
C (D5) but not the corresponding undirected inequality

2x12 − 2x23 + x34 + x35 + x45 ≤ 4.

On the other hand, there are a lot of facet defining inequalities for P
(
CKn) that can

be derived from those for P≥3
C (Dn). For example, the sum of the degree constraints

x(δ+(v)) ≤ 1 and x(δ−(v)) ≤ 1 corresponds to the degree constraint y(δ(v)) ≤ 2, which
is known to be facet defining for PC(Kn). Or, the sum of the dce constraints x(δ+(p)) +
x(δ+(q)) − x((S : V \ S)) ≤ 1 and x(δ−(p)) + x(δ−(q)) − x((V \ S : S)) ≤ 1 corresponds
to the dce constraint y(δ(p)) + y(δ(q)) − y((S : V \ S)) ≤ 2, which is also facet defining
for PC(Kn) if |S|, |V \ S| ≥ 3. So it is an interesting issue if there is a procedure (or
only a criterion) in order to derive facet defining inequalities for P L

C (Dn) from those for
P L

C (Kn), and conversely. For one direction (directed to undirected) we can respond partly
the question.

The answer is based on three observations: Firstly, the facets of P L
C (Kn) (2 /∈ L) not

induced by a nonnegativity constraint are in 1-1 correspondence with those of P L
W (Dn).

Secondly, facets of P L
C (Dn) can be lifted to polyhedra P ⊆ PW (Dn) by relaxing the

flow constraints. Thirdly, facet defining inequalities for P L
C (Dn) which are equivalent to

symmetric inequalities can be lifted to facet defining inequalities for P L
W (Dn).

In the following we will discuss the three items. Since we search a procedure to
derive facet defining inequalities for P L

C (Dn) from those for P L
C (Kn), let in the following

considerations 2 /∈ L.
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The connection between P L
C (Kn) and P L

W (Dn)

Our proof of the statement that the facets of P L
C (Kn) not induced by a nonnegativity

constraint are in 1-1 correspondence with those of P L
W (Dn) is based on two easy facts:

The facet defining inequalities for P L
W (Dn) are symmetric, with the exception of the

nonnegativity constraints, and dimP L
W (Dn) = |E| + dim P L

C (Kn).
In order to simplify the next statements we stipulate that x, y, z are vectors in RE such

that the components of x correspond to the edges of E, that of y to the arcs (i, j) ∈ A,
and that of z to the arcs (j, i) ∈ A, with i < j. Let us first show the statement about the
dimension.

Lemma 3.30. Let Kn = (V, E) and Dn = (V, A) be the complete graph and complete
digraph on nodeset V , respectively, and let L ⊆ {3, . . . , n} where n = |V |. Then

dim P L
W (Dn) = |E| + dim P L

C (Kn).

Proof. We first show that each equation of the equality subsystem of P L
W (Dn) is symmet-

ric. Let bT

(
y
z

)

= b0 be such an equation and let W ∈ WL(Dn) be any walk containing

(i, j) ∈ A. Since 2 /∈ L, the walk W ′ obtained by substituting (i, j) by (j, i) is also in
WL(Dn). Moreover, since bT χW = b0 and bT χW ′

= b0 it follows immediately that bij = bji.

Hence the equation bT

(
y
z

)

= b0 is symmetric.

Thus, the equation aT x = a0 defined by ae := (bij +bji)/2 for all e = ij ∈ E is satisfied
by all x ∈ P L

C (Kn), i.e., aT x = a0 is a linear combination of equations of the equality
subsystem of P L

C (n).
Conversely, if bT x = b0 is an equation of the equality subsystem of P L

C (Kn), then the

equation bT (y + z) = b0 is satisfied by all

(
y
z

)

∈ P L
W (Dn), since each walk W ∈ WL(Dn)

contains at most one of the arcs (i, j) and (j, i).
Hence, the system Cx = d of linear equations is an equality subsystem of P L

C (Kn) if

and only if the system (C, C)

(
y
z

)

= C(y + z) = d is an equality subsystem of P L
W (Dn).

Now follows from Linear Algebra that rank(C) = rank(C, C), and thus dim P L
W (Dn) =

|A| − rank(C) = |E| + dim P L
C (Kn).

In particular, as the circuit polytope PC(Kn) is full-dimensional, the polytope P L
W (Dn)

is full-dimensional.

Lemma 3.31. Let Dn = (V, A) be the complete digraph on n nodes and L ⊆ {3, . . . , n}.
Then every nontrivial facet defining inequality for P L

W (Dn) is symmetric.

Proof. Let bT u ≤ b0 be a nontrivial facet defining inequality for P L
W (Dn). Since bT u ≤ b0

is not equivalent to a nonnegativity constraint, there is for every arc (i, j) ∈ A a closed
walk W ∈ WL(Dn) containing (i, j) whose incidence vector χW satisfies bT χW = b0.
As the length of W is at least three, substituting (i, j) by (j, i) yields a closed walk
W ′ = (W \ {(i, j)}) ∪ {(j, i)} of the same length, and hence bT χW ′

≤ b0. This implies
immediately bij ≥ bji. Analogous one shows bji ≥ bij . Thus the inequality bT u ≤ b0 is
symmetric.
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Theorem 3.32. Let Kn = (V, E) and Dn = (V, A) be the complete graph and the complete
digraph on nodeset V , respectively, and let L ⊆ {3, . . . , n} where n = |V |. Moreover, let
bT x ≤ b0, b ∈ RE, be any inequality which is not equivalent to a nonnegativity constraint.
Then the inequality bT x ≤ b0 defines a facet of P L

C (Kn) if and only if the inequality

(bT , bT )

(
y
z

)

≤ b0 defines a facet of P L
W (Dn).

Proof. Necessity. The validity of the inequality (bT , bT )

(
y
z

)

= bT (y + z) ≤ b0 is easily

checked, since any closed walk W ∈ WL(Dn) contains at most one of the arcs (i, j) and
(j, i).

Since bT x ≤ b0 induces a facet of P L
C (Kn), there are dim P L

C (Kn) affinely independent

points

(
y
z

)w

∈ P L
W (Dn), with z = 0, satisfying bT (yw + zw) = b0.

Moreover, since for each edge e = ij ∈ E, i < j, there is a circuit Ce with ij ∈ C

and bT χCij

= b0, there are |E| integer points

(
y
z

)ij

∈ P L
W (Dn) with z = 0, yij = 1, and

bT (y+z) = b0. Then the |E| points

(
y
z

)ji

:=

(
y
z

)ij

−eij +eji are linearly independent (eij

and eji are the ij-th and ji-th unit vectors in RA, respectively) and they are also affinely

independent of the dim P L
C (Dn) points

(
y
z

)w

. Since they also satisfy bT (y + z) ≤ b0 at

equality, this proves that bT (y + z) ≤ b0 defines a facet of P L
W (Dn).

Suffiency. Clearly, bT x ≤ b0 is valid for P L
C (Kn).

Let bT (y + z) ≤ b0 be a nontrivial facet defining inequality for P L
W (Dn) and suppose,

for the sake of contradiction, that bT x ≤ b0 is not facet defining for P L
C (Kn). Then

the inequality bT x ≤ b0 is a conical combination of two valid and linearly independent
inequalities cT x ≤ c0 and dT x ≤ d0, that is, there are λ, µ ≥ 0 with (bT , b0) = λ(cT , c0) +
µ(dT , d0).

Now the inequalities cT (y + z) ≤ c0 and dT (y + z) ≤ d0 are valid for P L
W (Dn), since

each walk W ∈ WL(Dn) contains at most one of the arcs (i, j) and (j, i) for all i, j ∈ V ,
i 6= j, and they are linearly independent. Thus, bT (y + z) ≤ b0 is a conical combination
of linearly independent and valid inequalities with respect to P L

W (Dn).

The connection between P L
C (Dn) and P L

W (Dn)

As can be easily seen that the circuit polytope P L
C (Dn) is a subset of the restriction of

P L
W (Dn) to the hyperspace defined by the flow constraints (2.1), i.e.,

P L
C (Dn) ⊂ {x ∈ P L

W (Dn) | x(δ+(v)) − x(δ−(v)) = 0 ∀v ∈ V },

but the sets are generally not identical. To see this consider the point

x∗ :=
1

3
(e12 + e31 + e32) +

1

3
(e24 + e25 + e45) +

1

3
(e53 + e63 + e56) ∈ R30

whose support graph is shown in Figure 3.3. Now, x∗ satisfies the flow constraints (2.1)
and is obviously in PW (D6) but not in PC(D6). Needless to say that

{x ∈ P L
W (Dn) | x(δ+(v)) − x(δ−(v)) = 0 ∀v ∈ V } ⊆ CC(Dn).
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456

1
3
·

Figure 3.3

Clearly, we can not expect to have a procedure which lifts facet defining inequalities
for P L

C (Dn) into those for P L
W (Dn), since the former polytope is not a face of the latter

polytope.
However, P L

C (Dn) is a face of polytopes of the form

P L
W (Dn)|RST :=






x ∈ P L

W (Dn)

∣
∣
∣
∣
∣
∣

x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ R
x(δ+(v)) − x(δ−(v)) ≥ 0 ∀ v ∈ S
x(δ+(v)) − x(δ−(v)) ≤ 0 ∀ v ∈ T






,

where R∪S∪T is a partition of the nodeset V of Dn. Hence we could use standard sequen-
tial lifting to obtain facet defining inequalities for P L

W (Dn)|RST from those for P L
C (Dn).

Since the basic theorem on sequential lifting is usually stated for full-dimensional
polyhedra (see Nemhauser and Trotter [23] and Padberg [24]), and neither P L

C (Dn) nor
the polytopes P are in generally full-dimensional, we restate it in an appropriate form.

Procedure 3.33. Given polytopes Pi ⊂ Rn, i = 0, . . . , m, such that Pi is a facet of Pi+1

for i = 0, . . . , m − 1. Then a facet defining inequality for P0 can be lifted into a facet
defining inequality for Pm by applying the following procedure:

Input: A facet defining inequality cT x ≤ γ for P0, a matrix A ∈ Rm×n, and a vector
b ∈ Rm, such that Ai·x ≤ bi is facet defining for Pi and

Pi−1 = {x ∈ Pi | Ai·x = bi}, i = 1, . . . , m.

Output: A facet defining inequality for Pm.

1. SET c0 := c and γ0 := γ.

2. FOR i = 1, . . . , m SET

λ∗
i := min{

γi−1 − cT
i−1x

bi − Ai·x
| x is a vertex of Pi, Ai·x < bi},

ci := ci−1 − λ∗
i A

T
i· ,

γi := γi−1 − λ∗
i bi.

�

Let us call λ∗
i the i-th lifting number and in case m = 1, λ∗ := λ∗

1 simply lifting number.

Theorem 3.34. Procedure 3.33 works correct.
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Proof. Let i ∈ {1, . . . , m} and cT
i−1x ≤ γi−1 a facet defining inequality for Pi−1. Since

Ai·x = bi for all x ∈ Pi−1, it follows that for all λ ∈ R the inequality cT
i−1x − λAi·x ≤

γi−1 − λbi is facet defining for Pi−1, in particular for λ∗
i , i.e., there are dim Pi − 1 affinely

independent points xr in Pi satisfying cT
i x = ci, with Ai·x

r = bi.
By choice of λ∗, for any vertex x of Pi, with Ai·x < bi, we have:

cT
i x = cT

i−1x − λ∗
i Ai·x

≤ γi−1 − λ∗
i bi + λ∗

i bi − λ∗
i Ai·x

= γi + λ∗
i (bi − Ai·x)

≤ γi.

Moreover, there is at least one vertex x∗ satisfying cix
∗ = γi which is affinely independent

of the points xr.

In our context, the polytopes P L
W (Dn)|RST correspond to the polytopes Pi, in partic-

ular, P L
C (Dn) corresponds to P0 and a polytope of the form P L

W (Dn)|RST with R = ∅ to
Pm. Further, n − 1 flow constraints (2.1) correspond to the matrix A. But this means
that the output inequality is obtained from cT x ≤ γ by adding appropriate multiples of
some flow constraints (2.1). Thus, cT x ≤ γ can be lifted into a facet defining inequality
for P L

W (Dn) - by applying Procedure 3.33 - only if the resulting inequality is symmetric.
In other words, cT x ≤ γ must, from the first, be equivalent to a symmetric inequality
with respect to P L

C (Dn). This can we prove directly:

Theorem 3.35. Let cT x ≤ γ be a symmetric facet defining inequality for P L
C (Dn), with

2 /∈ L. Then it is also facet defining for P L
W (Dn), i.e., the inequality

∑

[i,j]∈E

cijy[i,j] ≤ γ

is facet defining for P L
C (Kn).

Proof. Clearly, cT x ≤ γ is valid for P L
W (Dn). Suppose, for the sake of contradiction,

that cT x ≤ γ is not facet defining for P L
W (Dn). Then there is a facet defining inequality

dT x ≤ δ for P L
W (Dn) with {x ∈ P L

W (Dn) | cT x = γ} ( {x ∈ P L
W (Dn) | dT x = δ}.

The inequality dT x ≤ δ is valid for P L
C (Dn) due to P L

C (Dn) ⊆ P L
W (Dn). If dT x ≤ δ is

equivalent to a nonnegativity constraint (with respect to P L
W (Dn)), then it follows that

cT x ≤ γ is equivalent to a nonnegativity constraint (with respect to P L
C (Dn)) due to

{x ∈ P L
C (Dn) | c

T x = γ} ⊆ {x ∈ P L
C (Dn) | d

Tx = δ}. However, a nonnegativity constraint
is not equivalent to a symmetric inequality, a contradiction. Thus, dT x ≤ δ is symmetric.
By our assumption, there is an integer point x∗ ∈ P L

W (Dn) such that dT x∗ = δ and
cT x∗ 6= γ. But then the point x̃∗ defined by

x̃∗
ij :=

x∗
ij + x∗

ji

2
∀ (i, j) ∈ A

is in P L
C (Dn) and satisfies dT x̃∗ = δ and cT x̃∗ 6= γ. The latter holds, since both inequalities

are symmetric. Hence, {x ∈ P L
C (Dn) | cT x = γ} ( {x ∈ P L

C (Dn) | dT x = δ}, contrary to
the assumption that cT x ≤ γ is facet defining for P L

C (Dn).
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The degree and the dce constraints are equivalent to symmetric inequalities. Thus,
the corresponding undirected inequalities are facet defining for P L

C (Kn), if the originally
inequalities are facet defining for P L

C (Dn). In the following section we will consider some
further classes of symmetric inequalities, but we will not point out this fact.

3.6 Inequalities from undirected circuit polytopes

Bauer studied in her dissertation [7] the polytope PC(Kn), the circuit polytope of the
complete graph on n nodes, and introduced several families of facet defining inequalities
for PC(Kn). Further, there are some known facet defining inequalities for the polytope
P≤k

C (Kn) (see Bauer [7] and Bauer, Linderoth, and Savelsbergh [8]). Based on these
results we derive some classes of facet defining inequalities for P L

C (Dn). Thereby we are
mainly interested in inequalities which defines facets of P k

C(Dn), 3 ≤ k < n, because then
we can apply the lifting procedure 3.33 in order to generate facet defining inequalities for
P≤k

C (Dn) as well as for P≥k
C (Dn). As P k

C(Dn) is a facet of these both polytopes, the lifting
procedure requires only one step.

In order to avoid confused definitions and terms we introduce a map dir : P (E) →
P (A), dir(F ) := {(i, j) ∈ A | ij ∈ E} from the powerset of the edgeset E of the complete
graph Kn defined on a nodeset V (n = |V |) to the power set of the arcset A of the
complete digraph Dn defined on the same nodeset V . Note that (i, j) ∈ dir(F ) if and only
if (j, i) ∈ dir(F ). Such two graphs Kn and Dn defined on the same nodeset V are called
associated, and we denote Dn := dir(Kn) (for Dn = (V, A) = (V, dir(E))).

Bipartition inequalities

Bauer [7] introduced the class of bipartition inequalities

y((S : T )) + 2y(E(S)) + 2y(E(T )) ≥ 4

and showed them to be facet defining for PC(Kn), n ≥ 5. Here, S, T is a bipartition of V
with |S|, |T | ≥ 2. (Recall that (S : T ) is the set {uv ∈ E | u ∈ S, v ∈ T} if we consider an
undirected graph.)

Let us start with the investigation whether the bipartition inequalities are facet defin-
ing for P k

C(Dn) or not. Note that we present them in an adjusted form.

Theorem 3.36. Let k ∈ N, k ≥ 3 odd, let Dn = (V, A), n ≥ k + 1, be the complete
digraph on n nodes, and let S, T be a bipartition of V with |S|, |T | ≥ k+1

2
. Then a facet

of P k
C(Dn) is given by the bipartition inequality

x(A(S)) + x(A(T )) + x((S : T )) ≥
k + 1

2
. (3.36)

Proof. The validity of the bipartition inequality is obvious.
Let us show the facet defining property: Define l := k+1

2
, let w.l.o.g. {1, . . . , l} ⊆ S,

{l + 1, l + 2, . . . , k + 1} ⊆ T , and set S ′ := S \ {1}. Then the 1-rooted form of (3.36) is
the inequality

2x(δ+
S (1)) + x(A(S ′)) + x(A(T )) + x(δ+

T (1)) + x((T : S ′)).



60 Chapter 3. Length restricted circuit polytopes PL

C
(Dn)

For an illustration see Figures 3.4 (a) and (b).
In order to show that (3.36) defines a facet of P k

C(Dn), we first show that (3.36) induces
a facet of

P ∗ := conv(P k
C(Dn)) ∪ C∗

where

C∗ :=

l⋃

i=1

{(i, l + i), (l + i, i + 1)} ∪ {(k + 1, 1)}.

Since C∗ is a circuit of length k + 1, dim P ∗ = dim P k
C(Dn) + 1. Moreover, since χC∗

satisfies (3.36) at equality, we can conclude that (3.36) defines a facet of P k
C(Dn) if it

defines a facet of P ∗.
Now, assume that we have a valid inequality bT x ≥ b0, b ∈ RA, b 6= 0, such that

{x ∈ P ∗ | x satisfies (3.36) at equality} ⊆ {x ∈ P ∗ | bT x = b0}, and we may assume that
bT x ≥ b0 is in 1-rooted form. We will show that bT x ≥ b0 is equivalent to the 1-rooted
form of (3.36) up to multiplication with a positive scalar.

Figure 3.4 (a)

1

Figure 3.4 (b): 1-rooted form

Let us consider the coefficients ba, a ∈ A.

Claim 1: bst = 0 for all s ∈ S ′, and all t ∈ T .
First we show that bl,j = 0 for all j ∈ {l + 1, . . . , k + 1}: From C∗ and C := (C∗ \

{(l, k + 1), (k + 1, 1)}) ∪ (l, 1) we derive the equations

l−1∑

i=1

bi,l+i+
l−1∑

i=1

bl+i,i+1+bl1 = b0

∧
l−1∑

i=1

bi,l+i+
l−1∑

i=1

bl+i,i+1 +bl,k+1+bk+1,1= b0







bl1=bk+1,1=0
=⇒ bl,k+1 = 0.

Further we have for each j ∈ {l + 1, . . . , k} the equations

l−1∑

i=1
i6=j∗

bi,l+i+
l−1∑

i=1
i6=j∗

bl+i,i+1+bj∗,j∗+1 +bl,j +bj,1 = b0

∧
l−1∑

i=1
i6=j∗

bi,l+i+
l−1∑

i=1
i6=j∗

bl+i,i+1+bj∗,j∗+1+bl,k+1+bk+1,1= b0







bl,k+1=0
=⇒ bl,j = 0
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where j∗ := j − l.
Now consider a coefficient bst, s ∈ S ′ \ {l}, t ∈ T . Let u ∈ T , u 6= t. Then there is

a circuit C ∈ Ck(Dn), with bT χC = b0, containing the arcs (u, t), (t, 1) but not the node
s. Then the circuit C ′ := (C \ {(u, t), (t, 1)}) ∪ {(u, s), (s, 1)} satisfies bT χC′

= b0, and
hence it follows that but = bus. (Note that |C ∩ (A(T ))| = |C ′ ∩ A(S)| = l.) Analogous
one can show that but = bul, and thus bus = bul. Since there is a circuit C̃ ∈ Ck(Dn),

with bT χC̃ = b0, containing the arcs (u, s), (s, t) but not the node l, the circuit Ĉ :=
(C̃ \ {(u, s), (s, t)}) ∪ {(u, l), (l, t)} satisfies also bT x ≥ b0 at equality, and thus we obtain
bst = blt = 0.

Claim 2: ba = b0
k+1

for all a ∈ (1 : T ) ∪ (T : S ′) ∪ A(S ′) ∪ A(T ).
Let again {2, 3, . . . , l} ⊆ S ′ and {l + 1, l + 2, . . . , k + 1} ⊆ T . If one can show bts = buv

for all (t, s), (u, v) ∈ (1 : T ) ∪ (T : S ′) ∪A(S ′) ∪A(T ), then the claim follows for example
from the equation

l∑

i=1

bi,l+i+
l−1∑

i=1

bl+i,i+1+bk+1,1=b0,

since bk+1,1 = 0 and ba = 0 for all a ∈ (S ′ : T ). We will show exemplarily bts = buv for all
(t, s), (u, v) ∈ (T : S ′). The rest can be done as an exercise. We can assume that two given
arcs (t, s), (u, v) ∈ (T : S ′) are contained in the cut ({2, 3, . . . , l} : {l+1, l+2, . . . , k+1}).

Case 1: s = v.
W.l.o.g. let s = v = l, t = k, and u = k + 1. Consider the equations

l−2∑

i=1

bi,l+i+
l−2∑

i=1

bl+i,i+1+bl−1,k+bkl +bl1= b0

∧
l−2∑

i=1

bi,l+i+
l−2∑

i=1

bl+i,i+1 +bl−1,k+1+bk+1,l+bl1= b0.

Since bl−1 = bl−1,k+1 = bl1 = 0, we get the desired result.
Case 2: t = u.

Let w.l.o.g. t = u = k, s = l − 1, and v = l. From the equations

l−1∑

i=1

bi,l+i+
l−2∑

i=1

bl+i,i+1+bkl+bl1 = b0

∧
l−1∑

i=1

bi,l+i+
l−2∑

i=1

bl+i,i+1 +bk,k+1+bk+1,1= b0,

we get bkl = bk,k+1, since bl1 = bk+1,1 = 0. Analogously one can affiliate bk,l−1 = bk,k+1,
and hence bkl = bk,l−1.

Case 3: The arcs (t, s) and (u, v) are nonincident.
Let w.l.o.g. (t, s) = (k, l − 1) and (u, v) = (k + 1, l). From the steps before follows
bk,l−1 = bkl = bk+1,l.

Thus bts = buv for all (t, s), (u, v) ∈ (T : S ′).

Claim 3: b1s = 2 b0
k+1

for all s ∈ S ′.
Exercise!
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So we have shown that (3.36) defines a facet of P ∗, and thus it induces also a facet of
P k

C(Dn).

Corollary 3.37. (a) Let k ∈ N, k ≥ 3 odd, L ⊆ {k, . . . , n}, |L| ≥ 2, and k ∈ L. Let
Dn = (V, A) be the complete digraph on n nodes and S, T be a bipartition of V .

(i) If L contains only odd numbers and |S| ≥ p−1
2

, |T | ≥ p+1
2

(or conversely) where
p = min{l ∈ L | l > k}, then the bipartition inequality

x(A) − 2x((T : S)) ≥ 1

defines a facet of P L
C (Dn).

(ii) If k + 1 ∈ L and |S|, |T | ≥ k+1
2

then the bipartition inequality

x(A) − x((T : S)) ≥
k + 1

2

(1 +
1 − p + k

2(p − k)
)x(A) − x((T : S)) ≥

1

2
+

k

2(p − k)

defines a facet of P L
C (Dn).

(iii) If L contains even numbers but not k + 1 and |S|, |T | ≥ (k + 3)/2, then the
bipartition inequality

(1 +
1 − p + k

2(p − k)
)x(A) − x((T : S)) ≥

1

2
+

k

2(p − k)

defines a facet of P L
C (Dn) where p = max{l ∈ L | l even, |S|, |T | ≥ l/2}.

(b) Let k ∈ N, k ≥ 3 odd, L ⊆ {2, . . . , k}, k ∈ L, and |L| ≥ 2. Let Dn = (V, A) be the
complete digraph on n nodes and S, T be a bipartition of V with |S|, |T | ≥ k+1

2
.

(i) If L contains only odd numbers then the bipartition inequality

x(A) − 2x((T : S)) ≥ 1

defines a facet of P L
C (Dn).

(ii) If L contains even numbers and p = max{l ∈ L | l even }, then the bipartition
inequality

(
1

2
−

1

2(k − p)
)x(A) − x((T : S)) ≥

1

2
−

k

2(k − p)

defines a facet of P L
C (Dn).

Proof. (a) First note that (3.36) is equivalent to the inequality

x(A) − x(T : S) ≥
k + 1

2
.

Now we apply the procedure 3.33, i.e., we add an adequate multiple of the equation
x(A) = k to the bipartition inequality:

x(A) − x((T : S)) + λ∗x(A) ≥
k + 1

2
+ λ∗k.
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For each circuit of length l ∈ L, l > k, it follows that

x(A) − x((T : S)) + λx(A) ≥
k + 1

2
+ λk

⇒ λ(x(A) − k) ≥
k + 1

2
+ x((T : S)) − x(A)

x(A)−k>0
⇒ λ ≥

k+1
2

+ x((T : S)) − x(A)

x(A) − k
,

that is, we have to determine a circuit C∗ with |C∗| ∈ L \ {k} which maximizes

k+1
2

+ x((T : S)) − x(A)

x(A) − k
. (3.37)

That can be done by determining for each l ∈ L, l > k, a l-circuit which maximizes
(3.37) and choosing the circuit among these circuits with the maximum weight.

For l > k define pl := l − k, i.e., l = k + pl. A l-circuit contains at most l−1
2

arcs in

(T : S) if l is odd, and since |S| ≥ p−1
2

, |T | ≥ p+1
2

(or conversely), there is a l-circuit
Cl containing l−1

2
arcs in (T : S) for k < l ≤ p. Thus

k+1
2

+ χCl((T : S)) − χCl(A)

χCl(A) − k
=

k+1
2

− (k + pl) + k+pl−1
2

pl

= −
1

2
∀ l ∈ L, l > k.

This implies λ∗ = −1
2

if L contains no even numbers, and hence we get

1
2
x(A) − x((T : S)) ≥

1

2
⇔ x(A) − 2x((T : S)) ≥ 1.

If l is even then we can find a circuit Cl with |(S : T ) ∩ Cl| = l/2. Thus

k+1
2

+ χCl((T : S)) − χCl(A)

χCl(A) − k
=

k+1
2

− (k + pl) + k+pl

2

pl

=
1 − pl

2pl

.

Hence, if L contains even numbers then it follows that λ∗ = 0 if k + 1 ∈ L and
otherwise λ∗ = 1−q

2q
where q is the greatest number in L.

(b) Analogous.

In particular, with the lifting procedure we have obtained a facet defining inequality
for P odd

C (Dn), namely the inequality

x(A) − 2x((T : S)) ≥ 1.

The class of bipartition inequalities (3.36) can be generalized in case k = 3 (see Bauer
[7]). We first introduce some terminology.
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Definition 3.38. Let Kn = (V, E), n ≥ 3, be the complete graph on n nodes, e = (p, q) ∈
E, and T ⊆ V \ {p, q}. We define an e-cover of T to be an edgeset He ⊆ ({p, q} : T ) such
that He covers every node of T exactly once.

If M ⊆ E is a matching, T ⊆ V \ V (M), and He is an e-cover of T for all e ∈ M , we
say that H = ∪e∈MHe is a M-cover of T .

Theorem 3.39. Let 2 /∈ L, 3, 4 ∈ L, Dn = (V, A), n ≥ 6, be the complete digraph
on n nodes, and S, T be a bipartition of V with |S| ≥ 3. Further, let Kn = (V, E) be
the associated complete graph on nodeset V , that is, dir(Kn) = Dn, let M ⊆ E(S) be a
matching, and let H = ∪e∈MHe be a M-cover of T . Then a facet of P L

C (Dn) is given by
the generalized bipartition inequality

cT x ≥ 4, a ∈ RA, with ca =







0, if a ∈ dirM,
3, if a ∈ dirH,
1, if a ∈ dir((S : T )) \ dir(H),
2, otherwise, i.e. if a ∈ A(S) \ dir(M)

or a ∈ A(T ),

(3.38)

as long as we do not have one of the following two cases:

(i) M = {(p, q), (q, p)} and all arcs of H are either incident with p or with q;

(ii) n = 6, |S| = 4 and |M | = 2, i.e., |dir(M)| = 4.

A sketch of the proof of the Theorem is given in Appendix A.

Parity and cut constraints

The following inequalities are derived from the linear description of the circuit cone
CC(Kn) of the complete undirected graph Kn (see Bauer [7]).

Theorem 3.40.

(a) Let 3 ≤ k ≤ n − 2, n ≥ 6, and v, w ∈ V , v 6= w. Then the parity constraint

x(δ+(v) \ (v, w)) − xwv ≥ 0 (3.39)

is facet defining for P k
C(Dn).

(b) Let k ≥ 5 be an integer and V = S ∪ T be a bipartition of V with |S| ≥ k + 1,
|T | ≥ k. Further, let i ∈ S and j ∈ T . Then the cut inequality

x((S : T ) \ (i, j)) − xji ≥ 0 (3.40)

defines a facet of P k
C(Dn).

Proof. The validity of the parity and cut inequalities is easily checked. To prove that the
inequalities are facet inducing we construct for each inequality n2−2n affinely independent
vectors satisfying it at equality.
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(a) Let us denote the complete subgraph of Dn induced by the nodeset V \ {v} by
D′ = (V ′, A′). Due to the suppositions 3 ≤ k ≤ n− 2 and n ≥ 6 the dimension of P k

C(D′)
is equal to (n − 1)2 − 2(n − 1) = n2 − 4n + 3. Hence, we have n2 − 4n + 4 linearly
independent vectors yr ∈ P k

C(Dn), with yr
uv = yr

vu = 0 for all u ∈ V ′, satisfying (3.39) at
equality.

In order to add 2n − 4 further vectors, we consider for each node u ∈ V ′ \ {w} two
k-circuits, namely a circuit Cuv containing the arcs (u, v) and (v, w), and a circuit Cvu

containing the arcs (v, u) and (w, v). That are 2n − 4 k-circuits whose incidence vectors
also satisfy (3.39) at equality. Moreover, the incidence vectors are linearly independent,
and they are also linearly independent of the n2 − 4n + 4 vectors yr, since each of them
contains positive entries for two arcs incident with node v, whereas all such entries are
equal to zero in the points yr.

(b) Let F be the face induced by (3.40). Set δ+
T (j) := δ+(j) ∩ A(T ), δ−T (j) := δ−(j) ∩

A(T ), s := |S|, and t := |T |. We first construct five sets of linearly independent points,
and show then that all points are linearly independent.

1. S contains at least k + 1 nodes. Thus there are s2 − 2s + 1 linearly independent
points xσ ∈ F , with xσ

uv = 0 for all (u, v) ∈ A \ A(S).

2. For each (l, m) ∈ A1 := (T \ {j} : S \ {i}) there is an integer point xlm ∈ F , with
xlm

jl = xlm
lm = 1 and xlm

a = 0 for all a ∈ A(T ) \ {(j, l), (l, m)}.

3. For each arc (u, v) ∈ A(T \ {j}) there is an integer point xuv ∈ F , with xuv
ij = xuv

ju =
xuv

uv = xuv
vw = 1 for some w ∈ S \ {i} and xuv

a = 0 for all a ∈ A(T ) \ {(u, v), (j, u)}.
This are (t − 1)(t − 2) linearly independent points.

4. Clearly, |δ−T (j)| = t− 1. Hence there exist t− 1 linearly independent points xτ ∈ F ,
one for each node τ ∈ T \ {j}, with xτ

τj = 1 and xτ
a = 0 for all a ∈ A \ A(T ).

5. For each (y, z) ∈ A2 := (S : T ) \ {(i, j)} ∪ (j : S \ {i}) ∪ (T \ {j} : i) there is
an integer point xyz ∈ F , with xyz = 1 and xyz

a = for all a ∈ (S : T ) ∪ (T :
S) \ {(i, j), (j, i), (y, z)}. That are st + n − 3 linearly independent points.

We have constructed a total of n2 − 2n points. It remains to be shown that these
points are linearly independent. Suppose that

s2−2s+1∑

σ=1

ασxσ +
∑

(l,m)∈A1

βlmxlm +
∑

(u,v)∈A(T\{j})

γuvx
uv

+
∑

τ∈T\{j}

δτx
τ +

∑

(y,z)∈A2

ηyzx
yz = 0.

(3.41)

It follows that ηyz = 0 for (y, z) ∈ A2, since xyz
yz = 1, but the entry yz is equal to zero for

all other vectors in (3.41). Thus (3.41) can be reduced to

s2−2s+1∑

σ=1

ασx
σ +

∑

(l,m)∈A1

βlmxlm +
∑

(u,v)∈A(T\{j})

γuvx
uv +

∑

τ∈T\{j}

δτx
τ = 0. (3.42)



66 Chapter 3. Length restricted circuit polytopes PL

C
(Dn)

Of the remaining vectors only the vectors xτ have positive components (τj), whereas all
such components are zero in all other points. Hence, δτ = 0 for all τ ∈ T \ {j} and thus

s2−2s+1∑

σ=1

ασxσ +
∑

(l,m)∈A1

βlmxlm +
∑

(u,v)∈A(T\{j})

γuvx
uv = 0. (3.43)

With similar arguments follows that the remaining scalars are zero.

A cut inequality (3.40) is not facet defining when for example |S| ≤ k−2, because then
the face F induced by (3.40) is a proper subset of the face induced by the nonnegativity
constraint xjv ≥ 0 for any v ∈ S \ {i}. If |S|, |T | ≤ k then it is also not facet defining,
since then the face F induced by (3.40) is a proper subset of the face induced by the
dce-constraint x(δ+(i)) + x(δ+(j)) − x((S : T )) ≥ 1.

The following theorem is immediate.

Theorem 3.41. Let S, T be a bipartition of V with |S|, |T | ≥ 5. Further, let i ∈ S and
j ∈ T . Then the inequality

x((S : T ) \ (i, j)) − xji ≥ 0 (3.44)

defines a facet of P 4
C(Dn).

Proof. Set s := |S| and t := |T | and denote the face induced by 3.44 by F . Since
|S|, |T | ≥ 5, there are s2 − 2s+ 1 linearly independent points xσ ∈ F , with xσ

uv = 0 for all
(u, v) ∈ A \A(S) and t2 − 2t + 1 linearly independent points xτ ∈ F , with xτ

uv = 0 for all
(u, v) ∈ A \ A(T ).

Next consider 2st − 2 integer points xρ ∈ F , one for each ρ ∈ A′ := (S : T ) ∪ (T :
S) \ {(i, j), (j, i)}, such that xρ

ρ = 1 and xρ
a = 0 for all A′ \ {ρ}.

It is not hard to see that these n2−2n points are linearly independent, which completes
the proof.

We turn now to the case |L| ≥ 2.

Corollary 3.42.

(i) Let n ≥ 6, v, w ∈ V , v 6= w, L ⊆ {3, . . . , n}, |L| ≥ 2, and L ∩ {3, . . . , n − 2} 6= ∅.
Then the inequality (3.39) defines a facet of P L

C (Dn).

(ii) Let n ≥ 6, v, w ∈ V , v 6= w, L ⊆ {2, . . . , n}, |L| ≥ 2, 2 ∈ L, L ∩ {3, . . . , n − 2} 6= ∅
and k := min{l ∈ L | l > 2}. Then the inequality

x(A) + (k − 2)xwv − (k − 2)x(δ+(v) \ {(v, w)}) ≤ k

defines a facet of P L
C (Dn).

Proof. (i) We have to construct n2 − 2n + 1 affinely independent vectors satisfying (3.39)
at equality. By the conditions, there is k ∈ L ∩ {3, . . . , n − 2}. Thus, by Theorem 3.40,
there are n2 − 2n linearly independent vectors xr ∈ P L

C (Dn), with 1T xr = k, satisfying
(3.39) at equality.
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Since |L| ≥ 2 there is another feasible length l and a vector yl, with 1T yl = l, satisfying
(3.39) at equality. By Lemma 3.9, the points yl, xr, r = 1, . . . , n2 − 2n, are affinely
independent, and thus (3.39) defines a facet of P L

C (Dn).
The statement can be also proved by applying Procedure 3.33.

(b) Let k := min{l ∈ L | l > 2}. Note that k satisfies 2 < k < n − 1, and thus (3.39)
defines a facet of P k

C(Dn). Applying Procedure 3.33 yields the lifting number λ∗ = −1
k−2

and hence the inequality

x(δ+(v) \ (v, w)) − xwv −
1

k−2
x(A) ≥ −k

k−2

⇔ x(A) + (k − 2)xwv − (k − 2)x(δ+(v) \ {(v, w)}) ≤ k.

An statement analogous to the above can be obtained by applying Procedure 3.33 to
(3.40).

Maximal set inequalities

Wang [28] introduced a class of valid inequalities for the circuit polytope PC(Kn) he called
the multipartition inequalities. This class generalizes the S̄T̄ -inequalities introduced by
Bauer [7].

Let V = ∪s
i=1Vi be a partition of the nodeset V with |Vi| ≥ 2 for all i ∈ {1, . . . , s}.

Moreover, let Ti ⊆ E(Vi), i ∈ {1, . . . , s}, be a spanning tree of the complete graph induced
by Vi and T̄i be its complement with respect to E(Vi). Then the inequality

2

s∑

i=1

y(T̄i) +

s−1∑

i=1

s∑

j=i+1

y((Vi : Vj)) ≥ 2.

is called multipartition inequality and is facet defining for PC(Kn) if s ≥ 2.
These inequalities can be strengthened1 to facet defining inequalities of P≤k

C (Kn) by
replacing the sets T̄i, which are the complements of maximal sets in E(Vi) not containing
any circuit, by complements of maximal sets in E(Vi) not containing any circuit of length
less than or equal to k.

Theorem 3.43 ([8]). Let Kn = (V, E), 4 ≤ k < n, and a partition of V be given by

V =

s⋃

i=1

Vi

where s ≥ 2 and |Vi| ≥ 2 for all i ∈ {1, . . . , s}.2 Moreover, let Mi ⊆ E(Vi), i ∈ {1, . . . , s},
be a maximal edge set with respect to E(Vi) not containing any circuit of length less than

1Note that the statement of Bauer in [7], p. 67, is false that the S̄T̄ -inequalities would define facets
of PC(Kn).

2In their theorem they do not postulate explicit s ≥ 2, but it is not hard to see that the statement is
wrong for s = 1.
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or equal to k. Let M̄i = E(Vi) \Mi be its complement with respect to E(Vi). Then a facet
of P≤k

C (Kn) is defined by the maximal set inequality

2

s∑

i=1

y(M̄i) +

s−1∑

i=1

s∑

j=i+1

y((Vi : Vj)) ≥ 2.

We will show that an asymmetric version of these inequalities are also facet defining
for the polytopes P

{3,...,k}
C (Dn), 4 ≤ k ≤ n.

Theorem 3.44. Let Dn = (V, A) be the complete digraph on n nodes and Kn = (V, E)
be the associated complete graph on n nodes, i.e., dir(Kn) = Dn. Next, let 4 ≤ k ≤ n and
a partition of V be given by

V =
s⋃

i=1

Vi

where s ≥ 2 and |Vi| ≥ 2 for all i ∈ {1, . . . , s}. Moreover, let Mi ⊆ E(Vi), i ∈ {1, . . . , s},
be a maximal edge set with respect to E(Vi) not containing any undirected circuit of length
less than or equal to k, in particular, Mi contains no undirected circuit if k = n. Let
M̄i = E(Vi) \Mi be its complement with respect to E(Vi). Then a facet of P

{3,...,k}
C (Dn) is

defined by the asymmetric maximal set inequality

s∑

i=1

x(dir(M̄i)) +

s−1∑

i=1

s∑

j=i+1

x((Vi : Vj)) ≥ 1. (3.45)

Proof. The inequality is valid, as every feasible circuit either uses at least one arc in
∪s

i=1dir(M̄i) or one arc in ∪s−1
i=1 ∪s

j=i+1 (Vi : Vj).
Now we show that the face F induced by (3.45) is a facet. Let ARB1 be a spanning

arborescence of dir(M1), let w.l.o.g 1 be the root of ARB1, and (1, 2) ∈ ARB1.
Let F ∗ be a facet of P L

C (Dn) containing F , and let bT x ≥ b0, b ∈ RA, b 6= 0, be
an inequality defining F ∗ with bv1 = 0 for all v ∈ Vi,. i = 2, . . . , s and ba = 0 for all
a ∈ ARB1 (The inequality is in T-rooted form). We show that bT x ≥ b0 is equivalent to
the asymmetric maximal set inequality up to multiplication with a positive scalar.

Now, let us consider the coefficients ba, a ∈ A.

1. b2v = b0 for all v ∈ Vi, i = 2, . . . , s.

Let v ∈ Vi for some i ∈ {2, . . . , s}. Then the triangle (1, 2, v, 1) yields b2v = b0, since
b12 = bv1 = 0.

2. buv = b0 for all (u, v) ∈ dir(Mi), i = 2, . . . , s.

Let (u, v) ∈ dir(Mi) for some i ∈ {2, . . . , s}. Since b2u = b0 and b12 = bv1 = 0, the
circuit (1, 2, u, v, 1) yields buv = 0.

3. b1v = b0 for all v ∈ Vi, i = 2, . . . , s. To each v ∈ Vi there is a node w ∈ Vi with
(v, w) ∈ dir(Mi). Thus bvw = 0 and hence the triangle (1, v, w, 1) yields b1v = b0.

4. buv = b0 for all (u, v) ∈ dir(M̄i), i = 2, . . . , s.

Let i ∈ {2, . . . , s} and (u, v) ∈ dir(M̄i). Since (u, v) /∈ dir(Mi), there must be a
circuit C ⊆ M1 ∪ {(u, v)} with |C| ≤ k. This circuit satisfies b0 = bT χC = buv and
thus we conclude buv = b0.
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5. bv2 = 0 for all v ∈ Vi, i = 2, . . . , s.

Let v ∈ Vi for some i ∈ {2, . . . , s}. Since there is a node w ∈ Vi with bvw = 0 and
since b2w = b0, we derive from the circuit (2, v, w, 2), bv2 = 0.

6. b21 = 0.

Clear.

7. buv = 0 for all (u, v) ∈ (Vj : Vi), 2 ≤ i < j ≤ s.

Let (u, v) ∈ (Vj : Vi), 1 ≤ i < j ≤ s. From the triangle (u, v, 1, u) we derive the
equation buv + bv1 + b1u = b0. Since bv1 = 0 and b1u = b0, we obtain buv = 0.

8. buv = b0 for all (u, v) ∈ (Vi : Vj), 2 ≤ i < j ≤ s.

Let 2 ≤ i < j ≤ s and (u, v) ∈ (Vi : Vj). Then a circuit (t, u, v, t) with (t, u) ∈
dir(Mi) yields buv = b0.

9. buv = b0 for all (u, v) ∈ (V1 : Vi), bv,u = 0 for all (v, u) ∈ (Vi : V1), i = 2, . . . , s, and
bwu = 0 for all (w, u) ∈ A with (u, w) ∈ ARB1.

This can be shown per induction. In V1 we define a distance function δ : V1 → Z+

by δ(v) := |P | where P is the unique (1, v)-path in ARB1. Now suppose that the
statement is true for all v ∈ V1 with δ(v) ≤ d, then we will show that it is also true
for d + 1. For d ∈ {0, 1} the statement is true (see the steps before). So let 1 ≤ d,
u ∈ V1 with δ(u) = d + 1, and w ∈ Vi for some i ∈ {2, . . . , n}. Then there is a
predecessor of u, say z, in ARB1. Since δ(z) = d, the above statement is true for z;
in particular bzw = b0 and bwz = 0. Since also bzu = 0, we derive from the circuit
(z, u, w, z), buw = b0. Further, it exists a node p ∈ Vi with (p, w) ∈ dir(Mi), i.e.,
bpw = 0. Clearly, bup = b0, and thus the circuit (u, p, w, u) yields bwu = b0. Hence,
we get from the circuit (z, w, u, z), buz = 0. (Note that d ≤ |V1| − 1.)

10. ba = 0 for all a ∈ dir(M1) \ ARB1 and ba = b0 for all a ∈ dir(M̄1).

That is clear now.

Since bT x ≥ b0 has to be valid also for the circuit (1, v, 2, w, 1) for some v, w ∈ V2, v 6= w,
we know that b0 > 0, which completes the proof.

The perfect matching inequalities

If M is a matching in the complete graph Kn = (V, E), every (undirected) circuit contains
at least two edges not belonging to the matching. Bauer showed, if n ≥ 6 is even and M
a perfect matching, then the perfect matching inequality

y(E \ M) ≥ 2

is facet defining for PC(Kn) [7].
The symmetric version of these inequalities are not facet inducing for P≥3

C (Dn) but
can be strengthened. Let m := |M |/2 and M := {e1, e2, . . . , em}. The perfect matching
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M induces a partition of V in sets of cardinality 2, namely V = ∪m
i=1Vi, where Vi := Vei

:=
{u ∈ V | ei covers u}. Then the asymmetric perfect matching inequality

m−1∑

i=1

m∑

j=i+1

x((Vi : Vj)) ≥ 1 (3.46)

is facet defining for P≥3
C (Dn).

The statement will be proved in the next but one paragraph. Adding to (3.46) the
analogous inequality for the ordering (m, m − 1, . . . , 1) yields precisely the symmetric
version of the perfect matching inequality.

k-partition inequalities

The k-partition inequalities were introduced by Bauer et al. [8] and they are specific to
the polytope P≤k

C (Kn). If the nodesset V is partitioned into sets Vi, i = 1, . . . , m, of size
k − 1 (Vm is of cardinality at most k − 1), then the k-partition inequality

2

m∑

i=1

y(E(Vi)) +

m−1∑

i=1

m∑

j=i+1

y((Vi : Vj) ≤ 2(k − 1)

says that a circuit of length at most k contains enough edges across the partition of V .
The k-partition inequality defines a facet of P≤k

C (Kn) for 4 ≤ k < n (see Bauer et al. [8]).
The symmetric version

2

m∑

i=1

x(A(Vi)) +

m−1∑

i=1

m∑

j=i+1

[x((Vi : Vj) + x((Vj : Vi))] ≤ 2(k − 1)

is not facet defining for P≤k
C (Dn), since it is the sum of the valid inequalities

m∑

i=1

x(A(Vi)) +
m−1∑

i=1

m∑

j=i+1

x((Vi : Vj) ≤ (k − 1),

m∑

i=1

x(A(Vi)) +

m−1∑

i=1

m∑

j=i+1

x((Vj : Vi)) ≤ (k − 1).

The last both inequalities are called asymmetric k-partition inequalities, and we will show
that they are facet defining for P≤k

C (Dn). We will defer the proof to the next paragraph.

A common generalization of the perfect matching inequalities and the linear ordering
constraints (2.3) is the next family of inequalities.

The generalized linear ordering constraints inequalities

If C is a directed circuit of length at least k and V = ∪iVi a partition of V such that the
subsets Vi are of cardinality at most k− 1, then the generalized linear ordering constraint
says that C uses at least one arc in (Vi : Vj), i < j. Let us first study the case L = {k}.
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Theorem 3.45. Let 4 ≤ k < n, n ≥ 5, m ∈ N, m ≥ 2, and V = ∪m
i=1Vi be a partition of

V with |Vi| ≤ k − 1 for 1 ≤ i ≤ m. Then the following statements are equivalent.

(i) The inequality
m−1∑

i=1

m∑

j=i+1

x((Vi : Vj)) ≥ 1 (3.47)

defines a facet of P k
C(Dn).

(ii) |Vi| + |Vi+1| ≥ k for i = 1, . . . , m − 1, and |V1| + |Vi| ≥ k for i = 2, . . . , m.

Proof.
”(i) ⇒ (ii) :” For m = 2, statement (ii) is true independent of (i).

Let m ≥ 3. Assume that there are two sets Vi, Vi+1 with 1 ≤ i ≤ m − 1 such that
|Vi| + |Vi+1| < k. Then exists no feasible circuit containing an arc a ∈ (Vi : Vi+1) whose
incidence vector satisfies (3.47) at equality, and thus, by Lemma (3.17), inequality (3.47)
is not facet inducing for P L

C (Dn), a contradiction.
If we assume |V1| + |Vi| < k for an i ∈ {2, . . . , m}, then there is no circuit of length

k containing an arc a ∈ (Vi : V1) whose incidence vector satisfies (3.47) at equality, a
contradiction.
”(ii) ⇒ (i) :” The validity of the generalized linear ordering constraint is easily checked.

For showing the facet defining property, we consider the polytope

P ∗ := conv(P k
C(Dn) ∪ {C∗}),

where C∗ is a circuit of length k + 1 which satisfies (3.47) at equality. We first show that
constraint (3.47) induces a facet of P ∗. Then it follows immediately that (3.47) defines
also a facet of P k

C(Dn). Let us assume that bT x ≥ b0, b ∈ RA, b 6= 0, is a valid inequality
for P ∗, with

{x ∈ P ∗ | x satisfies (3.47) at equality} ⊆ {x ∈ P ∗ | bT x = b0}.

Let w.l.o.g. 1 ∈ V1 ∩ V (C∗) and bT x ≥ b0 in 1-rooted form.

Case 1: m = 2
Since k < n, we have |V1| + |V2| ≥ k + 1 and |V1|, |V2| ≥ 2. Let u, v ∈ V such that

a∗ := (u∗, v∗), (v∗, 1) ∈ C∗. The circuit C := (C∗\{(u∗, v∗), (v∗, 1)})∪{(u∗, 1)} is of length
k and satisfies bT χC = b0, since u∗, v∗ ∈ V2 or u∗ ∈ V2, v

∗ ∈ V1. We have bu∗1 = bv∗1 = 0,
and thus we get b(u∗v∗) = 0.

Next we show ba = 0 for all a ∈ A(V1 \ {1})∪A(V2)∪ (V2 : V1 \ {1}). Let (p, q) ∈ (V2 :
V1 \ {1}) and (r, s) ∈ A(V2).

Case 1.1: p 6= s
There is a circuit C of length k, with bT χC = b0, which contains not the node q, such

that (r, s), (s, 1) ∈ C. The circuit C ′ defined by C ′ := (C \ {(r, s), (s, 1)})∪ {(r, q), (q, 1)}
satisfies bT χC′

= b0. Since bs1 = bq1 = 0, we get brs = brq. For p = r this proves bpq = brs.
Otherwise one can show analogously bsr = bsp. Further, let C̃ a circuit of length

k such that p /∈ V (C̃), (s, r), (r, q) ∈ C̃ and bT χC̃ = b0. Then the circuit Ĉ := (C̃ \
{(s, r), (r, q)}) ∪ {(s, p), (p, q)} yields brq = bpq. So we get brs = bpq.
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Case 1.2: p = s

If |V2| ≥ 3 then there is a node s′ ∈ V2 \ {r, p}. Substituting s by s′ in the above
arguments yields brs′ = bpq, and since brs′ = brp, we get brp = bpq.

If |V2| = 2, then there is a node v′ ∈ V1 \ {1, q}. One can show brp = brq = brv′ ,
bpr = bpv′ , bv′q = bpq, brq = bv′q and thus brp = bpq.

Analogously one shows be = bf for all e ∈ (V2 : V1 \ {1}) and all f ∈ A(V1 \ {1}).
Hence, all coefficients ba, a ∈ A(V1 \ {1})∪A(V2)∪ (V2 : V1 \ {1}), are equal, and they are
all equal to zero, as ba∗ = 0.

As is easily seen, it follows immediately b1v = 0 for all v ∈ V1 \ {1} and ba = b0 for all
a ∈ (V1 : V2).

Case 2: m ≥ 3

With similar arguments as in the first case one can show that ba = 0 for all

• a ∈ A(V1) \ {1},

• a ∈ A(Vi), i = 2, . . . , m − 1,

• a ∈ (Vj : Vi), 1 ≤ i < j ≤ m − 1 and

• a ∈ (Vm : Vi), i = 2, . . . , m − 1.

Next let a ∈ (Vi : Vj), 2 ≤ i < j ≤ m − 1. Then we get ba = b0 from any circuit C of
length k containing a and satisfying bT χC = b0, since the coefficients bf , f ∈ C \ {a}, are
equal to zero.

Further, let a = (u, v) ∈ (V1 : Vi), i = 3, . . . , m. For u 6= 1 note that |V1 \ {1}| +
|V2| + |{v}| ≥ k. Hence there is a circuit C of length k containing a with bf = 0 for
all f ∈ C \ {a}. For u = 1 such a circuit exists more than ever. This yields ba = b0.
Analogously one shows ba = b0 for all a ∈ (Vj : Vm), j = 2, . . . , m − 2.

It remains to be shown that b1v = 0 for all v ∈ V1 \ {1}, ba = b0 for all a ∈ (V1 :
V2) ∪ (Vm−1 : Vm) and ba = 0 for all a ∈ A(Vm). This we commit for the reader as an
exercise.

We have determined all coefficients ba, a ∈ A. Clearly, b0 > 0, and thus inequality
(3.47) defines a facet F of P ∗. F contains n2 − 2n linearly independent incidence vectors
of k-circuits, and thus (3.47) defines also a facet of P k

C(Dn).

Corollary 3.46. Let 4 ≤ k < n, 2, . . . , k−1 /∈ L, k ∈ L and |L| ≥ 2. Let m ∈ N, m ≥ 2,
and V = ∪m

i=1Vi be a partition of V with |Vi| ≤ k − 1 for 1 ≤ i ≤ m. Then the following
statements are equivalent.

(i) The inequality (3.47) defines a facet of P L
C (Dn).

(ii) |Vi| + |Vi+1| ≥ k for i = 1, . . . , m − 1, and |V1| + |Vi| ≥ k for i = 2, . . . , m.
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Proof.
”(i) ⇒ (ii) :” Clear.

”(ii) ⇒ (i) :” For any l ∈ L, l > k, there is a circuit whose incidence vector satisfies (3.47)
at equality. By Lemma 3.9, it follows the statement.

For m ≥ 3, one can show that (3.47) is also facet defining for P 3
C(Dn). Applying

Procedure 3.33 to lift (3.47) (as a facet defining inequality for P k
C(Dn)) into a facet defining

inequality for P L
C (Dn) where L ⊆ {k, . . . , n}, |L| ≥ 2, k ∈ L, yields by the way no new

inequality: Adding a multiple of the equation x(A) = k to (3.47) leads to

m−1∑

i=1

m∑

j=i+1

x((Vi : Vj)) + λx(A) ≥ 1 + λk

⇒ λ ≥
1−

m−1
P

i=1

m
P

j=i+1
x((Vi:Vj))

x(A)−k
.

Thus λ∗ = max{
1−

Pm−1
i=1

Pm
j=i+1 χC((Vi:Vj))

|C|−k
| C ∈ CL\{k}(Dn)}. Since |C| − k > 0 and

∑m−1
i=1

∑m
j=i+1 χC((Vi : Vj)) ≥ 1 for all C ∈ CL\{k}(Dn), it follows that λ∗ ≤ 0. Fur-

ther, to each l ∈ L, l > k there is a circuit C l whose incidence vector satisfies (3.47) at
equality, and hence λ∗ = 0.

If in contrast L ⊆ {2, . . . , k}, k ∈ L, |L| ≥ 2, we can derive:

m−1∑

i=1

m∑

j=i+1

x((Vi : Vj)) − λx(A) ≥ 1 − λk

⇒ λ ≥
1−

m−1
P

i=1

m
P

j=i+1
x((Vi:Vj))

k−x(A)
.

Thus, if L′ := {l ∈ L | l < k, ∃ i : |Vi| ≥ l} is nonempty, then it follows that λ∗ = 1
k−p

where p = max{l ∈ L′}. Otherwise, we obtain λ∗ = 0.

Corollary 3.47. Let Dn = (V, A) be the complete digraph on n nodes, 4 ≤ k < n,
n ≥ 5, m ∈ N, and V = ∪m

i=1Vi be a partition of V with |Vi| ≤ k − 1 (1 ≤ i ≤ m)
satisfying the conditions (ii) in 3.45. Moreover, let L ⊆ {2, . . . , k}, k ∈ L, |L| ≥ 2, and
L′ := {l ∈ L | l < k, ∃ i : l ≤ |Vi|} be nonempty. Then the inequality

x(A) − (k − p)

m−1∑

i=1

m∑

j=i+1

x((Vi : Vj)) ≤ p (3.48)

defines a facet of P L
C (Dn) where p = max{l ∈ L′}. �

In particular, if p = k − 1 then (3.48) is a k-partition inequality.

The cardinality-path inequalities

Let P be a k-path in an undirected graph G = (V, E) and C be a circuit of cardinality at
most k. Then the cardinality - path inequality corresponding to P ensures that C never
uses more edges of P than inner nodes of P and can be expressed as

y(P ) ≤
1

2

∑

v∈Ṗ

y(δ(v))
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where y ∈ P≤k
C (G).

The next theorem shows that the corresponding symmetric inequality is facet defining
for P

{3,...,k}
C (Dn).

Theorem 3.48. Let Dn = (V, A) be the complete digraph on n nodes, Kn = (V, E) the
associated complete graph, i.e., dir(Kn) = Dn, 4 ≤ k < n, and P a path in Kn consisting
of k edges. Then the cardinality-path inequality

x(dir(P )) −
∑

v∈Ṗ

x(δ−(v)) ≤ 0 (3.49)

defines a facet of P
{3,...,k}
C (Dn).

Proof. Let the inequality be denoted by dT x ≤ 0, d ∈ RA. Bauer showed the validity
of the cardinality-path inequality in the undirected case [8]. Hence, constraint (3.49) is
valid.

In order to show that (3.49) defines a facet of P
{3,...,k}
C (Dn), assume that there is a

valid inequality bT x ≥ b0, b ∈ RA, b 6= 0, satisfying

{x ∈ P
{3,...,k}
C (Dn) | x satisfies (3.49) at equality} ⊆ {x ∈ P

{3,...,k}
C (Dn) | bT x = b0}.

Assume w.l.o.g. that P = (1, . . . , k + 1) and that

bi,i+1 = 0 ∀ i ∈ {1, . . . , k − 1}, (3.50)

bk+1,k = 0, (3.51)

b3,i = 0 ∀ i ∈ V \ V (P ). (3.52)

(See Figure 3.5 for an illustration.)
The argumentation is built-on so that the proof is correct if n = k + 1 or n = k + 2,

i.e., if V ∗ := V \ V (P ) = ∅ or V ∗ = {k + 2}. Set

A0 := {a ∈ A | da = 0},

A+ := {a ∈ A | da = 1}, and

A− := {a ∈ A | da = −1},

in particular, A+ = {(2, 1), (k, k + 1)}.

(i) Let us first show that b0 = 0 and ba = 0 for all a ∈ A0.
To each arc (i, 1), i = 3, . . . , k, consider the circuit C = (1, . . . , i, 1). Since 3 ≤ |C| ≤ k

and bT χC = b0, we obtain

bi1
(3.50)
= b0 ∀ i ∈ {3, . . . , k}. (3.53)

Next, from the circuit (k + 1, k, 1, k) we derive

b1,k+1
(3.52),(3.53)

= 0. (3.54)
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Now, the circuits (k+1, . . . , i, 1, k+1), (k+1, . . . , i, k+1), i = k−1, . . . , 3, (1, 2, 3, k+1, 1),
(1, 2, k + 1, 1), (k + 1, . . . , 2, k + 2) and the equations (3.50)-(3.54) yield (gradual)

bi+1,i = 0 for i = k − 1, . . . , 3;
bi,k+1 = b0 for i = k − 1, . . . , 3;
bk+1,1 = 0;
b2,k+1 = b0;

b3,2 = 0.

(3.55)

Furthermore, the circuit (1, 2, k + 1, k, 1) yields

b12 + b2,k+1 + bk+1,k + bk1 = b0

⇔ 2b0 = b0

⇔ b0 = 0.

In particular, ba = 0 for all a ∈ A0 ∩ A(V \ V ∗).
If V ∗ = ∅ go to (ii). Otherwise consider the circuits (1, 2, 3, i, 1) and (i, k +1, . . . , 3, i),

i = k + 2, . . . , n. Since b12 = b23 = b3i = 0 and bj+1,j = 0, j = 3, . . . , k, we obtain

bi1 = bi,k+1 = 0, i = k + 2, . . . , n. (3.56)

Further, the circuits (1, 2, k + 1, i, 1) and (k + 1, k, 1, i, k + 1), i = k + 2, . . . , n, yield

b1i = bk+1,i
(3.56)
= 0, i = k + 2, . . . , n. (3.57)

From (3.56) follows also that

b2i = bji = 0, i = k + 2, . . . , n, j = 4, . . . , k, (3.58)

by consideration of the circuits (1, 2, i, 1) and (i, k + 1, . . . , j, i).
Finally, if A(V ∗) 6= ∅, consider any arc (u, v) ∈ A(V ∗). Then, from the triangle

(1, u, v, 1) and the equations (3.56), (3.57) we derive

buv = 0, (u, v) ∈ A(V ∗).

Thus, ba = 0 for all a ∈ A0.

(ii) Let us show now
ba = bã ∀ a, ã ∈ A+,
ba = bã ∀ a, ã ∈ A−, and

ba + bã = 0 ∀ a ∈ A+, ã ∈ A−.
(3.59)

From the circuits (2, . . . , k + 1, 2) and (k + 1, 2, 1, k + 1) we obtain

bk,k+1 + bk+1,2 = bk+1,2 + b21

⇔ bk,k+1 = b21.

It is now easy to see that (3.59) holds. Consider the circuits

(i, . . . , 1, i) for i = 3, . . . , k,
(i, . . . , k + 1, i) for i = 2, . . . , k − 1,

(1, . . . , i, j, . . . , k + 1, 1) for 2 ≤ i < j ≤ k, j − i ≥ 2,
(k + 1, . . . , i, j, . . . , 1, k + 1) for 2 ≤ j < i ≤ k, i − j ≥ 2, and maybe

(i, 2, 1, i) for i = k + 2, . . . , n,
(i, j, . . . , k + 1, i) for i = k + 2, . . . , n, j = 3, . . . , k.



76 Chapter 3. Length restricted circuit polytopes PL

C
(Dn)

It follows immediately that

ba = bã ∀ a, ã ∈ A−, and
ba + bã = 0 ∀ a ∈ A+, ã ∈ A−,

since b21 = bk,k+1. Hence, (3.59) holds.

Suppose that ba = 0 for some a ∈ A+ ∪ A−. That implies b = 0, a contradiction.
Further, bT x ≤ b0 is a valid inequality with respect to P

{3,...,k}
C (Dn), and hence, ba > 0 for

all a ∈ A1 and ba < 0 for all a ∈ A2.

1

2 3 4 5

6

7 8

≤ 0

Figure 3.5: P = (1, 2, 3, 4, 5, 6)

Some experiments with PORTA for small instances imply that the cardinality-path
inequality (3.49) is also facet defining for P k

C(Dn) if the number of nodes not covered by
the path P is not to small (|V \ V (P )| ≈ k). Applying the Procedure 3.33 yields:

(a) For P L
C (Dn), L ⊆ {2, . . . , k}, k ∈ L, |L| ≥ 2:

(i) If 2 ∈ L, then the lifting number λ∗ is equal to −1
k−2

. Thus we get the inequality

x(dir(P )) −
∑

v∈Ṗ x(δ−(v)) − 1
k−2

x(A) ≤ −k
k−2

⇔ (k − 2)
∑

v∈Ṗ x(δ−(v)) + x(A) − (k − 2)x(dir(P )) ≥ k.

(ii) If 2 /∈ L, then it follows that λ∗ = 0.

(b) For P L
C (Dn) with L ⊆ {k, . . . , n}, k ∈ L, and |L| ≥ 2 we obtain λ∗ = −1

p−k
, where

p := min{l ∈ L | l > k}. This leads to the inequality

(p − k)
∑

v∈Ṗ

x(δ−(v)) + x(A) − (p − k)x(dir(P )) ≥ k
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These inequalities are valid for the respective polytopes and even facet defining if the
above conjecture is true.

3.7 The connection between s-t path polytopes and

circuit polytopes

In the sequel we present two transformations of s-t paths in circuits. The first is obvious,
while the second admits the interpretation that a s-t-path polytope is essentially the
restriction of a circuit polytope to the hyperplane defined by

x(δ+(v)) = 1

for an appropriate node v. Hence, we can apply the lifting procedure 3.33 to lift facets of
a s-t path polytope to the associated circuit polytope.

Let D = (V, A) be a digraph on n nodes containing two special nodes s and t. We may
assume that the arcset A does not contain arcs entering s and arcs leaving t. Further,
let the digraph D′ = (V ′, A′) defined by V ′ := V and A′ := A ∪ {(t, s)}. Then a
(s, t)-path P ∈ PL(D) is equivalent to a circuit C = P ∪ {(t, s)} ∈ CL+1(D′) where
L+1 := {k+1 |k ∈ L}. The convex hull of the incidence vectors of circuits C ∈ CL+1(D′)
containing (t, s) is the restriction of P L+1

C (D′) to the hyperplane defined by

xts = 1.

Hence, if dT x ≤ d0 is a valid inequality for P L+1
C (D′), then the inequality d̃T x̃ ≤ d̃0 defined

by

d̃a := da ∀ a ∈ A

d̃0 := d0 − dts

is valid with respect to P L
s−t path(D).

We illustrate now the second transformation. Let again D = (V, A) be a digraph
on n nodes containing two special nodes s and t where the arcset A does not contain
arcs entering s and arcs leaving t. We denote by D′ = (V ′, A′) the digraph obtained by
contracting {s, t} to a single new node, say w, and define D̃ := D′ ∪ L where

L :=

{
{(w, w)} if (s, t) ∈ A
∅ otherwise.

Then it is easy to see that a (s, t)-path P ∈ PL(D) is equivalent to a circuit or loop
C ∈ CL(D̃) containing w. Thus, the polytope Ps−t path(D) and the face F̃ of D̃ induced
by the degree constraint

x(δ+(w)) = 1

are obviously isomorphic. Moreover, the facets of P L
C (D̃) are in 1-1 correspondence with

those of P L
C (D′). This is clear for D′ = D̃. Otherwise is dim P L

C (D̃) = dim P L
C (D′) + 1,

and thus, an inequality

bT x ≤ b0
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is facet defining for P L
C (D′) if and only if

bT x + b0xww ≤ b0

is facet defining for P L
C (D̃).

Based on these results we can apply the lifting procedure 3.33 in order to generate
facets of P L

C (D′) from facets of P L
s−t path(D) if x(δ+(w)) ≤ 1 is facet defining for P L

C (D′);
or more generally, valid inequalities for P L

s−t path(D) can be lifted into valid inequalities
for P L

C (D′).

Theorem 3.49. Let D = (V, A) be a digraph on n nodes, s, t ∈ V , and L ⊆ {1, . . . , n−1}.
Suppose that A does not contain arcs entering s and arcs leaving t. Denote by D′ =
(V ′, A′) the digraph obtained by contracting {s, t} to a single new node, say w. Further,
let

dTx ≤ d0

be a valid inequality for P L
s−t path(D) and

λ∗ := min{d0 − dTχC | C ∈ CL(D), s, t /∈ V (C)}.

Then the inequality

d′T x′ ≤ d′
0

defined by

d′
ij := dij ∀ (i, j) ∈ A(V \ {s, t}),

d′
wi := dsi − λ∗ ∀ i ∈ V \ {s},

d′
iw := dit ∀ i ∈ V \ {t}, and
d′

0 := d0 − λ∗

is valid for P L
C (D′). Moreover, if dT x ≤ d0 is facet defining for P L

s−t path(D), but not
equivalent to the nonnegativity constraint xst ≥ 0, D chosen such that D′ is a complete
digraph on n − 1 nodes, and 2 6= L \ {1} 6= 3, then d′Tx′ ≤ d′

0 defines a facet of P L
C (D′).

Proof. Set D̃ := D′ ∪ L where

L :=

{
{(w, w)} if (s, t) ∈ A
∅ otherwise.

,

and identify P L
s−t path(D) with the face F̃ of D̃ induced by the degree constraint

x(δ+(z)) = 1.

Now let dTx + dwwxww ≤ d0 be a valid inequality with respect to F̃ . Then the inequality
dT x ≤ d0 is valid for

F := {x ∈ P L
C (D′) | x(δ+(w)) = 1}.

The remainder follows immediately from Procedure 3.33 and the Theorems 3.22 and
3.23.
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Dahl and Gouveia [12] introduced a class of inequalities for the length restricted s− t
path polytope P≤k

s−t path(D) they called jump and lifted jump inequalities. Let V =
⋃k+1

i=0 Vi

be a partition of V , with V0 = {s} and Vk+1 = {t}. Then the set

J := J(V0, . . . , Vk+1) :=

k−1⋃

i=0

k+1⋃

j=i+2

(Vi : Vj)

is called a (s − t, k)-jump and the associated inequality

∑

(i,j)∈J

yij ≥ 1

jump inequality, i.e., any (s, t)-path P of length at most k must make at least one ”jump”
from an nodeset Vi to an nodeset Vj , with j − i ≥ 2.

If
k⋃

i=0

k+1⋃

j=i+1

(Vj : Vi) 6= ∅,

then, under certain conditions, the path P must make more than one ”jump”. This
suggests that the following lifted jump inequality may be valid for adequate choices of
arcsets B ⊆ A: ∑

(i,j)∈J

yij ≥ 1 +
∑

(i,j)∈B

yij.

Dahl and Gouveia showed that one valid instantiation of B is given by the arcset

(Vk−1 ∪ Vk : V1 ∪ V2),

that is,

∑

(i,j)∈J yij − y((Vk−1 ∪ Vk : V1 ∪ V2)) ≥ 1 for all (s − t, k)-jumps

J = J({s}, V1, . . . , Vk, {t})
(3.60)

are valid inequalities for P≤k
s−t path(D). Furthermore, in case k = 3 they proved

Theorem 3.50 ([12]). A complete linear description of P≤3
s−t path(D) is given by the fol-

lowing system of equations and inequalities:

y(δ+(v)) − y(δ−(v)) =







1 if v = s,
0 if v ∈ V \ {s, t},

−1 if v = t.
(3.61)

∑

(i,j)∈J

yij −
∑

i∈V3∪{p}

∑

j∈V1∪{p}

yij ≥ 1 for all (s − t, 3)-jumps

J = J({0}, V1, {p}, V3, {t}) (3.62)

ya ≥ 0 ∀ a ∈ A. (3.63)

�
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By using the flow conservation constraints (3.61) for all v ∈ V3 ∪ {t} on the left-hand
side of (3.62) and canceling equal terms we obtain the following equivalent inequality:

ysi −
∑

j∈V \{s,t}

yij ≥ 0 i ∈ V \ {s, t}. (3.64)

We will sketch the proof of Theorem 3.50 in an appropriate form in order to draw later
a further conclusion. The set of all (s, t)-paths of length at most 3 can be represented by
the following binary variables: For a given internal arc (i, j), variable zij is associated with
the 3-path {(s, i), (i, j), (j, t)}. For a given node j ∈ V \ {s, t}, variable zj is associated
with the 2-path {(s, j), (j, t)}. Finally, variable zst is associated with the 1-path {(s, t)}.
An extended formulation is now given by the following system:

zij = yij ∀ i, j ∈ V, i 6= s, j 6= t (3.65)

zst = yst (3.66)
∑

j∈V \{s,t,i}

zij + zi = ysi ∀ i ∈ V \ {s, t} (3.67)

∑

i∈V \{s,t,j}

zij + zj = yjt ∀ j ∈ V \ {s, t} (3.68)

∑

i,j∈V \{s,t}

zij +
∑

j∈V \{s,t}

zj + zst = 1 (3.69)

zij ≥ 0 ∀ i, j ∈ V, i 6= s, j 6= t (3.70)

zj ≥ 0 ∀ j ∈ V \ {s, t} (3.71)

zst ≥ 0. (3.72)

Dahl and Gouveia showed that P≤3
s−t path(D) is the projection of (3.65)-(3.72) into the space

of yij variables, and the system (3.61)-(3.63) can be obtained by using Fourier-Motzkin
elimination.

For k = 4 it can be shown that the lifted jump inequalities (3.60) are equivalent to
the following inequalities:

y((s : V1)) + y((V2 : t)) − y((V1 : V2)) ≥ 0 ∀ V1, V2 ⊆ V \ {s, t},
|V1|, |V2| ≥ 1, V1 ∩ V2 = ∅.

(3.73)

Moreover, Dahl and Gouveia showed

Theorem 3.51 ([12]). An inequality (3.73) is facet defining for P≤4
s−t path(D) if and only

if either

(i) V \ ({s, t} ∪ V1 ∪ V2) is nonempty or

(ii) |V1| ≥ 2 and |V2| ≥ 2.

�

By applying Theorem 3.49 we can lift the inequalities (3.60) which are valid (facet in-
ducing) for P≤k

s−t path(D) into valid (facet inducing) inequalities for P≤k
C (D′). We illustrate

the lifting procedure for the inequalities (3.64) and (3.73):
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Example 3.52 (Inequality (3.64)). The inequality

ysi −
∑

j∈V \{s,t}

yij ≥ 0 i ∈ V \ {s, t},

which is valid for P≤3
s−t path(D) corresponds to the inequality

xwi −
∑

j∈V ′\{w}

xij ≥ 0 i ∈ V ′ \ {w}.

Here V ′ is the nodeset of the digraph D′ which is obtained by contracting {s, t} to the
new node w. This inequality is valid for the polytope {x ∈ P≤3

C (D′) | x(δ+(w)) = 1}.
Subtracting the equation x(δ+(w)) = 1 and multiplying then with −1 we obtain the
inequality

∑

j∈V ′\{w,i}

[xwj + xij ] ≤ 1 i ∈ V ′ \ {w}

which is valid for P≤3
C (D′).

Corollary 3.53. Let Dn = (V, A) be the complete digraph on n nodes, let w ∈ V , and
define P L

C (Dn)δ+(w) := {x ∈ P L
C (Dn) | x(δ+(w)) = 1}.

(a) The polytope P≤3
C (Dn)|δ+(w) is determined by the system

x(δ+(v)) − x(δ−(v)) = 0 ∀ v ∈ V
x(δ+(w)) = 1

∑

j∈V \{w,i}

[xwj + xij] ≤ 1 ∀ i ∈ V \ {w}

xa ≥ 0 ∀ a ∈ A.

Moreover, the inequalities

∑

i∈V \{u,v}

[xui + xvi] ≤ 1 ∀ u, v ∈ V, u 6= v

define facets of P≤3
C (Dn).

(b) The polytope P 3
C(Dn)|δ+(w) is determined by the system

x(δ+(i) \ {(i, w)}) − xwi = 0 ∀ i ∈ V \ {w}
x(δ+(j) \ {(w, j)}) − xjw = 0 ∀ j ∈ V \ {w}

x(A(V \ {w})) = 1
xij ≥ 0 ∀ (i, j) ∈ A(V \ {w}).

(3.74)

Proof. (a) The first statement is a direct consequence of Theorem 3.50 and the comments
in Example 3.52. The second statement is so easy to show that we leave it as an exercise.

(b) Consider the above extended formulation. Set all binary variables to zero which
are associated to (s, t)-paths of length at most two, i.e., zst = 0, zj = 0. Further define
xij := yij for all i 6= s, j 6= t, and xwi := ysi, xiw := yit for all s 6= i 6= t. Then
Fourier-Motzkin elimination leads to the system (3.74).
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C
(Dn)

Thus one can suggest the following algorithm to solve the LRCPs
(

min cT χC

C ∈ C≤3(Dn)

)

and

(
min cT χC

C ∈ C3(Dn)

)

:

For each v ∈ V solve the LP min cT x, x ∈ P≤3
C (Dn)|δ+(v) ( x ∈ P 3

C(Dn)|δ+(v) ), and
choose among the optimal solutions x∗(v) the solution with the minimum weight. Such
an algorithm makes sense only when its running time is in general shorter than a simply
enumeration algorithm.

Example 3.54 (Inequality (3.73)). The support graph of an inequality (3.73), denoted
by dTy ≥ 0, is sketched in Figure 3.6(a), where V3 is maybe empty. The contraction of the
nodeset {s, t} to a single new node, say w, yields an inequality d′T x ≥ 0, whose support
graph is sketched in Figure 3.6(b). Denote the digraph obtained by this contraction by
D′. It is not hard to see that that min{d′T χC | C ∈ P≤4

C (D′), w /∈ C} = −2, and thus,
d′T x−2x(δ+(w)) ≥ −2, illustrated in Figure 3.6(c), is facet defining for P≤4

C (D′) if dTx ≥ 0
is facet defining for P≤4

s−t path(D).

s tV1 V2 V3 ≥ 0

(a)

w

V1 V2 V3

≥ 0

(b)

w

V1 V2 V3

≥ −2

(c)

Figure 3.6 Illustration of Example 3.55

By multiplying d′T x − 2x(δ+(w)) ≥ −2 with −1 we obtain

Corollary 3.55. Let Dn = (V, A) be the complete digraph on n nodes, w ∈ V , and
V1, V2 ⊆ V \ {w} be nonempty disjoint nodesets such that either

(i) V \ ({w} ∪ V1 ∪ V2) is nonempty or

(ii) |V1| ≥ 2 and |V2| ≥ 2.

Then the inequality

2x(δ+(w)) − x((w : V1)) − x((V2 : w)) + x((V1 : V2)) ≤ 2

is facet defining for P≤4
C (Dn). �
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A final comment is in order. Due to the fact that in the most cases dim P L
C (Dn)|δ+(w) =

dim P L
C (Dn) we can deduce the dimension of the length restricted path polytope.

Corollary 3.56. Let D = (V, A) be a digraph on n nodes and let s, t ∈ V such that D is
obtained from the complete digraph on nodeset V by removing all arcs in (δ−(s) ∪ δ+(t)).
Moreover, let ∅ 6= L ⊆ {1, . . . , n−1} be a set of feasible lengths (with respect to s−t-paths)
and let

α =

{
1 if 1 ∈ L,
0 otherwise.

Then dim P L
s−t path(D)

=







0 if L = {1},
n − 3 + α if L \ {1} = {2},
(n − 2)(n − 3) − 1 + α

=n2 − 5n + 5 + α if L \ {1} = {3},
dim P k

C(Dn−1) − 1 + α =(n − 2)2 − 2 + α if L \ {1} = {k}, 4 ≤ k ≤ n − 2,
dim P n−1

C (Dn−1) + α =n2 − 5n + 5 + α if L \ {1} = {n − 1},

dim P
(
CDn−1) − 1 + α =(n − 2)2 − 1 + α if |L \ {1}| ≥ 2.

�
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Chapter 4

Separation

In this chapter we investigate the separation problem for the considered inequalities, which
includes partly references to the literature for exact and heuristics algorithms as well as
complexity results.

Let us start with some notes on the separation problem. It is usually defined as follows:
Given a point x∗ ∈ RA, x∗ ≥ 0, and a family F of inequalities, find a violated member
of F , i.e., an inequality bT x ≤ b0 belonging to F with bT x∗ > b0. But sometimes it is
profitable to find a most violated member, i.e., an inequality bT x ≤ b0 belonging to F and
maximizing the degree of violation bT x∗−b0 (optimization version), because sometimes
a maximally violated inequality exhibit a strong combinatorial structure, which can be
exploited for separation (see Caprara et al. [10]).

Further, note that the separation problem depends strongly on the exact definition
of the family F . For example, it can arise the case that the separation problem for F
is solvable in polynomial time but for a subclass F ′ ⊆ F it could be NP-hard (see for
example [15]).

We come now to the results on the separation problem for P L
C (Dn). We suppose that

a givem point x∗ ∈ RA satisfies the flow constraints (2.1).

4.1 Symmetric inequalities

The connection between symmetric inequalities bT x ≤ b0 and the associated inequalities
∑

[i,j]∈E bijy[i,j] ≤ b0 implies that every separation algorithm for P L
C (Kn) can be used, as

a ”black box”, for P L
C (Dn) as well. To this end, given the point x∗ and a family F of

symmetric inequalities one first defines the undirected counterparts y∗ and F∗ of x∗ and
F , respectively, by the transformation

y∗
[i,j] := x∗

ij + x∗
ji ∀ [i, j] ∈ E,

∑

(i,j)∈A

bijxij ≤ b0 →
∑

[i,j]∈E

bijy[i,j] ≤ b0,

and then applies the separation algorithm (for P L
C (Kn)) to y∗ and the class F∗. On

return, the detected violated inequality bT y ≤ b0 ∈ F∗ is transformed into its counterpart
∑

e∈E be(xij + xji) ≤ b0 ∈ F .
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The following inequalities are equivalent to symmetric inequalities.

4.1.1 Disjoint circuits elimination constraints

Class: {x(δ+(p)) + x(δ+(q)) − x((S : T )) ≤ 1 | V = S ∪ T, p ∈ S, q ∈ T}
Complexity: polynomial

Given x∗ ∈ RA, there is a violated disjoint circuits elimination constraint if there are
nodes p, q ∈ V and a bipartition S, T of V with p ∈ S, q ∈ T such that

x((S : T )) < x(δ+(p)) + x(δ+(q)) − 1.

Thus the separation problem for the dce inequalities can be solved in polynomial time,
e.g., by applying n(n − 1) times a minimum (i, j)-cut algorithm.

Since x∗ satisfies the flow constraints, there is a violated dce inequality if and only if
there exists a bipartition V = S ∪ T with

x∗((S : T )) + x∗((T : S)) < x(δ+(p)) + x(δ−(p)) + x(δ+(q)) + x(δ−(q)) − 2.

Hence, we can transform the separation problem to the corresponding separation problem
of finding a bipartition V = S ∪ T of V with

y∗((S : T )) < y∗(δ(p)) + y∗(δ(q)) − 2.

for the corresponding point y∗ ∈ RE . This separation problem can be efficiently solved
by applying the Gomory-Hu algorithm (see Bauer [7]).

4.1.2 Parity constraints

Class: {x(δ+(v) \ (v, w)) − xwv ≥ 0 | v, w ∈ V, v 6= w}
Complexity: polynomial

Given a point x∗ ∈ RA
+, the separation problem for the parity constraints can be solved

in computational time O(n2) by checking all of them.

4.1.3 Cut inequalities

Class: {x((S : T ) \ (i, j)) − xji ≥ 0 | V = S ∪ T, 1 ≤ |S| ≤ n − 1}
Remark: not necessarily facet defining

Complexity: polynomial

Given a point x∗ ∈ RA
+ satisfying the flow constraints, there is a violated cut inequality

if there exists a bipartition V = S ∪ T of V with x∗((S : T )) < x∗
ij + ∗xji. Thus the

separation problem for the cut inequalities can be solved in polynomial time, e.g., by
applying n(n − 1) times a minimum (i, j)-cut algorithm. (See also 4.1.1.)
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4.1.4 Bipartition inequalities

Class: {x(A(S))+x(A(T ))+x((S : T )) ≥ k+1
2

|V = S∪T, 1 ≤ |S| ≤ n−1}
Complexity: NP-hard

Given x∗ ∈ RA, there is a violated bipartition inequality if there is a bipartition S, T
of the nodeset V such that

x∗((T : S)) > x∗(A) −
k + 1

2
.

Since x∗ satisfies the flow constraints (2.1), the problem is equivalent to the problem
of finding a bipartition S, T of V such that

x∗((S : T )) + x∗((T : S)) > 2x∗(A) − k − 1.

This inequality is symmetric and corresponds to the inequality

y∗((S : T )) > 2y∗(E) − k − 1

by setting y∗
e := (x∗

ij + x∗
ji)/2 for all e = ij ∈ E where Kn = (V, E) is the associated

graph.
But this is exactly the separation problem for the undirected bipartition inequalities,

and Bauer [7] showed that it is NP-hard for k = 3. It is no problem to extend her proof
to any odd k, k ≥ 5. (See Appendix B). Thus the separation problem for the class of
bipartition inequalities is NP-hard.

4.1.5 Cardinality-path inequalities

Class: {x(dir(P )) −
∑

v∈Ṗ x(δ−(v)) ≤ 0 | P path in Kn, |P | = k}
Complexity: NP-hard

Due to the flow constraints the cardinality-path inequality is equivalent to the sym-
metric inequality

2x(dir(P )) −
∑

v∈Ṗ

[x(δ−(v)) + x(δ+(v))] ≤ 0.

For the complexity result and a heuristic see Bauer, Linderoth, and Savelsbergh [8].

4.1.6 Cardinality-tree Inequalities

The complexity of the separation problem for the cardinality-tree inequalities is unknown,
but there are some known polynomial cases for the symmetric counterpart (see Bauer,
Linderoth, Savelsbergh [8].

4.2 Asymmetric inequalities

4.2.1 Linear ordering constraints

Class: {
∑n−1

i=1

∑n
j=i+1 xπ(i),π(j) ≥ 1 | π permutation of V }

Complexity: NP-hard
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The separation problem for the class of linear ordering constraints is NP-hard, since
it is a linear ordering problem (LOP). For a heuristic we refer to Chanas and Kobylanski
[11]. They developed an algorithm which uses the fact that a permutation (v1, v2, . . . , vn)
is a solution of the LOP maximizing the objective function if and only if the permutation
vn, vn−1, . . . , v1 is a solution of the LOP minimizing the objective function.

4.2.2 Asymmetric maximal set inequalities

Class: {
s∑

i=1

x(dir(M̄i)) +
s−1∑

i=1

s∑

j=i+1

x((Vi : Vj)) ≥ 1 | Conditions see (i), (ii)}

(i) V =
⋃s

i=1 Vi partition with s ≥ 1
(ii) Mi ⊆ E(Vi) maximal set not containing any undirected circuit of

length less than or equal to k where 4 ≤ k < n, i = 1, . . . , s
Complexity: unknown

Let D = (V, A) be a complete digraph and G = (V, E) be the associated graph. Given
a point x∗ ∈ RA

+, the separation problem for the asymmetric maximal set inequalities is

to find a partition of the nodes V =
s⋃

i=1

Vi and in each Vi a maximal edge set Mi not

containing any (undirected) circuit of length less than or equal to k such that

s∑

i=1

x∗(dir(M̄i)) +

s−1∑

i=1

s∑

j=i+1

x∗((Vi : Vj)) < 1.

Since the polytope P
{3,...,k}
C contains amongst others symmetric points, i.e., such points

x with xij = xji for all i, j ∈ V , i 6= j, it is not absurd to assume that x∗ is symmetric.
Then

∃ Vi, Mi :
∑s

i=1 x∗(dir(M̄i)) +
∑s−1

i=1

∑s
j=i+1 x∗((Vi : Vj)) < 1

⇔ ∃ Vi, Mi :
∑s

i=1 x∗(dir(M̄i)) +
∑s−1

i=1

∑s
j=i+1 x∗((Vj : Vi)) < 1

⇔ ∃ Vi, Mi : 2
∑s

i=1 x∗(dir(M̄i)) +
∑s−1

i=1

∑s
j=i+1 x∗(dir((Vi : Vj))) < 2.

Define y∗ ∈ RE by y∗
e := 1

2
(x∗

ij + x∗
ji) for all e = ij. Then

∃ Vi, Mi : 2
∑s

i=1 x∗(dir(M̄i)) +
∑s−1

i=1

∑s
j=i+1 x∗(dir((Vi : Vj))) < 2.

⇔ ∃ Vi, Mi : 2
∑s

i=1 x∗(M̄i) +
∑s−1

i=1

∑s
j=i+1 x∗((Vi : Vj)) < 2,

i.e., if x∗ is symmetric, then the separation problem for the asymmetric maximal set
inequalities is as hard as the separation problem for the maximal set inequalities.

Bauer et al. [8] showed that the separation problem for a special subclass of maximal
set inequalities is NP-hard. They restricted themselves to s = 1 and to a subset of
maximal sets. The subset consists of all spanning trees whose fundamental circuits are
of length at most k. Then the separation problem is to find a spanning tree T of G such
that y∗(T ) > y∗(E) − 1 and a longest path in T with at most k − 1 edges. Since this
problem is NP-hard, the separation problem for the maximal set inequalities and thus for
the asymmetric maximal set inequalities seems to be NP-hard. But this is not a proof
for the class of facet defining maximal set inequalities, since in case s = 1 they are not
facet defining for P≤k

C (Kn). Moreover, it should be examined whether it is sufficient to
consider only the set of spanning trees as subsets of maximal sets or not.
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4.2.3 Generalized linear ordering constraints

Class: {
∑m−1

i=1

∑m
j=i+1 x((Vi : Vj)) ≥ 1|V =

m⋃

i=1

Vi partition with (i)−(iii)}

(i) |Vi| ≤ k − 1 for 1 ≤ i ≤ m
(ii) |Vi| + |Vj | ≥ k for 1 ≤ i < j ≤ m
(iii) |V1| + |Vi| ≥ k for i = 2, . . . , m

Complexity: unknown

Given a point x∗ ∈ RA
+ and an integer k with 3 ≤ k ≤ |V | − 1, the separation problem

for the generalized linear ordering constraints is to find a partition
⋃m

i=1 Vi of the nodeset
V satisfying (i)-(iii) such that

m−1∑

i=1

m∑

j=i+1

x((Vi : Vj)) < 1. (4.1)

The class F of generalized linear ordering constraints is contained in the class F∗ of
the inequalities (4.1) whose associated partition satisfies only item (i). F∗ is a family
of valid inequalities for the polytopes P L

C (Dn) with L ⊆ {k, . . . , n}. The next theorem
indicates that the separation problem for F is hard.

Theorem 4.1. The separation problem for the family F∗ of inequalities is NP-hard.

Proof. We will show that the corresponding decision problem is NP-complete.
PROBLEM: Generalized linear ordering separation problem (GLOSP1)
INSTANCE: Complete digraph D = (V, A), a vector x∗ ∈ RA

+ with 1T x∗ ≥
1 and x∗

ij = x∗
ji for all i, j ∈ V , i 6= j, and an integer k with

3 ≤ k < n.
QUESTION: Is there a partition of V =

⋃m
i=1 Vi with m ≥ 2 such that |Vi| ≤

k − 1 for i = 1, . . . , m and such that
∑m−1

i=1

∑m
j=i+1 x∗((Vi :

Vj)) < 1?

GLOSP1 is clearly in NP. Moreover, it is at least as hard as the following NP-complete
graph partitioning problem (GPP) [22]:

PROBLEM: Graph partitioning problem (GPP)
INSTANCE: Graph G = (V, E), a weight vector c ∈ RE

+, and positive
integers K, J .

QUESTION: Is there a partition of V =
⋃m

i=1 Vi with m ≥ 2 such that
|Vi| ≤ K for i = 1, . . . , m and such that

∑m−1
i=1

∑m
j=i+1 c((Vi :

Vj)) ≤ J?

Given an instance of GPP, we construct an instance of GLOSP1 by letting G′ = (V, E ′)
be the complete graph on nodeset V and setting c′e := ce if e ∈ E and c′e := 0 otherwise,
D := dir(G′), k := K + 1, and

x∗
ij := x∗

ji :=
1

2J
c′e ∀ e = ij ∈ E ′.
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With these definitions, there exists obviously a partition V =
⋃m

i=1 Vi with m ≥ 2, |Vi| ≤
K, and

∑m−1
i=1

∑m
j=i+1 c((Vi : Vj)) ≤ J if and only if there exists a partition V =

⋃m
i=1 Vi

with m ≥ 2, |Vi| ≤ k − 1, and
∑m−1

i=1

∑m
j=i+1 x∗((Vi : Vj)) ≤ 1.
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Conclusions

At the end of this thesis we want to evaluate some results. The study of the facial structure
of the length restricted circuit polytope P L

C (Dn) has shown that only the degree, disjoint
circuits elimination, and nonnegativity constraints define facets of P L

C (Dn) independent
of L, with some exceptions. All other considered inequalities depends on L.

For the study of the facial structure of P L
C (Dn) the polytopes P k

C(Dn) with 3 ≤ k < n
are the most important of all length restricted circuit polytopes, because facet defining
inequalities for P k

C(Dn) can be lifted to facet defining inequalities for P L
C (Dn) with L ⊆

{2, . . . , k} or L ⊆ {k, . . . , n} by using standard sequential lifting.
Expectedly, the undirected circuit polytopes and directed circuit polytopes are closely

related. We have some inequalities which are facet defining for PC(Kn) or P≤k
C (Kn)

transformed to facet defining inequalities for P k
C(Dn) or P

{3,...,k}
C (Dn) and generalized

partly. For the considered inequalities the transformation is very easy (for example,
undirected cuts (Vi : Vj) ∪ (Vj : Vi) will be substituted by directed cuts (Vi : Vj)).
Conversely we have shown that the undirected versions of symmetric inequalities which
are facet defining for P L

C (Dn), 2 /∈ L, are facet defining for P L
C (Kn).

Moreover, we have seen that in generally the length restricted path polytope can
be transformed into a facet of an appropriate length restricted circuit polytope. Hence
it would be an important subject to study the facial structure of the length restricted
path polytope. Some good reasons argue for solving the LRCP by means of branch and
cut algorithms for associated path polytopes. For example, the results so far seem not
to lead to a tractable description of the dominant of PC(Dn), although the correspond-
ing optimization problem can be solved in polynomial time. In contrast, the dominant
dmt(Ps−t path(D)) of the path polytope Ps−t path(D) is determined by nonnegativity con-
straints and a class of cut inequalities which can be separated in polynomial time (see
Schrijver [26]). It should be possible to give a linear description of the upper path poly-
hedron Us−t path(D) := Cs−t path(D) + Ps−t path(D), if there is an analogous connection
between dmt(Ps−t path(D)) and Us−t path(D) as between dmt(PC(D)) and UC(D). An-
other reason is that we have complete linear descriptions of the polytopes P 3

s−t path(D)

and P≤3
s−t path(D) (see Dahl und Gouveia [12] and 3.7), but for the corresponding polytopes

P 3
C(Dn) and P≤3

C (Dn) we have not found them. Hence, I would plead to focus the study
to length restricted path polytopes.
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Appendix A

Generalized bipartition inequalities

Theorem A.1. Let 2 /∈ L, 3, 4 ∈ L, Dn = (V, A), n ≥ 6, be the complete digraph on
n nodes, and S, T be a bipartition of V with |S| ≥ 3. Further, let Kn = (V, E) be the
associated complete graph on nodeset V , that is, dir(Kn) = Dn, let M ⊆ E(S) be a
matching, and let H = ∪e∈MHe be a M-cover of T . Then a facet of P L

C (Dn) is given by
the generalized bipartition inequality

cT x ≥ 4, a ∈ RA, with ca =







0, if a ∈ dirM,
3, if a ∈ dirH,
1, if a ∈ dir((S : T )) \ dir(H),
2, otherwise, i.e. if a ∈ A(S) \ dir(M)

or a ∈ A(T ),

(A.1)

as long as we do not have one of the following two cases:

(i) M = {(p, q), (q, p)} and all arcs of H are either incident with p or with q;

(ii) n = 6, |S| = 4 and |M | = 2, i.e., |dir(M)| = 4.

Sketch of proof. The validity of the generalized bipartition inequality is easily checked.

We show the facet defining property by assuming that we have a valid inequality
bT x ≥ b0, b ∈ RA, b 6= 0, in 1-rooted form, such that {x ∈ P L

C (Dn) | cT x = 4} ⊆ {x ∈
P L

C (Dn) | b
T x = b0}. Let w.l.o.g. 1 ∈ S, and define S ′ := S \ {1, 2}. Moreover, let w.l.o.g.

M 6= ∅, (1, 2), (2, 1) ∈ dir(M), and define

B := {a = (u, v) ∈ A(T ) | (1, u) ∈ dir(H) and (2, v) ∈ dir(H), or conversly}.

Case 1: |M | = 1, i.e., |dir(M) = 2|.

Since n ≥ 6, we have |S| ≥ 4 or |T | ≥ 3. Due to (i), to each arc a ∈ A exists at least
one weighted subdigraph Dc of Dn containing a as depicted in Figures A.1(a), A.2(a),
and A.3(a).
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Figure A.1(a)
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Figure A.1(b) 1-rooted form

1

2

r

v

t

u

≥ 4

Figure A.2(a)
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Figure A.2(b) 1-rooted form
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Figure A.3(b) 1-rooted form
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The subdigraphs have a common subdigraph, namely

1

2

r

t

u ≥ 4

Figure A.4

Let us first consider some coefficients ba, a ∈ A, on the common subdigraph.

1. We have bi1 = 0 for i = 2, r, t, u, since bT x ≥ b0 is 1-rooted.

2. br2 = 0 and b1r = b0.

From the circuit (1, u, r, 1), we derive b1u+bur = b0, and hence the circuit (1, u, r, 2, 1)
yields br2 = 0. Further, we have b1r + br2 + b21 = b0, and thus b1r = b0.

3. bru = 0.

Consider the circuit (1, r, u, 1).

4. b2r = b0, b12 = 0, b2t = b0 and b2u = b0.

From the circuit (1, r, t, 2, 1), we derive brt + bt2 = 0, and hence follows from the
circuit (r, t, 2, r) b2r = b0. Moreover, we can conclude b12 = 0 and b2t by considering
the circuits (1, 2, r, 1) and (1, 2, t, 1) Finally, we derive b2u = b0 from the circuit
(1, 2, u, 1).

5. btr = 0.

Since br2 = 0 and b2t = b0, the circuit (t, r, 2, t) yields the desired results.

6. but = b0 and btu = 0.

Consider the circuits (1, 2, t, u, 1) and (r, u, t, r).

We investigate now the remaining coefficients ba of the subdigraph as depicted in
Figure A.1(a). Since r and s are clones it follows that bs1 = bs2 = bsu = bts = 0 and
b1s = b2s = b0. Further, we have

bur+brt+btu = b0

∧ bur +brs+bsu = b0

btu=bsu=0
=⇒ brs = brt,
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bt2+b2s+bst = b0

∧ bt2 +b21+b1u+but = b0

b2s=but=b0,

b21=0

=⇒ bst = b1u,

and as can easily be seen that brt = bst, and thus b1u = bst = brt = brs. From the circuit
(r, s, t, r) we obtain finally b1u = bst = brt = brs = b0

2
. Now it is easy to see that bu2 = b0

2
,

bt2 = − b0
2
, b1t = 3

2
b0 and bur = bus = bsr = b0

2
.

In Figure A.2(a) the nodes t and v are clones, and hence b2v = buv = b0 and bvu =
bvr = 0. Further,

bt2+b2r+brt = b0

∧ bt2 +b2v+bvt = b0

b2r=b2v=b0=⇒ brt = bvt,

brv+bvt+btr = b0

∧ brv +bvu+bur = b0

btr=bvu=0
=⇒ bvt = bur,

and thus bur = brt. The circuit (u, r, t, u) yields now bur = brt = b0
2
. The rest is an easy

task.

Finally, we consider Figure A.3(a). Here are u and v clones. Thus b2v = bvt = b0,
brv = btv = 0. Further, we have

buv+bvr+bru = b0

∧ buv +bv1+b1u = b0

bru=bv1=0
=⇒ bvr = b1u, and

bur+brt+btu = b0

∧ bur +br1+b1u = b0

btu=br1=0
=⇒ brt = b1u.

Together with the equations brt + btv + bvr and btv = 0 we conclude brt = bvr = b0
2
. The

remaining coefficients can be determined as an exercise.

Case 2: |M | ≥ 2, i.e., |dir(M)| ≥ 4.

First we will determine all coefficients ba, a ∈ A(S).

Claim 1. We have

• ba = 0 for all a ∈ (S ′ : {1, 2}),

• ba = b0 for all a ∈ ({1, 2} : S ′),

• ba = 0 for all a ∈ dir(M), and

• ba = b0
2

for all a ∈ A(S ′) \ dir(M).

Clearly, bi1 = 0 for i = 2 and for all i ∈ S ′, since bT x ≥ 0 is 1-rooted. Now let
a ∈ dir(M) \ {(1, 2), (2, 1)}. Then there is a subdigraph of Dc

n containing a as given in
Figure A.5(a), i.e., a = (p, q) or a = (q, p).
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2

p

q

r

≥ 4

Figure A.5(a)

1

2

s

t≥ 4

Figure A.5(b)

From the circuits (1, 2, p, 1) and (1, 2, p, q, 1) we derive bpq = 0, and from the circuits
(1, 2, q, 1) and (1, 2, q, p, 1) we get bqp = 0.

Since |dir(M)| ≥ 4, such a subdigraph always exists. Hence we can show also b12 = 0
as follows.

The circuits







(1, q, p, 1)
(1, q, 2, 1)
(2, p, q, 2)
(1, 2, p, 1)







yield







b1q = b0

bq2 = 0
b2,p = b0

b12 = 0.

Next consider the coefficients ba, a ∈ ({1, 2} : S ′) ∪ (S ′ : {1, 2}). If a is adjacent
with an arc a∗ ∈ M , then the statement is clear by the preceding arguments. Otherwise
there is a directed subgraph of Dc

n containing a as given in Figure A.5(b), i.e., a = (1, s),
a = (s, 1), a = (2, s) or a = (s, 2). Clearly, bs1 = 0, and thus the circuit (1, 2, s) yields
b2s = b0. In order to show bs2 = 0 consider the circuits (1, 2, t, s, 1) and (2, t, s, 2). Since
b12 = bs1 = 0, we get b2t + bts = b0. Thus we can derive from the second circuit bs2 = 0,
and finally, we obtain b1s = b0 by considering the circuit (1, s, 2, 1).

We have to show yet ba = b0
2

for the remaining arcs in A(S). Let a be adjacent with
a matching arc a∗ ∈ M \ {1, 2}. Then it is contained in the subdigraph of Dc

n as given in
Figure A.5(c).
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1

2

p

q

r

t ≥ 4

Figure A.5(c)

1

2

p

q

r

s

t ≥ 4

Figure A.5(d)

It is easy to see that b2t = b0, and further btq = btr = 0. Moreover, we have the
equations

brq+bqt+btr = b0

brq +bqp+bpr = b0,

bt2+b2q+bqt = b0

bt2 +b2r+brt = b0,

and brt +btq+bqp+bpr = b0

which lead to bqt = bpr = brt = b0
2
. In particular, bpr = b0

2
, and hence the circuit (p, r, q)

yields brq = b0
2
. Analogously, we get brp = bqr = b0

2
.

If there is an arc a ∈ A(S ′) not adjacent with a matching arc, we have the situation
illustrated in Figure A.5(d), i.e., a = (r, s) or a = (s, r). The nodes r and s are clones,
and with the above results, we have brt = bst = b0

2
and btr = bts = 0. Hence, from the

circuits (r, t, s, r) and (s, t, r) we derive brs = bsr = b0
2
.

Finally, let a ∈ A(S ′) adjacent with two matching arcs not belonging to {(1, 2), (2, 1)}.
Then there is a driected subgraph of Dc

n as given in Figure A.5(e).
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1

2

p

q

s

r

t ≥ 4

Figure A.5(e)

The subgraph in Figure A.5(e) contains the subgraph as given in A.5(c). Hence,
bqr = brq = brp = bpr = b0

2
. Now it easy to see that also bqs = bsq = bsp = bps = b0

2
.

We will now determine the remaining coefficients. Due to (ii) Dc
n contains one of the

directed subgraphs as given in Figure A.5(c)-(m).

1

2

p

q

t

u

v

≥ 4

Figure A.5(f)

1

2

p

q

t

u

v

≥ 4

Figure A.5(g)
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1

2

p

q

t

u

v

≥ 4

Figure A.5(h)

1

2

p

q

t

u

v

≥ 4

Figure A.5(i)

1

2

p

q

t

u

v

≥ 4

Figure A.5(j)

1

2

p

q

t

u

v

≥ 4

Figure A.5(k)

1

2

p

q

t

u

v

≥ 4

Figure A.5(l)

1

2

p

q

t

u

v

≥ 4

Figure A.5(m)

One can verify that
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• ba = 3
2
b0 for all a ∈ (1 : T ) ∩ dir(H),

• ba = 0 for all a ∈ (T : 1) ∩ dir(H),

• ba = b0 for all a ∈ (2 : T ) ∩ dir(H),

• ba = b0
2

for all a ∈ (T : 2) ∩ dir(H),

• ba = b0
2

for all a ∈ (1 : T ) \ dir(H),

• ba = 0 for all a ∈ (T : 1) \ dir(H),

• ba = b0 for all a ∈ (2 : T ) \ dir(H),

• ba = − b0
2

for all a ∈ (T : 2),

• bst = b0
2

for all (s, t) ∈ (S ′ : T ) \ dir(H), with (1, t) ∈ dir(H),

• bst = 0 for all (s, t) ∈ (S ′ : T ) \ dir(H), with (1, t) /∈ dir(H),

• bts = 0 for all (t, s) ∈ (T : S ′) \ dir(H), with (1, t) ∈ dir(H),

• bts = b0
2

for all (t, s) ∈ (T : S ′) \ dir(H), with (1, t) /∈ dir(H),

• bst = b0
2

for all (s, t) ∈ (S ′ : T ) ∩ dir(H), with (1, t) /∈ dir(H),

• bst = b0 for all (s, t) ∈ (S ′ : T ) ∩ dir(H), with (1, t) ∈ dir(H),

• bts = b0 for all (t, s) ∈ (T : S ′) ∩ dir(H), with (t, 1) /∈ dir(H),

• bts = b0
2

for all (t, s) ∈ (T : S ′) ∩ dir(H), with (t, 1) ∈ dir(H),

• buv = 0 for all (u, v) ∈ A(T ), with (1, u) ∈ dir(H) and (1, v) /∈ dir(H),

• buv = b0 for all (u, v) ∈ A(T ), with (1, u) /∈ dir(H) and (1, v) ∈ dir(H),

• buv = b0
2

for all (u, v) ∈ A(T ), with (1, u) /∈ dir(H) and (1, v) /∈ dir(H),

• buv = b0
2

for all (u, v) ∈ A(T ), with (1, u) ∈ dir(H) and (1, v) ∈ dir(H).

�
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Appendix B

MAXCUT Problem

The separation problem for the bipartition inequalities (3.36) can be reduced to a sepa-
ration problem for undirected bipartition inequalities (see 4.1.4):

PROBLEM: Bipartition separation problem (BSP)
INSTANCE: Complete graph G = (V, E), a vector x∗ ∈ RE .
QUESTION: Is there a cut K in Kn with wT χK > 2w(E) − (k + 1)?

Theorem B.1. BSP is NP-hard.

Proof. BSP is obviously in NP. We show it is NP-hard by a reduction from the maximum
cut problem (MAXCUT) [14]:

PROBLEM: Maximum cut problem (MAXCUT)
INSTANCE: Complete graph G = (V, E), a vector w ∈ RE, w ≥ 0, of edge

weigths and a positive number p ∈ R.
QUESTION: Is there a cut K in Kn with wT χK > p?

Let λ ∈ R, λ > 0 and set w̃ = λw. Clearly, MAXCUT is equivalent to the problem:
Is there a cut K in Kn with w̃χK > λp?

Choosing λ = k+1
2w(E)−p

, we get

2w̃(E) − (k + 1) = 2λw(E) − (k + 1)

= 2
k + 1

2w(E) − p
− (k + 1)

=
2(k + 1)w(E) − (k + 1)(2(w(E) − p))

2w(E) − p

= (k + 1)
2w(E) − 2w(E) + p

2w(E) − p

= λp

which proves the statement.

Since the problem MAXCUT is NP-complete, the separation problem for the biparti-
tion inequalities (3.36) is NP-hard.
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