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Zusammenfassung

In dieser Diplomarbeit werden grundlegende Probleme der kostenoptimalen Dimensionierung von
Telekommunikationsnetzwerken untersucht. Diese werden als lineare gemischt ganzzahlige Program-
me formuliert, wobei sich in der Modellierung auf die Konzepte Routingund Kapaziẗatszuweisung
beschränkt wird. Es werden parallel drei übliche, aus derPraxis motivierte Möglichkeiten behan-
delt, die auf gerichteten oder ungerichteten Kanten eines Netzwerkes installierte Kapazität zu nutzen.
Diese unterscheiden wir alsDIrected, BIdirectedundUNdirected. Die studierten Probleme treten als
Relaxierungen vieler realistischer Fragestellungen der Netzwerkoptimierung auf. Sie enthalten ele-
mentare Strukturen, deren Studium ausschlaggebend ist für das Verständnis komplexerer Modelle.
Letztere können zusätzliche Erfordernisse berücksichtigen, wie zum Beispiel die Ausfallsicherheit
von Netzwerken.

Zur Lösung solcherNP-schweren Optimierungsprobleme werden erfolgreich Branch & Bound
und Schnittebenenverfahren kombiniert (Branch & Cut). Für die Wirksamkeit dieser Algorithmen ist
es sehr nützlich, möglichst genaue Kenntnisse der Struktur der Seitenflächen der zugrundeliegenden
Polyeder zu haben, welche die konvexe Hülle der Lösungsmenge beschreiben. Es sind starke gültige
Ungleichungen zu finden, welche hochdimensionale Seitenfl¨achen oder sogar Facetten definieren.
Diese sollten zudem schnell separiert werden können und die numerische Stabilität der Algorithmen
möglichst nicht beeinflussen.

Diese Arbeit beschäftigt sich im Wesentlichen mit der sehrallgemeinen RundungstechnikMixed-
Integer Rounding(MIR) zur Verstärkung gültiger Ungleichungen unter Verwendung der Ganzzahlig-
keitsnebenbedingungen. Es wird eineMIR-Prozedur motiviert, bestehend aus den SchrittenAggre-
gieren, Substituieren, Komplementierenund Skalieren, welche durch Ausnutzung der Struktur der
gegebenen Parameter zu einer gültigen Basisungleichung führt, die dann durchMIR eine starke und
oft facetten-induzierende Ungleichung gibt. Es werden verschieden Klassen solcher Ungleichungen
untersucht und auf ihre Praxistauglichkeit beim Einsatz inBranch & Cut-Verfahren getestet.

Nach einer kurzen Einführung werden in Kapitel 2 die für uns in dieser Diplomarbeit relevanten
Probleme definiert. Kapitel 3 gibt eine ausführlicheÜbersicht über die TechnikMIR. Wir beschäftigen
uns vor allen Dingen mit den BegriffenSuperadditiviẗat und Lifting und behandeln Aspekte wie
Numerik und beschränkte Variablen.

Kapitel 4 und Kapitel 5 umfassen Untersuchungen zu so genannten cut sets. Diese Polyeder
werden durch Schnitte in Netzwerken definiert und relaxieren die von uns behandelten Probleme.
Hauptsächlich durchMIR entwickeln wir sowohl neue als auch bekannte Klassen von facetten-defi-
nierenden Ungleichungen fürcut sets, wobei strukturelle Unterschiede herausgearbeitet werden, die
durch die drei verschiedenen Typen der Kapzitätsbereitstellung und durch beschränkte Variablen ent-
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stehen. Als ein zentrales Resultat wird bewiesen unter welchen Bedingungen facetten-induzierende
Ungleichungen für cut sets auch Facetten der zugehörigenrelaxierten Polyeder sind.

Im Kapitel 6 geben wir weitere Typen vonMIR-Ungleichungen an, die auf anderen Netzwerk-
strukturen basieren und weisen ferner auf offene Fragen sowie interessante Ideen hin.

Das Kapitel 7 widmet sich schließlich der Entwicklung und Implementation von Separationsalgo-
rithmen. Wir testen einige der entwickelten Ungleichungsklassen mit Hinblick auf Ihre Wirksamkeit
zur Lösung von realistischen Problemen der Netzwerkdimensionierung aus der Telekommunikation
und diskutieren die Ergebnisse.
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Abstract

In this thesis some basic mixed integer programming models for the design of telecommunication
networks are investigated. These models cover bifurcated routing and modular capacity assignment.
Three common types of capacity usage are distinguished and bounded as well as unbounded link
design variables are considered. This work focuses on the use of Mixed-Integer Rounding (MIR) to
strengthen the initial problem formulations. A generalMIR-procedure (based on Marchand & Wolsey
[1998], Louveaux & Wolsey [2003]) is applied to the corresponding network design polyhedra that,
by exploiting the structure of the given parameters such as underlying graphs, capacities and bound
constraints, is able to detect different classes of strong valid inequalities. Moreover, the use ofMIR as
a valid superadditive lifting function is emphasised. Several classes of facet-definingMIR-inequalities
are presented.

Large parts of this thesis address the investigation of polyhedra based on cuts of the network. It is
shown under which conditions facet-defining inequalities for these relaxations are facet-defining for
the corresponding network design polyhedra. Facet proofs for two new classes of cut set inequalities
are provided. Some of the developedMIR-inequalities are used as cutting planes within a Branch &
Cut algorithm and tested against real-life networks with excellent results.
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Chapter 1

Introduction

Nowadays, global economy depends on high quality data communications as much as on physical
transport and businesses increasingly reliant on low cost for their telecommunication needs. The lib-
eralisation of the European telecommunication markets in the last few years, the rapid development of
Internet technologies and the demand for new multi-media services puts pressure on telecommunica-
tion companies and makes the market more competitive. The major burdens of network carriers and
telecommunication service providers are their expenditures for network construction and the costs of
bandwidth lease. They generally hope to realise easy to manage networks at low cost that survive
certain failure situations and that satisfy all given customer demands.

In the mathematical literature there is a vast variety of approaches to model and solve telecommu-
nication network design problems depending on the requirements to incorporate. All these approaches
have two basic concepts in common on which we will concentrate in this thesis. These arerouting
andcapacity assignment.

We address a network design problem as follows: Given a communication demand between cer-
tain locations in a region, the topology of a network connecting these locations has to be determined.
All physical links have to be dimensioned byassigning capacitysuch that all demands can berouted
over the network and the installation cost for capacity is minimal. In practice the possible capacities
(bandwidths) always have a discrete structure. We restrictthem to a finite set of base units, which
may be installed several times on every link of the network (modular link capacities). This can be
formulated as the problem of minimising a cost function (which is assumed to be linear) over the set
X ⊂ Rn of all feasible routings and capacity assignments:

min{κTx : x ∈ X }.

Because of the discrete structure of the capacities, some ofthe variables inx are restricted to integer
values. HenceX is amixed integer setand network design optimisation problems as considered in
this thesis aremixed integer programs.

Despite the absence of more sophisticated requirements as,for instance, survivability of the net-
work, these mixed integer programming problems are known tobeNP-hard, meaning that in the
sense of complexity theory there exists no efficient (polynomial-time) algorithm to solve them, unless
P = NP.

A common approach to solving hard mixed integer programs is the application of heuristics to
find good solutions. However, it is usually impossible to verify their quality. Another possibility, that
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Introduction

we will make use of, is an algorithmic framework based onBranch & Cut (Wolsey [1998]). Such
algorithms provide feasible solutions as well as a quality certificate by computing a lower bound on
the cost of the optimal solution. In addition, any primal heuristic can be integrated into a Branch &
Cut algorithm.

A very important step in the design of a Branch & Cut algorithm, and crucial for its efficency, is
to detect classes of strong valid inequalities for the mixedinteger setX. Among other techniques, the
linear programming relaxation of the problem is tightened by adding some of these valid inequalities
(cutting planes) to the formulation, resulting in a better approximation of the convex hull ofX and
hence better lower bounds. In fact, a Branch & Cut algorithm largely depends on the quality of the
added cutting planes.

One way to generate such inequalities is to exploit the structure of the combinatorial optimisation
problem as well as the polyhedral structure of the problem formulation. Very often an analysis of the
problem regarding all requirements and constraints turns out to be too complex, and one concentrates
on relaxations and simpler structures that somehow reflect certain attributes of the actual problem
such asknapsack setsandsingle node flow sets.

Another possibility is to consider so-called general purpose cutting planes that do not require any
special knowledge about the (combinatorial or polyhedral)structure of the problem. In this category
fall disjunctive, split, lift and project, Chv́atal-Gomory, Gomory fractionalandGomory mixed integer
cuts.

A useful observation in this context is, that many of these general purpose cuts can be derived with
the same technique, calledMixed-Integer Rounding, which is based on rounding by exploiting given
integer constraints. Moreover, recent work documents thatsome strong valid inequalities detected
by problem specific combinatorial and polyhedral studies are in factMIR-inequalities. This is for
instance true for classes ofknapsack coverandflow coverinequalities (Chapter 3, 5).

Edmond’s blossom inequalities may serve as a simple examplefor strong inequalities that arise
from the polyhedral study of a combinatorial optimisation problem:

x(E[S]) ≤ ⌊12 |S|⌋,

whereG = (V,E) is an undirected graph andS ⊆ V a subset of the nodes. These inequalities com-
pletely describe the matching polytope together with non-negativity constraints and the inequalities
x(δ(v)) ≤ 1, v ∈ V (Schrijver [2003]). They can be facet-defining for the matching polytope ifS
contains an odd number of nodes. The validity of the blossom inequalities follows from the combi-
natorial structure of the matching problem. But without theknowledge of the problem itself we may
simply sum upx(δ(v)) ≤ 1 for all v in S resulting in the validbase inequality

2x(E[S]) + x(δ(S)) ≤ |S|.

Dividing by 2 and applyingMIR (Chapter 3) gives a blossom inequality. (In this case the latter is
equivalent to applying a Chvátal-Gomory step.).

In this thesis we will follow a mixture of the two mentioned approaches to derive strong valid
inequalities for mixed integer sets. We will first exploit knowledge of the structure of network design
problems or simpler sets and relaxations to derive promising base inequalities, which will then be
strengthened using the general purpose conceptMIR.

For the last little example we have already used two basic techniques that are concerned with
MIR, the Aggregationof valid inequalities and theScalingof base inequalities. In the subsequent
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1.1 Literature Review

chapters we will show that these techniques can be extended to a more general and sophisticatedMIR
procedure that is able to detect strong valid inequalities for network design polyhedra. For some of
them we will investigate if they are even facet-defining, proving the power ofMIR.

Before giving a thorough definition of the network design problems considered in this thesis in
Chapter 2, we will give a short literature review, followed by an outline and some mathematical
preliminaries.

1.1 Literature Review

Important literature is referred to at the beginning of eachchapter and whenever introducing new
theory. But some articles deserve mention here because theyare a basic motivation for this thesis.

Marchand [1997] and Marchand & Wolsey [1998] show that knownclasses of strong valid in-
equalities for various types of mixed integer sets are in fact MIR inequalities. They motivate a generic
MIRprocedure and prove their practical usefulness. In a subsequent paper Louveaux & Wolsey [2003]
consider certain cut sets (or single node flow sets), which can be seen as relaxations of network design
polyhedra, and make use of a similarMIR procedure to develop flow cover and flow pack (reverse
flow cover) inequalities.

The polyhedral study of telecommunication network design problems as considered in this thesis
was set up by Magnanti & Mirchandani [1993], Magnanti et al. [1993, 1995] and Bienstock & Günlük
[1996]. All of their facet-defining inequalities can be obtained byMIR.

In a recent article, Atamtürk [2002] is the first to present adetailed polyhedral analysis for cut
set polyhedra with unbounded design variables. He providesa complete description of cut sets in the
single-commodity, single-facility case and shows how to exactly lift a general class of so- called flow
cut inequalities if more than one facility is given. All inequalities as well as the lifting process are
based onMIR.

In this thesis we bring together some of these different theoretical aspects and put them into the
general context of telecommunication network design.

1.2 Outline of the thesis

The thesis is organised as follows: The preliminaries, following this outline, serve as a short reference
to the notation and concepts used. Some areas of graph theoryand polyhedral theory are covered.

In Chapter 2 we briefly describe telecommunication capacitated network design problems and
show how our models can be classified within the existing literature. We introduce the necessary
notation and formulate linear mixed integer programming problems for three types of capacity usage.

Chapter 3 investigatesMixed-Integer Roundingas a general tool to develop strong valid inequal-
ities for mixed integer sets. We develop notation and terminology used in the subsequent chapters to
study certain relaxations of network design problems. Aspects of numerics, superadditivity, lifting
and bounded variables are considered.

Chapter 4 focuses on the polyhedral study of cut sets with unbounded design variables. A co-
herent presentation of the knowledge of these polyhedra andstrong valid inequalities is provided.
Mainly by applyingMIR, we present several new classes of facet-defining inequalities, elaborating
the differences caused by the three different types of capacity constraints. As a central conclusion, it

3



Introduction

is demonstrated under which conditions facet-defining inequalities for cut sets are facet-defining for
the corresponding network design polyhedra.

In Chapter 5 we again consider cut sets, but with bounded design variables. It is shown how to
extend theMIR procedures of the preceding chapter in order to exploit the bound constraints by using
the observations of Chapter 3. It is proven that so-called flow cover inequalities can be seen as a
generalisation of the flow cut inequalities introduced in Chapter 4.

Chapter 6 provides some more examples of strong valid inequalities for network design polyhedra
that can be obtained byMIR and some open questions and promising ideas are posed.

In Chapter 7 we address the separation problem for some classes of valid inequalities considered
in this thesis. Separation heuristics are developed and it is shown how to integrate them into state-of-
the-art MIP-solvers. The resulting algorithmic frameworkis tested on a set of real-life telecommuni-
cation networks and we discuss the usefulness of the investigated inequalities.

1.3 Preliminaries

Basic knowledge of graph theory, polyhedral theory, linearoptimisation and mixed integer program-
ming is assumed. It was attempted to adhere to standards and especially to Grötschel et al. [1988].
Concerning the fundamental theory the reader is referred toNemhauser & Wolsey [1988], Wolsey
[1998] and Schrijver [2003]. This section only presents some notation and terminology that is used
frequently or that diverges from the standard.

1.3.1 Basic notation

If K is one of the setsR, Q or Z, thenK+ := {x ∈ K : x ≥ 0 }. If we want to exclude zero, we
explicitely writeK+\{0}. The transposition of a vectorx ∈ Rn is xT . So the inner product of two
vectorsx, y ∈ Rn is xTy. The superscriptt is solely used fortechnologiesor facilities as defined in
Section 2.2.1. The inequalityx ≤ y for two vectorsx andy is meant to hold component-wise.

If N is a finite index set, thenx ∈ RN is a real vector, whose components are indexed by the
elements ofN . To shorten the notation for sums we writex(N) :=

∑
i∈N xi. GivenR ⊆ N , the

(sub)vectorxR ∈ RR contains all entries ofx that are indexed by elements ofR.
For the concept ofMixed-Integer Roundingintroduced in Chapter 3 some special notation is

needed that will be used throughout the thesis. Leta ∈ R andc ∈ R+. We define:

• a+ := max(0, a) and a− := min(0, a)

• 〈a〉 := a − ⌊a⌋, the fractional part ofa

• r(a, c) := a − c(⌈a
c
⌉ − 1) =

{
〈a

c
〉c if 〈a

c
〉 > 0

c else

Hencer(a, c) is the remainder ofa divided byc if a
c
/∈ Z andc else. It follows thatr(a, c) ≤ c.

Moreover, in the common case that botha andc are integer,r(a, c) ∈ {1, ...,min(a, c)} ⊂ Z+.

• r(a) := r(a, 1) = a − ⌈a⌉+ 1 =

{
〈a〉 if 〈a〉 > 0

1 else
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1.3 Preliminaries

1.3.2 Graphs

An undirectedgraph G = (V,E) consists of a setV of nodesand a setE of edges. Both sets
are considered to be non-empty and finite. We will not explicitely use an incidence functionψ :

E → V × V but will associate an unordered pair of nodes with every edge, called itsendnodes. We
explicitely allow parallel edges. An edgee ∈ E, having the endnodesu andv, is denoted bye = uv

only if there is no danger of confusion. No loops are allowed,i. e. the two endnodes of an edge are
always distinct.

A directed graph, ordigraph G = (V,A) consists of a setV of nodes and a setA of arcs. With
every arca ∈ A an ordered pair of (end)nodes(u, v), with u 6= v, is associated. We may write
a = (u, v) whenever it is not ambiguous. The nodeu is called thesourceandv is called thetarget
of a.

Let ∅ 6= S ⊂ V . We denote byES := δ(S) the set of edges inE with one endnode inS
and one endnode inV \S. ES is called acut. Similarly for directed graphs,AS := δ(S) denotes
the cut defined byS, whereA+

S ⊆ AS is the set of edges with source inS and target inV \S and
A−

S := AS\A
+
S .

A graph is said to beconnectedif every cut is nonempty. A directed graph isstrongly connected
if bothA+

S andA−
S are nonempty for all∅ 6= S ⊂ V .

The setE[S] ⊂ E (or A[S] ⊂ A) is the set of edges (arcs) with both endnodes inS. The
corresponding subgraphsinducedby S are defined asG[S] := (S,E[S]) orG[S] := (S,A[S]).

1.3.3 Polyhedra

A polyhedron P is defined as the intersection of finitely many affine halfspaces:

P = { f ∈ Rn : Af ≤ b }.

In this thesis, every polyhedron is assumed to be rational, i. e., data is always given rational, soA is
anm× n rational matrix andb ∈ Qm. We call the problem of optimising a linear function overP a
linear program (LP). LetM andN denote two finite index sets. Amixed integer setX is given by

Figure 1.1: Mixed integer set and its convex hull

X = { (f , x) ∈ RM
+ × ZN

+ : Af +Bx ≤ b }.
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The problem of optimising a linear function overX, or equivalently over the convex hullconv(X),
is called amixed integer program (MIP). Note that (assuming rational data),PMIP := conv(X) is
a polyhedron (see Nemhauser & Wolsey [1988] for a proof).

Generally we do not know a set of linear inequalities definingPMIP . Moreover, a MIP is
NP-hard in general. We cannot expect to derive a complete linear description ofNP-hard prob-
lems unlessNP = co-NP , which follows from the equivalence of separation and optimisation
(Grötschel et al. [1988]). For an introduction to complexity theory see for instance Schrijver [2003].
Nevertheless, it is usually possible to identify at least some classes of (strong) valid inequalities for
PMIP . From a theoretical as well as a computational point of view it is crucial to know whether they
induce high dimensional faces or even define facets. An inequality

γTf ≤ π (1.1)

is said to bevalid for a polyhedronP if γTf ≤ π for all f ∈ P . We call the setF of points inP that
satisfy (1.1) with equality afaceof P inducedby (1.1):

F = { f ∈ P : γTf = π }.

A facet of P is an inclusion-wise maximal faceF with F 6= P . Inequalities determining facets are
calledfacet-defining. Any facetF satisfiesdim(F ) = dim(P )− 1.

Consider two inequalities,αTf ≤ π andγTf ≤ π, which are valid forP , both of them having the
same right hand side. Assume furthermore that all points inP are non-negative, that isP = P ∩Rn

+.
We say that the inequality defined byα is at least as strongas the one defined byγ, if γ ≤ α. If this
is the case and there additionally exists an indexi with γi < αi thenαTf ≤ π dominatesγTf ≤ π

or is said to bestronger.

The use of PORTA In most of the examples stated in this thesis we were interested in the dimension
of faces induced by certain valid inequalities. Very often,previously developed theoretical results
(facet theorems) could be applied, but sometimes we used thesoftware package PORTA (Christof &
Löbel [2005]) to calculate or estimate dimensions of faces. Consider the inequality

γTf + βTx ≤ π (1.2)

valid forPMIP . Generally PORTA is not able to directly compute the dimensiondimMIP of the face
induced by (1.2). But we can do the following: Consider the LP-Relaxation ofPMIP after adding
(1.2) to the initial formulation:

PLP = conv{ (f , x) ∈ RM
+ × RN

+ : Af +Bx ≤ b, γTf + βTx ≤ π }

and the bounded integer polytope:

PIP = conv{ (f , x) ∈ ZM
+ × ZN

+ : Af +Bx ≤ b, γTf + βTx ≤ π, f ≤ u1, x ≤ u2 }

with (u1, u2) ∈ ZM
+ × ZN

+ chosen appropriately. It is obvious that

PIP ⊆ PMIP ⊆ PLP

6
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and that (1.2) is valid for all three polyhedra. Additionally assume

dim(PIP ) = dim(PMIP ) = dim(PLP ).

The dimensions ofPIP andPLP as well as the dimensionsdimLP , dimIP of the faces induced by
(1.2) can be evaluated with PORTA (by using the commandsdim, traf, vint andfctp) at least for small
instances and

dimIP ≤ dimMIP ≤ dimLP (1.3)

holds, which can be used to estimatedimMIP . Moreover, if (1.2) defines a facet ofPIP then it defines
a facet ofPMIP and if (1.2) does not define a facet ofPLP then it does not define a facet ofPMIP .
(This holds only ifdim(PIP ) = dim(PLP ) can be ensured.) These observations have been used
whenever referring to the dimension of a face of a polyhedronof the formPMIP and no theoretical
result could be applied.

Note thatPIP has to be bounded because PORTA needs to enumerate all integer points inPIP to
calculate its dimension.

7



Introduction

8



Chapter 2

Network Design Problems

2.1 Introduction

In this thesis we consider routing and capacity installation in the design of telecommunication net-
works. The presented formulations serve as relaxations andoccur as sub-problems of larger and more
complex problems that may include additional constraints and requirements such as survivability, hop
limits, costs for hardware at the nodes of the network and more.

Literature Review and Problem Description Depending on the practical background there are
many ways to define a telecommunication network design problem. We will briefly classify the most
important models and will state the corresponding references.

Given a telecommunication network, communication demand of multiple commodities between
certain locations has to be routed over the network. A routing (or flow) satisfying all given demands
has to be assigned to the network and capacity has to be installed that suffices to accommodate the
data flow. A network design problem or network loading problem consists of finding such a capacity
and flow assignment that minimises the overall installationcost.

This problem has been studied in many variants with respect to network layout, capacity usage
and the way of routing. The routing can be done by sending all flow on a single path between
the endnodes of a point-to-point demand (non-bifurcatedor single-pathrouting) or by considering
several paths for every commodity (bifurcatedrouting). Single-path routing has been investigated by
Brockmüller et al. [1998] and Hoesel et al. [2004]. The polyhedral study of models with bifurcated
routing as considered in this thesis was initiated in a series of articles by Magnanti & Mirchandani
[1993] and Magnanti et al. [1993, 1995]. Important extensions are from Bienstock & Günlük [1996].

In most of the practical applications the available technologies have a discrete structure, where
capacity is restricted to a finite set of values. This might bemodelled in different ways. For every link
one may select exactly one capacity from a finite set of possible facilities (explicit link capacities) or
alternatively every base capacity can be installed severaltimes on every link up to a potentially given
upper bound (modular link capacities). The base capacities might additionally be divisible. Dahl
& Stoer [1994, 1998] consider explicit link capacities. Fundamental work for models with divisi-
ble modular link capacities up to three technologies was done by Magnanti & Mirchandani [1993],
Magnanti et al. [1993, 1995], Bienstock & Günlük [1996] and Chopra et al. [1998]. Explicite as well
as divisible modular link capacities were studied by Wessäly [2000]. In this thesis we investigate
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(ii) A capacity assignment: At most one of two technolo-
gies is selected for every link to satisfy all demands.

Figure 2.1:G-WiN – German Research Network[2005] — The data is taken fromSNDlib 1.0 – Survivable
Network Design Data Library[2005].

very general problems with modular link capacities that arenot necessarily divisible as it was done
for instance by Atamtürk [2002]. To model explicit link capacities our problems simply have to be
extended by additional constraints.

The literature discerns three possible ways of capacity usage. A link might be directed, offering
its capacity for flow in one direction only (DIrected capacity usage). If a link is undirected, the in-
stalled undirected capacity may either be shared between the two possible flow directions (UNdirected
capacity usage) or it can be consumed by each of the two flow directions independently (BIdirected
capacity usage). For DIrected capacity assignment it is referred to Bienstock et al. [1995], Chopra
et al. [1998] and Atamtürk [2002]. BIdirected problems were mainly studied by Bienstock & Günlük
[1996] and Günlük [1999] whereas a detailed analysis of UNdirected models can be found in Ba-
harona [1994], Magnanti & Mirchandani [1993] and Magnanti et al. [1993, 1995]. We will consider
all three forms of capacity usage in this thesis.

In the last decade it has become more and more important to considersurvivability of telecom-
munication networks. In addition to the mentioned conceptsof network design one wants to protect
networks against certain failure situations such as cable cuts or hardware failures. We do not consider
survivability here. For some basic results on survivability of telecommunication networks the reader
is referred to Dahl & Stoer [1994, 1998], Alevras et al. [1996], Magnanti & Wang [1997], Balakrish-
nan et al. [1998] and Bienstock & Muratore [2000]. A good review can be found in Wessäly [2000],
whereas Rajan & Atamtürk [2002a,c, 2004] present some recent work and new ideas.
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2.2 Mathematical models

Outline of this chapter This chapter presents the models investigated in this thesis. We discuss
the given parameters and introduce variables as well as inequalities. Finally, we define the polyhedra
corresponding to the considered network design problems.

2.2 Mathematical models

2.2.1 Parameters

Underlying graphs The telecommunication network or supply graph can be directed or undi-
rected depending on the problem type. We denote it byG = (V,A) for DIrected problems or
G = (V,E) for BIdirected and UNdirected problems. Nodes can be interpreted as being cities or
locations whereas the arcs (or edges) represent connections or links between these locations (for in-
stance by cable or some kind of radio contact). A supply graphis supposed to be connected and not
to contain loops, but we allow parallel arcs and edges.

A provider of a telecommunication network has to face customer demands between some of the
locationsV .

Demands and Commodities A demand is an arca = (u, v) of the digraphH = (V,D) (not
necessarily connected), which we calldemand graph. The demand graph is assumed to be simple,
i. e., there are neither loops nor parallel arcs. A demand valueta ∈ Z+\{0} is assigned to every given
demanda = (u, v) ∈ D. We have to establish a flow inG of ta from u to v.

With the demands we associate a finite set ofcommoditiesK. For every commodityk ∈ K there
exists a functiondk that assigns a non-negative integer to every node of the supply graphdk : V →

Z+, i 7→ dk
i

We call dk
i the net demandof commodityk at nodei. In the literature on multi-commodity

network flow problems there are mainly two approaches related to the definition of commodities and
net demands. The first is to consider one commodity for every demand, resulting in|K| ∈ O(|V |2)

commodities (K = D). For every nodei ∈ V and every commodityk = (u, v) ∈ D we can define:

dk
i :=





−t(u,v) i = v

t(u,v) i = u

0 else

i ∈ V, k = (u, v) ∈ K

This concept is calleddisaggregated demands.
The second approach is that ofaggregated demands. One defines a commodity for each node

that is source of at least one demand. Here|K| ∈ O(|V |). The net demand of commodityk = u ∈

K ⊆ V at nodei is therefore defined the following way:

dk
i :=





−t(u,i) u 6= i, (u, i) ∈ D
∑

(u,v)∈D tuv u = i

0 else

i ∈ V, k = u ∈ K

Aggregating demands leads to a significantly reduced problem size since a feasible routing has
to be found for every commodity, respectively. There areO(|A||V |) flow variables in the aggregated
formulation opposed toO(|A||V |2) flow variables in the disaggregated formulation.

11
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A drawback of the aggregated formulation is that it often makes it impossible to formulate addi-
tional (demand-dependent) constraints, as for instance hop limits.

If not stated otherwise we will refer to a commodity simply asa functiondk : V → Z+, i 7→ dk
i

with the property that ∑

i∈V

dk
i = 0. (2.1)

To satisfy the given demands, they have to be routed over the network. Capacity is provided on the
links of the network in order to accommodate a feasible routing.

Capacities A finite set of installabletechnologiesT is given. The literature often refers to the set
T aslink designsor facilities. We will use all three synonyms. Every technologyt ∈ T has abase
capacity ct ∈ Z+\{0}, which for instance reflects a certain bandwidth. Each of thefacilities can be
installed several times on every link of the network.

Note that in this thesis arc- or edge-dependent sets of installable technologies are not considered.
However, all of the strong valid inequalities for network design polyhedra and most of the results are
extendable to this more general case.

2.2.2 Variables

Link design variables There is an integer variable for every technology and every link, which we
denote byxt

a ∈ Z+ or xt
e ∈ Z+. This variable indicates how many times facilityt is installed on a

given arca ∈ A or edgee ∈ E. Hence

∑

t∈T

ctxt
a,

∑

t∈T

ctxt
e

is the total capacity available ona (or e). Given a subsetA1 ⊆ A orE1 ⊆ E and a facilityt ∈ T , we
define

xt(A1) :=
∑

a∈A1

xt
a, xt(E1) :=

∑

e∈E1

xt
e.

Thus ctxt(A1) gives the total capacity that is installed on the set of arcsA1 with respect to the
technologyt.

Flow variables In the following letQ be a subset of the commoditiesK andk ∈ K. Flow is always
directed, independent of the type of the supply graph. Givenan arca = (u, v) ∈ A, we denote by
fk

a ∈ R+ the flow ona (from u to v) with respect tok. The notation for sums will be shortened the
following way:

fQ(A1) :=
∑

a∈A1, k∈Q

fk
a ,

with A1 ⊆ A. For simplicity we definefk(A1) := f{k}(A1) andfQ
a := fQ({a}).

With every undirected edgee = ij and every commodityk ∈ K two flow variables are associated.
The flow from i to j is denoted byfk

ij ∈ R+ and the one fromj to i is denoted byfk
ji ∈ R+.

Considering the commodity subsetQ we write fQ
ij :=

∑
k∈Q f

k
ij andfQ

ji :=
∑

k∈Q f
k
ji. Given a

subsetE1 of the network edges, shortening the notation for sums as fordirected supply graphs would

12
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be ambiguous in general, because of the two possible flow directions for every edge inE1. But if E1

is a subset of a cutES with S ⊂ V , there are two canonical ways to orientate the edges inE1. We
denote by

fQ(E+
1 ) :=

∑

e=ij

i∈S, j∈V \S

fQ
ij and fQ(E−

1 ) :=
∑

e=ij

i∈S, j∈V \S

fQ
ji

the total flow fromS to V \S and fromV \S to S onE1 ⊆ E with respect toQ. We usefk(E+
1 ) and

fk(E−
1 ) instead off{k}(E+

1 ) andf{k}(E−
1 ).

2.2.3 Inequalities

Flow conservation constraints The following inequalities ensure a feasible flow (routing)for every
given commodity such that all demands are satisfied. We statethem for directed and undirected supply
graphs respectively.

∑

a∈δ+(i)

fk
a−

∑

a∈δ−(i)

fk
a = dk

i k ∈ K, i ∈ V (2.2)

∑

e=ij∈δ(i)

fk
ij−

∑

e=ij∈δ(i)

fk
ji = dk

i k ∈ K, i ∈ V (2.3)

Capacity Constraints We distinguish three problem types. Given a directed supplygraph, the flow
on every arc of the network is not allowed to exceed the installed capacity (DIrected). For undirected
supply graphs the capacity available on an edgee = ij may be used by the data flow of both directions
ij andji independently (BIdirected) or the capacity is shared between them (UNdirected).

 (i,j)cx ji

f
(i,j)

(i) DIrected, Flow and ca-
pacity are directed.

i jcxe

f
 ji

f
 ij

(ii) BIdirected, Both di-
rections may independently
use the installed capacity.

i jcxe

f
 ij

f
 ji +

(iii) UNdirected, Both di-
rections share the installed
capacity.

Figure 2.2: Capacity usage – single-facility, single-commodity

The three corresponding capacity constraints are as follows:

DIrected capacity constraints:

∑

k∈K

fk
a ≤

∑

t∈T

ctxt
a, a ∈ A (2.4)

BIdirected capacity constraints:

∑

k∈K

fk
ij ≤

∑

t∈T

ctxt
e e = ij ∈ E

(2.5)
∑

k∈K

fk
ji ≤

∑

t∈T

ctxt
e, e = ij ∈ E
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UNdirected capacity constraints:

∑

k∈K

(fk
ij+f

k
ji) ≤

∑

t∈T

ctxt
e, e = ij ∈ E (2.6)

Nonnegativity Constraints

0 ≤ fk
a , x

t
a a ∈ A, k ∈ K, t ∈ T (2.7)

0 ≤ fk
ij, f

k
ji, x

t
e e = ij ∈ E, k ∈ K, t ∈ T (2.8)

Bound constraints The number of base capacities that can be installed can be limited for every
technologyt ∈ T and can even depend on the link of the network.

xt
a ≤ u

t
a a ∈ A, t ∈ T (2.9)

xt
e ≤ u

t
e e ∈ E, t ∈ T (2.10)

with ut
a, ut

e ∈ Z+\{0} for all a ∈ A, e ∈ E, t ∈ T .

2.2.4 The models

We will now define the multi-commodity, multi-facilitynetwork design polyhedracorresponding
to the three problem types DIrected, BIdirected and UNdirected that are going to be investigated in
this thesis. If no bound constraints are required we define

NDPDI := conv{ (f , x) ∈ R|K||A| × Z|T ||A| : (f , x) satisfies (2.2), (2.4), (2.7)}

NDPBI := conv{ (f , x) ∈ R2|K||E| × Z|T ||E| : (f , x) satisfies (2.3), (2.5), (2.8)}

NDPUN := conv{ (f , x) ∈ R2|K||E| × Z|T ||E| : (f , x) satisfies (2.3), (2.6), (2.8)}

Note that these polyhedra depend on the underlying graphs, on the set of commodities and on the
set of facilities. For simplicity of notation, we do not write them as a function ofG = (V,A),
G = (V,E), K or T . If some special properties of those parameters are required, we will explicitly
state them.

Finally, letu ∈ Z+\{0}
A×T (or u ∈ Z+\{0}

E×T ) be the vector defining the bounds for the link
design variables of every link and every facility. We write

NDPDI(u) := conv{ (f , x) ∈ NDPDI : (f , x) satisfies (2.9)}

NDPBI(u) := conv{ (f , x) ∈ NDPBI : (f , x) satisfies (2.10)}

NDPUN (u) := conv{ (f , x) ∈ NDPUN : (f , x) satisfies (2.10)}

These polyhedra model network design problems with bifurcated routing and modular link ca-
pacities. Adding generalised upper bound (GUB) constraints of the form

∑

t∈T

xt
a ≤ 1 ∀a ∈ A,

∑

t∈T

xt
e ≤ 1 ∀e ∈ E

14



2.3 Summary

to our formulations yields problems with explicit link capacities. These inequalities model the com-
mon practical requirement that only one facility can be installed on a given arc or edge of the network
and that it can be installed at most one time. We will not investigate such problems but in Chapter 7
the usefulness of the cutting planes developed in this thesis in the presence of GUB constraints will
be tested. Note that GUB constraints imply bound constraints withut

a = 1 for all a ∈ A, t ∈ T (or
ut

e = 1 for all e ∈ E, t ∈ T ).

Objective function We want to minimise the overall cost of a capacity assignmentthat allows for
a feasible routing and do not consider flow costs in this thesis. Letκt

a ∈ Z+ be the cost of installing
the technologyt ∈ T on arca ∈ A and similar letκt

e ∈ Z+ be the cost of installing facilityt on edge
e ∈ E. Then the objective can be formalised as follows:

DIrected problems: min
∑

t∈T,a∈A

κt
ax

t
a

BIdirected and UNdirected problems: min
∑

t∈T,e∈E

κt
ex

t
e

The problem of minimising a linear function over a network design polyhedron will be called a
network design problem. Note that the defined network design problems areNP-hard already for
very special cases, see for instances Bienstock & Günlük [1996], Chopra et al. [1998] and Atamtürk
[2002].

2.3 Summary

We have started by classifying the type of models that will beconsidered in this thesis. We will
study problems with bifurcated routing and a finite set of installable base capacities. We will consider
bounded design variables as well as unbounded design variables. Three types of capacity usage will
be distinguished: DIrected, BIdirected and UNdirected.

All given parameters have been discussed. We have introduced all the variables used and all
necessary constraints. Finally we have defined the polyhedra corresponding to the different problem
types.
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Chapter 3

Mixed-Integer Rounding - MIR

3.1 Introduction

Literature review Mixed-Integer Rounding(MIR) is a very basic and general tool in mixed integer
programming and has many applications. The idea itself is from Gomory [1960]. He introduced the
so-calledGomory mixed integer cut, which can be seen asMIR with a valid base inequality taken from
the simplex tableau (see for instance Marchand & Wolsey [1998]). Algorithms to separateGomory
mixed integer cutsare included in state-of-the-art MIP-solvers such asCPLEX(ILOG [2005]),Xpress
(Dash Optimizations [2005]) orSCIP(Achterberg [2005]) and are crucial for the efficiency of such
solvers (see Bixby et al. [2000]). The generalMIR-cut for arbitrary base inequalities can be found for
instance in Nemhauser & Wolsey [1988] and Wolsey [1998].

MIR was somehow rediscovered in the nineties of the last century. First of all, computational
results showed thatGomory mixed integer cutscan be effective when implemented in a Branch &
Cut framework, in contrast to Gomory’s cutting plane algorithm of the early sixties (see Balas et al.
[1996] and Bixby et al. [2000]). Moreover, it was observed that several general methods of generating
inequalities are equivalent (specifically disjunctive, split, Gomory mixed andMIR inequalities) and
that certain families of strong inequalities are in factMIR-inequalities (see Marchand [1997] and
Marchand & Wolsey [1998]). The latter is in particular true for most of the well-known cuts for
network design problems (see Chapter 4, Chapter 5 and Chapter 6).

Outline of this chapter In this chapter we will present some common techniques for deriving
strong valid inequalities from mixed integer sets usingMIR. Those techniques will be part of aMIR
procedure for network design problems, which will be discussed in Section 3.4.

We start with the generalMIR-inequality for≤- and≥-base inequalities. We explain the relation
to superadditivity and subadditivity, make some statements about scaling and show how to useMIR
safely from a numerical point of view. Section 3.2 explains the use ofMIR for lifting and in Section
3.3 we show how to exploit the special structure of mixed integer sets when bounds are given.

The basic idea To explain the basic idea ofMixed Integer Roundingit suffices to consider a two-
variable set (Figure 3.1) and a valid inequality that is strengthened by a simple rounding step. The
corresponding result is easily generalised to higher dimensions.
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Mixed integer set

MIR-cut

x

f

d

⌊d⌋

Figure 3.1: AMixed-Integer Roundingcut

Lemma 3.1 Consider(f , x) ∈ R+ × Z satisfying the inequality

af + x ≤ d

with a, d ∈ Q anda ≤ 0. (f , x) also satisfies the following inequality:

a

1− 〈d〉
f + x ≤ ⌊d⌋.

Proof. The result is trivial if〈d〉 = 0. Suppose〈d〉 > 0. If a = 0 the validity ofx ≤ ⌊d⌋ follows
from the integrality ofx. Let a be negative.

If x ≤ ⌊d⌋ we havex − ⌊d⌋ ≤ 0 =⇒ (x − ⌊d⌋)(1 − 〈d〉) ≤ 0 since0 < 〈d〉 < 1. But then
(x − ⌊d⌋)(1 − 〈d〉) ≤ −af because−af ≥ 0.

If x ≥ ⌈d⌉ = ⌊d⌋ + 1 we have−(x − ⌊d⌋) ≤ −1. Rewriting the valid inequalityaf + x ≤ d

results in(x−⌊d⌋) ≤ 〈d〉−af . Combining those two inequalities with weights〈d〉 and1 respectively
gives(x − ⌊d⌋)(1 − 〈d〉) ≤ −af . II

In the following the last result will be used to define the general MIR-inequality and to prove its
validity. Given(f , x) ∈ RM

+ × ZN
+ consider the following base inequality:

∑

j∈M

ajfj +
∑

j∈N

cjxj ≤ d (3.1)

whereM denotes the (finite) set of continuous variables,N denotes the (finite) set of integer variables
andaj, cj , d are rational numbers. Inequality (3.1) may arise as a linearcombination of rows of a
general mixed integer program. With (3.1) we associate two simple mixed integer sets:

X ={ (f , x) ∈ RM
+ × ZN

+ : (f , x) satisfies (3.1)}

and Y ={ (f , x) ∈ RM
+ × ZN

+ : (f , x) satisfies (3.1), xj ≤ uj, j ∈ N }

whereuj ∈ Z+\{0} ∀j ∈ N .
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Theorem 3.2 The following inequality is valid forX andY and defines theMixed-Integer Rounding
cut:

∑

j∈M

a−j
1− 〈d〉

fj +
∑

j∈N

(
⌊cj⌋+

(〈cj〉 − 〈d〉)
+

1− 〈d〉

)
xj ≤ ⌊d⌋. (3.2)

Proof. The inequality (3.1) can be relaxed by deleting flow variables if aj ≥ 0 and by rounding down
coefficientscj for integer variables if〈cj〉 ≤ 〈d〉:

∑

aj<0

ajfj +
∑

〈cj〉≤〈d〉

⌊cj⌋xj +
∑

〈cj〉>〈d〉

⌈cj⌉xj −
∑

〈cj〉>〈d〉

(1− 〈cj〉)xj ≤ d

Note that from〈cj〉 > 〈d〉 follows 〈cj〉 > 0 and hencecj = ⌈cj⌉ − 1 + 〈cj〉. Observing that

i) −
∑

〈cj〉>〈d〉(1− 〈cj〉)xj +
∑

aj<0 ajfj ≤ 0

ii)
∑

〈cj〉≤〈d〉⌊cj⌋xj +
∑

〈cj〉>〈d〉⌈cj⌉xj ∈ Z

we use Lemma 3.1 to obtain:

∑

j∈M

a−j
1− 〈d〉

fj +
∑

〈cj〉≤〈d〉

⌊cj⌋xj +
∑

〈cj〉>〈d〉

⌈cj⌉xj −
∑

〈cj〉>〈d〉

1− 〈cj〉

1− 〈d〉
xj ≤ ⌊d⌋.

Noting that

⌈cj⌉ −
1− 〈cj〉

1− 〈d〉
= ⌊cj⌋+

〈cj〉 − 〈d〉

1− 〈d〉
if 〈cj〉 > 0

concludes the proof. II

TheMIR inequality (3.2) often strengthens the base inequality (3.1). SinceX andY can be seen
as relaxations of more complex mixed integer sets, (3.2) provides a very general cutting plane that
can be used in Branch & Cut algorithms to solve mixed integer programs. How to derive good base
inequalities is one of the major questions considered in this thesis.

Remark 3.3 If d is integer and hence〈d〉 = 0 inequality(3.2) reduces to

∑

j∈M

a−j fj +
∑

j∈N

cjxj ≤ d,

which relaxes the base inequality(3.1).

The MIR-inequality is well defined and valid ifM = ∅. In this case (3.2) is obviously at least
as strong as the so-calledChv́atal-Gomory cut(Gomory [1958] and Chvàtal [1973]) for pure integer
sets: ∑

j∈N

⌊cj⌋xj ≤ ⌊d⌋

since⌊cj⌋+
(〈cj〉−〈d〉)+

1−〈d〉 ≥ ⌊cj⌋.
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MIR inequalities are of algebraic nature. They do not always have a geometrical interpretation
since scaling the base inequality with some constant may lead to a differentMIR inequality. Given a
positive rational numberk the inequality

∑

j∈M

ka−j
1− 〈kd〉

fj +
∑

j∈N

(
⌊kcj⌋+

(〈kcj〉 − 〈kd〉)
+

1− 〈kd〉

)
xj ≤ ⌊kd⌋ (3.3)

is also valid forX,Y and called ak-MIR inequality (Cornuejols et al. [2003]).

Example 3.4 TheMIR inequality of 3.4x1 + 3.7x2 ≤ 8.2, with x1, x2 ∈ Z+ is 3.25x1 +

3.625x2 ≤ 8 dominating the Chv́atal-Gomory cut 3x1 + 3x2 ≤ 8. But even stronger is the3-MIR
inequality 10x1 + 11x2 ≤ 24.

Superadditivity and subadditivity The function mapping coefficients of integer variables in (3.1)
onto coefficients in (3.2) has a nice property, which turns out to be crucial for the theory of mixed
integer sets and strong valid inequalities.

Definition 3.5 A functionF : R→ R is superadditiveif

F(a) + F(b) ≤ F(a+ b)

for all a, b ∈ R. A functionG : R→ R is subadditiveif

G(a) +G(b) ≥ G(a+ b)

for all a, b ∈ R. We writeF (a) = limtց0
F(at)

t
andG(a) = limtց0

G(at)
t

if the limes exist.

1 2 3−1−2

1

−1

−2

2

dF (c)

c

Figure 3.2: The superadditiveMIR functionFd with 〈d〉 = 0.5

It is well-known that the function

Fd : R→ R, Fd(c) = ⌊c⌋ +
(〈c〉 − 〈d〉)+

1− 〈d〉
,

with d ∈ R, is superadditive and nondecreasing (see Nemhauser & Wolsey [1988] and Figure 3.2).
MoreoverFd(0) = 0 and if 〈d〉 > 0 thenF d(a) = a−

1−〈d〉 ∀a ∈ R. If otherwise〈d〉 = 0 then

F d(a) = a ∀a ∈ R. Hence
∑

j∈M

F d(aj)fj +
∑

j∈N

Fd(cj)xj ≤ Fd(d).

is the theMIR inequality (3.2) if〈d〉 > 0 and the base inequality (3.1) else.
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Remark 3.6 Note that
∑

j∈M F (aj)fj +
∑

j∈N F(cj)xj ≤ F(d) defines a valid inequality forX
andY wheneverF is a superadditive nondecreasing function withF(0) = 0 andF (aj) exists for
all j ∈M , which generalises Theorem 3.2 and is a crucial result in mixed integer programming (see
Nemhauser & Wolsey [1988]).

We state a corollary to Theorem 3.2 and aMIR inequality for≥-base inequalities because this is
the setting we will consider most of the time. Given the base inequality

∑

j∈M

ajfj +
∑

j∈N

cjxj ≥ d (3.4)

define

X≥ ={ (f , x) ∈ RM
+ × ZN

+ : (f , x) satisfies (3.4)}

and Y ≥ ={ (f , x) ∈ RM
+ × ZN

+ : (f , x) satisfies (3.4), xj ≤ uj, j ∈ N }.

whereuj ∈ Z+\{0} ∀j ∈ N .

Corollary 3.7 TheMIR inequality

∑

j∈M

a+
j

r(d)
fj +

∑

j∈N

(
⌈cj⌉ −

(r(d) − r(cj))
+

r(d)

)
xj ≥ ⌈d⌉ (3.5)

is valid forX≥ andY ≥.

Proof. Multiplying (3.4) by−1, applying Theorem 3.2 and again multiplying by−1 results in

∑

j∈M

−(−aj)
−

1− 〈−d〉
fj +

∑

j∈N

(
− ⌊−cj⌋ −

(〈−cj〉 − 〈−d〉)
+

1− 〈−d〉

)
xj ≥ −⌊−d⌋.

Using that for allλ ∈ R

i) − (−λ)− = λ+ ii) − ⌊−λ⌋ = ⌈λ⌉ iii) 〈−λ〉 = 1− r(λ)

gives the desired result. II

Note thatGd : R → R, Gd(c) = ⌈c⌉ − (r(d)−r(c))+

r(d) is subadditive withGd(a) = a+

r(d) when

〈d〉 > 0 andGd(a) = a else. This follows fromGd(c) = −F−d(−c). Similar to the result above

∑

j∈M

Gd(aj)fj +
∑

j∈N

Gd(cj)xj ≥ Gd(d).

gives theMIR-inequality (3.5) when〈d〉 > 0 and the base inequality (3.4) for〈d〉 = 0.

21



Mixed-Integer Rounding - MIR

Numerics and integer coefficients A shortcoming of theMIR cut, compared to the Chvátal-Go-
mory cut, is that the rational coefficientsGd(aj), F d(aj) andFd(cj), Gd(cj) might be fractional
with large denominators. Hence scalingMIR inequalities to obtain integer coefficients may cause
numerical problems. This is known especially for implementations ofGomory mixed integer cuts.
However, when solely considering base inequalities with integer coefficients and right hand side we
can avoid such problems. Givenc ∈ Z+\{0}, the corresponding1

c
-MIR inequality can be scaled in

such a way that all coefficients (and right hand side) are integers bounded by the coefficients (right
hand side) of the base inequality. In the following we will simply scale the1

c
-MIR inequality with the

factorr(d, c). Fora, c, d ∈ R andc > 0 define

Gd,c(a) := r(d, c)Gd

c

(a
c
) and Gd,c(a) := r(d, c)G d

c

(a
c
)

Corollary 3.8 Let c ∈ Q, c > 0. The following1
c
-MIR inequality is valid forX≥ andY ≥:

∑

j∈M

Gd,c(aj)fj +
∑

j∈N

Gd,c(cj)xj ≥ Gd,c(d) (3.6)

⇐⇒
∑

j∈M

Gd,c(aj)fj +
∑

j∈N

(
r(d, c)⌈

cj

c
⌉ − (r(d, c) − r(cj, c))

+
)
xj ≥ r(d, c)⌈

d
c
⌉.

If a, d, c ∈ Z, c > 0 then bothGd,c(a) ∈ Z andGd,c(a) ∈ Z. Moreover, theMIR coefficients are
bounded by the base coefficients:

0 ≤ |Gd,c(a)| ≤ |a| and 0 ≤ |Gd,c(a)| ≤ |a|.

Proof. We divide (3.4) byc, apply Corollary 3.7 and arrive at

∑

j∈M

G d

c

(
aj

c
)fj +

∑

j∈N

(
⌈

cj

c
⌉ −

(r(d
c
)− r(

cj

c
))+

r(d
c
)

)
xj ≥ ⌈d

c
⌉.

Multiplying with c · r(d
c
) = r(d, c) gives (3.6). Supposea, d, c ∈ Z, c > 0. Then obviously

Gd,c(a) = a+ ∈ Z or Gd,c(a) = a ∈ Z andGd,c(a) =
(
r(d, c)⌈a

c
⌉ − (r(d, c) − r(a, c))+

)
∈ Z.

Moreover0 ≤ |Gd,c(a)| ≤ |a|. It remains to show that|Gd,c(a)| ≤ |a|. It is easily checked that
Gd,c(0) = 0. First assumea > 0. Let r(d, c) ≤ r(a, c). With Lemma 3.11 follows

0 ≤ Gd,c(a) = r(d, c)⌈a
c
⌉ ≤ r(a, c)⌈a

c
⌉ = a − (⌈a

c
⌉ − 1)(a − r(a, c)) ≤ a

since⌈a
c
⌉ ≥ 1 and0 ≤ r(a, c) ≤ a. Now letr(d, c) > r(a, c). Thenr(a, c) < c =⇒ 〈a

c
〉 > 0 and

0 ≤ Gd,c(a) = r(d, c)⌈a
c
⌉ − (r(d, c) − r(a, c)) = r(d, c)⌊a

c
⌋+ r(a, c)

≤ c⌊a
c
⌋+ r(a, c)

= c⌊a
c
⌋+ c〈a

c
〉 = a.

If a < 0 we use thatGd,c(a) = G−d,c(−a) + a (Lemma 3.11 iii)). From0 ≤ G−d,c(−a) ≤ −a

follows thena ≤ Gd,c(a) ≤ 0. II
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Similarly, we define

Fd,c(a) := r(−d, c)F d

c

(a
c
) and

Fd,c(a) := r(−d, c)Fd

c

(a
c
) = −r(−d, c)G−d

c

(−a
c

) = −G−d,c(−a) (3.7)

= −(r(−d, c)⌈−a
c
⌉ −

(
r(−d, c) − r(−a, c)

)+
)

= r(−d, c)⌊a
c
⌋+

(
r(−d, c) − r(−a, c)

)+
.

Note thatFd,c(a) = −G−d,c(−a). So,Fd,c(a) = a− if 〈d
c
〉 > 0 andFd,c(a) = a else. We can

formulate the following valid inequality forX,Y :
∑

j∈M

Fd,c(aj)fj +
∑

j∈N

Fd,c(cj)xj ≤ Fd,c(d). (3.8)

Again if a, c, d ∈ Z, c > 0 then0 ≤ Fd,c(a),Fd,c(a) ∈ Z and |Fd,c(a)|, |Fd,c(a)| ≤ |a|. The
formulas (3.6) and (3.8) should be used when implementing1

c
-MIR inequalities. When separating

suchMIR inequalities within a Branch & Cut algorithm we are now sure not to worsen the condition
of the underlying matrix, which is crucial for the correctness and effectiveness of those algorithms.

Example 3.9 The following investigation have been made by using the software package PORTA
(Christof & Löbel [2005]). Consider the integer knapsack set

Y ≥(u) = {x ∈ Z4
+ : 4x1 + 7x2 + x3 + 2x4 ≥ 13, xi ≤ u, i ∈ {1, .., 4} }

whereu ∈ Z+ ∪ {∞}. Using formula(3.6) we calculate three possible1
c
-MIR inequalities with

c ∈ {4, 7, 2} and state the dimension of the induced faces corresponding to conv(Y ≥(2)) and
conv(Y ≥(∞)):

1
4 −MIR : x1 + 2x2 + x3 + x4 ≥ 4 dimension forY ≥(2) : 2 dimension forY ≥(∞) : 3
1
7 −MIR : 4x1 + 6x2 + x3 + 2x4 ≥ 12 dimension forY ≥(2) : 3 dimension forY ≥(∞) : 3
1
2 −MIR : 2x1 + 4x2 + x3 + x4 ≥ 7 dimension forY ≥(2) : 1 dimension forY ≥(∞) : 3

Both conv Y ≥(2) and conv Y ≥(∞) are full-dimensional. Note that the coefficients of allMIR-
inequalities are not greater than the corresponding coefficients of the base inequality. For the polyhe-
dronconv Y ≥(∞) all threeMIR-inequalities are facet-defining. This is not the case forconv Y ≥(2).
In Section 3.3 techniques are presented that exploit the special structure of sets with bounded vari-
ables.

A special case of Corollary 3.8 and inequality (3.6) is used frequently in the literature (Atamtürk
[2002] and Bienstock & Günlük [1996] and Magnanti & Mirchandani [1993] and Chopra et al. [1998]
and others):

Corollary 3.10 If
f ± cx ≥ d (3.9)

is a valid base inequality for(f , x) ∈ R+ × Z with c ∈ R, c > 0 then

f ± r(d, c)x ≥ r(d, c)⌈
d

c
⌉ (3.10)

is also valid.
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Proof. Setx̃ := −x− =⇒ x = x+ − x̃ with x+, x̃ ∈ Z+. Rewrite (3.9):

f ± c · (x+ − x̃) ≥ d

and apply Corollary 3.8 usingr(d, c) ≤ r(c, c) = r(−c, c) = c and⌈ c
c
⌉ = 1 = −⌈−c

c
⌉. II

We conclude with a lemma that will be needed several times andis based on the introduced
notation.

Lemma 3.11 Letx ∈ R, y ∈ R+ d, c, c1 ∈ Z+ andz ∈ Z:

i) c⌈d
c
⌉ = d+ c− r(d, c) andr(d, c)⌈d

c
⌉ = d− (⌈d

c
⌉ − 1)(c − r(d, c))

ii) If 〈x
y
〉 > 0 then〈x

y
〉 = 1− 〈−x

y
〉 andr(x, y) = y − r(−x, y)

iii) If 〈d
c
〉 > 0 thenFd,c(−z) = F−d,c(z) − z andGd,c(−z) = G−d,c(z)− z

iv) If c > d andc ≥ c1 then

Fd,c(c1) = (c1 − d)
+, Gd,c(c1) = min(d, c1)

F−d,c(c1) = (d− c+ c1)
+, G−d,c(c1) = min(c− d, c1)

Fd,c(−c1) = −min(c− d, c1), Gd,c(−c1) = −(d− c+ c1)
+

F−d,c(−c1) = −min(d, c1), G−d,c(−c1) = −(c1 − d)
+.

Proof. i) If 〈d
c
〉 = 0 ⇐⇒ r(d, c) = c, thenc⌈d

c
⌉ = r(d, c)⌈d

c
⌉ = d. Else if 〈d

c
〉 > 0 =⇒

c⌈d
c
⌉ = c(d

c
+ 1 − 〈d

c
〉) = d + c − c〈d

c
〉 = d + c − r(d, c). It follows that r(d, c)⌈d

c
⌉ =

d+ c− r(d, c)− (c− r(d, c))⌈d
c
⌉ = d− (⌈d

c
⌉ − 1)(c− r(d, c)).

ii) 〈−x
y
〉 = −x

y
− ⌊−x

y
⌋ = −x

y
+ ⌈x

y
⌉ = −x

y
+ ⌊x

y
⌋+ 1 = 1− 〈x

y
〉.

r(x, y) = 〈x
y
〉y = (1− 〈−x

y
〉)y = y − r(−x, y)

iii) 〈d
c
〉 > 0 thenr(d, c) < c andr(−d, c) = c− r(d, c). We can write

Fd,c(−z) = (c− r(d, c))⌊−z
c
⌋+

(
c− r(d, c)− r(z, c)

)+

= (r(d, c)− c)⌈z
c
⌉+

(
c− r(d, c)− r(z, c)

)+

and

F−d,c(z)− z = r(d, c)⌊z
c
⌋+

(
r(d, c) − r(−z, c)

)+
− z.

(a) 〈z
c
〉 = 0 =⇒ Fd,c(−z) = (r(d, c) − c)z

c
+

(
c − r(d, c) − c

)+
= r(d, c)z

c
− z =

F−d,c(z)− z.

(b) Assume that〈z
c
〉 > 0 andc−r(d, c)−r(z, c) > 0. HenceFd,c(−z) = (r(d, c)−c)⌈z

c
⌉+(

c− r(d, c)− r(z, c)
)

= (r(d, c)− c)⌊z
c
⌋ − r(z, c) = r(d, c)⌊z

c
⌋ − z = F−d,c(z)− z.

(c) Finally suppose〈z
c
〉 > 0 andc − r(d, c) − r(z, c) ≤ 0. ThusFd,c(−z) = (r(d, c) −

c)⌈z
c
⌉ = r(d, c)⌊z

c
⌋+r(d, c)−c⌈z

c
⌉ = r(d, c)⌊z

c
⌋+r(d, c)−z−c+r(z, c) = r(d, c)⌊z

c
⌋+

r(d, c)− z − r(−z, c) = F−d,c(z)− z.
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Using equation (3.7) givesGd,c(−a) = −F−d,c(a) = −Fd,c(−a)− a = G−d,c(a) − a.

iv) We prove thatFd,c(c1) = (c1 − d)
+ andF−d,c(c1) = (d − c + c1)

+. The rest follows from
Lemma 3.11 iii) and Equation (3.7).

(a) Fd,c(c1) = ⌊ c1
c
⌋r(−d, c) +

(
r(−d, c)− r(−c1, c)

)+
. If c > c1 thenFd,c(c1) = (c− d−

c+ c1)
+ = (c1− d)

+. Else ifc = c1 thenFd,c(c1) = (c− d)+ (c− d− c)+ = (c− d) =

(c1 − d)
+.

(b) F−d,c(c1) = ⌊ c1
c
⌋r(d, c) +

(
r(d, c) − r(−c1, c)

)+
. If c > c1 thenF−d,c(c1) = (d− c+

c1)
+. Else ifc = c1 thenF−d,c(c1) = d+ (d− c)+ = d = (d− c+ c1)

+. II

Summary In this section we have introducedMIR and made some statements about superadditivity
and numerics. The inequalities (3.6) and (3.8) will be used when deriving strong valid inequalities
throughout the rest of this thesis.

3.2 MIR , Superadditivity and Lifting

We cannot give a complete introduction to the concepts oflifting and superadditivityhere. The
intention of this section is only to motivate the use ofMIR as a superadditive function when lifting
strong valid inequalities to higher dimensions. In terms ofnetwork design polyhedra we want to lift
facets of sets with a single design variable to strong valid inequalities of the corresponding multi-faci-
lity sets (see for instance Section 4.3).

This is only a short overview, we will not go into any details.For a more thorough overview see
Nemhauser & Wolsey [1988]. We follow in some parts introductions given by Agra & Constantino
[2003] and Atamtürk [2003a]. The basic theory of lifting and superadditivity was set upby Wolsey
[1976, 1977] and Gu et al. [1999, 2000] and Atamtürk [2004] and others.

We consider the mixed integer setY as already defined:

Y = { (f , x) ∈ RM
+ × ZN

+ :
∑

j∈M

ajfj +
∑

j∈N

cjxj ≤ d, xj ≤ uj , j ∈ N }

whereuj ∈ Z+\{0} ∀j ∈ N . Let (L,U,R) be a partition ofN and setb := d − cT

UuU . Given
S ⊆ N andh ∈ R define

YS(h) := { (f , xS) ∈ RM
+ × ZS

+ : aTf + cT

SxS ≤ h, xj ≤ uj , j ∈ S }.

HenceYR(b) is the restriction ofY , obtained by setting all variables inL to their lower bound zero
and all variables inU to their upper bounduj. AssumeYR(b) 6= ∅.

Let
γTf + βT

RxR ≤ π (3.11)

be a valid inequality forYR(b), whereγ, βR are vectors of appropriate dimension andπ ∈ R. The
lifting problem is now to find a vector(βL, βU ) ∈ RL × RU such that

γTf + βT

RxR + βT

LxL + βT

U (uU − xU ) ≤ π

is valid forY .
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To compute these coefficients we make use of the so-calledlifting function, which is associated
with (3.11). Forz ∈ Rm (with YR(b − z) 6= ∅) define

φR(z) = min{π − γTf − βT

RxR : (f , xR) ∈ YR(b − z) }.

(φR(z) is a finite value ifYR(b − z) 6= ∅, see Atamtürk [2004]). One way to lift variables is to
introduce them one by one in a certain sequence (sequential lifting). This leads to an optimisation
problem in each of the steps. Supposexi, i ∈ L is the first variable to be lifted. A lifting coefficientβi

produces a valid inequality forYR∪{i} if and only if the following condition holds ([Wolsey, 1976]):

βixi ≤ φR(cixi) ∀xi ≥ 1, (f , xR∪{i}) ∈ YR∪{i}(b) (3.12)

equivalent to

βi ≤ min{
φR(cixi)

xi

: xi ≥ 1, (f , xR∪{i}) ∈ YR∪{i}(b) } =: φi
R(ci).

Calculatingφi
R(ci) is a nonlinear optimisation problem in general. However, lifting a binary

variable requires the solution of a linear mixed integer program since thenφi
R(ci) = φR(ci).

Proposition 3.12 (Wolsey [1976]) If (3.11)is valid forYR(b) and−∞ < βi ≤ φ
i
R(ci) then

γTf + βT

RxR + βixi ≤ π (3.13)

is valid forYR∪{i}(b). Moreover, if−∞ < βi = φi
R(ci) and (3.11)defines ak-dimensional face of

conv(YR) then(3.13)defines a face ofconv(YR∪{i}) of dimension at leastk + 1.

Note that lifting of variables inU can be done in a similar way by usingφR.
We say that lifting isexactif βi = φi

R(ci). It is known thatφi
R∪{k}(ci) ≥ φi

R(ci). For a particular

i ∈ L, the laterxi is introduced to the inequality in a lifting sequence, the smallerφi
R(ci) is, implying

that the lifted inequalities may depend on the lifting sequence.
Now suppose that the lifting functionφR is superadditive. In this case, it turns out that lifting is

sequence independent and that we can lift all variables inL,U simultaneously. Wolsey [1976] and
Gu et al. [2000] show that superadditive lifting functions lead to sequence independent lifting for
sets with only binary variables and for mixed 0-1 sets respectively. Atamtürk [2004] proves this for
general mixed integer sets.

Proposition 3.13 (Atamtürk [2004]) Letϕ : R → R be a superadditive function withϕ ≤ φR. If
(3.11)is valid forYR(b) then the lifted inequality

γTf + βT

RxR +
∑

i∈L

ϕ(ci)xi +
∑

i∈U

ϕ(−ci)(ui − xi) ≤ π (3.14)

is valid for Y . Moreover, ifϕ = φR thenφR(ci) = φi
R(ci) and (3.14)defines a face ofconv(Y ) of

dimension at leastk + |L|+ |U | if (3.11) is ak-dimensional face ofconv(YR(b)).

We say thatϕ is asuperadditive lower bound onφR and avalid lifting functionthat can beused
for lifting. Having≥-base inequalities we speak ofsubadditive upper boundson the lifting function.

Knowing a superadditive lower boundϕ on the exact lifting function is a great convenience from
a computational point of view. For calculating the lifting coefficients we only have to evaluateϕ(ci)
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3.2 MIR, Superadditivity and Lifting

for all i ∈ L andϕ(−ci) for all i ∈ U instead of solving a potentially hard optimisation problemin
each step of the lifting procedure.

It is now of interest under which conditions the superadditiveMIR-functionFd (or the subadditive
MIR-functionGd) can be used for lifting. An answer to this question can be found in Louveaux &
Wolsey [2003].

Proposition 3.14 (Louveaux & Wolsey [2003]) Suppose the initial valid inequality forYR(b) is
of the form ∑

j∈M

F (aj)fj +
∑

j∈R

F(cj)xj ≤ F(d).

with F superadditive and nondecreasing. ThenF̂ : R → R, F̂(u) = F(d) − F(d − u) is a valid
lifting function withF̂ ≤ φR. If moreoverF = Fd , thenF̂ = Fd and hence theMIR-function itself
can be used for lifting.

Note thatF̂(0) = 0. We have already stated that superadditive functions with that property
can produce valid inequalities forY (see Remark 3.6). That theMIR-functionFd produces a valid
inequality is in fact a direct consequence of Theorem 3.2. The last sentence of Proposition 3.14 only
says that we can seeMIR as lifting with a superadditive lower bound on the exact lifting function.
MIR as a lifting procedure was successfully used in Marchand & Wolsey [1998, 1999] and Louveaux
& Wolsey [2003] and Atamtürk [2004].

Example 3.9 (continued) We have already defined the setY ≥(u). Now consider the restriction

Y ≥
1,2(u) = {x ∈ Z2

+ : 4x1 + 7x2 ≥ 13, xi ≤ u, i ∈ {1, 2} }

by settingx3 = x4 = 0. The1
4 -MIR inequality

G13,4(4)x1 + G13,4(7)x2 ≥ G13,4(13) ⇐⇒ x1 + 2x2 ≥ 4

defines a facet of bothconv(Y ≥
1,2(2)) andconv(Y ≥

1,2(∞)), while the1
7 -MIR inequality

G13,7(4)x1 + G13(7)x2 ≥ G13,7(13) ⇐⇒ 4x1 + 6x2 ≥ 12

defines a face ofconv(Y ≥
1,2(2)) andconv(Y ≥

1,2(∞)) of dimension0 with the unique point(0, 2) satis-
fying4x1 + 6x2 ≥ 12 with equality.

We now want to lift these inequalities to valid inequalitiesfor the setsY ≥(2) andY ≥(∞). From
Proposition 3.14 we know that we can useMIR as a valid lifting function and from Proposition 3.13
that we can lift simultaneously. The14 -MIR inequality forY ≥(u) is

x1 + 2x2 + x3 + x4 ≥ 4

which defines a facet ofconv(Y ≥(∞)) but it defines a face ofconv(Y ≥(2)) of dimension only2.
Hence the lifting function ofx1 +2x2 ≥ 4 for Y ≥

1,2(∞) is superadditive and equals theMIR-function,

whereas lifting forY ≥
1,2(2) with MIR is valid but not exact.

Let us calculate the exact lifting coefficients for lifting−x1 − 2x2 ≤ −4 to a facet-defining
inequality ofY ≥

1,2(2) in the sequence3, 4.

φi
1,2(c3 = −1) = min{

−4 + x2 + 2x2

x3

: x3 ≥ 1, −4x1 − 7x2 − x3 ≥ −13, xi ≤ 2 } = −1
2
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It follows thatx1 +2x2 + 1
2x3 ≥ 4 is facet defining forconv(Y ≥

1,2,3(2)). Similarly,φi
1,2,3(c4 = −1) =

−1 resulting in the facet-defining inequality

x1 + 2x2 + 1
2x3 + x4 ≥ 4

for conv(Y ≥(2)). (It turns out, that the exact lifting function is superadditive as well, so the sequence
4, 3 produces the same inequality dominating the1

4 -MIR inequality.)
The 1

7 -MIR inequality forY ≥(u) is 4x1 + 6x2 + x3 + 2x4 ≥ 12 which defines a facet of both
conv(Y ≥(∞)) andconv(Y ≥(2)). Superadditive lifting withMIR is exact in both cases and surpris-
ingly the lifted inequality is facet-defining although4x1 +6x2 ≥ 12 only defined a lower dimensional
face ofconv(Y ≥

1,2(∞)) andconv(Y ≥
1,2(2)).

Summary In this section we have emphasised the usefulness ofMIR as a valid superadditive lifting
function. Gu et al. [1999, 2000], Atamtürk [2003a,b], Louveaux & Wolsey [2003] and Agra &
Constantino [2003] and many others, construct superadditive lower bounds on exact lifting functions
different to the simpleMIR-functions considered in this thesis.

The intention of the author is to show that for network designproblems and the sets considered
in this thesis it suffices to considerMIR. This restriction at least provides the possibility of develop-
ing a generic separation procedure that is able to detect different classes of robust and strong valid
inequalities and that might be useful for practical implementations.

3.3 Upper bounds,complemented MIRinequalities, covers and packs

In Example 3.9 we observed thatMIR-inequalities might be weak, if variables are bounded. In the
sequel a procedure is motivated that exploits the special structure of such sets. Again consider the set

Y = { (f , x) ∈ RM
+ × ZN

+ :
∑

j∈M

ajfj +
∑

j∈N

cjxj ≤ d, xj ≤ uj }

with uj ∈ Z+\{0}, j ∈ N . A basic idea now is that ofcomplementing. LetU ⊆ N , R := N\U and
definex̄j := uj − xj for j ∈ U . The base inequality (3.1) can be rewritten as

∑

j∈M

ajfj +
∑

j∈R

cjxj +
∑

j∈U

−cj x̄j ≤ d −
∑

j∈U

cjuj =: b.

Sincex̄j ∈ Z+ for all j ∈ U , it is straightforward to applyMIR (Theorem 3.2) now, which after
reintroducing the original variables, results in

∑

j∈M

F b(aj)fj +
∑

j∈R

Fb(cj)xj +
∑

j∈U

Fb(−cj)(ui − xj) ≤ Fb(b). (3.15)

MIR inequalities of type (3.15) will be calledcomplemented-MIR inequalities. These inequalities
were introduced by Marchand [1997] and Marchand & Wolsey [1998] (see Section 3.4). In fact we
already know them. Considering the restrictionYR of Y obtained by fixing variables inU to their
upper bound we get ∑

j∈M

F b(aj)fj +
∑

j∈R

Fb(cj)xj ≤ Fb(b). (3.16)
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as a validMIR-inequality for the setYR(b). Now using theMIR-functionFb as a superadditive valid
lifting function, we can lift all variables inU simultaneously and arrive at (3.15) (see Proposition 3.13
and Proposition 3.14). Similarly,

∑

j∈M

F b(aj)fj +
∑

j∈U

Fb(−cj)(ui − xj) ≤ Fb(b). (3.17)

is a valid complemented-MIR inequality for the restrictionYU (d) obtained by fixing variables inR to
their lower bound zero. Lifting withFb yields (3.15) again.

It follows that the three procedures

1. Complement variables inU and applyMIR,

2. Fix variables inR to their lower bound, apply (complemented-)MIR and finally lift variables in
R using the superadditive functionFb ,

3. Fix variables inU to their upper bound, applyMIR and finally lift variables inU using the
superadditive functionFb

are equivalent. This observation is important because it allows us to make a statement about the
strength of the inequality (3.15). If (3.16) is facet-defining forconv(YR(b)) andFb is the exact lifting
function for lifting variables inU , then (3.15) is facet-defining forconv(Y ). Similarly, if (3.17) is
facet-defining forconv(YU (d)) andFb is the exact lifting function for lifting variables inR, then
(3.15) is facet-defining forconv(Y ). If otherwiseFb is not the exact lifting function in both cases,
we can at least use it for (computationally easy) simultaneous lifting and might get high dimensional
faces forconv(Y ).

It turns out that it is crucial to choose the setU in such a way that the restricted inequalities ((3.16)
or (3.17)) define facets for the restricted setsconv(YR(b)) or conv(YU (d)). It is in this context that
the terms and definitions ofcoversandpacksarise.

In the sequel let the setY be given withcj > 0 for all j ∈ N .

Definition 3.15 A subsetC ofN is called acoverif uT

CcC =
∑

j∈C ujcj > d. Setλ := uT

CcC − d.
Similarly, a subsetP ofN is called apackif µ := d − uT

P cP > 0.

Covers and packs and the correspondingcover-andpack-inequalitieshave been studied exten-
sively in the literature. The main approach here is that of fixing variables with respect to an ap-
propriately chosen cover or pack, considering a facet-defining inequality of the convex hull of the
restriction ofY obtained this way and then lifting this facet to a high dimensional face ofconv(Y ).
See [Atamtürk, 2003a] for a detailed introduction and literature overview.

Marchand & Wolsey [1998] show that some classes of lifted cover- and pack inequalities are
just MIR-inequalities, or are even dominated byMIR-inequalities. In the following we will give two
examples of this.

Covers First we consider amixed 0-1 knapsack set, that isY but with uj = 1 andcj > 0 for all
j ∈ N . LetC be a cover with excessλ such thatλ ≤ c̄ := maxj∈C cj . SetR := N\C. Fixing all
variables inR to zero and complementing all variables inC results in

∑

j∈M

ajfj +
∑

j∈C

−cjx̄j ≤ −λ.
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Now calculating the1
c̄
-(complemented)-MIR inequality gives

∑

j∈M

F−λ,c̄(aj)fj +
∑

j∈C

F−λ,c̄(−cj)(1− xj) ≤ F−λ,c̄(−λ)

⇐⇒
∑

j∈M

a−j fj +
∑

j∈C

F−λ,c̄(−cj)(1− xj) ≤ −λ

⇐⇒
∑

j∈M

a−j fj −
∑

j∈C

min(λ, cj)(1− xj) ≤ −λ. (3.18)

The last step follows from Lemma 3.11 iv).
(3.18) is the so-calledmixed 0-1 cover inequality(Marchand & Wolsey [1999]) and defines a facet

of conv(YC). If C is a minimal cover, i. e.cj ≥ λ for all j ∈ C and alsoM = ∅, then inequality
(3.18) reduces to ∑

j∈C

xj ≤ |C| − 1,

the well-knowncover inequalityfor 0-1 knapsack sets. (Note that for mixed 0-1 knapsack setsthe
minimality of a cover is not a necessary condition for (3.18)to be facet-defining, it suffices to have
λ ≤ c̄.) It is now obvious that we can useF−λ,c̄ to lift inequality (3.18).

∑

j∈M

a−j fj +
∑

j∈R

F−λ,c̄(cj)xj −
∑

j∈C

min(λ, cj)(1 − xj) ≤ −λ (3.19)

is valid forY and it can be a strong. See Marchand & Wolsey [1999] and Atamt¨urk [2003a] for exact
lifting functions and superadditive lower bounds different fromF−λ,c̄ .

Packs Now, givenY with cj > 0, j ∈ N , let P be a pack with residualµ such thatµ < c̄ :=

maxj∈N\P cj . SetR := N\P . Now complementing all variables inP results in

∑

j∈M

ajfj +
∑

j∈P

−cj x̄j +
∑

j∈R

cjxj ≤ µ.

Calculating the1
c̄
-(complemented)-MIR inequality gives

∑

j∈M

a−j fj +
∑

j∈P

Fµ,c̄(−cj)(uj − xj) +
∑

j∈R

Fµ,c̄(cj)xj ≤ 0. (3.20)

We call (3.20) a (lifted)mixed integer pack inequality. Using Lemma 3.11 iv) givesFµ,c̄(cj) =

(cj − µ)+ for j ∈ R sincec̄ > µ andc̄ ≥ cj . From Corollary 3.8 we know thatFµ,c̄(−cj) ≥ −cj . It
follows that (3.20) is at least as strong as

∑

j∈M

a−j fj +
∑

j∈P

−cj(uj − xj) +
∑

j∈R

(cj − µ)+xj ≤ 0

⇐⇒
∑

j∈M

a−j fj +
∑

j∈P

cjxj +
∑

j∈R

(cj − µ)+xj ≤
∑

j∈P

cjuj = d − µ,
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3.3 Upper bounds, complemented MIR inequalities, covers and packs

which Martin & Weismantel [1997] and Weismantel [1997] refer to as aweight inequality. Weight
inequalities define facets ofY under certain conditions. Inequality (3.20) reduces to

∑

j∈R

(cj − µ)+xj ≤ 0,

the well-knownpack inequalityfor 0-1 knapsack sets, ifM = ∅ and variables in the packP are fixed
to their upper bound1.

Example 3.9 (continued) We have already considered the set

Y ≥(2) = {x ∈ Z4
+ : 4x1 + 7x2 + x3 + 2x4 ≥ 13, xi ≤ 2, i ∈ {1, .., 4} }

and derived strong valid inequalities byMIR. Here, we try to obtain new facets by considering covers
and packs. We only state five examples. Most of the nontrivialfacet-defining inequalities forY ≥(2)

can be obtained with this procedure. First we will only consider covers and packs with excess or
residual smaller than̄c := max(cj)j∈N = 7. We have not defined covers and packs for≥-inequalities
yet. But by complementing all variables we arrive at the equivalent system

Y ≤(2) = { x̄ ∈ Z4
+ : 4x̄1 + 7x̄2 + x̄3 + 2x̄4 ≤ 15, x̄i ≤ 2, i ∈ {1, .., 4} }.

C = {2, 3} is a cover with excessλ = 7 · 2 + 1 · 2 − 15 = 1. Complementing all variables in the
cover yields

4x̄1 − 7x2 − x3 + 2x̄4 ≤ −1 ⇐⇒ −4x̄1 + 7x2 + x3 − 2x̄4 ≥ 1.

We arrive at the same inequality by definingP = {1, 4} to be a pack with respect to the original≥-
base inequality and by complementing all variables in the pack. Now calculate the1

c̄
-MIR inequality

given by

x2 + x3 ≥ 1.

ConsideringC = {2, 3, 4} gives a cover withλ = 5 and theMIR-cover inequality

2x1 + 5x2 + x3 + 2x4 ≥ 9.

Now letP = {1, 4}. It follows thatµ = 15 − 4 · 2 − 2 · 2 = 3. Complementing all variables in the
pack gives

−4x1 + 7x̄2 + x̄3 − 2x4 ≤ 3 ⇐⇒ 4x1 − 7x̄2 − x̄3 + 2x4 ≥ −3.

The same inequality is obtained by definingC = {2, 3} to be a cover with respect to the original
≥-base inequality and by complementing all variables in the cover. The1

c̄
-MIR inequality is

4x1 + 4x2 + 2x4 ≥ 8.

ConsideringP = {1, 3} gives a pack withµ = 5 and theMIR- pack inequality

2x1 + 2x2 + x3 ≥ 4.
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All of the cover- and pack inequalities we have derived in this way define facets ofY ≥(2). It is crucial
to only consider covers and packs with small values ofλ andµ. Let for instanceP = {3, 4} with
µ = 9. Complementing gives

4x̄1 + 7x̄2 − x3 − 2x4 ≤ 9 ⇐⇒ −4x̄1 − 7x̄2 + x3 + 2x4 ≥ −9.

Choosinḡc = 10 > µ leads to the1
c̄
-MIR inequality

x3 + x4 ≥ 0,

which is trivial and does not define a facet ofY ≥(2).

Summary In this section it has been shown how to exploit the special structure of bounded mixed
integer sets. We simply complemented variables in previously chosen covers and packs before scaling
andMIR. In this context it is important that the excessλ for covers or the residualµ for packs is small
with respect to the coefficients of the base inequality. Motivated by the stated strong valid cover and
pack inequalities and by Example 3.9, we will restrict our attention toMIR-cover- andMIR-pack
inequalities with

c̄ = max(cj)j∈N > λ,µ,

where1
c̄

will be used as the factor to scale the base inequalities.

3.4 A MIR procedure

Marchand [1997] and Marchand & Wolsey [1998] observed that many families of strong valid in-
equalities of certain mixed integer sets are in factMIR-inequalities obtained by the following proce-
dure:

1. Aggregation: Choose a positive linear combination of the inequalities that describe the mixed
integer set to get a valid base inequality of the form (3.1) or(3.4).

2. Bound Substitution: Substitute continuous variables by potentially given (variable) lower or
upper bounds.

3. Complementing: Choose a subsetU of the integer variables and complement them with re-
spect to their bound constraints.

4. Scaling: Divide the base inequality by some positive integerc.

5. MIR : Apply MIR.

Strong valid inequalities with respect to certain mixed integer sets that can be obtained by the proce-
dure above are, for instance:

• (lifted) cover and pack inequalities(Atamtürk [2003a])

• arc residual capacity inequalities(Magnanti et al. [1993])
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3.4 A MIR procedure

• flow cut inequalities(Bienstock & Günlük [1996] and Chopra et al. [1998] and Atamtürk
[2002])

• (lifted) flow coverandflow pack inequalities(Gu et al. [1999] and Atamtürk [2001])

• knapsack partition inequalities(Pochet & Wolsey [1992, 1995])

Given a general mixed integer set, the simple idea of Marchand [1997] and Marchand & Wolsey
[1998] is to apply each of the stepsaggregating, substituting, complementingandscalingheuristically
before applyingMIR. They propose a very generic separation heuristic based on this MIR procedure
and showed that, when integrated into a Branch & Cut algorithm, it computationally gives results as
good as, or better than, those obtained from several existing (general purpose) separation routines.

The approach used throughout this thesis is slightly different. We are not faced with general
mixed integers sets but with network design problems and want to take into account the structure of
those problems and the underlying networks. In fact, every of the steps above will be part of ourMIR
procedure, but they will not be used heuristically (in the sense of Marchand [1997] and Marchand &
Wolsey [1998]) and although they can be useful for implementations, they are of a theoretical nature
rather than being a pseudo-code. In the presence of a concrete class of inequalities one has to face the
separation problem, which usually causes some modifications in actual practice(Chapter 7).

The procedure, that will be described below in more detail, tries to generalise the way to obtain
the strong inequalities specific for network design problems, which will be introduced in Chapter 4, 5
and 6. For a thorough description see the appropriate chapter. In Chapter 4 we will see how to obtain
certain flow cut inequalities and in Chapter 5 we will consider flow cover and flow pack inequalities.
Sections 6.3, 6.2 and 6.4 are devoted to multi cut inequalities, arc residual capacity inequalities and
knapsack partition inequalities, respectively.

The following approach may even be of interest for problems different to those considered in this
thesis. We concentrate on the DIrected case. The BIdirectedand UNdirected cases are analogous.

Aggregation Given a network design polyhedron as defined in Section 2.2, choose subsets of the
nodesV , the arcsA (or edgesE) and the commoditiesK and consider a linear combination of the
flow conservation constraints (2.2) or (2.3), the capacity constraints (2.4), (2.5), (2.6) and the non-
negativity constraints (2.7) or (2.8) with respect to the given subsets. The selection of nodes and
arcs (or edges) will not be done heuristically but should reflect a certain structure of the underlying
network. For example, it turns out that it is useful to consider

• a subsetS of the nodesV and subsets of the arcs in the cutδ(S) defined byS (see Chapter 4,
Chapter 5 and Section 6.4)

• a partition of the network nodesV and the corresponding multi cut (see Section 6.3),

• a single arc (see Section 6.2).

In this context, it is crucial to know more about the polyhedral structure of the relaxations obtained
with such an aggregation procedure, such ascut sets, single arc setsor multi cut sets. In Chapter 4
and 5 we considercut setsand learn how to choose subsets of commodities, arcs and nodes such that
our approach produces strong valid or even facet-defining inequalities.
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By aggregating valid inequalities as mentioned we arrive ata single constraint of the form (3.4).
We could directly calculate a1

c
-MIR inequality with respect to this single constraint. But since

Gd,c(aj) = a+
j (in the only intersting case that〈d

c
〉 > 0), we would round up negative coefficients of

flow variables to zero.

Substituting The intention of this step is to obtain a base inequality withnon-negative coefficients
for all flow variables. Suppose that after aggregation all flow variablesfk

a for a ∈ AS andQ ⊆ K

have the same negative coefficient in (3.4).
We use the slack variablēfQ

a ≥ 0 of the corresponding capacity (or variable upper bound) con-
straint

fQ
a + f̄Q

a =
∑

t∈T

ctxt
a

to substitutefQ
a for

∑
t∈T c

txt
a − f̄

Q
a .

If we are able to bound the flowfQ
a with some constant value:

fQ
a + f̄Q

a = uQ
a ∈ R+,

we can similarly substitutefQ
a for uQ

a − f̄
Q
a . (This is complementing of flow variables and will be

used in Section 6.2.)

Proceeding this way for all flow variables with negative coefficients we get a modified base inequality
of type (3.4) where all coefficients of flow variables are non-negative.

Complementing We choose a subsetU of all bounded integer design variables. The setU will be
either empty or an appropriately chosen cover or pack similar to the examples of the last section. In
Chapter 5 we consider flow covers and flow packs as an extensionto covers and packs. We chooseU
such that the corresponding excessλ or residualµ is smaller than the maximum̄c of the coefficients
of the base inequality.

All variables inU will be complemented.

Scaling andMIR It remains to define the factorc that is used to scale the base inequality. For many
strong inequalities given in the literature (and all inequalities considered in this thesis) it suffices to
selectc from the coefficients of the base inequality.

Now we calculate the1
c
-MIR inequality.

Since the1
c
-MIR can be seen as new base inequality the step ‘Scaling andMIR’ can be repeated.

Finally, we have to restate the resulting inequality in terms of the original variables.

3.5 Summary

This chapter is the basis for the rest of this thesis. All the necessary notation concerningMIR has been
introduced. It has been shown how to derive numerically safeMIR inequalities. We have learned how
to scale them such that all coefficients are small integers.
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3.5 Summary

It is often useful to consider restrictions of given mixed integer sets by fixing some variables
to their bounds. It was emphasised thatMIR can be used for the simultaneous lifting of the valid
inequalities of such restrictions. It was furthermore shown that if a valid inequality for a restriction
has already been obtained byMIR, thenMIR provides a canonic valid superadditive lifting function.
In this context the strength of such liftedMIR inequalities can be investigated by comparing theMIR
function with the exact lifting function.

In cases where variables are bounded by some constant value,it has been explained how to ex-
ploit this additional information. Those variables can be complemented before applyingMIR, which
is equivalent to fixing those variables to their bound, obtaining a valid inequality for the restriction
by MIR and then lifting with the sameMIR function. It turned out that it is crucial to properly choose
the sets of variables that are to be complemented. It has beenshown that well-known cover (pack) in-
equalities are obtained with this approach when complementing variables in the corresponding cover
(pack). Those covers (packs) have to be chosen such that theyare minimal (maximal) in the sense
that their excess (residual) is small with respect to the coefficients of the base inequality considered.

A MIR procedure has been proposed which is able to produce strong valid inequalities for the
network design problems investigated in this thesis. It is important for the success of such aMIR
procedure to restrict the large pool of possible base inequalities. In the following chapters, especially
Chapter 4, we will investigate the facial structure of certain relaxations of network design polyhedra,
which will provide more information about how to derive goodbase inequalities.
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Chapter 4

Cut sets and flow cut inequalities

4.1 Introduction

Cut sets(or single node flow sets) arise from the aggregation of flow conservation constraints for a
node setS ⊂ V . The network design polyhedra are restricted to the cutδ(S) and the two artificial
nodesS andV \S. The resulting cut set polyhedra, or simply cut sets, serve as relaxations of the
original network design polyhedra. It is important to understand the polyhedral structure of cut sets
because they cover a significant part of the characteristicsof the related network design polyhedra.
When developing Branch & Cut algorithms for those problems,facet-defining inequalities for cut sets
play a crucial role (see Chapter 7).

Literature review The cut set polyhedron with bounded integer design variables, and here espe-
cially the 0-1 case, has been investigated by many authors. See Chapter 5 for a literature review. In
this chapter we consider unbounded design variables but most of the stated results are useful for the
bounded case too. In fact, all of them hold if the bounds givenare large enough. Valid inequalities
for cut sets will be calledcut set inequalities.

The most important cut set inequality is thecut inequality. It simply says that the demand that
can be routed across a cut of the network is upper bounded by the installed capacity. See Schrijver
[2003, Volume C, Chapter 70] for a survey on cut inequalitiesand multi-commodity flow problems
with existing capacities. Cut inequalities for capacitated network design problems with UNdirected
capacity constraints were investigated by Baharona [1994]and in a series of articles by Magnanti
& Mirchandani [1993] and Magnanti et al. [1993, 1995]. Bienstock et al. [1995] consider network
design polyhedra with DIrected capacity constraints. Theypresent cut inequalities and second class of
cut set inequalities, which we will callsimple flow cut inequalitiesgeneralising cut inequalities. The
support of such inequalities additionally contains certain flow variables with respect to the edges of
the cut considered. Cut inequalities and simple flow cut inequalities for the BIdirected case have been
studied by Bienstock & Günlük [1996] The most general formof flow cut inequalityas investigated
in this chapter was first introduced by Chopra et al. [1998]. They consider DIrected supply graphs.
Atamtürk [2002] presents a detailed analysis for a cut set with DIrected capacity constraints, which
we refer to asCSDI . He states necessary and sufficient conditions for flow cut inequalities to be facet-
defining forCSDI even for the general multi-commodity multi-facility case.The work of Atamtürk
[2002] can be seen as the basis of this chapter.

37



Cut sets and flow cut inequalities

Outline of this chapter After introducing the cut setsCSDI , CSBI andCSUN and stating some
additional definitions and assumptions, we will motivate the analysis of cut sets by showing that facet-
defining inequalities forCSDI , CSBI or CSUN define facets ofNDPDI , NDPBI or NDPUN

with certain additional demands on the structure of the underlying graphs.

In Section 4.2 we will first restrict ourselves to single facility problems and will investigate the
polyhedral structure of cut sets in detail. We will present facet-proofs for certain classes of flow cut
inequalities. They will be established in a very general form for all three capacity models. For the
cut sets with undirected supply graphsCSBI andCSUN this is done for the first time, generalising
inequalities proposed by Magnanti & Mirchandani [1993] andBienstock & Günlük [1996]. It will be
emphasised that flow cut inequalities can be obtained byMIR.

We start with cut sets for directed supply graphs in Section 4.2.1. The most important results
of Atamtürk [2002] forCSDI will be summarised and even supplemented. In Section 4.2.2 the
BIdirected and UNdirected versions of cut sets will be studied. We will define a class of flow cut
inequalities, similar to that of Chopra et al. [1998] forCSDI , which contains known flow cut inequal-
ities, so-called cut inequalities and simple flow cut inequalities, as a special case. The corresponding
facet-proofs extend results of Magnanti & Mirchandani [1993] and Bienstock & Günlük [1996]. As
an extension, a new class of facet-defining cut set inequalities is stated that has no analogue for the
DIrected case.

In Section 4.3 we will investigate how all those facet-defining inequalities for cut sets with a single
facility can be generalised to strong valid inequalities for the multi-facility case. Again, the results for
directed supply graphs are from Atamtürk [2002]. We will show that the exact lifting function he uses
to lift valid flow cut inequalities of single facility restrictions is in fact theMIR function introduced
in Chapter 3. We will make use of the sameMIR function for the cut setsCSBI andCSUN and
propose aMIR procedure to obtain strong valid flow cut inequalities in thegeneral multi-facility,
multi-commodity case for all three capacity models.

One intention of this chapter is to present strong valid flow cut inequalities in a closed form for all
three capacity models, including all the special cases. We will elaborate on the differences between
the polyhedral structures ofCSDI , CSBI andCSUN .

A SS V\S

A+

A-S

S

(i) A cut based on a directed supply graph

S V\S

 
 

ES

(ii) A cut based on an undirected supply graph

Figure 4.1: Cuts and flow directions

Definitions We will now define the three cut sets corresponding to the different capacity models.
LetAS := δ(S) 6= ∅ be a dicut in the digraphG = (V,A) where∅ 6= S ⊂ V . SetA+

S := δ+(S) and
A−

S := δ−(S). For every commodity respectively we sum up all flow conservation constraints (2.2)
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for i ∈ S and arrive at the following system of inequalities.

∑

a∈A+

S

fk
a −

∑

a∈A−
S

fk
a = dk

S ∀k ∈ K (4.1)

∑

k∈K

fk
a ≤

∑

t∈T

ctxt
a ∀a ∈ AS (4.2)

0 ≤ fk
a , x

t
a ∀a ∈ AS , k ∈ K, t ∈ T, (4.3)

wheredk
S :=

∑
i∈S d

k
i , k ∈ K andc ∈ Z+\{0}. The capacitiesct, t ∈ T were introduced in Section

2.2. The corresponding multi-commodity, multi-facilitycut set polyhedron, or simplycut set, for
directed supply graphs is defined as:

CSDI := conv{ (f , x) ∈ R|K||AS| × Z|AS||T | : (f , x) satisfies (4.1), (4.2) and (4.3)}

For undirected supply graphsG = (V,E) letES := δ(S) 6= ∅ be a cut withS ⊂ V . Aggregating the
flow conservation constraints (2.3) as above gives

∑

e=ij∈ES

fk
ij −

∑

e=ij∈ES

fk
ji = dk

S ∀k ∈ K (4.4)

∑

k∈K

fk
ij ≤

∑

t∈T

ctxt
e ∀e = ij ∈ ES

(4.5)
∑

k∈K

fk
ji ≤

∑

t∈T

ctxt
e ∀e = ij ∈ ES

∑

k∈K

(fk
ij + fk

ji) ≤
∑

t∈T

ctxt
e ∀e = ij ∈ ES (4.6)

0 ≤ fk
ij, f

k
ji, x

t
e ∀e = ij ∈ ES , k ∈ K, t ∈ T (4.7)

The corresponding multi-commodity, multi-facilitycut setsfor undirected supply graphs are:

CSBI := conv{ (f , x) ∈ R2|K||ES| × Z|ES ||T | : (f , x) satisfies (4.4), (4.5) and (4.7)}

CSUN := conv{ (f , x) ∈ R2|K||ES| × Z|ES ||T | : (f , x) satisfies (4.4), (4.6) and (4.7)}

As forNDPDI ,NDPBI andNDPUN we do not writeCSDI ,CSBI andCSUN as functions ofS
or any other parameter. The cut sets are defined in the space ofcut variables but it is obvious that

NDPDI ⊆ CS
DI

:= CSDI × R|K|(|A|−|AS|) × R|T |(|A|−|AS|),

since a point(f , x) ∈ NDPDI satisfies (4.2) and (4.3) by definition and (4.1) is the sum of equations
satisfied by(f , x) for everyk ∈ K. Hence every valid inequality forCS

DI
is valid forNDPDI .

In the sequel,CS
DI

will not be mentioned anymore, instead we say that a valid inequality for
CSDI (in the space of the dicut-variables) is valid forNDPDI (in the space of the original variables).
Similarly, we say that a valid inequality forCSBI (CSUN ) is valid forNDPBI (NDPUN ).

Valid inequalities forCSDI , CSBI andCSUN will be calledcut set inequalities.
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Cut sets and flow cut inequalities

Note that (2.1) implies

dk
S = −dk

V \S .

Thus cut sets, together with an objective function, can be seen as two-node network design problems
(see Figure 4.1). For every commodity, a flow on the cut or dicut has to be established such that the
(aggregated) demanddk

S is satisfied. Moreover, the cut sets ofS andV \S are identical, since we only
have to multiply every flow conservation constraint by -1.

Givenk ∈ K we will distinguish the direction of the demanddk
S that has to be routed across the

cut. Define

K+ := { k ∈ K : dk
S > 0 }

K− := { k ∈ K : dk
S < 0 }

K0 := { k ∈ K : dk
S = 0 }

A SS V\S

A+

A-S

S

dS
K
-

dS
K

+

dS
K

0

dS
K

0

(i) A cut based on a directed supply graph

S V\S

dS
K
-

dS
K

+

dS
K

0

dS
K

0
ES

(ii) A cut based on an undirected supply graph

Figure 4.2: Cuts and demand directions

HenceK = K+ ∪K− ∪K0. Commoditiesk ∈ K+ are calledpositive commoditiesand those
in K− are callednegative commodities(see Figure 4.2). Note that given a commodityk ∈ K0, the
corresponding demands can be satisfied without the need for flow crossing the cut if bothG[S] and
G[V \S] are connected for undirected supply graphs or strongly connected for directed supply graphs,
because the problem of finding a feasible flow fork can then be restricted to these subgraphs.

Note that these commodity sets depend on the chosen network cut. For simplicity we omit the
subscriptS.

Additional Assumptions The caseK− ∪ K+ = ∅ is not interesting and since we can switch
between the cut sets ofS andV \S, we assume that there is at least one positive commodity:K+ 6= ∅.

For simplicity we make the following additional assumptions, which will be used throughout the
rest of this thesis. For directed supply graphs andCSDI we claim that

• A+
S 6= ∅,

• if K− 6= ∅ thenA−
S 6= ∅ and

• if K0 6= ∅ then bothA+
S andA−

S are not empty.

For the cut setsCSBI andCSUN it is required thatES 6= ∅ as already mentioned.
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4.1 Introduction

Before we investigate the dimension of cut sets we show that for the cut setCSUN we can assume
K− = ∅, w. l. o. g.. Commodities for cut sets with UNdirected capacity constraints can always be
seen as being undirected (neither positive nor negative). ConsiderCSUN with |K+| > 0, |K−| > 0.
We will construct an identical cut set with only non-negative commodities by simply renaming flow
variables. It follows that the direction of the demands for UNdirected problems is just a matter of
modelling. Consider the following new flow vector̃f :

f̃k
ij := fk

ij and f̃k
ji := fk

ji ∀e = ij ∈ ES , k ∈ K\K
−

f̃k
ij := fk

ji and f̃k
ji := fk

ij ∀e = ij ∈ ES , k ∈ K
−

What we have done is change the direction of demands inK− by swapping the corresponding flow
variables. By additionally multiplying the flow conservation constraints by−1 for all negative com-
modities, we have transformedK− into a set of positive commodities. Givenk ∈ K−, the corre-
sponding flow conservation constraint is now written:

∑

e=ij∈ES

f̃k
ij −

∑

e=ij∈ES

f̃k
ji = −dk

S > 0.

That the cut set defined for(f̃ , x) and the cut setCSUN are identical, follows from the fact that
the capacity constraints are identical since

∑

k∈K

(f̃k
ij + f̃k

ji) =
∑

k∈K

(fk
ij + fk

ji).

The latter is not true forCSBI . Here we explicitly make use of the UNdirected formulation and the
capacity constraints (4.6).

In the following, we will assumeK− = ∅ whenever referring toCSUN unless explicitly stated
otherwise.

Dimension of cut sets It is obvious that the dimension ofCSDI is at most|K||AS |+ |T ||AS |−|K|

since there are|K||AS | + |T ||AS | variables and|K| equations satisfied by every point inCSDI .
Similarly, the dimension ofCSBI andCSUN is at most2|K||ES |+ |T ||ES | − |K|.

Under the assumptions above there are no additional impliedequations and we can formulate the
following lemmas:

Lemma 4.1 (Atamtürk [2002]) The dimension ofCSDI is exactly|K||AS |+ |T ||AS | − |K|.

Some of our claims are even necessary for this lemma to hold. If A+
S = ∅ we cannot route the

demand forK+. Similarly, we cannot route the demand forK− 6= ∅ if A−
S = ∅. In both cases the

polyhedronCSDI is empty. If on the other handK0 6= ∅ and eitherA+
S or A−

S is empty, then the
flow for everyk ∈ K0 has to be fixed to zero on every arc of the cut, which gives additional implied
equations if|AS | > 1.

Lemma 4.2 CSUN ⊆ CSBI

Proof. A point p = (f , x) in CSUN satisfies (4.4), (4.6) and (4.7). But from (4.6) and (4.7) follows
(4.5) and thusp ∈ CSBI . II
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Cut sets and flow cut inequalities

Lemma 4.3 (Magnanti et al. [1995], Bienstock & Günlük [1996], Günlük [1994, 1999]) The
dimension ofCSBI andCSUN is exactly2|K||ES |+ |T ||ES | − |K|.

For Lemma 4.3 to hold it is necessary thatES 6= ∅.

A decomposition Before investigating the polyhedral structure of the defined cut sets it will be
proven that facet-defining inequalities forCSDI , CSBI or CSUN can be facet-defining for the cor-
responding network design polyhedra.

Magnanti & Mirchandani [1993] and Magnanti et al. [1995] as well as Bienstock & Günlük
[1996] do not consider cut sets, but directly show that givena node setS certain cut set inequalities
are facet-defining forNDPBI andNDPUN . What they need to prove their results is that both
subgraphsG[S] andG[V \S] are connected. It is possible to decompose their results andproofs into
two parts. The first part says that a certain cut set inequality is facet-defining for the corresponding
cut set. The only additional argument needed then to see thatthis cut set inequality is facet-defining
for the network design polyhedron is that the mentioned underlying subgraphs are connected.

The following theorem, which to the best of the authors knowledge is presented here for the
first time, formalises this decomposition. The facial structures of the cut sets and network design
polyhedra are closely related, which motivates a detailed analysis ofCSDI , CSBI orCSUN .

Theorem 4.4 GivenNDPDI defined forG = (V,A), letS ⊂ V be chosen such that bothG[S] and
G[V \S] are strongly connected and letCSDI be the corresponding cut set. If the cut set inequality

∑

a∈AS , k∈K

γk
af

k
a +

∑

a∈AS , t∈T

βt
ax

t
a ≥ π (4.8)

is a facet-defining inequality forCSDI , whereγk
a , β

t
a, π ∈ R for all a ∈ AS , k ∈ K andt ∈ T , then

it defines a facet ofNDPDI (in the space of the original variables).
GivenNDPBI (NDPUN ) defined forG = (V,E), letS ⊂ V be chosen such that bothG[S] and

G[V \S] are connected and letCSBI (CSUN ) be the corresponding cut set. If the cut set inequality

∑

e=ij∈ES , k∈K

γk
ijf

k
ij +

∑

e=ij∈ES , k∈K

γk
jif

k
ji +

∑

e∈ES , t∈T

βt
ex

t
e ≥ π

is a facet-defining inequality forCSBI (CSUN ), whereγk
ij , γ

k
ji, β

t
e, π ∈ R for all e = ij ∈ ES , k ∈

K andt ∈ T , then it defines a facet ofNDPBI (NDPUN ) (in the space of the original variables).

Proof. First consider the DIrected case. It can be assumed that (4.8) is given with

γk
ā = 0 ∀k ∈ K

for a chosen arc̄a ∈ AS , since we can add multiples of the balance constraints (4.1)to (4.8).
We will first show that the related face

F = { (f, x) ∈ NDPDI : (f, x) satisfies (4.8) with equality}

is nontrivial, i. e. it is not empty and it does not equalNDPDI . Then, by contradiction, we will show
that it defines a facet (approach 2 for facet proofs Wolsey [1998, chap 9.2.3]).
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4.1 Introduction

Let

FS = { (f, x) ∈ CSDI : (f, x) satisfies (4.8) with equality}

be the facet ofCSDI defined by (4.8). Choose a pointp̄ = (f̄ , x̄) ∈ FS . Fromp̄ we want to construct
a pointp̂ = (f̂ , x̂) ∈ F . Definep̂ the following way:

x̂t
a :=

{
x̄t

a a ∈ AS

M else
∀t ∈ T, f̂k

a := f̄k
a ∀a ∈ AS, k ∈ K

whereM is a large number. It remains to definef̂k
a for arcsa inA\AS = A[S]∪A[V \S]. Fork ∈ K

temporarily define the following demand vector:

d̃k
i =





dk
i δ(i) ∩AS = ∅

dk
i + f̄k(δ−(i) ∩A−

S )− f̄k(δ+(i) ∩A+
S ) δ(i) ∩AS 6= ∅, i ∈ S

dk
i + f̄k(δ−(i) ∩A+

S )− f̄k(δ+(i) ∩A−
S ) δ(i) ∩AS 6= ∅, i ∈ V \S

Thus, if i is head or tail of an arc in the dicutAS , we definedd̃i to be the flow that has to leave (or
enter) the nodei across the cut.

It follows that d̃k
S =

∑
i∈S d̃

k
i = dk

S − f̄
k(A+

S ) + f̄k(A−
S ) = 0 sincef̄ satisfies the flow con-

servation constraints (4.1). Similarly,̃dk
V \S = 0. Hence a feasible flow with respect tõdk can be

constructed that solely uses arcs inA[S] andA[V \S]. Note that the capacity is large enough. Here,
again, we needG[S] andG[V \S] to be strongly connected. Together with the flow onAS this defines
a flow f̂ that meets all flow conservation constraints (2.2) and capacity constraints (2.4),̂p = (x̂, f̂ )

is in NDPDI . Since we did not change flow and capacity onAS , the point still satisfies (4.8) with
equality and hencêp is on the faceF and thusF is not empty.

SinceFS is a facet ofCSDI , there is a point inCSDI not inFS . From that point we construct
a feasible point ofNDPDI using the same construction. This point then cannot be inF . It follows
thatF 6= NDPDI .

We have already shown that∅ 6= F 6= NDPDI . We still have to show thatF is inclusion-wise
maximal. We do this by contradiction. Suppose thatF is not a facet. There is a facẽF of NDPDI

with F ⊂ F̃ 6= NDPDI , whereF̃ is defined by

∑

a∈A, k∈K

γ̃k
af

k
a +

∑

a∈A, t∈T

β̃t
ax

t
a = π̃. (4.9)

Thus, every point inF satisfies (4.9). We will show that (4.9) is (4.8) up to a linearcombination of
flow conservation constraints (2.2) which proves thatF̃ induces the same face, contradictingF ⊂ F̃ .

For all a /∈ AS and everyt ∈ T we can modifyp̂ by increasing the capacitŷxt
a. This way we

obtain new points on the faceF and hence

β̃t
a = 0 ∀a /∈ AS , t ∈ T.

LetU ⊆ A[S] be a spanning arborescence inG[S] with root r, wherer is a node inS. The arbores-
cenceU exists sinceG[S] is strongly connected. For every nodei ∈ S\{r} there exists a unique
directed path inU from r to i.
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Cut sets and flow cut inequalities

By adding a linear combination of the flow conservation constraints (2.2) to (4.9) we can assume
that

γ̃k
a = 0 ∀a ∈ U, k ∈ K

That this is possible follows from the fact, that for everyk ∈ K, theS × U incidence matrix defined
by (the left hand side of) all flow conservation constraints (2.2) for i ∈ S and all arcs inU has a rank
of exactly|S| − 1 = |U |.

Now leta0 = uv be an arc inA[S]\U and

(v = i1, i2, ..., ik = r)

a directed path inG[S] from v to r with k ≥ 1 (v = r if k = 1), which exists sinceG[S] is strongly
connected.

We want to conclude that̃γk
(u,v) = γ̃k

(i1,i2) = γ̃k
(i2,i3)

= ... = γ̃k
(ik−1,ik) = 0. There is a circuit

in G = (V,A) defined by the unique path fromr to ik−1 in U and the arc(ik−1, r). For every
commodityk we can modifyp̂ by sending a circulation flow through that circuit. This way we get
a new point on the face that satisfies (4.9). It follows thatγ̃k

(ik−1,r) = 0 since γ̃k
a = 0 ∀a ∈ U .

Similarly, there is a closed directed path defined by the unique path fromr to ik−2 in U and the arcs
(ik−2, ik−1) and(ik−1, r). Again, sending a circulation flow on that path givesγ̃k

(ik−2,ik−1)
= 0. We

proceed inductively and get the desired result. Sincea0 = uv was chosen arbitrarilỹγk
a = 0 ∀a ∈

A[S], k ∈ K. The same procedure applied toA[V \S] gives

γ̃k
a = 0 ∀a ∈ A\AS , k ∈ K.

Now we can concentrate on coefficients of variables in the dicut. Given the above chosen arcā, we
first add a linear combination of flow conservation constraints (2.2) to (4.9) such that

γ̃k
ā = 0 = γk

ā ∀k ∈ K.

The left hand side of (4.9) now has at most|K||AS | + |T ||AS | − |K| nonzero coefficients. From
Lemma 4.1 follows thatFS contains|K||AS | + |T ||AS | − |K| affinely independent points. From
any of them we can construct a feasible point inF maintaining the affine independence as it has been
shown forp̄ and p̂ above. All those points satisfy (4.9) sinceF ⊂ F̃ . Hence(γ, β) is the unique
solution to the corresponding linear system (up to a scalar multiple) and (4.9) defines the same face
as (4.8). We have shown thatF = F̃ . This is a contradiction toF ⊂ F̃ . It follows thatF is
inclusion-wise maximal and together with∅ 6= F 6= NDPDI we have proven thatF defines a facet
of NDPDI .

The proof for the BIdirected and UNdirected case is analogous. The first part of it, showing that
all coefficients of (4.9) corresponding to variables not in the cut are zero, can in fact be found in
Bienstock & Günlük [1996, proof of Theorem 2.2]. The important difference to the proof above is
that we choose a spanning treeU in G[S], which exists sinceG[S] is connected, and that we send
circulation flows (in both directions) on undirected circuits defined by edges ofU and a single edge
in E[S]\U . The arguments of the second part of the proof are identical to the arguments above. II
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4.2 The cut set for single facility problems

Summary We have defined the cut sets, which will be investigated in this chapter and stated neces-
sary additional definitions and assumptions. It was shown that forCSUN we can assumeK− = ∅ in
the following.

Moreover, we have proven that facet-defining inequalities for cut sets are facet-defining for net-
work design polyhedra if the subgraphsG[S] andG[V \S] are connected (undirected supply) graphs
or strongly connected (directed supply graphs). With this result in mind, we will from now on con-
centrate on the facial structures of cut sets and develop facet-definingMIR-inequalities.

4.2 The cut set for single facility problems

In this section the cut setsCSDI ,CSBI andCSUN are given with a single-facility, having a capacity
of c ∈ Z+\{0}. It follows that |T | = 1 and rewriting the capacity constraints (4.2), (4.5) and (4.6)
with respect to the three capacity models yields:

DIrected:
∑

k∈K

fk
a ≤ cxa ∀a ∈ AS (4.10)

BIdirected:
∑

k∈K

fk
ij ≤ cxe

(4.11)
∑

k∈K

fk
ji ≤ cxe ∀e = ij ∈ ES .

UNdirected:
∑

k∈K

(fk
ij + fk

ji) ≤ cxe ∀e = ij ∈ ES (4.12)

We will state strong valid inequalities for all three sets elaborating the differences.

4.2.1 DIrected capacity constraints

A SS V\S

A+
1 A+

1

A2 A2
- -

_

_

dS
K

0

dS
K

0

dS
K
-

dS
K

+

Figure 4.3: Directed cutAS with selected arc setsA+

1
andA−

2

We start with an example.

Example 4.5 Consider a single-facility, single-commodity cut set withtwo outflow arcsA+
S =

{a1, a2} and two inflow arcsA−
S = {a3, a4}. We have to satisfy a demand ofdS = 7 and we

are allowed to install capacity in units ofc = 3:

CSDI = conv{x ∈ Z4, f ∈ R4 | f1 + f2 − f3 − f4 = 7

0 ≤ fi ≤ 3xi ∀i ∈ {1, 2, 3, 4}}
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Cut sets and flow cut inequalities

If x1 = 0 (x1 = 1, x1 = 2), there has to be a flow off2 ≥ 7 (f2 ≥ 4, f2 ≥ 1) on arca2 sincef1

cannot exceed a value of0 (3, 6). On the other hand, ifx1 ≥ 3, then all flow can be routed through
arc a1. We can formulate the valid inequality

f2 + x1 ≥ 3,

which is a simple flow cut inequality and defines a facet ofCSDI . The same inequality can be
obtained by considering the valid inequalityf2 + 3x1 ≥ 7 and applyingMIR (Corollary 3.10).

In the following, we will generalise the last example and develop a class of flow cut inequalities
using theMIR-procedure defined in Section 3.4. LetQ be a subset of the commoditiesK. Define
fQ(AS) :=

∑
k∈Q f

k(AS) and similardQ
S :=

∑
k∈Q d

k
S . If |K| = 1, we setdS := dK

S and assume
thatdS > 0 w. l. o. g..

Aggregating Summing up the flow conservation constraints (4.1) forQ gives

fQ(A+
S )− fQ(A−

S ) = dQ
S .

LetA+
1 ⊆ A+

S , A−
2 ⊆ A−

S be subsets of the arcs in the dicutAS andĀ+
1 := A+

S \A
+
1 . Adding to the

aggregated flow conservation constraint the aggregated capacity constraintcx(A+
1 ) ≥ fQ(A+

1 ) and
the non-negativity constraints forAS\A

−
2 results in the valid base inequality:

fQ(Ā+
1 ) + cx(A+

1 )− fQ(A−
2 ) ≥ dQ

S .

Substituting Let f̄Q
a be the slack variable of the (relaxed) capacity constraintfQ

a ≤ cxa. Substitut-
ing fQ

a for cxa − f̄
Q
a for all a ∈ A−

2 yields

fQ(Ā+
1 ) + f̄Q(A−

2 ) + c
(
x(A+

1 )− x(A−
2 )

)
≥ dQ

S . (4.13)

Note thatf̄Q(A−
2 ) = cx(A−

2 )− fQ(A−
2 ) ≥ 0.

Scaling andMIR The 1
c
-MIR inequality for (4.13) is

fQ(Ā+
1 ) + cx(A−

2 )− fQ(A−
2 ) + r(dQ

S , c)
(
x(A+

1 )− x(A−
2 )

)
≥ r(dQ

S , c)⌈
d

Q
S

c
⌉. (4.14)

since
G

d
Q
S

,c
(1) = 1, G

d
Q
S

,c
(c) = r(dQ

S , c) and G
d

Q
S

,c
(−c) = −r(dQ

S , c).

The inequalities (4.14) will be calledflow cut inequalities. They were first introduced by Chopra
et al. [1998] and studied in detail by Atamtürk [2002].

Recall that

r(dQ
S , c) < c ⇐⇒ 〈

d
Q
S

c
〉 > 0 and r(dQ

S , c) = c ⇐⇒ 〈
d

Q
S

c
〉 = 0 ⇐⇒ r(dQ

S , c)⌈
d

Q
S

c
⌉ = dQ

S .

Proposition 4.6 The flow cut inequality(4.14)is valid forCSDI .

Proof. This follows by construction and Corollary 3.8. II
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4.2 The cut set for single facility problems

We will distinguish some special cases of flow cut inequalities:

Definition 4.7

• A simple flow cut inequalityis a flow cut inequality(4.14)with only outflow, that isA−
2 = ∅:

fQ(Ā+
1 ) + r(dQ

S , c)x(A+
1 ) ≥ r(dQ

S , c)⌈
d

Q
S

c
⌉

• A cut inequality is a simple flow cut inequality withA+
1 = A+

S :

x(A+
S ) ≥ ⌈

d
Q
S

c
⌉

In the following, necessary and sufficient conditions will be provided for (4.14) being facet-defi-
ning forCSDI .

Let ηQ := ⌈
d

Q
S

c
⌉ andrQ := r(dQ

S , c) and remember thatK+ 6= ∅. The following Lemma states
necessary conditions for flow cut inequalities (4.14) to be facet-defining.

Necessary conditions A valid inequality forCSDI is called trivial if it is equivalent to a non-
negativity constraint (4.3) or a capacity constraint (4.10) up to a linear combination of flow conserva-
tion constraints (4.1).

Lemma 4.8 LetA+
1 ⊆ A+

S , A−
2 ⊆ A−

S , Q ⊆ K, dQ
S ≥ 0. If (4.14) is a nontrivial facet-defining

inequality forCSDI , then every of the following statements is true:

i) rQ < c andA+
1 6= ∅.

ii) If (4.14)is a simple flow cut inequality withA+
1 6= A+

S andQ ⊆ K+, then|Q| = 1 or dQ
S > c.

iii) If (4.14) is a cut inequality, thenηQ = ηK+

.

iv) If (4.14) is a cut inequality and|A+
S | > 1, thendK+

S > c or A−
S 6= ∅.

Proof. i) If rQ = c , then inequality (4.14) reduces tofQ(Ā+
1 ) + cx(A+

1 )− f (A−
2 ) ≥ dQ

S which
is the sum offQ(A+

S ) − fQ(A−
S ) ≥ dQ

S , non-negativity constraints forA−
S \A

−
2 and capacity

constraints forA+
1 . Hence it is not a facet or trivial.

Else ifA+
1 = ∅, then inequality (4.14) can be written as

fQ(A+
S )− fQ(A−

2 ) + (c − rQ)x(A−
2 ) ≥ rQηQ = dQ

S − (ηQ − 1)(c − rQ)

(see Lemma 3.11 i)), which is dominated byfQ(A+
S ) − fQ(A−

2 ) ≥ dQ
S sinceηQ ≥ 1 and

c > rQ.

ii) SupposedQ
S ≤ c andQ = {q1, ..., ql} with l ≥ 2. It follows dqi

S ≤ c ∀i ∈ {1, .., l}, dQ
S =

rQ =
∑l

i=1 d
qi

S =
∑l

i=1 r
qi andηQ = ηqi = 1. So (4.14) is the sum of thel valid simple flow

cut inequalities (different from flow conservation constraints):

f qi(Ā+
1 ) + rqix(A+

1 ) ≥ rqi.

They differ ifA+
1 6= A+

S , which is equivalent tōA+
1 6= ∅.
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iii) By definition of K+, dQ
S ≤ dK+

S and thus⌈
d

Q
S

c
⌉ ≤ ⌈

dK+

S

c
⌉. If ⌈

d
Q
S

c
⌉ < ⌈

dK+

S

c
⌉, thenx(A+

S ) ≥

⌈
dK+

S

c
⌉ dominatesx(A+

S ) ≥ ⌈
d

Q
S

c
⌉.

iv) Suppose|A+
S | ≥ 2, dQ

S < c andA−
S = ∅. ChooseB+ ⊂ A+

S and setB̄+ := A+
S \B

+ 6= ∅. We
can formulate two valid simple flow cut inequalities:

fQ(B̄+) + rQx(B+) ≥ rQηQ and fQ(B+) + rQx(B̄+) ≥ rQηQ

Adding them up results infQ(A+
S ) + dQ

S x(A+
S ) ≥ 2dQ

S . Note thatrQ = dQ
S andηQ = 1. But

fromA−
S = ∅ follows thatfQ(A+

S ) = dQ
S and hence the cut inequality

x(A+
S ) ≥ 1

is the sum of valid inequalities (different from flow conservation constraints). II

The cut inequality After stating the necessary conditions for the flow cut inequalities (4.14) to be
facet-defining forCSDI , sufficient conditions will now be provided. Cut inequalities are crucial both
from the theoretical and the computational point of of view.Because of that, we handle them here
separately. Moreover, the techniques needed to prove the following result form the basis for each of
the facet theorems of this chapter.

Theorem 4.9 The cut inequalityx(A+
S ) ≥ ηK+

is facet-defining forCSDI if and only ifrK+

< c

and one of the following conditions holds:

i) |A+
S | = 1

ii) A−
S 6= ∅

iii) dK+

S > c

Proof. Necessity:see Lemma 4.8.

Sufficiency:SetηK+

:= ⌈
dK+

S

c
⌉. Remember that by Lemma 3.11

cηK+

= dK+

S + c − rK+

.

and thatrK+

< c is equivalent to
dK+

S

c
/∈ Z. We will show that the related face

FDI = { (f, x) ∈ CSDI : x(A+
S ) = ηK+

}

is nontrivial i. e., it is not empty and it does not equalCSDI . Then by contradiction, we will show
that it defines facets (approach 2 for facet proofs Wolsey [1998, chap 9.2.3]).

Choosea0 ∈ A
+
S . Now construct a feasible pointp0 = (f̄ , x̄) on the faceFDI the following way:

Setx̄a0
= ηK+

and satisfy the demand for commoditiesk ∈ K+ by sending a flow of̄fk
a0

= dk
S on

a0.
Hencep0 fulfils the flow conservation constraints with respect toK+. It meets the capacity

constraints fora0 since
∑

k∈K

f̄k
a0

=
∑

k∈K+

dk
S = dK+

S < dK+

S + c − rK+

= cηK+

= cx̄a0
.

It remains to route the demands forK− (flow for K0 is fixed to zero). IfK− 6= ∅ thenA−
S 6= ∅

(see Section 4.1). Additionally, choose an arcā0 ∈ A
−
S and install a large integer capacity:x̄ā0

= M .

48



4.2 The cut set for single facility problems

cηK+

dK+

S

dK−

S

p0 :

a0

cM
ā0

Figure 4.4:a0 andā0 are used
to route the total flow.

Satisfy all demand fork ∈ K− by sending a flow of̄fk
ā0

= dk
S . If

M is large enough, thenp0 is on the faceFDI since all demands and
capacity constraints are satisfied andx̄(A+

S ) = ηK+

.
We have shown thatFDI is not empty. Modifyingp0 by setting

x̄a0
= ηK+

+ 1 gives a point that is inCSDI but not on the faceFDI .
Hence∅ 6= FDI 6= CSDI . FDI is nontrivial.

We will now prove thatFDI is inclusion-wise maximal by contra-
diction. SupposeFDI is not a facet. There is a faceF of CSDI with FDI ⊂ F 6= CSDI . LetF be
defined by

βTx + γTf = π, (4.15)

whereβ, γ are vectors of appropriate dimension andπ ∈ R.
We will show that (4.15) is a multiple ofx(A+

S ) = ηK+

up to a linear combination of flow
conservation constraints contradictingFDI ⊂ F .

Since multiples of the|K| flow conservation constraints may be added to (4.15) withoutchanging
the induced face,γk

a0
= 0 ∀k ∈ K can be assumed. Note that so far we have not used any of the

conditionsi), ii), iii). However, we now distinguish several cases.
If |A+

S | = 1 andA−
S = ∅ we have finished because (4.15) reduces toβa0

xa0
= βa0

ηK+

.
Assume thatA−

S 6= ∅. We can modify the pointp0 by settingx̄ā0
= M + 1. This gives a new

point on the face and sincēa0 was arbitrary

βa = 0 ∀a ∈ A−
S .

Modifying p0 by simultaneously increasing flow ona0 andā0 by a small amount for every commodity
k ∈ K respectively changes neither a flow conservation nor a capacity constraint and hence

γk
a = 0 ∀k ∈ K,a ∈ A−

S .

The proof is complete for|A+
S | = 1 andA−

S 6= ∅ because (4.15) again reduces toβa0
xa0

=

βa0
ηK+

. We can assume that|A+
S | > 1 in the following.

Choosea ∈ A+
S different froma0 and construct a pointp from p0 by settingx̄a0

= ηK+

− 1 and
x̄a = 1. The maximum amount of flow that can be routed ona0 is nowc(ηK+

− 1) = dK+

S − rK+

.
Note thatηK+

≥ 1 anddK+

S ≥ rK+

.
It depends ondK+

S how to reroute the flow. Assume first thatdK+

S < c. It follows thatdK+

S = rK+

and the capacity ona0 equals zero. We simply copy the flow froma0 to a. Hencep is defined asp0

but for arca instead ofa0.

c(ηK+

− 1) dK+

S − rK+

dK−

S

p :

a0

cM
ā0

a c rK+

Figure 4.5: a is used to reroute the
flow.

If dK+

S > c thendK+

S > rK+

and (ηK+

− 1) ≥ 1. We
construct the pointp the following way. There is still capacity
on a0. Reroute a total flow of exactlyrK+

such that the flow is
positive on both arcsa0 anda for every positive commodity. We
have to change the flow of every positive commodity.

In both cases the capacity ona is not saturated and the new
point p is on the faceFDI because we did not change the total
capacity onA+

S . Flow conservation and capacity constraints are
still satisfied.
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Cut sets and flow cut inequalities

The proof is complete if we can show that

γk
a = 0 ∀k ∈ K,a ∈ A+

S

because plugging in the pointsp0, p into (4.15) givesβa0
ηK+

= π andβa0
(ηK+

− 1) + βa = π. It
then follows that

βa0
= βa ∀a ∈ A

+
S

sincea was arbitrary. Hence (4.15) reduces toβa0
x(A+

S ) = βa0
ηK+

.
First suppose thatA−

S 6= ∅. We can modifyp by increasing flow ona andā0. This results in

γk
a = 0 ∀k ∈ K,a ∈ A+

S .

Finally assume thatA−
S = ∅ anddK+

S > c. In this caseK = K+ (see Section 4.1). We can
modify p by decreasing flow fork ∈ K+ ona0 and increasing it ona. This gives

γk
a = 0 ∀k ∈ K+ = K,a ∈ A+

S .

The last perturbation of the flow forp was only possible becausedK+

S > c and we could construct
the pointp as mentioned.

We have shown that (4.15) is a multiple ofx(A+
S ) ≥ ηK+

plus a linear combination of flow
conservation constraints. ThusF andFDI induce the same face which contradictsFDI ⊂ F . It
follows thatFDI is inclusion-wise maximal and together with∅ 6= FDI 6= CSDI it defines a facet of
CSDI . The proof is complete. II

General flow cut inequalities It has to be mentioned that Atamtürk [2002, Theorem 2] is notcor-
rect. It says that in the single-commodity case the flow cut inequality (4.14) is facet-defining for
CSDI if and only if r(dS , c) < c andA+

1 6= ∅. From Lemma 4.8 iv) a counter-example can be
constructed. In the proof of Atamtürk [2002, Theorem 2] a point is considered similar top and it
is implicitly assumed that there is still capacity ona0 after deleting one unit. This is only true if
dK+

S > c. The last proof gives an idea of how to fix this. We state a modified version of Atamtürk
[2002, Theorem 2].

Theorem 4.10 (Atamtürk [2002]) Let |K| = 1,Q = K. The flow cut inequality(4.14) is facet-de-
fining forCSDI if and only ifr(dS , c) < c,A+

1 6= ∅ and one of the following conditions holds:

i) (4.14)is a cut inequality and|A+
S | = 1

ii) (4.14)is a cut inequality,|A+
S | > 1 andA−

S 6= ∅

iii) (4.14)is a cut inequality,|A+
S | > 1 anddQ

S > c

iv) (4.14)is not a cut inequality (⇐⇒ Ā+
1 6= ∅ or A−

2 6= ∅).

Equality(4.1)and inequalities(4.10), (4.3)and (4.14)completely describeCSDI .

The last sentence of this theorem is a crucial result in the theory of strong valid inequalities for
network design polyhedra. When dropping the integer constraints for design variables it suffices to
add all flow cut inequalities to the initial formulation given by (4.1), (4.10) and (4.3) to maintain a
complete description ofCSDI in the single-commodity, single-facility case.
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4.2 The cut set for single facility problems

Example 4.5 (continued) All nontrivial facet-defining inequalities of

CSDI = conv{x ∈ Z4, f ∈ R4 | f1 + f2 − f3 − f4 = 7

0 ≤ fi ≤ 3xi ∀i ∈ {1, 2, 3, 4}}

are the following flow cut inequalities:

f2 + x1 ≥ 3 (A+
1 = {1}, A−

2 = ∅) simple flow cut inequality

f2 + 2x3 − f3 + x1 ≥ 3 (A+
1 = {1}, A−

2 = {3})

f2 + 2x4 − f4 + x1 ≥ 3 (A+
1 = {1}, A−

2 = {4})

f2 + 2x3 + 2x4 − f3 − f4 + x1 ≥ 3 (A+
1 = {1}, A−

2 = {3, 4})

f1 + x2 ≥ 3 (A+
1 = {2}, A−

2 = ∅) simple flow cut inequality

f1 + 2x3 − f3 + x2 ≥ 3 (A+
1 = {2}, A−

2 = {3})

f1 + 2x4 − f4 + x2 ≥ 3 (A+
1 = {2}, A−

2 = {4})

f1 + 2x3 + 2x4 − f3 − f4 + x2 ≥ 3 (A+
1 = {2}, A−

2 = {3, 4})

x1 + x2 ≥ 3 (A+
1 = {1, 2}, A−

2 = ∅) cut inequality

2x3 − f3 + x1 + x2 ≥ 3 (A+
1 = {1, 2}, A−

2 = {3})

2x4 − f4 + x1 + x2 ≥ 3 (A+
1 = {1, 2}, A−

2 = {4})

2x3 + 2x4 − f3 − f4 + x1 + x2 ≥ 3 (A+
1 = {1, 2}, A−

2 = {3, 4})

The following theorem generalises Theorem 4.10 to the multi-commodity case.

Theorem 4.11 (Atamtürk [2002]) LetQ ⊆ K+. The flow cut inequality(4.14)is facet-defining for
CSDI if A+

1 , Ā+
1 ,A−

2 , Ā−
2 6= ∅ , r(dQ

S , c) < c.

Atamtürk [2002] only states the theorem without proving it. In Section 4.2.2.2 we prove a similar
result (Theorem 4.23) for cut sets with undirected supply graphs. Many of the ideas developed there
to handle the multi-commodity case can be used to prove the result above based on the proof of
Atamtürk [2002, Theorem 2] and the proof of Theorem 4.9.

Remark 4.12 The conditionQ ⊆ K+ indicates that it is promising to aggregate positive commodi-
ties only. This is the only case investigated by Atamtürk [2002]. Due to the symmetry of the cut sets
of S andV \S, there is an analogue to Theorem 4.11 whenQ ⊆ K−.

However, note that there is no reason to drop the case thatQ contains both positive and negative
commodities. In fact, it is an open question if the flow cut inequalities(4.14)are strong in that case.
Switching between the cut set forS and the cut set forV \S is equivalent to multiplying every flow
conservation constraint by−1. A positive commodity with respect toS is a negative commodity
with respect toV \S. In the following we show that the flow cut inequality(4.14) with dQ

S < 0

induces the same face as the flow cut inequality obtained after switching toV \S and considering
the same commodity subsetQ. Suppose thatdQ

S < 0 and assume thatr(dQ
S , c) < c. It follows that

⌈
d

Q
S

c
⌉ = −⌊

|dQ
S
|

c
⌋ and in Lemma 3.11 we showed thatr(dQ

S , c) = c − r(|dQ
S |, c).

Setr := r(|dQ
S |, c). We can write(4.14)as:

fQ(Ā+
1 ) + cx(A−

2 )− fQ(A−
2 ) +

(
c − r

)(
x(A+

1 )− x(A−
2 )

)

≥ −
(
c − r

)
⌊
|dQ

S
|

c
⌋ = r⌈

|dQ
S
|

c
⌉ − r − c⌊

|dQ
S
|

c
⌋ = r⌈

|dQ
S
|

c
⌉ − r − c⌈

|dQ
S
|

c
⌉+ c.
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Cut sets and flow cut inequalities

Usingc⌈
|dQ

S
|

c
⌉ = |dQ

S |+ c− r (see Lemma 3.11) and adding the flow conservation constraint−dQ
S =

|dQ
S | = fQ(A−

S )− fQ(A+
S ) gives

fQ(Ā−
2 ) + cx(A+

1 )− fQ(A+
1 ) + r

(
x(A−

2 )− x(A+
1 )

)
≥ r⌈

|dQ
S
|

c
⌉,

which is inequality(4.14)but for the cut set ofV \S. Hence both inequalities induce the same face of
CSDI .

Since the cut set ofS andV \S are identical, this leads to the following corollary of Theorem
4.11:

Corollary 4.13 LetQ− ⊆ K−. The flow cut inequality

fQ−
(Ā−

2 ) + cx(A+
1 )− fQ−

(A+
1 ) + r

(
x(A−

2 )− x(A+
1 )

)
≥ r⌈

|dQ−

S
|

c
⌉, (4.16)

wherer := r(|dQ−

S |, c), is facet-defining forCSDI if A+
1 , Ā+

1 ,A−
2 ,Ā−

2 6= ∅ andr(|dQ−

S |, c) < c.

Summary In this section we have considered the cut set with DIrected capacity constraints in the
single-facility case, as investigated in Atamtürk [2002]. We have stated necessary and sufficient
conditions for a large class of cut set inequalities called flow cut inequalities to be facet-defining for
CSDI . In the single-commodity, single-facility case those inequalities suffice to completely describe
the cut set. Facet-defining for the relaxationCSDI with respect toS are facet-defining forNDPDI

if bothG[S] andG[V \S] are strongly connected as already shown in Theorem 4.4.

In the remainder of this chapter similar results for the cut setsCSBI andCSUN for undirected
supply graphs will be proven.

4.2.2 BIdirected and UNdirected capacity constraints

Given a node setS ⊂ V of the undirected supply graphG = (V,E) and a single-facility we will
consider the cutES := δ(S) 6= ∅ and the cut setsCSBI andCSUN in this section.

After stating the necessary definitions, we will transform the results of the last section to undi-
rected supply graphs.

A class of flow cut inequalities analogous to (4.14) will be introduced, generalising inequalities of
Magnanti & Mirchandani [1993] and Bienstock & Günlük [1996]. We will give conditions for those
flow cut inequalities to be facet-defining forCSBI andCSUN .

It turns out that these conditions depend on the capacity model. Moreover, the introduced flow cut
inequalities do not suffice to completely describe the BIdirected and UNdirected cut sets in the single-
commodity, single-facility case which is reflected by a new class of facet-defining cut set inequalities
that has no analogue forCSDI .

4.2.2.1 Cut set inequalities and necessary conditions

Now we will develop strong valid inequalities forCSBI andCSBI , transforming results of the last
section. To obtain a similar inequality to (4.14), we simplyapply the sameMIR procedure.
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S V\S

E 1E  2E  ∩ E21
dS

K
-

dS
K

+

dS
K

0

dS
K

0
ES

Figure 4.6: Undirected cutES with selected edge setsE1 andE2 and demand directions

Given a subsetQ of K let

fQ(E+
S ) :=

∑

k∈Q

fk(E+
S ) and fQ(E−

S ) :=
∑

k∈Q

fk(E−
S ).

SetdQ
S :=

∑
k∈Q d

k
S , ηQ := ⌈

d
Q
S

c
⌉ and rQ := r(dQ

S , c). If |K| = 1, we setdS := dk
S and assume

thatdS > 0 w. l. o. g., since the cut sets ofS andV \S are identical.

Aggregating Summing up the flow conservation constraints forQ results in

fQ(E+
S )− fQ(E−

S ) = dQ
S .

Let E1, E2 be two subsets of the cutES and Ē1 := ES\E1. Adding to the aggregated flow
conservation constraint the aggregated (BIdirected) capacity constraintcx(E1) ≥ fQ(E+

1 ) and the
non-negativity constraints forES\E2 gives the base inequality

fQ(Ē+
1 ) + cx(E1)− f

Q(E−
2 ) ≥ dQ

S

valid forCSBI andCSUN . Note that BIdirected capacity constraints are valid forCSUN .

Substituting Let f̄Q
ji be the slack variable of the (relaxed BIdirected) capacity constraintfQ

ji ≤ cxe.

SubstitutingfQ
ji for cxe − f̄

Q
ji for all e = ij ∈ E2 gives

fQ(Ē+
1 ) + f̄Q(E−

2 ) + c
(
x(E1)− x(E2)

)
≥ dQ

S . (4.17)

Note thatf̄Q(E−
2 ) = cx(E2)− f

Q(E−
2 ) ≥ 0.

Scaling andMIR Apply MIR (Corollary 3.8). The1
c
-MIR inequality for (4.17) is

fQ(Ē+
1 ) + cx(E2)− f

Q(E−
2 ) + r(dQ

S , c)
(
x(E1)− x(E2)

)
≥ r(dQ

S , c)⌈
d

Q
S

c
⌉. (4.18)

The inequalities (4.18) will be calledflow cut inequalities for CSBI andCSUN and can be seen as
the undirected analogue to (4.14). They are presented here in this general form for the first time.

In contrast to inequality (4.14), bothE1 andE2 are chosen from the same set. HenceE1∩E2 6= ∅

is possible. It is going to be investigated how to chooseE1 andE2 such that (4.18) is strong.
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Proposition 4.14 The flow cut inequality(4.18) is valid forCSUN andCSBI .

Proof. This follows by construction and from Lemma 4.2 and Corollary 3.8. II

Definition 4.15 As for the DIrected capacity model we call flow cut inequalitiessimpleif there is no
inflow,E2 = ∅:

fQ(Ē1) + rQx(E1) ≥ r
QηQ

A cut inequality is a simple flow cut inequality withE1 = ES :

x(ES) ≥ ηQ

The demanddQ
S might be negative forCSBI but with the same arguments as in Remark 4.12 we

can assume thatdQ
S ≥ 0 w. l. o. g., because ifdQ

S < 0 we can switch to the cut sets ofV \S and get

fQ(Ē−
2 ) + cx(E2)− f

Q(E+
1 ) + r(−dQ

S , c)
(
x(E1)− x(E2)

)
≥ r(−dQ

S , c)⌈
−d

Q
S

c
⌉ (4.19)

as a valid inequality forCSBI . Note again thatdQ

V \S = −dQ
S .

Example 4.16 Similar to Example 4.5 we define cut sets with two edges,dS = 7 andc = 3:

CSBI = conv{x ∈ Z2, f ∈ R4 | f1+ f2 − f3 − f4 = 7,

0 ≤ fi ≤ 3x1 ∀i ∈ {1, 3},

0 ≤ fi ≤ 3x2 ∀i ∈ {2, 4}}

CSUN = conv{x ∈ Z2, f ∈ R4 | f1+ f2 − f3 − f4 = 7,

f1+ f3 ≤ 3x1,

f2+ f4 ≤ 3x2,

0 ≤ fi ∀i ∈ {1, ..., 4}}

Note thatf1, f2 are the forward flows on the first and second edge respectively, whilef3 andf4 are
the corresponding backward flows. WithE1 6= ∅ we can formulate the following flow cut inequalities
which are valid forCSBI andCSUN :

f2 + x1 ≥ 3 (E1 = {1}, E2 = ∅) simple flow cut inequality (4.20a)

f2 + 2x1 − f3 + x1 ≥ 3 (E1 = {1}, E2 = {1}) (4.20b)

f2 + 2x2 − f4 + x1 ≥ 3 (E1 = {1}, E2 = {2}) (4.20c)

f2 + 2x1 + 2x2 − f3 − f4 + x1 ≥ 3 (E1 = {1}, E2 = {1, 2}) (4.20d)

f1 + x2 ≥ 3 (E1 = {2}, E2 = ∅) simple flow cut inequality (4.20e)

f1 + 2x1 − f3 + x2 ≥ 3 (E1 = {2}, E2 = {1}) (4.20f)

f1 + 2x2 − f4 + x2 ≥ 3 (E1 = {2}, E2 = {2}) (4.20g)

f1 + 2x1 + 2x2 − f3 − f4 + x2 ≥ 3 (E1 = {2}, E2 = {1, 2}) (4.20h)

x1 + x2 ≥ 3 (E1 = {1, 2}, E2 = ∅) cut inequality (4.20i)

2x1 − f3 + x1 + x2 ≥ 3 (E1 = {1, 2}, E2 = {1}) (4.20j)

54



4.2 The cut set for single facility problems

2x2 − f4 + x1 + x2 ≥ 3 (E1 = {1, 2}, E2 = {2}) (4.20k)

2x1 + 2x2 − f3 − f4 + x1 + x2 ≥ 3 (E1 = {1, 2}, E2 = {1, 2}) (4.20l)

These are the inequalities from Example 4.5 butx3 was replaced byx1 andx4 byx2. Now some of
these inequalities are weak or trivial. For instance(4.20b)can be written asf2 +3x1−f3 ≥ 3 which
is the sum off2 + f1 − f3 − f4 ≥ 7, capacity- and non-negativity constraints. The same is true for
(4.20g)and (4.20l).

Necessary Conditions The following Lemma provides necessary conditions for flow cut inequali-
ties to be facet-defining. A crucial observation in this context is, that for BIdirected problems it has
to beE1\E2 6= ∅ and for UNdirected problemsE1 ∩ E2 = ∅ is needed additionally.

A valid inequality forCSBI (resp.CSUN ) is called trivial if it is equivalent to a non-negativity
constraint (4.7) or a capacity constraint (4.11) (resp. (4.12)) up to a linear combination of flow
conservation constraints (4.4).

Lemma 4.17 LetE1, E2 ⊆ ES , Q ⊆ K, dQ
S ≥ 0. If (4.18) is a nontrivial facet-defining inequality

for CSBI or CSUN , then every of the following statements is true:

i) rQ < c andE1\E2 6= ∅.

ii) If (4.18) is a simple flow cut inequality withE1 6= ES andQ ⊆ K+, then|Q| = 1 or dQ
S > c.

iii) If (4.18) is a cut inequality, thenηQ = ηK+

.

iv) If (4.18) is facet-defining forCSUN , thenE1 ∩E2 = ∅.

Proof. i) If rQ = c , then inequality (4.18) reduces tofQ(Ē+
1 )+cx(E1)−f

Q(E−
2 ) ≥ dQ

S which
is the sum offQ(E+

S ) − fQ(E−
S ) = dQ

S , non-negativity constraints forE−
S \E

−
2 and capacity

constraints forE+
1 . Hence it either trivial or does not define a facet.

Assume thatrQ < c andE1\E2 = ∅. It follows E1 ⊆ E2. Inequality (4.18) can be written as

fQ(Ē+
1 ) + cx(E1)− f

Q(E−
2 ) + (c − rQ)x(E2\E1) ≥ r

QηQ = dQ
S − (ηQ − 1)(c − rQ)

(see Lemma 3.11 i)), which is dominated by

fQ(E+
S )− fQ(E−

2 ) ≥ dQ
S

sinceηQ ≥ 1 andc > rQ. Note thatcx(E1) ≥ f
Q(E+

1 ) and(c − rQ)x(E2\E1) ≥ 0.

ii) see Lemma 4.8

iii) see Lemma 4.8

iv) If E1 ∩ E2 6= ∅, inequality (4.18) can be written as

fQ(Ē+
1 ) + cx(E2\E1) + cx(E1 ∩ E2)− f

Q(E−
2 \E

−
1 )− fQ(E−

1 ∩ E
−

2 )

+ r(dQ
S , c)

(
x(E1\E2)− x(E2\E1)

)
≥ r(dQ

S , c)⌈
d

Q
S

c
⌉.
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Cut sets and flow cut inequalities

But formulating the flow cut inequality (4.18) withE∗
1 := E1\E2 andE∗

2 := E2\E1, implying
Ē∗

1 = Ē1 ∪ (E1 ∩ E2), results in:

fQ(Ē+
1 ) + fQ(E+

1 ∩ E
+

2 ) + cx(E2\E1)− f
Q(E−

2 \E
−
1 )

+ r(dQ
S , c)

(
x(E1\E2)− x(E2\E1)

)
≥ r(dQ

S , c)⌈
d

Q
S

c
⌉.

Sincecx(E1 ∩ E2) − fQ(E+
1 ∩ E

+
2 ) − fQ(E−

1 ∩ E
−
2 ) ≥ 0 is valid forCSUN , (4.18) with

E1∩E2 6= ∅ is the sum of valid inequalities (different from flow conservation constraints). II

Remark 4.18 General flow cut inequalities of type(4.18) ((4.19)) can be facet-defining ifQ is a
subset ofK+ (K−), as we will see. ForCSBI we will not consider the more general case, that
Q contains both positive and negative commodities. There is no reason to drop that case when
separating flow cut inequalities. It is unknown if they are strong or even facet-defining whenQ
contains positive and negative commodities.

Bienstock & G̈unlük [1996] restrict themselves toQ ⊆ K+ and do not consider the more general
caseQ ⊆ K neither, just as Atamtürk [2002] (see Theorem 4.11).

Remember that forCSUN we assumeK− = ∅.

A new class of cut set inequalities It follows from Theorem 4.10 (Atamtürk [2002]) that a complete
linear description ofCSDI can be derived by adding all flow cut inequalities of type (4.14) to the
initial formulation when|K| = 1. This is not true forCSBI (CSUN ) and the flow cut inequalities of
type (4.18).

Example 4.16 (continued) When adding all flow cut inequalities(4.20a),. . .,(4.20l) to the LP-
relaxations ofCSDI and CSUN , both resulting polyhedra still have the two fractional vertices
(1
2 ,

15
2 , 1, 0,

1
2 ,

5
2) and (15

2 ,
1
2 , 0, 1,

5
2 ,

1
2 ). But we can formulate two valid cut set inequalities cutting

off these points, namely:
3x1 + 2x2 + f3 − f1 ≥ 2

and
3x2 + 2x1 + f4 − f2 ≥ 2.

The surprising result now is, that these two inequalities together with all flow cut inequalities describe
all non-trivial facets ofCSBI andCSUN , which yields a complete description of both polyhedra.

The inequalities given in the last example belong to a new class of valid cut set inequalities
introduced by the following theorem.

Theorem 4.19 LetE1 be a subset of the cutES and letQ be a subset of the commoditiesK with
dQ

S ≥ 0. SetrQ := r(dQ
S , c). The following inequality is valid forCSBI andCSUN :

cx(E1) +
(
c − rQ

)
x(Ē1) + fQ(E−

1 )− fQ(E+
1 ) ≥ c − rQ. (4.21)

Proof. If rQ = c then inequality (4.21) reduces tocx(E1)− f
Q(E+

1 )+ fQ(E−
1 ) ≥ 0, which is valid

because of the capacity constraintcx(E1) ≥ f
Q(E+

1 ). We can suppose thatrQ < c.
First assume thatx(Ē1) = 0. All flow has to be routed throughE1. It follows that

fQ(E+
1 )− fQ(E−

1 ) = dQ
S and x(E1) ≥ ⌈

d
Q
S

c
⌉.
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4.2 The cut set for single facility problems

Hence

cx(E1)− (fQ(E+
1 )− fQ(E−

1 )) ≥ c⌈
d

Q
S

c
⌉− dS = dS + c− rQ− dS = c− rQ. (see Lemma 3.11)

On the other hand ifx(Ē1) ≥ 1 then fromcx(E1)− f
Q(E+

1 ) + fQ(E−
1 ) ≥ 0 we conclude that

cx(E1) + (c − rQ)x(Ē1) + fQ(E−
1 )− fQ(E+

1 ) ≥ c − rQ. II

Note that ifdQ
S < 0 we get

cx(E1) +
(
c − r

)
x(Ē1) + fQ(E+

1 )− fQ(E−
1 ) ≥ c − r, (4.22)

with r = r(|dQ
S |, c), as a valid inequality forCSBI andCSUN . This again follows after multiplying

all flow conservation constraints by−1.
To be able to easily generalise the inequality (4.21) to the multi-facility case, it is of interest to

express it as aMIR inequality. A base inequality and some positive integerλ has to be found, such
that (4.21) reduces to the corresponding1

λ
-MIR inequality.

Unfortunately, it turns out to be difficult to find such a base inequality andλ. The author conjec-
tures that they simply do not exist.

A necessary condition for cut inequalities Finally, consider the two cut inequalities, that we get
from (4.18) and (4.19):

x(ES) ≥ ⌈
dK+

S

c
⌉,

x(ES) ≥ ⌈
|dK−

S |
c
⌉.

Thus

x(ES) ≥ max(⌈
dK+

S

c
⌉, ⌈

|dK−

S
|

c
⌉) (4.23)

is valid forCSBI andCSUN .

We will see that (4.23) can be facet-defining. In Lemma 4.8 it was shown that the cut inequality
for CSDI is not facet-defining whendQ

S < c, |A+
S | > 1 andA−

S = ∅. There is a similar result for the
undirected counterpart (4.23). But the key to prove it are the new cut set inequalities (4.21):

Lemma 4.20 If the cut inequality(4.23) is facet-defining forCSBI (or CSUN ) and |ES | > 1, then
max(dK+

S , |dK−

S |) > c.

Proof. AssumedK+

S ≥ |dK−

S | w. l. o. g.. The casedK+

S = c was discussed in Lemma 4.17. Suppose
dK+

S < c. HencedK+

S = rK+

andηK+

= 1. ChooseE1 ⊂ ES such thatE1, Ē1 6= ∅. Then with
Theorem 4.19

cx(E1) + (c − rK+

)x(Ē1) + fQ(E−
1 )− fQ(E+

1 ) ≥ c − rK+

and

cx(Ē1) + (c − rK+

)x(E1) + fQ(Ē−
1 )− fQ(Ē+

1 ) ≥ c − rK+
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Cut sets and flow cut inequalities

are both valid inequalities forCSBI (andCSUN ) different from the flow conservation constraint
(4.1). Adding them up gives

(2c − rK+

)x(ES) + fQ(E−
S )− fQ(E+

S ) ≥ 2c − 2rK+

⇐⇒

(2c − rK+

)x(ES)− dK+

S ≥ 2c − 2rK+

⇐⇒ x(ES) ≥ 1 = ηK+

.

Hence (4.23) is a sum of non-trivial valid inequalities when|ES | > 1 anddK+

S < c. II

Summary We have developed strong valid cut set inequalities for the cut setsCSBI andCSUN .
By applying the sameMIR procedure we have been able to state a class of flow cut inequality (4.18)
analogous to (4.14) forCSDI , introduced by Chopra et al. [1998]. We have specified necessary
conditions for them to be facet-defining and have shown that in contrast to Theorem 4.10 they do not
suffice to completely describe the cut sets in the single-commodity, single-facility case.

A complete description may be obtained by additionally considering a new class of valid cut set
inequalities (4.21).

4.2.2.2 Cut set inequalities and sufficient conditions

In this section sufficient conditions for cut set inequalities of type (4.18) and of type (4.21) to be
facet-defining will be provided.

We will mainly concentrate on the cut setCSBI but all of the results in this section also hold for
CSUN with K− = ∅ and some additional assumptions. The results will be formulated forCSBI ,
we will prove them and will then discuss which modifications have to be carried out to make the
statements true forCSUN .

The cut inequality Cut inequalities forCSBI were studied by Bienstock & Günlük [1996]. Con-
sidering two facilities, they state a result quite similar to the following one. Some parts of the proof
are from their article. Moreover, it is similar to the the proof of Theorem 4.9. Even so, the proof is
stated here to show the difference between facet-proofs forcut sets based on undirected supply graphs
and those based on directed supply graphs.

Theorem 4.21 The cut inequality(4.23) is facet-defining forCSBI if and only ifrK+

< c and one
of the following conditions holds

i) max(dK+

S , |dK−

S |) > c

ii) |ES | = 1

Proof. Necessity:see Lemma 4.17 and Lemma 4.20.

Sufficiency:We assumedK+

S ≥ |dK−

S | w. l. o. g.. SetηK+

:= ⌈
dK+

S

c
⌉. Remember that

cηK+

= dK+

S + c − rK+

(Lemma 3.11).

It has to be proven thatx(ES) ≥ ηK+

defines a facet ofCSBI . To do so, we will show that the
related face

FBI = { (f, x) ∈ CSBI : x(ES) = ηK+

}
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4.2 The cut set for single facility problems

is nontrivial. Then by contradiction, we will show that it defines a facet. Considere0 = uv ∈ ES . To
construct a pointp0 = (f̄ , x̄) ∈ R

|ES|
+ × Z

2|ES ||K|
+ on the faceFBI define:

x̄e0
= ηK+

, f̄k
uv = dk

S , f̄
k
vu = 0 ∀k ∈ K+,

f̄k
uv = 0, f̄k

vu = 0 ∀k ∈ K0, f̄k
uv = 0, f̄k

vu = dk
S ∀k ∈ K

−

cηK+
dK+

S

dK−

S

p0 :

e0

Figure 4.7: All flow is routed
one0.

and fix the rest of the variables to zero. This means that we send all
flow for K+ onuv and all flow forK− on vu after installing sufficient
capacity one0. The pointp0 fulfils the flow conservation constraints
for everyk ∈ K since every demand is satisfied. It meets the capacity
constraints forCSBI because

∑

k∈K

f̄k
uv =

∑

k∈K+

dk
S = dK+

S < dK+

S + c − rK+

= cηK+

= cx̄e0

and|dK−

S | ≤ dK+

S < ηK+

. Sincex̄(ES) = ηK+

, the pointp0 is on the faceFBI . Modifying p0 by
settingxe0

= ηK+

+1 gives a point that is inCSBI but not on the faceFBI . Hence∅ 6= FBI 6= CSBI .
It remains to show thatFBI is inclusion-wise maximal. This will be done by contradiction.

Suppose there is a faceF of CSBI with FBI ⊂ F . LetF be defined by

βTx + γTf = π (4.24)

whereβ, γ are vectors of appropriate dimension andπ ∈ R. We will show that (4.24) is a multiple
of x(ES) = ηK+

up to a linear combination of flow conservation constraints,which contradicts
FBI ⊂ F .

Since multiples of the|K| flow conservation constraints may be added to (4.24) withoutchanging
the induced face,γk

uv = 0 for all k ∈ K with respect to the edgee0 = uv can be assumed.
Now, since capacity one0 is not saturated (dK+

S < cηK+

), we can modifyp0 by simultaneously
increasing flow fork ∈ K onuv andvu by a small amount. This can be done for every commodity
k ∈ K without violating neither a flow conservation constraint nor a capacity constraint, so the points
modified this way are still on the faceFBI . We can conclude thatγk

vu = 0 for all k ∈ K.
Now we have to use the conditions of the theorem. If|ES | = 1 we are finished. If otherwise

|ES | ≥ 2 anddK+

S > c, we choosee = ij ∈ ES different frome0. Next we construct a new pointp
from p0 by settingx̄e0

= ηK+

− 1 andx̄e = 1.
The maximum amount of flow that can be routed one0 now isc(ηK+

− 1) = dK+

S − rK+

. Note
that fromdK+

S > c follows dK+

S > rK+

andηK+

− 1 ≥ 1.

We reroute a total flow ofrK+

such that

f̄k
uv, f̄

k
ij > 0 and fk

vu, f̄
k
ji = 0 ∀k ∈ K+,

f̄k
uv, f̄

k
ij = 0 and f̄k

vu, f̄
k
ji > 0 ∀k ∈ K−

and the capacity one is not saturated. This is possible becausedK+

S > rK+

andrK+

< c. (For
a detailed description of such a rerouting see Definition andLemma B.1). The pointp is on the face
because we did not change the total capacity onES and all demands as well as capacity constraints
are still satisfied.
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Cut sets and flow cut inequalities

c(ηK+

− 1) dK+

S − rK+

dK−

S − δK−

rK+

δK−

p0 :

e0

p :

e
c

Figure 4.8:e is used to reroute the flow.

(δK
−

≤ rK
+

)

First we modify this new pointp by decreasing flow for
k ∈ K+ on uv and increasing flow onij. The same can be
done onvu andji for k ∈ K−. When having decreased flow
on uv for k ∈ K+, we can increase it fork ∈ K0 on uv
andji. It follows thatγk

ij = 0 for all k ∈ K+ andγk
ji = 0

for all k ∈ K− ∪ K0. Next we modifyp by simultaneously
increasing flow onij andji, which results inγk

ji = 0 for all
k ∈ K+ andγk

ij = 0 for all k ∈ K− ∪K0. Now plugging in
the two constructed pointsp0 andp into (4.24) we get

βe0
ηK+

= π and βe0
(ηK+

− 1) + βe = π.

Henceβe0
= βe. Sincee is arbitrary, we can conclude thatγ = 0 andβe = βe0

for all e ∈ ES.
We have shown that (4.24) is a multiple ofx(ES) ≥ ηK+

plus a linear combination of flow
conservation constraints. It follows thatF andFBI induce the same face, which is a contradiction.
HenceFBI is inclusion-wise maximal and together with∅ 6= FBI 6= CSBI it defines a facet of
CSBI . II

Corollary 4.22 The cut inequality

x(ES) ≥ ⌈
dK+

S

c
⌉ = ηK+

is facet-defining forCSUN if and only ifrK+

< c and one of the following conditions holds

i) dK+

S > c

ii) |ES | = 1.

Proof. Theorem 4.21 holds forCSUN with K− = ∅. If a feasible point forCSBI additionally meets
the UNdirected capacity constraints, it is feasible forCSUN .

The pointp0 in the proof fulfils the UNdirected capacity constraints because there is no flow on
vu. The same is true for the pointp, there is no flow onji. In the remainder of the proof we perturb
flow by small epsilons which does not affect the validity of (4.12). II

General flow cut inequalities We have shown under which conditions cut inequalities are facet-
defining forCSBI and will now state sufficient conditions for general flow cut inequalities of type
(4.18) to be facet-defining forCSBI . The key to the proof of Theorem 4.21 was the construction of
the pointp by rerouting, such that the total flow on edgee0 does not exceed a value ofc(ηK+

− 1).
Similar constructions will be used in the proofs of all the following facet theorems. A formalisation
of such constructions can be found in Definition and Lemma B.1. Since the skeleton of those proofs
is identical to the proof of Theorem 4.21 and because they arequite technical in the details, it was
decided to put them to Appendix B.

Bienstock & Günlük [1996] investigate simple flow cut inequalities (E2 = ∅) of the form (4.18)
for the polyhedronNDPBI with two facilities. They show under which conditions (4.18) with
E2 = ∅ is facet-defining. The following two theorems together withTheorem 4.4 can be seen as
a generalisation of their work and results. Bienstock & Günlük [1996] state two more classes of
flow cut inequalities in their article, both handling the case the demand being fractional, which is not
considered here.
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4.2 The cut set for single facility problems

Theorem 4.23 LetE1, E2 ⊆ ES andQ+ ⊆ K+. AssumerQ+

< c. SettingQ = Q+, the flow cut
inequality(4.18)

fQ+

(Ē+
1 ) + cx(E2)− f

Q+

(E−
2 ) + rQ+(

x(E1)− x(E2)
)
≥ rQ+

ηQ+

is facet-defining forCSBI if E1\E2 6= ∅ andĒ1\E2 6= ∅ and one of the following conditions holds:

i) E2 = ∅ and |Q+| = 1

ii) E2 = ∅ anddQ+

S > c

iii) E2 6= ∅

Proof. see Appendix B.1 II

Corollary 4.24 The flow cut inequality

fQ+

(Ē+
1 ) + cx(E2)− f

Q+

(E−
2 ) + rQ+(

x(E1)− x(E2)
)
≥ rQ+

ηQ+

withQ+ ⊆ K+ is facet-defining forCSUN if E1\E2 6= ∅ andĒ1\E2 6= ∅ and one of the following
conditions holds:

i) E2 = ∅ and |Q+| = 1

ii) E2 = ∅ anddQ+

S > c

iii) E2 6= ∅ andE1 ∩ E2 = ∅

Proof. If K− = ∅, then from the points constructed in the proof of Theorem 4.23 only those defined
with edges inE1∩E2 do not meet the UNdirected capacity constraints (4.12). Recall thatE1∩E2 = ∅

is a necessary condition for flow cut inequalities of type (4.18) to be facet-defining forCSUN , see
Lemma 4.17. II

The following theorem is an extension to Theorem 4.23. WhenQ = K+ anddK+

S ≥ |dK−

S |

there are more facet-defining flow cut inequalities of type (4.18). We can additionally handle the case
Ē1\E2 = ∅.

Theorem 4.25 LetE1, E2 ⊆ ES . AssumeE1\E2 6= ∅ and Ē1\E2 = ∅, rK+

< c and dK+

S ≥

|dK−

S |. SettingQ = K+ the flow cut inequality(4.18)

fK+

(Ē+
1 ) + cx(E2)− f

K+

(E−
2 ) + rK+

(x(E1)− x(E2)) ≥ r
K+

ηK+

is facet-defining forCSBI if one of the following conditions holds:

i) E1 ∩E2 = ∅ andE2 6= ∅

ii) E1 ∩E2 6= ∅ andK− ∪K0 = ∅

iii) E1 ∩E2 6= ∅ andK0 = ∅ anddK+

S > |dK−

S | anddK+

S > c

Proof. see Appendix B.2. The main difference to the proof of the Theorem 4.23 is the construction
of the starting pointue0

. There is no edgēe0 = ūv̄ in Ē1\E2 to route the flow forK−. This flow is
routed onvu instead, which is possible sincedK+

S ≥ |dK−

S |. II
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Cut sets and flow cut inequalities

It might be possible to construct a proof for the last theoremwithout the restrictionsK0 = ∅ and
dK+

S > c in ii) and iii).

Corollary 4.26 LetE1, E2 ⊆ ES . AssumerK+

< c. The flow cut inequality

fK+

(Ē+
1 ) + cx(E2)− f

K+

(E−
2 ) + rK+

(x(E1)− x(E2)) ≥ r
K+

ηK+

is facet-defining forCSUN if E1, E2 6= ∅ andE2 = Ē1.

Proof. This is Theorem 4.25 with the additional assumptionsK− = ∅ andE1 ∩ E2 = ∅. The point
ue0

is feasible forCSUN with K− = ∅ (see Definition and Lemma B.1). To ensure that the rest
of the constructed points fulfil the UNdirected capacity constraints (4.12) we additionally need that
E1 ∩ E2 = ∅. II

At least in the single-commodity, single-facility case, wehave now all sufficient and necessary
conditions for flow cut inequalities of type (4.18) to be facet-defining.

Theorem 4.27 In the single-commodity case, that is|K+| = 1, K− ∪K0 = ∅ anddS = dK+

S , the
flow cut inequality(4.18)

f (Ē+
1 ) + cx(E2)− f (E−

2 ) + r(dS , c)
(
x(E1)− x(E2)

)
≥ r(dS , c)⌈

dS

c
⌉

is facet-defining forCSBI if and only ifr(dS , c) < c,E1\E2 6= ∅ and one of the following conditions
holds:

i) E2 = ∅ andĒ1 6= ∅

ii) E2 = ∅ andĒ1 = ∅ anddS > c

iii) E2 = ∅ andĒ1 = ∅ and |ES | = 1

iv) E2 6= ∅

Proof. This follows from Lemma 4.17, Lemma 4.20, Theorem 4.21, Theorem 4.23 and Theorem
4.25. II

Corollary 4.28 In the single-commodity case, the flow cut inequality

f (Ē+
1 ) + cx(E2)− f (E−

2 ) + r(dS , c)
(
x(E1)− x(E2)

)
≥ r(dS , c)⌈

dS

c
⌉

is facet-defining forCSUN if and only ifr(dS , c) < c, E1 6= ∅ and one of the following conditions
holds:

i) E2 = ∅ andĒ1 6= ∅

ii) E2 = ∅ andĒ1 = ∅ anddS > c

iii) E2 = ∅ andĒ1 = ∅ and |ES | = 1

iv) E2 6= ∅ andE1 ∩ E2 6= ∅

Proof. This follows from Lemma 4.17, Lemma 4.20 Corollary 4.22, Corollary 4.24 and Corollary
4.26. II

Example 4.16 (continued) The inequalities(4.20a), (4.20c), (4.20e), (4.20f)and ( 4.20i)are facet-
defining forCSBI andCSUN . Inequalities(4.20j) and (4.20k)define facets ofCSBI only, because
E1 ∩ E2 6= ∅.
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A new class of cut set inequalities Until now we have only considered flow cut inequalities. In the
following we will state a facet proof for the cut set inequalities of type (4.21). Examples show that
they are often weak whenQ is a proper subset ofK+ (orK−). But forQ = K+ anddK+

S ≥ |dK−

S |

it can be proven that they are facet-defining.
Remember that the cut set inequalities of type (4.21) have noanalogue forCSDI . They reflect

the special structure of BIdirected and UNdirected cut sets(at least in the single-facility case).

Theorem 4.29 LetdK+

S ≥ |dK−

S |. The cut set inequality(4.21)withQ = K+

cx(E1) +
(
c − rK+)

x(Ē1) + fK+

(E−
1 )− fK+

(E+
1 ) ≥ c − rK+

defines a nontrivial facet ofCSBI if and only ifrK+

< c and one of the following conditions holds:

i) E1, Ē1 6= ∅

ii) E1 = ∅ anddK+

S < c and |ES | = 1

iii) Ē1 = ∅ and (dK+

S > c or |ES | = 1)

Proof. Necessity:If rK+

= c then inequality (4.21) reduces to

cx(E1)− (fK+

(E+
1 )− fK+

(E−
1 )) ≥ 0,

which is the sum of capacity constraints and non-negativityconstraints, thus it is trivial or not a facet.
AssumerK+

< c in the sequel.
SupposeE1 = ∅. Inequality (4.21) reduces tox(ES) ≥ 1, which is dominated by the cut

inequalityx(ES) ≥ ηK+

if dK+

S > c.
If on the other handdK+

S < c and|ES | > 1, thenx(ES) ≥ 1 is the sum of two valid inequalities
(see Lemma 4.20).

Now suppose that̄E1 = ∅. We can write (4.21) as

cx(ES) + fK+

(E−
S )− fK+

(E+
S ) ≥ c − rK+

⇐⇒ cx(ES) ≥ dK+

S + c− rK+

= cηK+

the cut inequality (4.23) again, which is the sum of valid inequalities whendK+

S < c and|ES | > 1

(see Lemma 4.20).
Sufficiency: If (E1 = ∅ anddK+

S < c), then (4.21) reduces to the cut inequality (4.23) which is
facet-defining forCSBI if |ES | = 1.

The same happens when̄E1 = ∅, (4.21) reduces to the cut inequality (4.23), which is facet-defi-
ning if |ES | = 1 or dK+

S > c (see Theorem 4.21).
For the rest of the proof, which can be found in Appendix B.3, we assume thatE1, Ē1 6= ∅. II

Corollary 4.30 The cut set inequality(4.21)

cx(E1) +
(
c − rK+)

x(Ē1) + fK+

(E−
1 )− fK+

(E+
1 ) ≥ c − rK+

defines a nontrivial facet ofCSUN if and only ifrK+

< c and one of the following conditions holds:

i) E1, Ē1 6= ∅
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ii) E1 = ∅ anddK+

S < c and |ES | = 1

iii) Ē1 = ∅ and (dK+

S > c or |ES | = 1)

Proof. Again withK− = ∅ all constructed points in the proof of Theorem 4.29 fulfil theUNdirected
capacity constraints. II

Example 4.16 (continued)

3x1 + 2x2 + f3 − f1 ≥ 2

and

3x2 + 2x1 + f4 − f2 ≥ 2

are facet-defining inequalities forCSBI andCSUN of the form(4.21). Together with all flow cut
inequalities they describe all nontrivial facets of both polyhedra in this example (and many others).
It can be presumed, that cut set inequalities of type(4.18)and (4.21)(together with all trivial facets)
suffice to give a complete description ofCSBI andCSUN in the single-commodity case, analogous
to Theorem 4.10 (Atamtürk [2002]).

For completeness all nontrivial facet-defining inequalities ofCSBI ,CSUN are stated here again:

Flow cut inequalities of type(4.18):

f2 + x1 ≥ 3 (E1 = {1}, E2 = ∅) simple flow cut inequality

f2 + 2x2 − f4 + x1 ≥ 3 (E1 = {1}, E2 = {2})

f1 + x2 ≥ 3 (E1 = {2}, E2 = ∅) simple flow cut inequality

f1 + 2x1 − f3 + x2 ≥ 3 (E1 = {2}, E2 = {1})

x1 + x2 ≥ 3 (E1 = {1, 2}, E2 = ∅) cut inequality

3x1 − f3 + x2 ≥ 3 (E1 = {1, 2}, E2 = {1}) facet only ofCSBI

3x2 − f4 + x1 ≥ 3 (E1 = {1, 2}, E2 = {2}) facet only ofCSBI

Flow cut inequalities of type(4.21):

3x1 + 2x2 + f3 − f1 ≥ 2 (E1 = {1}, Ē1 = {2})

3x2 + 2x1 + f4 − f2 ≥ 2 (E1 = {2}, Ē1 = {1})

Summary In Section 4.2 the facial structure of the cut setsCSDI , CSBI andCSUN has been
investigated. We started withCSDI , summarised and even supplemented results of Atamtürk [2002].
A large class of cut set inequalities called flow cut inequalities has been introduced and facet theorems
have been stated.

By simply using the sameMIR procedure in Section 4.2.2 it has been shown that there is an ob-
vious analogue for flow cut inequalities in the BIdirected and UNdirected case. Flow cut inequalities
generalise already known cut inequalities and simple flow cut inequalities.

In contrast toCSDI they do not suffice to give a complete description in the single-commodity,
single-facility case, which is reflected by a second class ofcut set inequalities forCSBI andCSUN .
For both classes of cut set inequalities we have presented facet proofs.

In the following section we will concentrate on the general multi-facility case.
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4.3 The cut set for multi-facility problems

In this section the results for cut sets with a single design variable will be extended to cut sets with
more than one facility to install. We will fix all but one design variables to their lower bound zero. For
the resulting single-facility restrictions we know facet-defining inequalities from Section 4.2, which
will be lifted by using the subadditiveMIR functions defined in Chapter 3.

The polyhedraCSDI , CSBI andCSUN for the general case|T | ∈ Z+\{0} were already intro-
duced in Section 4.1. Assume that|T | ≥ 2. Atamtürk [2002] states the exact lifting function for flow
cut inequalities of cut sets with DIrected capacity constraint. In Section 4.3.1 it will be shown that it
equals a certainMIR function which proves that lifting withMIR is exact. This observation motivates
a generalMIR-procedure that produces strong valid flow cut inequalitiesin the multi-facility case for
all three capacity models DIrected, BIdirected and UNdirected.

4.3.1 DIrected capacity constraints

Aggregating and substituting as in Section 4.2.1 gives the following valid base inequality for the set
CSDI similar to (4.13)

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

t∈T

ct
(
xt(A+

1 )− xt(A−
2 )

)
≥ dQ

S . (4.25)

wheref̄Q(A−
2 ) =

∑
t∈T c

txt(A−
2 ) − fQ(A−

2 ) ≥ 0 andA+
1 , A

−
2 are subsets ofA+

S = δ+(S), A−
S =

δ−(S), respectively.
Given the facilitys ∈ T , let CSDI

s be the restriction ofCSDI obtained by fixing all design
variablesxt

a, with a ∈ AS andt ∈ T\{s}, to their lower bound zero. Hence

CSDI
s = conv{ (f , x) ∈ CSDI : xt

a = 0, a ∈ AS , t ∈ T\{s} }.

From Proposition 4.6 follows that

fQ(Ā+
1 ) + csxs(A−

2 )− fQ(A−
2 ) + rQ

s

(
xs(A+

1 )− xs(A−
2 )

)
≥ rQ

s η
Q
s (4.26)

is a valid single-facility flow cut inequality forCSDI
s , whererQ

s = r(dQ
S , c

s) andηQ
s = ⌈

d
Q
S

cs ⌉. From
Lemma 4.8, Theorem 4.9, 4.10, 4.11 and Corollary 4.13 we knownecessary and sufficient conditions
for (4.26) being facet-defining forCSDI

s .

Lifting The flow cut inequality (4.26) is a1
cs -MIR inequality as shown in Section 4.2.1. Hence with

Proposition 3.14 the subadditive functionG
d

Q
S

,cs defines an upper bound on the exact lifting function

and can be used for lifting (4.26) to a valid inequality ofCSDI (see Section 3.2, Proposition 3.14).
Atamtürk [2002] calculates the exact lifting function andshows that under certain additional

conditions exact lifting of (4.26) to a valid inequality ofCSDI can be done simultaneously, because
the exact lifting function is subadditive. He states the lifted inequality as

fQ(Ā+
1 )− fQ(A−

2 ) +
∑

t∈T

φ+
s (ct)xt(A+

1 ) +
∑

t∈T

φ−s (ct)xt(A−
2 ) ≥ rQ

s η
Q
s , (4.27)
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where

φ+
s (ct) =

{
ct − k(cs − rQ

s ) if kcs ≤ ct < kcs + rQ
s

(k + 1)rQ
s if kcs + rQ

s ≤ ct < (k + 1)cs
k integer

and

φ−s (ct) =

{
ct − (k − 1)rQ

s if (k − 1)cs ≤ ct < kcs − rQ
s

k(cs − rQ
s ) if kcs − rQ

s ≤ kct < cs
k integer

Note that the integerk is unique since0 ≤ rQ
s ≤ cs.

Setd := dQ
S . In the following we will show that inequality (4.27) can be seen as the1

cs -MIR
inequality for the base inequality (4.25). This gives an alternative proof for the validity of (4.27) and
implies that the subadditive lifting function used for lifting (4.26) to (4.27) is theMIR functionGd,cs .

It turns out that

φ+
s (ct) = Gd,cs(ct),

which provides an alternative description forGd,cs .

Theorem 4.31 Inequality(4.27)is the 1
cs -MIR inequality for the base inequality(4.25).

Proof. Rewriting (4.27) gives

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

t∈T

φ+
s (ct)xt(A+

1 ) +
∑

t∈T

(φ−s (ct)− ct)xt(A−
2 ) ≥ rQ

s η
Q
s .

The 1
cs -MIR inequality for (4.25) is

Gd,cs(1)fQ(Ā+
1 ) + Gd,cs(1)f̄Q(A−

2 ) +
∑

t∈T

Gd,cs(ct)xt(A+
1 ) +

∑

t∈T

Gd,cs(−ct)xt(A−
2 ) ≥ Gd,cs(d)

⇐⇒ fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

t∈T

Gd,cs(ct)xt(A+
1 ) +

∑

t∈T

Gd,cs(−ct)xt(A−
2 ) ≥ r(d, cs)⌈ d

cs ⌉ = rQ
s η

Q
s .

It remains to show that

1. φ+
s (ct) = Gd,cs(ct) and 2. (φ−s (ct)− ct) = Gd,cs(−ct).

To prove this we make use of the equations

cs⌈ ct

cs ⌉ = ct + cs − r(ct, cs) and r(−ct, cs) = cs − r(ct, cs)

several times. The latter is valid ifr(ct, cs) < cs, thus〈 c
t

cs 〉 > 0. The validity of both is proven in
Lemma 3.11 i) and 3.11 ii) respectively.
1. Setk := ⌈ ct

cs ⌉ − 1. First suppose thatr(d, cs) > r(ct, cs). It follows thatr(ct, cs) < cs and hence

k = ⌊ ct

cs ⌋. Using Lemma 3.11 i) yields

(⌈ ct

cs ⌉ − 1)cs = kcs < ct < ct − r(ct, cs) + r(d, cs) = cs⌈ ct

cs ⌉ − c
s + r(d, cs) = kcs + r(d, cs).
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Henceφ+
s (ct) = ct − k(cs − r(d, cs)) = ct − ⌊ ct

cs ⌋(cs − r(d, cs)). But again with Lemma 3.11 i)

ct − ⌊ ct

cs ⌋(c
s − r(d, cs)) = ct − ⌈ ct

cs ⌉(c
s − r(d, cs)) + cs − r(d, cs)

= r(d, cs)⌈ ct

cs ⌉+ ct + cs − cs⌈ ct

cs ⌉ − r(d, c
s)

= r(d, cs)⌈ ct

cs ⌉+ r(ct, cs)− r(d, cs) = Gd,cs(ct).

Now suppose thatr(d, cs) ≤ r(ct, cs). Then

kcs + r(d, cs) ≤ (⌈ ct

cs ⌉ − 1)cs + r(ct, cs) = ct ≤ ⌈ ct

cs ⌉c
s = (k + 1)cs

andφ+
s (ct) = r(d, cs)(k + 1) = r(d, cs)⌈ ct

cs ⌉ = Gd,cs(ct).

2. Setk := ⌊ ct

cs ⌋ + 1. First suppose thatr(d, cs) > r(−ct, cs) implying thatcs > r(−ct, cs) =

cs − r(ct, cs), k = ⌈ ct

cs ⌉ and

kcs − r(d, cs) = ⌈ ct

cs ⌉c
s − r(d, cs) < ⌈ ct

cs ⌉c
s + cs − r(ct, cs) = ct < ⌈ ct

cs ⌉c
s = kcs.

Thus

φ−s (ct)− ct = k(cs − r(d, cs))− ct = cs⌈ ct

cs ⌉+ r(d, cs)⌊−ct

cs ⌋ − c
t

= ct + cs − r(ct, cs) + r(d, cs)⌈−ct

cs ⌉ − r(d, c
s)− ct

= r(d, cs)⌈−ct

cs ⌉ − r(d, c
s) + r(−ct, cs) = Gd,cs(−ct).

If r(d, cs) ≤ r(−ct, cs) = cs then

(k − 1)cs = ct ≤ ct + cs − r(d, cs) = (⌊ ct

cs ⌋+ 1)cs − r(d, cs) = kcs − r(d, cs).

And if r(d, cs) ≤ r(−ct, cs) < cs then

(k − 1)cs = ⌊ ct

cs ⌋c
s ≤ ct ≤ ct + r(−ct, cs)− r(d, cs) = ct + cs − r(ct, cs)− r(d, cs)

= ⌈ ct

cs ⌉c
s − r(d, cs) = kcs − r(d, cs).

It follows that

φ−s (ct)− ct = −(k − 1)r(d, cs) = −r(d, cs)⌊ ct

cs ⌋ = r(d, cs)⌈−ct

cs ⌉ = Gd,cs(−ct).

The proof is complete. II

Atamtürk [2002] states conditions for (4.27) to be facet-defining forCSDI . The following results
are a consequence of Proposition 3.13 about superadditivity (or subadditivity) and lifting.

Proposition 4.32 (Atamtürk [2002]) Supposer(d, cs) < c and |K| = |K+| = |Q| = 1. In
the single-commodity case the multi-facility flow cut inequality (4.27) is facet-defining forCSDI if
A+

1 , Ā
+
1 , A

−
2 6= ∅.

Proposition 4.33 (Atamtürk [2002]) Supposer(d, cs) < c. The multi-facility flow cut inequality
(4.27)is facet-defining forCSDI if A+

1 , Ā
+
1 , A

−
2 , Ā

−
2 6= ∅.
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Strengthening Notice that both propositions exclude cut inequalities (A−
2 = ∅ andĀ+

1 = ∅) as well
as simple flow cut inequalities (A−

2 = ∅). The reason is, that in those casesGd,cs is not the the exact
lifting function (but still a valid subadditive upper bound). Atamtürk [2002] proposes a strengthening
of the inequality (4.27) (hence a strengthening of the validlifting function) if A−

2 = ∅. Set

φ̃+
s (ct) =

{
φ+

s (ct) = Gd,cs(ct) if ct < dQ
S

rQ
s η

Q
s else.

Note that if ct = dQ
S , then φ̃+

s (ct) = rQ
s η

Q
s = Gd,cs(ct). Another important observation is that

ct > dQ
S ⇐⇒ φ̃+

s (ct) < φ+
s (ct) (see Atamtürk [2002]).

Proposition 4.34 (Atamtürk [2002]) The strengthened simple flow cut inequality

fQ(Ā+
1 ) +

∑

t∈T

φ̃+
s (ct)xt(A+

1 ) ≥ rQ
s η

Q
s (4.28)

is valid forCSDI and at least as strong as(4.27) if A−
2 = ∅.

We prove this result by showing that (4.28) can be obtained bya secondMIR step.

Proof.

fQ(Ā+
1 ) +

∑

t∈T

φ+
s (ct)xt(A+

1 ) ≥ rQ
s η

Q
s (4.29)

is a valid 1
cs -MIR inequality forCSDI as already shown. Let̄c := max(φ+

s (ct))t∈T . If c̄ ≤ rQ
s η

Q
s ,

thenφ̃+
s (ct) = φ+

s (ct) for all t ∈ T . Supposēc > rQ
s η

Q
s . It follows that

r
′
:= r(rQ

s η
Q
s , c̄) = rQ

s η
Q
s and r(φ+

s (ct), c̄) = φ+
s (ct).

This gives

Gr
′
,c̄(φ

+
s (ct)) = r

′
−

(
r
′
− φ+

s (ct)
)+

= min(r
′
, φ+

s (ct)) = φ̃+
s (ct).

Hence using (4.29) as the base inequality for the calculation of the1
c̄
-MIR inequality gives (4.28). II

The secondMIR step is equivalent to rounding down all coefficientsGd,cs(ct) to the value of the
right hand siderQ

s η
Q
s = r

′
, if Gd,cs(ct) > r

′
. Note that every coefficient of the left hand side is

positive ifA−
2 = ∅. The new inequality is at least as strong as the1

cs -MIR inequality ifA−
2 = ∅.

TheMIR procedure to obtain strong valid flow cut inequalities forCSDI in the multi-facility case can
be summarised as follows:

Aggregating and Substituting Choose a commodity subsetQ, subsets of the dicut arcsA+
1 and

A−
2 and a facilitys ∈ T such that the restricted flow cut inequality (4.26) defines a facet forCSDI

s .
Aggregate and substitute to arrive at (4.25). For necessaryand sufficient conditions see Section 4.2.1.
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Scaling andMIR

1. Calculate the1
cs -MIR inequality (4.27) corresponding to (4.25) given by

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

t∈T

Gd,cs(ct)xt(A+
1 ) +

∑

t∈T

Gd,cs(−ct)xt(A−
2 ) ≥ rQ

s η
Q
s = r

′
.

2. If A−
2 = ∅ andc̄ := max(Gd,cs(ct))t∈T > r

′
, then round down left hand side coefficients tor

′
.

This gives

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

t∈T

min(r
′
,Gd,cs(ct))xt(A+

1 ) ≥ r
′

being at least as strong as the1
cs -MIR from step 1.

Example 4.35 Consider the following two-facility cut set with two outflow- and one inflow-arc. The
two possible capacities to install arec1 = 2 andc2 = 5. A demand ofd = 3 has to be satisfied.

CSDI = conv{x ∈ Z6
+, f ∈ R3

+ | f1 + f2 − f3 = 3

fi ≤ 2x1
i + 5x2

i , i ∈ {1, 2, 3}}

If A+
1 6= ∅ we can formulate the following 12 flow cut inequalities of type (4.27):

f2 + x1
1 + 3x2

1 ≥ 2 (A+
1 = {1}, A−

2 = ∅, cs = 2) (4.30a)

f2 + 2x1
1 + 3x2

1 ≥ 3 (A+
1 = {1}, A−

2 = ∅, cs = 5) (4.30b)

f2 − f3 + x1
1 + 3x2

1 + x1
3 + 3x2

3 ≥ 2 (A+
1 = {1}, A−

2 = {3}, cs = 2) (4.30c)

f2 − f3 + 2x1
1 + 3x2

1 + 2x1
3 + 2x2

3 ≥ 3 (A+
1 = {1}, A−

2 = {3}, cs = 5) (4.30d)

f1 + x1
2 + 3x2

2 ≥ 2 (A+
1 = {2}, A−

2 = ∅, cs = 2) (4.30e)

f1 + 2x1
2 + 3x2

2 ≥ 3 (A+
1 = {2}, A−

2 = ∅, cs = 5) (4.30f)

f1 − f3 + x1
2 + 3x2

2 + x1
3 + 3x2

3 ≥ 2 (A+
1 = {2}, A−

2 = {3}, cs = 2) (4.30g)

f1 − f3 + 2x1
2 + 3x1

2 + 2x1
3 + 2x2

3 ≥ 3 (A+
1 = {2}, A−

2 = {3}, cs = 5) (4.30h)

x1
1 + 3x2

1 + x1
2 + 3x2

2 ≥ 2 (A+
1 = {1, 2}, A−

2 = ∅, cs = 2) (4.30i)

2x1
1 + 3x2

1 + 2x1
2 + 3x2

2 ≥ 3 (A+
1 = {1, 2}, A−

2 = ∅, cs = 5) (4.30j)

−f3 + x1
1 + 3x2

1 + x1
2 + 3x2

2 + x1
3 + 3x2

3 ≥ 2 (A+
1 = {1, 2}, A−

2 = {3}, cs = 2) (4.30k)

−f3 + 2x1
1 + 3x2

1 + 2x1
2 + 3x2

2 + 2x1
3 + 2x2

3 ≥ 3 (A+
1 = {1, 2}, A−

2 = {3}, cs = 5) (4.30l)

From Proposition 4.32 we know that the inequalities(4.30c), (4.30d), (4.30g)and (4.30h)define
facets forCSDI becauseA+

1 , Ā
+
1 , A

−
2 6= ∅ holds for them. UsingPORTA(Christof & Löbel [2005])

it can be seen that(4.30b), (4.30f), (4.30k)and (4.30l)are facet-defining either.
The inequalities(4.30a), (4.30e)and (4.30i) can be strengthened with Proposition 4.34 because

A−
2 = ∅ and c̄ = max(φ+

s (ct))t∈T = 3 > 2 = rQ
s η

Q
s . Rounding down the coefficients of the left

hand side gives the following two-stepMIR inequalities

f2 + x1
1 + 2x2

1 ≥ 2 (A+
1 = {1}, A−

2 = ∅, strengthened) (4.30a2)

f1 + x1
2 + 2x2

2 ≥ 2 (A+
1 = {2}, A−

2 = ∅, strengthened) (4.30e2)

x1
1 + 2x2

1 + x1
2 + 2x2

2 ≥ 2 (A+
1 = {1, 2}, A−

2 = ∅, strengthened) (4.30i2)

all facet-defining forCSDI .
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Summary It was shown how to exploit the results of Section 4.2.1 to obtain strong valid inequalities
for CSDI in the general multi-commodity, multi-facility case.

Facet-defining flow cut inequalities for single-facility restrictions ofCSDI can be lifted to valid
inequalities ofCSDI . We made use of the introduction toMIR, superadditivity and lifting given
in Section 3.2 to show that under certain conditions theMIR functionGd,cs equals the exact lifting
function. A strengthening of the lifted inequalities was proposed if this is not the case. Motivated by
these results we stated aMIR procedure that can be used to obtain strong valid inequalities for cut sets
with DIrected capacity constraints.

4.3.2 BIdirected and UNdirected capacity constraints

We proceed similar to the last section. Facet-defining inequalities for single-facility restrictions of the
cut setsCSBI andCSUN will be lifted using the same subadditiveMIR function. In fact the only
difference between theMIR procedure ofCSDI ,CSBI andCSUN is, that it depends on the capacity
model which inequalities are facet-defining for single-facility restrictions, as shown in Section 4.2.

With the arguments of Section 4.2.2 we assumeK− = ∅ for the cut setCSUN . Aggregating and
substituting as in Section 4.2.2 gives the following valid base inequality for the setsCSBI andCSUN

similar to (4.17)

fQ(Ē+
1 ) + f̄Q(E−

2 ) +
∑

t∈T

ct
(
xt(E1)− x

t(E2)
)
≥ dQ

S , (4.31)

wheref̄Q(E−
2 ) =

∑
t∈T c

txt(E2)− f
Q(E−

2 ) ≥ 0 andE1, E2 are subsets of the cutES .

Given the facilitys ∈ T , letCSBI
s andCSUN

s be the single-facility restrictions ofCSBI andCSUN

obtained by fixing all design variablesxt
e, with e ∈ ES andt ∈ T\{s}, to their lower bound zero.

Hence

CSBI
s = conv{ (f , x) ∈ CSBI : xt

e = 0, e ∈ ES , t ∈ T\{s} }.

CSUN
s = conv{ (f , x) ∈ CSUN : xt

e = 0, e ∈ ES , t ∈ T\{s} }.

From Proposition 4.14 follows that

fQ(Ē1) + csxs(E2)− f
Q(E−

2 ) + rQ
s

(
xs(E1)− x

s(E2)
)
≥ rQ

s η
Q
s (4.32)

is valid forCSBI
s andCSUN

s , whererQ
s = r(dQ

S , c
s) andηQ

s = ⌈
d

Q
S

cs ⌉.

Lifting Setd := dQ
S . For conditions for (4.32) being facet-defining forCSBI

s orCSUN
s see Section

4.2.2. Both inequalities are1
cs -MIR inequalities. Hence with Proposition 3.14 the subadditivefunction

Gd,cs defines an upper bound on the exact lifting function and can beused for lifting (4.32) to valid
inequalities ofCSBI andCSUN , respectively (see Section 3.2).

The exact lifting functions are not known but motivated by the results of Atamtürk [2002] for
DIrected cut sets (see Section 4.3.1), it can be conjecturedthat under certain additional assumptions
the exact lifting function for (4.32) is given byGd,cs . We useMIR here as a valid lifting procedure.
Given the base inequality (4.31), the following flow cut inequality is valid forCSBI andCSUN :

fQ(Ē+
1 ) + f̄Q(E−

2 ) +
∑

t∈T

Gd,cs(ct)xt(E1) +
∑

t∈T

Gd,cs(−ct)xt(E2) ≥ r
Q
s η

Q
s . (4.33)
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Strengthening If E2 = ∅, then all left hand side coefficients of (4.33) are positive and we can round
down all coefficients of integer variables to the value of theright hand side if they are greater. Note
that rQ

s η
Q
s ≥ 1. As shown in Section 4.3.1 this strengthening can be seen as asecondMIR step.

Applied to (4.33) we arrive at the simple flow cut inequality

fQ(Ē+
1 ) +

∑

t∈T

min(rQ
s η

Q
s ,Gd,cs(ct))xt(E1) ≥ r

Q
s η

Q
s . (4.34)

It turns out that theMIR procedure, to derive strong valid flow cut inequalities for cut sets with
BIdirected and UNdirected capacity constraints, is equivalent to the procedure in Section 4.3.1:

Aggregating and Substituting Choose a commodity subsetQ, subsets of the cut arcsE1, E2 and
a facility s ∈ T such that the restricted flow cut inequality (4.32) defines a facets ofCSBI

s orCSUN
s .

For necessary and sufficient conditions see Section 4.2.2. Important necessary conditions were

E1 6= ∅ ∧ E1\E2 6= ∅

for CSBI
s and

E1 6= ∅ ∧ E1 ∩ E2 = ∅

for CSUN
s (Lemma 4.17). Aggregate and substitute to arrive at (4.31).

Scaling andMIR

1. Calculate the1
cs -MIR inequality (4.33) corresponding to (4.31).

2. If E2 = ∅ then round down left hand side coefficients to the value of theright hand side. This
gives inequality (4.34).

Example 4.36 Bienstock & G̈unlük [1996] consider network design polyhedra with BIdirected ca-
pacity constraints and two facilities, wherec1 = 1 andc2 = λ ∈ Z+, λ > 1. Specialising(4.33)with
d = dQ

S , cs = λ, r = r(d, λ) andη = ⌈d
λ
⌉ gives

fQ(Ē+
1 )+ f̄Q(E−

2 )+Gd,λ(1)x1(E1)+Gd,λ(λ)x2(E1)+Gd,λ(−1)x1(E2)+Gd,λ(−λ)x2(E2) ≥ rη

⇐⇒

fQ(Ē+
1 )− fQ(E−

2 ) + x1(E1) + rx2(E1) + (1− r(d
λ
))x1(E2) + (λ− r)x2(E2) ≥ rη,

which reduces to the simple flow cut inequalities of Bienstock & Günlük [1996] ifE2 = ∅ and to the
cut inequalities of Bienstock & G̈unlük [1996] if additionallyE1 = ES . They state two more classes
of simple flow cut inequalities, both corresponding to the case thatd is fractional, which we do not
consider here.

Magnanti & Mirchandani [1993] investigate network design polyhedra with UNdirected capacity
constraints, three facilities and one commodity, wherec1 = 1, c2 = C ∈ Z+, C > 1 and c3 =

λC ∈ Z+, λ > 1. We can formulate two cut inequalities of type(4.33)corresponding tocs = C and
cs = λC, which are

Gd,C(1)x1(ES) + Gd,C(C)x2(ES) + Gd,C(λC)x3(ES) ≥ r1⌈
d
C
⌉
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and
Gd,λC(1)x1(ES) + Gd,λC(C)x2(ES) + Gd,λC(λC)x3(ES) ≥ r2⌈

d
λC
⌉

reducing to the cut inequalities of Magnanti & Mirchandani [1993]:

x1(ES) + r1x
2(ES) + λr1x

3(ES) ≥ r1⌈
d
C
⌉

and
x1(ES) + min(C, r2)x

2(ES) + r2x
3(ES) ≥ r2⌈

d
λC
⌉,

wherer1 = r(d,C) andr2 = r(d, λC). The first cut inequality can be strengthened to

x1(ES) + r1x
2(ES) + min(λ, ⌈ d

C
⌉)r1x

3(ES) ≥ r1⌈
d
C
⌉.

Magnanti & Mirchandani [1993] describe a third cut inequality, valid forCSUN , which we will study
in Section 6.4.

A new class of cut set inequalities In Section 4.2.2 we found (4.21)

cx(E1) +
(
c − rQ

)
x(Ē1) + fQ(E−

1 )− fQ(E+
1 ) ≥ c − rQ

as a new class of cut set inequalities for the polyhedraCSBI andCSUN for the case that|T | = 1. We
could even prove that it can define a facet ifQ = K+. But it was not possible to express it as aMIR
inequality and hence we cannot apply Proposition 3.14 and lift (4.21) to the multi-facility case. We
can only calculate the exact lifting function or find a subadditive upper bound, which will not be done
here. For computations and separation we will use (4.21) only for single facility instances (Chapter
7).

4.4 Summary

We have introduced the cut setsCSDI , CSBI andCSUN as relaxations of the network design poly-
hedraNDPDI ,NDPBI andNDPUN in Section 4.1. Cut sets are defined with respect to a node set
S ⊂ V of the underlying networks. It has been shown that facet-defining inequalities for cut sets are
facet-defining for the corresponding network design polyhedra if both subgraphsG[S] andG[V \S]

are connected (undirected graphs) or strongly connected (directed graphs).
This result has motivated the investigation of the polyhedral structure of cut sets in Section 4.2

for the single facility case. Facet proofs for different classes of so-called flow cut inequalities were
provided while emphasising the differences between the three capacity models DIrected, BIdirected,
UNdirected. We have been able to generalise well-known inequalities used to solve network design
problems.

In Section 4.3 aMIR procedure has been developed that produces strong valid inequalities for cut
sets in the general multi-commodity, multi-facility case.This procedure is based on lifting facet-de-
fining inequalities of single-facility restrictions byMIR.
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Chapter 5

Cut sets, upper bounds and flow cover
inequalities

5.1 Introduction

In this chapter cut sets with bounded design variables will be investigated. The sets, corresponding to
the capacity models DIrected, BIdirected and UNdirected, are

CSDI(u) = conv{ (f , x) ∈ CSDI : xt
a ≤ u

t
a, a ∈ AS , t ∈ T }

CSBI(u) = conv{ (f , x) ∈ CSBI : xt
e ≤ u

t
e, e ∈ ES , t ∈ T }

CSUN(u) = conv{ (f , x) ∈ CSUN : xt
e ≤ u

t
e, e ∈ ES , t ∈ T }

with ut
e, u

t
a ∈ Z+\{0}.

We assume throughout this chapter that the polyhedra are notempty. All demands can be satisfied.
For simplicity, additionally suppose that the dimension ofthe polyhedra is not changing when the
bound constraints are added. Hence bounds have to be given large enough.

SinceCSDI(u) ⊆ CSDI , CSBI(u) ⊆ CSBI andCSUN (u) ⊆ CSUN the cut set inequalities
stated in Section 4.2 and Section 4.3 are valid for the bounded cut sets. TheMIR- procedures given
there can still be used. In fact all the results of Chapter 4 hold for CSDI(u),CSBI(u) andCSUN(u)

if ut
a, u

t
e ≥M for all a ∈ AS, e ∈ ES , t ∈ T , whereM is an integer number large enough.

In order to exploit the special structure of bounded cut setswe will develop strong valid inequal-
ities that are valid only in the presence of bound constraints by simply extending the procedures of
Section 4.2 and Section 4.3. In Section 3.3 it was shown that given so-called knapsack sets, bounds on
integer variables can be handled by considering covers and packs and by deriving cover inequalities
as well as pack inequalities. The analogue for the more complex cut sets or single node flow sets are
flow covers, flow packsand the corresponding inequalities.

Literature review The polyhedral study of single node flow sets (with bounded design variables)
was initiated by Padberg et al. [1985]. They introduce a special case of flow cover inequalities (with
only outflow arcs). The generalisation to the inequalities,which will be presented below is from
Van Roy & Wolsey [1986].
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Cut sets, upper bounds and flow cover inequalities

Important work on the strengthening of flow cover inequalities by superadditive lifting has been
carried out by Gu et al. [1999]. Flow pack inequalities were introduced by Stallaert [1997] and in-
vestigated in detail by Atamtürk [2001]. Flow pack inequalities are derived as flow cover inequalities
after reversing the flow directions.

Atamtürk et al. [2001] state flow cover- and flow pack inequalities for single node flow sets with
a very general capacity model. Their results can be used for our cut sets in the multi-facility case.

Louveaux & Wolsey [2003] recently showed how strong valid flow cover- and flow pack inequal-
ities can be obtained byMIR and other superadditive lifting functions. TheMIR procedure they apply
to single node flow sets is similar to the one that has been firstintroduced by Marchand & Wolsey
[1998] (see Section 3.4).

A good survey can be found in Wolsey [2003].

Outline of this chapter To derive strong valid flow cover- and flow pack inequalities forCSDI(u),
CSBI(u) andCSUN (u) MIR procedures are motivated in this chapter that are based on the work of
Atamtürk et al. [2001] and Louveaux & Wolsey [2003]. We willespecially concentrate on the cut set
for directed supply graphsCSDI . A slightly modifiedMIR procedure will then be applied to the sets
CSBI(u) andCSUN (u) in Section 5.2.2.

We start with an introduction to flow covers and flow packs for asimple 0-1 single node flow
set, which differs from the cut setCSDI(u) in the single-facility case in the way that arc dependent
capacities are given. It will be shown how known flow cover- and flow pack inequalities can be
derived by aMIR procedure based on complementing variables in an appropriate chosen flow cover
or flow pack. This procedure is similar to the one given in Section 3.3 for knapsack sets.

Switching to the cut setCSDI(u) we prove that flow cover- and flow pack inequalities reduce to
the flow cut inequalities of Section 4.2.1 if only one facility is given (arc independent capacities). It
turns out that the procedure of Louveaux & Wolsey [2003] for flow cover- and flow pack inequalities is
identical to the procedure that was already developed in Section 4.2.1 if we additionally complement
design variables.

A MIR-procedure for the general multi-facility case for the the setsCSDI(u), CSBI(u) and
CSUN(u) is provided in Section 5.2 to handle bounded design variables and to obtain strong valid
flow cover- and flow pack inequalities. If more than one facility is given, the procedure to derive
the flow cut inequalities from Section 4.3 will be extended. To obtain flow cover- and flow pack
inequalities, variables will be complemented in flow coversand flow packs, defined as in Atamtürk
et al. [2001].

First assume that only one facility can be installed on everyarc in the dicutAS . To introduce flow
cover- an flow pack inequalities as they are given in the literature, we will first consider a modification
of the setCSDI(u) in the single-commodity, single-facility case. Suppose that the capacity to install
depends on the arca.

∑

a∈A+

S

fa −
∑

a∈A−
S

fa ≤ dS (5.1)

fa ≤ caxa, a ∈ AS (5.2)

xa ≤ ua, a ∈ AS , (5.3)
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5.1 Introduction

whereca, ua ∈ Z+\{0}, dS ∈ Z+. The following set the literature refers to as asingle node flow set.

XSNF := conv{ (f , x) ∈ R
|AS|
+ × Z

|AS |
+ : (f , x) satisfies (5.1), (5.2) and (5.3)}

Under the assumptionsA−
S 6= ∅ anddS +

∑
a∈A−

S

caua ≥ uā for all ā ∈ A−
S or similarlyA−

S = ∅ and

dS > 0, the polyhedronXSNF is full dimensional (see Atamtürk [2001]) in contrast toCSDI(u).

Definition 5.1 (C+, C−) is a flow coverfor XSNF if

C+ ⊆ A+
S , C

− ⊆ A−
S and

∑

a∈C+

caua −
∑

a∈C−

caua − dS = λ > 0.

(P+, P−) is aflow packor reverse flow coverfor XSNF if

P+ ⊆ A+
S , P

− ⊆ A−
S and

∑

a∈P+

caua −
∑

a∈P−

caua − dS = −µ < 0.

In the following results of Louveaux & Wolsey [2003] will be summarised. Strong valid flow
cover- and flow pack inequalities forXSNF can be obtained by a certainMIR procedure. This will
serve as a motivation for a more general procedure for the setCSDI(u).

For simplicity we restrict our attention to the caseua = 1 ∀a ∈ AS . With the same procedure
and Definition 5.1, flow cover- and flow pack inequalities are obtained for integer single node flow
sets, i. e.ua ∈ Z+\{0} for all a ∈ AS .

The MIR flow cover inequality Suppose(C+, C−) is a flow cover forXSNF and choosēc ∈ Z+

with c̄ > λ. Let (C+, L+, R+) and(C−, L−, R−) be partitions ofA+
S andA−

S , respectively. The
base inequality

∑

a∈C+∪L+

caxa −
∑

a∈C−∪L−

caxa −
∑

a∈R−

fa −
∑

a∈C+∪L+

f̄a ≤ dS , (5.4)

with f̄a := caxa − fa, is obtained by substitutingfa for caxa − f̄a for all a ∈ C+ ∪ L+ ∪ C− ∪ L−

and using the nonnegativity offa for a ∈ R+ and off̄a for a ∈ C− ∪ L−.
Additionally complementing all variables inC+ ∪ C− gives

−
∑

a∈C+

cax̄a +
∑

a∈L+

caxa +
∑

a∈C−

cax̄a −
∑

a∈L−

caxa −
∑

a∈R−

fa −
∑

a∈C+∪L+

f̄a ≤ −λ, (5.5)

wherex̄a := 1− xa.
The 1

c̄
-MIR inequality for (5.5) is

∑

a∈C+

F−λ,c̄(−ca)x̄a +
∑

a∈L+

F−λ,c̄(ca)xa +
∑

a∈C−

F−λ,c̄(ca)x̄a +
∑

a∈L−

F−λ,c̄(−ca)xa

−
∑

a∈R−

fa −
∑

a∈C+∪L+

f̄a ≤ F−λ,c̄(−λ) = −λ (5.6)
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Louveaux & Wolsey [2003] show that if̄c = maxa∈C+ ca > λ, then theMIR flow cover in-
equality (5.6) is at least as strong as theGFC2 (Generalised Flow Cover) inequality and ifc̄ =

maxa∈C+∪L− ca > λ, (5.6) is at least as strong as theGFC1 inequality given by

∑

a∈C+

(fa + (ca − λ)+(1− xa))−
∑

a∈L−

min(ca, λ)xa −
∑

a∈R−

fa ≤ d +
∑

a∈C−

ca, (5.7)

If L+ = ∅ this can easily be seen by using Lemma 3.11 iv).GFC1 andGFC2 inequalities were
introduced by Van Roy & Wolsey [1986].

Proposition 5.2 (Nemhauser & Wolsey [1988]) TheGFC1 inequality (5.7) defines a facet of
XSNF if C− = ∅, maxa∈C+ ca > λ andca > λ for all a ∈ L−.

The MIR flow pack inequality Suppose(P+, P−) is a flow pack forXSNF and choosēc ∈
Z+ with c̄ > µ. Let (P+, L+, R+) and (P−, L−, R−) be partitions ofA+

S andA−
S , respectively.

Aggregating and substituting as for flow cover inequalitiesand complementing all variables inP+ ∪

P− gives

−
∑

a∈P+

cax̄a +
∑

a∈L+

caxa +
∑

a∈P−

cax̄a −
∑

a∈L−

caxa −
∑

a∈R−

fa −
∑

a∈P+∪L+

f̄a ≤ µ,

as a valid inequality forXSNF . Now calculating the1
c̄
-MIR inequality yields

∑

a∈P+

Fµ,c̄(−ca)x̄a +
∑

a∈L+

Fµ,c̄(ca)xa +
∑

a∈P−

Fµ,c̄(ca)x̄a +
∑

a∈L−

Fµ,c̄(−ca)xa

−
∑

a∈R−

fa −
∑

a∈P+∪L+

f̄a ≤ Fµ,c̄(µ) = 0. (5.8)

If L− = ∅ andc̄ = maxa∈P−∪L+ ca > µ, theMIR flow pack inequality (5.8) is as least as strong as
the flow pack inequality (reverse flow cover inequality)

∑

a∈P+

fa +
∑

a∈L+

(fa −min(ca, µ)xa) +
∑

a∈P−

(ca − µ)+(1− xa)−
∑

a∈R−

fa ≤
∑

a∈P+

ca (5.9)

given in Atamtürk [2001] and Louveaux & Wolsey [2003]. Thiscan be seen by replacingFµ,c̄(−ca)

by −ca for all a ∈ P+, which is possible since0 ≥ Fµ,c̄(−ca) ≥ −ca (Corollary 3.8) and using
Lemma 3.11 iv).

Flow pack inequalities may be facet-defining for the restriction

XSNF
P+ = conv{ (f , x) ∈ XSNF : xa = 1 ∀a ∈ P+ }

ofXSNF obtained by fixing all variables inP+ to their upper bound. In this context (5.8) is obtained
by lifting (5.9) to a valid inequality forXSNF using the superadditive functionFµ,c̄ . A weakened
formulation of a result of Atamtürk [2001] is:

Proposition 5.3 (Atamtürk [2001]) (5.9)defines a facet ofXSNF
P+ if maxa∈P− ca > µ, ca > µ for

all a ∈ L+ andR− ∪ P+ 6= ∅.
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Remark 5.4 The Propositions 5.2 and 5.3 indicate that in order to derivestrong valid flow cover-
and flow pack inequalities, it is necessary to choose flow covers and flow packs such thatλ or µ
are small. This is true for all kinds of single node flow sets (see Gu et al. [1999], Atamtürk [2001],
Atamẗurk et al. [2001] and Louveaux & Wolsey [2003]).

The excessλ for flow covers or the residualµ for flow packs should be smaller than certain coeffi-
cients of the base inequality. The same holds for all the kinds of knapsack sets and the corresponding
covers and packs (see Atamtürk [2003a] for a survey).

Note that a flow cover forXSNF can be seen as a cover with respect to the single constraint
(5.4). Similarly, a flow pack is a pack with respect to the inequality that is obtained by aggregating
and substituting. We introduced covers and packs for mixed knapsack sets in Section 3.3.

Flow cover inequalities andCSDI We reviewed that strong flow cover- and flow pack inequalities
can be obtained with a certainMIR procedure introduced by Marchand & Wolsey [1998] and applied
to single node flow sets by Louveaux & Wolsey [2003]. The procedure consists of the five steps
Aggregating, Substituting, Complementing, ScalingandMIR .

In the following we will show that the procedure is in fact just an extension to the one that was
developed to derive the strong valid flow cut inequalities for CSDI in Section 4.2.1. Set

Y SNF := conv{ (f , x) ∈ XSNF : f (A+
S )− f (A−

S ) = dS }.

HenceY SNF is CSDI(u) but with arc dependent capacities. Note that now we can reverse the
directions of the flow and consider a relaxation of the flow conservation constraint forY SNF of the
form

f (A−
S )− f (A+

S ) ≤ −dS .

Thus flow packs forY SNF (orCSDI(u)) are flow overs when multiplying the flow conservation con-
straint by−1. In terms of the underlying graph, switching between flow covers and flow packs means
switching between the cut set forS and the cut set forV \S. So, in the sequel we can concentrate on
flow covers and flow cover inequalities.

Let (C+, L+, R+) and(C−, L−, R−) be partitions ofA+
S andA−

S , respectively, where(C+, C−)

is a flow cover, as defined above. SetA+
1 := C+ ∪ L+ andA−

2 := C− ∪ L−. Aggregating and
substituting as in Section 4.2.1 gives the base inequality

∑

a∈A+

1

caxa −
∑

a∈A−
2

caxa + f (Ā+
1 ) + f̄ (C− ∪ L−) ≥ dS .

Notice thatĀ+
1 = R+. Extending the procedure from Section 4.2.1 by additionally complementing

variables inC+ ∪ C yields

−
∑

a∈C+

cax̄a +
∑

a∈L+

caxa +
∑

a∈C−

cax̄a −
∑

a∈L−

caxa + f (Ā+
1 ) + f̄ (C− ∪ L−) ≥ −λ. (5.10)

Choosēc > λ. The 1
c̄
-MIR inequality for (5.10) is

∑

a∈C+

G−λ,c̄(−ca)x̄a +
∑

a∈L+

G−λ,c̄(ca)xa +
∑

a∈C−

G−λ,c̄(ca)x̄a +
∑

a∈L−

G−λ,c̄(−ca)xa

+ f (R+) + f̄ (C− ∪ L−) ≥ 0. (5.11)
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In the following we show that inequality (5.11) is equivalent to theMIR-flow cover inequality (5.6) up
to a scalar multiple of the flow conservation constraintf (A+

S )−f (A−
S ) = dS . Hence both inequalities

induce the same face ofY SNF .

Lemma 5.5 If λ < c̄ then(5.11)and (5.6) induce the same face ofY SNF .

Proof. Adding to (5.11) the flow conservation constraintf (A−
S )− f (A+

S ) = −dS gives

∑

a∈C+

G−λ,c̄(−ca)x̄a +
∑

a∈L+

G−λ,c̄(ca)xa +
∑

a∈C−

G−λ,c̄(ca)x̄a +
∑

a∈L−

G−λ,c̄(−ca)xa

− f (C+ ∪ L+) +
∑

a∈C−∪L−

caxa + f (R−) ≥ −dS

with G−λ,c̄(ca) = −Fλ,c̄(−ca) reducing to
∑

a∈C+

Fλ,c̄(ca)x̄a +
∑

a∈L+

Fλ,c̄(−ca)xa +
∑

a∈C−

Fλ,c̄(−ca)x̄a +
∑

a∈L−

Fλ,c̄(ca)xa

+ f (C+ ∪ L+)−
∑

a∈C−∪L−

caxa − f (R−) ≤ dS .

Using thatFλ,c̄(−ca) = F−λ,c̄(ca)− ca if 〈 c̄
λ
〉 > 0 (Lemma 3.11 iii)) yields

∑

a∈C+

F−λ,c̄(−ca)x̄a +
∑

a∈L+

F−λ,c̄(ca)xa +
∑

a∈C−

F−λ,c̄(ca)x̄a +
∑

a∈L−

F−λ,c̄(−ca)xa

− f̄ (C+ ∪ L+)− f (R−) ≤ −λ,

which is inequality (5.6). We have shown that (5.11) is (5.6)up to a scalar multiple of the flow
conservation constraint. Hence both inequalities induce the same face ofY SNF . II

It turns out that in presence of the flow conservation constraint f (A+
S ) − f (A−

S ) = dS theMIR
procedures of Section 4.2 and Section 4.3, augmented with complementing, can be used to obtain
flow cover inequalities. Hence flow cover inequalities generalise flow cut inequalities.

The single facility case For the setCSDI(u) in the single-facility case it will be shown now that
the extended procedure does not provide a new class of inequalities. A capacityc can be installed
independent froma ∈ AS . The conditions from Proposition 5.2 and Proposition 5.3 concerning the
size ofλ andµ reduce toλ < c andµ < c.

Lemma 5.6 If ca = c for all a ∈ AS andλ < c, theMIR flow cover inequality reduces to the flow
cut inequality(4.14)of Section 4.2.1.

Proof. Let (C+, C−) be a flow cover. Hence

∑

a∈C+

cua −
∑

a∈C−

cua − dS = c(u(C+)− u(C−))− dS = λ > 0.

With (u(C+) − u(C−)) ∈ Z andc > λ follows that〈
dS

c
〉 > 0, (u(C+) − u(C−)) = ⌈

dS

c
⌉ and

λ = c − r(dS , c) =: c − r. But then

G−λ,c̄(ca) = Gr−c,c(c) = r and G−λ,c̄(−ca) = Gr−c,c(−c) = −r.
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and inequality (5.11) takes the form

−
∑

a∈C+

rx̄a +
∑

a∈L+

rxa +
∑

a∈C−

rx̄a −
∑

a∈L−

rxa +
∑

a∈R+

fa +
∑

a∈C−∪L−

f̄a ≥ 0

⇐⇒

rx(C+ ∪ L+)− rx(C− ∪ L−) + f (R+) + f̄ (C− ∪ L−) ≥ r⌈
d

S

c
⌉,

which after settingA+
1 := C+ ∪L+ andA−

2 := C− ∪L− leads to the flow cut inequality (4.14).II

It was shown that for single-facility bounded cut sets with arc independent capacities we cannot
obtain a new class of strong valid inequalities with theMIR procedure described above. Comple-
menting does not change the correspondingMIR inequalities. The question that arises is, how can
the special structure of such sets be exploited? The author conjectures that the bound constraints
itself suffice here. The setsCSDI(u), CSBI andCSUN(u) are completely described by all cut set
inequalities from Section 4.2 together with all bound constraints.

Example 5.7 Consider the cut sets from Example 4.5 and Example 4.16 but now with bounded
design variables:

CSDI(u) = conv{x ∈ Z4, f ∈ R4 | f1+ f2 − f3 − f4 = 7

0 ≤ fi ≤ 3xi, i ∈ {1, 2, 3, 4}

xi ≤ui}

with u = (1, 3, 2, 1) and

CSBI(u) = conv{x ∈ Z2, f ∈ R4 | f1+ f2 − f3 − f4 = 7,

0 ≤ fi ≤ 3x1 ≤ 6, i ∈ {1, 3},

0 ≤ fi ≤ 3x2 ≤ 9, i ∈ {2, 4}},

CSUN (u) = conv{x ∈ Z2, f ∈ R4 | f1+ f2 − f3 − f4 = 7,

f1+ f3 ≤ 3x1 ≤ 6,

f2+ f4 ≤ 3x2 ≤ 9,

0 ≤ fi, i ∈ {1, ..., 4}}.

Adding all flow cut inequalities stated in Example 4.5 to the linear relaxation ofCSDI(u) yields a
complete description ofCSDI(u) (PORTA, Christof & L̈obel [2005]). The same holds forCSBI(u)

as well asCSUN (u) and the cut set inequalities given in Example 4.16 (PORTA, Christof & Löbel
[2005]).

Summary We gave an introduction to flow covers and flow packs and showedthat flow cover
inequalities generalise flow cut inequalities forCSDI . They are obtained by the sameMIR procedure
but by additional complementing variables in the flow cover.In the single-facility case this procedure
does not provide a new class of inequalities.
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5.2 A MIR procedure in the multi-facility case

In this sectionCSDI(u) is considered to be given with a set of facilitiesT having a cardinality of
at least2. We first restrict our attention to cut sets with DIrected capacity constraints. TheMIR
procedure that is going to be developed can be applied toCSBI(u) andCSUN(u) in a similar way.

5.2.1 DIrected capacity constraints

If there is more than one commodity to route we choose a subsetQ of the commodities and aggregate
as already shown in Section 4.2 to arrive at a system of the form

fQ(A+
S )− fQ(A−

S ) = dQ
S

fQ
a ≤

∑

t∈T

ctxt
a ∀a ∈ AS

0 ≤ xt
a ∀a ∈ AS , t ∈ T

In the last section it was shown that to obtain strong valid flow cover inequalities we simply have
to extend theMIR procedure of Section 4.2. This approach will be used in the multi-facility case too.
We will apply the stepsaggregatingandsubstituting to arrive at the base inequality (4.25) that was
used in Section 4.3.1 to obtain the flow cut inequalities (4.27). But beforescaling andMIR we will
complementdesign variables in previously chosen flow covers. It turns out that in contrast to the
single-facility case this extended procedure provides newclasses of strong valid inequalities.

To be able to calculate flow cover inequalities in the multi-facility case, the definition of flow
covers has to be extended.

Definition 5.8 (C+, C−) is a flow coverfor CSDI(u) if

C+ ⊆ A+
S , C

− ⊆ A−
S and

∑

a∈C+,t∈T

ctut
a −

∑

a∈C−,t∈T

ctut
a − d

Q
S = λ > 0.

Note again that considering the cut set forV \S by multiplying the flow conservation constraint
f (A+

S )− f (A−
S ) = dQ

S by−1 we obtain reverse flow covers forCSDI(u) with the same definition.
Hence we can concentrate on flow covers.

If ut
a = 1 for all a ∈ AS , t ∈ T , then this definition can be seen as a special case of the definition

first given by Atamtürk et al. [2001], who investigate the most general single node flow set given in the
literature. Their additive variable upper bound capacity constraints, in fact, generalise the DIrected
and even the BIdirected case considered in this thesis.

Before we explicitly state theMIR flow cover inequalities, a little example is given to demonstrate
our approach.

Example 5.9 Here we consider the cut set from Example 4.35 given in Section 4.3 but with bounds
on the design variables:

CSDI(1) = conv{x ∈ Z6
+, f ∈ R3

+ | f1 + f2 − f3 = 3

fi ≤ 2x1
i + 5x2

i ,

xi ≤ 1, i ∈ {1, 2, 3}}
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5.2 A MIR procedure in the multi-facility case

CSDI(1) has dimension8. The flow cut inequalities stated in Example 4.35 are all valid forCSDI(1)

sinceCSDI(1) ⊂ CSDI . From the facet-defining flow cut inequalities forCSDI (4.30b), (4.30d),
(4.30f), (4.30h)and (4.30l) still define facets ofCSDI(1) while (4.30a2), (4.30e2)and (4.30i2)are
faces of dimension6. The remaining flow cut inequalities are weak forCSDI(1) (inducing faces of
dimension 3 to 5).

There are four flow covers with respect to Definition 5.8:

(C+, C−) =({1}, ∅) λ = 4,

(C+, C−) =({2}, ∅) λ = 4,

(C+, C−) =({1, 2}, ∅) λ = 11,

(C+, C−) =({1, 2}, {3}) λ = 4.

Choosing the cover(C+, C−) = ({1}, {∅}) it will be shown in the following how to derive a flow
cover inequality.C+ has to be a subset ofA+

1 andC− a subset ofA−
2 . SettingA+

1 = {1} and
A−

2 = {3} the base inequality is

f2 + f̄3 + 2x1
1 + 5x2

1 − 2x1
3 − 5x2

3 ≥ 3

wheref̄3 = 2x1
3 +5x2

3−f3. Note that with respect to this inequality(C+∪C−) is a cover as defined
in Section 3.3. Complementing variables in the flow cover yields

f2 + f̄3 − 2x̄1
1 − 5x̄2

1 − 2x1
3 − 5x2

3 ≥ −4.

Settingc̄ = 5 > λ and calculating the1
c̄
-MIR inequality gives

f2 + f̄3 − x̄
2
1 − x

2
3 ≥ 0 ⇐⇒

f2 + 2x1
3 + 4x2

3 − f3 + x2
1 ≥ 1

defining a facet ofCSDI(1). We will now state all possible flow cover inequalities with respect to
Definition 5.8:

f2 + x2
1 ≥ 1 (C+ = {1}, C− = ∅, A+

1 = {1}, A−
2 = ∅) (5.12a)

f2 + 2x1
3 + 4x2

3 − f3 + x2
1 ≥ 1 (C+ = {1}, C− = ∅, A+

1 = {1}, A−
2 = {3}) (5.12b)

x2
1 + x1

2 + x2
2 ≥ 1 (C+ = {1}, C− = ∅, A+

1 = {1, 2}, A−
2 = ∅) (5.12c)

2x1
3 + 4x2

3 − f3 + x2
1 + x1

2 + x2
2 ≥ 1 (C+ = {1}, C− = ∅, A+

1 = {1, 2}, A−
2 = {3}) (5.12d)

f1 + x2
2 ≥ 1 (C+ = {2}, C− = ∅, A+

1 = {2}, A−
2 = ∅) (5.12e)

f1 + 2x1
3 + 4x2

3 − f3 + x2
2 ≥ 1 (C+ = {2}, C− = ∅, A+

1 = {2}, A−
2 = {3}) (5.12f)

x1
1 + x2

1 + x2
2 ≥ 1 (C+ = {2}, C− = ∅, A+

1 = {1, 2}, A−
2 = ∅) (5.12g)

2x1
3 + 4x2

3 − f3 + x1
1 + x2

1 + x2
2 ≥ 1 (C+ = {2}, C− = ∅, A+

1 = {1, 2}, A−
2 = {3}) (5.12h)

0 ≥ 0 (C+ = {1, 2}, C− = ∅, A+
1 = {1, 2}, A−

2 = ∅) (5.12i)

2x1
3 + 5x2

3 − f3 ≥ 0 (C+ = {1, 2}, C− = ∅, A+
1 = {1, 2}, A−

2 = {3}) (5.12j)

x1
3 + 4x2

3 − f3 + x2
1 + x2

2 ≥ 0 (C+ = {1, 2}, C− = {3}, A+
1 = {1, 2}, A−

2 = {3})

(5.12k)
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All inequalities, based on flow covers with excess ofλ = 4, are not trivial and are not equivalent to
already known cut set inequalities. All define facets forCSDI(1). Note that4 < 5 = max(ct)t∈T ,
thusλ is small with respect to the coefficients of the base inequalities.

Both (5.12i) and (5.12j), based on the flow cover(C+, C−) = ({1, 2}, ∅) with large excess
λ = 11, are trivial.

Reversing the flow directions we could consider the flow conservation constraintf3 − f1 + f2 =

−3 in order to obtain reverse flow covers. But since
∑

t∈T c
tut

a = 7 > 3 for all a ∈ {1, 2, 3}, there
is no reverse flow cover forCSDI(1)

From the last example we draw the following conclusions:

• Extending theMIR procedure of Section 4.3 by additionally complementing variables in a flow
cover provides a new class of strong valid inequalities for the setCSDI(u).

• A shortcoming of Definition 5.8 is that it is not very general.It may happen that there are no
flow covers or that all flow covers have large excessλ.

The second point can be handled by generalising the definition of a flow cover. We follow the ap-
proach of Atamtürk et al. [2001]. We will (implicitly) consider restrictions ofCSDI(u) by fixing
design variables to their lower bound zero. Flow covers willbe defined with respect to such restric-
tions. The corresponding flow cover inequalities can be seenas lifted inequalities. The lifting from
valid flow cover inequalities of the restrictions to valid inequalities ofCSDI(u) is done by using the
same subadditiveMIR function that was used to generate the (restricted) flow cover inequalities, such
that we can explicitly state the lifted inequalities without considering neither the restrictions nor the
restricted inequalities (see Proposition 3.14 about superadditive (subadditive) lifting withMIR).

Note that this approach can be extended by using other, possibly stronger valid superadditive
(subadditive) lifting functions to lift theMIR flow cover inequalities, as it has been done by Atamtürk
et al. [2001] and by Louveaux & Wolsey [2003]. In this thesis we solely considerMIR as a lifting
procedure.

Definition 5.10 LetTa ⊆ T , Ta 6= ∅ for all a ∈ AS .
(C+, C−) is ageneralised flow coverfor CSDI(u) with respect to the setsTa, a ∈ AS if

C+ ⊆ A+
S , C

− ⊆ A−
S and

∑

a∈C+

∑

t∈Ta

ctau
t
a −

∑

a∈C−

∑

t∈Ta

ctau
t
a − d

Q
S = λ > 0.

Notice that settingTa = T for all a ∈ AS gives Definition 5.8. Again, ifut
a = 1 for all

a ∈ AS , t ∈ T , then this definition is a special case of the definition of generalised flow covers of
Atamtürk et al. [2001].

Example 5.9 (continued) With the extended definition there is a bunch of generalised flow covers
for the setCSDI(1). We only state two examples. SetT1 = {1} and T2 = {1}. It follows that
(C+, C−) = ({1, 2}, ∅) is a generalised flow cover with excessλ = 1. Taking the base inequality

f̄3 + 2x1
1 + 5x2

1 + 2x1
2 + 5x2

2 − 2x1
3 − 5x2

3 ≥ 3,

complementingx1
1 andx1

2 and calculating the15 -MIR inequality gives

f̄3 − x̄
1
1 + 4x2

1 − x̄
1
2 + 4x2

2 − x
1
3 − 4x2

3 ≥ 0 ⇐⇒

f2 + x1
3 + x2

3 − f3 + x1
1 + 4x2

1 + x1
2 + 4x2

2 ≥ 2
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5.2 A MIR procedure in the multi-facility case

defining a facet ofCSDI(1).

Now setT1 = {1, 2}, T2 = {2} and T3 = {1, 2}. Hence(C+, C−) = ({1, 2}, {3}) is a
generalised flow cover with excessλ = 2. Taking the same base inequality, complementing inx1

1, x2
1,

x2
2, x1

3, x2
3 and calculating the15 -MIR inequality results in

f̄3 − 3x̄2
1 + 2x1

2 − 3x̄2
2 + 2x̄1

3 + 3x̄2
3 ≥ 0 ⇐⇒

2x2
3 − f3 + 3x2

1 + 2x1
2 + 3x2

2 ≥ 1,

which is facet-defining.

We will now generalise the last example and will describe theprocedure to obtain flow cover
inequalities for the setCSDI(u) in the multi-facility case.

Aggregating and Substituting Aggregate and Substitute as in Section 4.3.1 to arrive at thebase
inequality

fQ(Ā+
1 ) + f̄Q(A−

2 ) +
∑

t∈T

ct
(
xt(A+

1 )− xt(A−
2 )

)
≥ dQ

S ,

whereA+
1 ⊆ A+

S , A−
2 ⊆ A−

S andQ a subset of the commoditiesK. The arc setsA+
1 , A−

2 and the
commodity setQ are chosen as described in Section 4.3.1.

Complementing This step is an extension to the procedure in Section 4.3.1. Choose setsTa ⊆ T ,
Ta 6= ∅ for all a ∈ AS and a generalised flow cover(C+, C−) with small excessλ such thatC+ ⊆ A+

1

andC− ⊆ A−
2 . We restrict our attention to flow covers withλ < max(ct)t∈T . LetL+ := A+

1 \C
+,

L− := A−
2 \C

− andT̄a := T\Ta for a ∈ AS. Complementing all design variables in the chosen flow
cover yields

fQ(Ā+
1 ) + f̄Q(A−

2 )−
∑

a∈C+,t∈Ta

ctx̄t
a +

∑

a∈C+,t∈T̄a

ctxt
a +

∑

a∈L+,t∈T

ctxt
a

+
∑

a∈C−,t∈Ta

ctx̄t
a −

∑

a∈C−,t∈T̄a

ctxt
a −

∑

a∈L−,t∈T

ctxt
a ≥ −λ.

Scaling andMIR Setc̄ := max(ct)t∈T . Hencec̄ > λ andc̄ ≥ ct for all t ∈ T . Now calculate the
1
c̄
-MIR inequality

fQ(Ā+
1 ) + f̄Q(A−

2 )

+
∑

a∈C+,t∈Ta

G−λ,c̄(−c
t)x̄t

a +
∑

a∈C+,t∈T̄a

G−λ,c̄(c
t)xt

a +
∑

a∈L+,t∈T

G−λ,c̄(c
t)xt

a

+
∑

a∈C−,t∈Ta

G−λ,c̄(c
t)x̄t

a +
∑

a∈C−,t∈T̄a

G−λ,c̄(−c
t)xt

a +
∑

a∈L−,t∈T

G−λ,c̄(−c
t)xt

a ≥ 0.
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Using Lemma 3.11 iv) leads to

fQ(Ā+
1 ) + f̄Q(A−

2 )

−
∑

a∈C+,t∈Ta

(ca − λ)+x̄t
a +

∑

a∈C+,t∈T̄a

min(ca, c̄ − λ)xt
a +

∑

a∈L+,t∈T

min(ca, c̄ − λ)xt
a

+
∑

a∈C−,t∈Ta

min(ca, c̄ − λ)x̄t
a −

∑

a∈C−,t∈T̄a

(ca − λ)+xt
a −

∑

a∈L−,t∈T

(ca − λ)+xt
a ≥ 0.

Note that the last inequality is still valid if̄c > max(ct)t∈T . But it gets weaker.̄c = max(ct)t∈T is
the best choice here. Rewriting in the space of original variables gives

fQ(Ā+
1 )− fQ(A−

2 )

+
∑

a∈C+,t∈Ta

(ca − λ)+xt
a +

∑

a∈C+,t∈T̄a

min(ca, c̄ − λ)xt
a +

∑

a∈L+,t∈T

min(ca, c̄ − λ)xt
a

+
∑

a∈C−,t∈Ta

(ca − c̄ + λ)+xt
a +

∑

a∈C−,t∈T̄a

min(ca, λ)xt
a +

∑

a∈L−,t∈T

min(ca, λ)xt
a

≥
∑

a∈C+,t∈Ta

(ca − λ)+ut
a −

∑

a∈C−,t∈Ta

min(ca, c̄ − λ)ut
a, (5.13)

which we call a (generalised)MIR flow cover inequality for the polytopeCSDI(u) in the multi-faci-
lity case.

Similar to Lemma 5.5 it can be shown that by adding a scalar multiple of the flow conservation
constraint inequality (5.13) reduces to the additive≤-MIR flow cover inequality stated in Louveaux
& Wolsey [2003].

SupposeTa = T for all a ∈ C+ andC− ∪ L+ = ∅. If additionally max(ct)t∈T > λ then
(5.13) reduces to the additive flow cover inequality of Atamtürk et al. [2001], which is facet-defi-
ning for the set considered there under these conditions (Atamtürk et al. [2001, Proposition 3]). This
generalises Proposition 5.2 and provides the still missingmotivation to only consider flow covers with
max(ct)t∈T > λ.

Flow cover inequalities may be strong and non-redundant under weaker conditions (Atamtürk
et al. [2001, Remark 2]) as for instance inequality (5.12k),which is facet-defining althoughC− 6= ∅.

If Ta 6= T for somea ∈ C+ ∪ C−, then (5.13) can be seen as obtained by lifting variables in
T̄a, a ∈ C

+ ∪ C− using the valid subadditiveMIR functionG−λ,c̄ . For other valid lifting functions
see Atamtürk et al. [2001] and Louveaux & Wolsey [2003].

Summary Based on the observations of Section 5.1 we developed aMIR procedure that can be used
to separate flow cover inequalities forCSDI(u) in the general multi-commodity multi-facility case.
It turned out that thisMIR procedure provides a large class of strong valid inequalities different from
flow cut inequalities.

5.2.2 BIdirected and UNdirected capacity constraints

In this section we consider the setsCSBI(u) andCSUN(u) in the multi-facility case. We will simply
apply theMIR procedure developed in the last section.
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5.2 A MIR procedure in the multi-facility case

In Section 4.3.2 we stated valid base inequalities for the setsCSBI(u) andCSUN (u) that were
used to obtain the flow cut inequalities of type (4.33) byMIR.

The same base inequalities will be used here but before applying the finalMIR step, variables will
be complemented in a previously chosen flow cover.

Definition 5.11 LetTe ⊆ T , Te 6= ∅ for all e ∈ ES .

(C1, C2) is ageneralised flow coverfor CSBI(u) andCSUN (u) with respect to the setsTe, e ∈ ES

if

C1, C2 ⊆ ES and
∑

e∈C1

∑

t∈Te

cteu
t
e −

∑

e∈C2

∑

t∈Te

cteu
t
e − d

Q
S = λ > 0.

Note that not necessarilyC1 ∩ C2 = ∅. We will now describe theMIR procedure that produces
strong valid flow cover inequalities for the setsCSBI(u) andCSUN(u).

Aggregating and Substituting In Section 4.3.2 it was shown how to obtain (4.31)

fQ(Ē+
1 ) + f̄Q(E−

2 ) +
∑

t∈T

ct
(
xt(E1)− x

t(E2)
)
≥ dQ

S ,

as a valid base inequality for the setsCSBI andCSUN . SinceCSBI(u) ⊆ CSBI andCSUN(u) ⊆

CSUN , this inequality is also valid for the bounded cut sets. Remember that

f̄Q(E−
2 ) =

∑

t∈T

ctxt(E2)− f
Q(E−

2 ) ≥ 0

andE1, E2 are subsets of the cutES . We will use inequality (4.31) as a base inequality for the
derivation of flow cover inequalities. We choose the setsQ, E1 andE2 with the same restrictions as
in (4.3.2). So for the BIdirected bounded cut setsCSBI(u) we only consider the caseE1\E2 6= ∅

and forCSUN (u) we restrict ourselves toE1 ∩ E2 = ∅ (see Lemma 4.17).

Complementing, Scaling andMIR We start with the base inequality (4.31). As an extension to the
procedure in Section 4.3.2 choose setsTe ⊆ T , Te 6= ∅ for all e ∈ ES and a generalised flow cover
(C1, C2) with excessλ < max(ct)t∈T such thatC1 ⊆ E1 andC2 ⊆ E2.

Notice that ifC1 ∪ C2 ⊆ E1 ∩ E2 there are no variables to complement in the base inequality
(4.31). Suppose(C1 ∪ C2)\(E1 ∩ E2) 6= ∅.

Let L1 := E1\C1, L2 := E2\C2 and T̄e := T\Te for e ∈ ES . Complementing all design
variables in the chosen flow cover yields

fQ(Ē+
1 ) + f̄Q(E−

2 )−
∑

a∈C1,t∈Te

ctx̄t
e +

∑

e∈C1,t∈T̄e

ctxt
e +

∑

e∈L1,t∈T

ctxt
e

+
∑

e∈C2,t∈Te

ctx̄t
e −

∑

e∈C2,t∈T̄e

ctxt
e −

∑

e∈L2,t∈T

ctxt
e ≥ −λ.
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Similar to the last section we get

fQ(Ē+
1 )− fQ(E−

2 )

+
∑

e∈C1,t∈Te

(ce − λ)+xt
e +

∑

e∈C1,t∈T̄e

min(ce, c̄ − λ)xt
e +

∑

e∈L1,t∈T

min(ce, c̄ − λ)xt
e

+
∑

e∈C2,t∈Te

(ce − c̄ + λ)+xt
e +

∑

e∈C2,t∈T̄e

min(ce, λ)xt
e +

∑

e∈L2,t∈T

min(ce, λ)xt
e

≥
∑

e∈C1,t∈Te

(ce − λ)+ut
e −

∑

e∈C2,t∈Te

min(ce, c̄ − λ)ut
e (5.14)

as a generalised flow cover inequality for the setsCSBI(u) andCSUN (u), wherec̄ = max(ct)t∈T .
We conclude this section with an example.

Example 5.12 Consider a bounded cut set with UNdirected capacity constraints:

CSUN (u) = conv{x ∈ Z2, f ∈ R8 | f1
1 + f1

2 − f
1
3 − f

1
4 = 3,

f2
1 + f2

2 − f
2
3 − f

2
4 = 1,

0 ≤ f1
1 + f1

3 + f2
1 + f2

3 ≤ 2x1
1 + 3x2

1,

0 ≤ f1
2 + f1

4 + f2
2 + f2

4 ≤ 2x1
2 + 3x2

2}

First note that we can calculate the flow cut inequalities(4.33) that are obtained with aMIR proce-
dure without complementing as described in Section 4.3.2. Many of those inequalities are strong for
CSUN(u) but we will concentrate on the derivation of flow cover inequalities.

SinceCSUN(u) is a cut set with UNdirected capacity constraints, we only choose base inequali-
ties withE1 ∩ E2 = ∅ and set̄c = max(ct)t∈T = 3. First letQ = {1}, E1 = {1} andE2 = ∅. The
corresponding base inequality of type(4.31)is

f1
2 + 2x1

1 + 3x2
1 ≥ 3.

SettingT1 = {1, 2} and(C1, C2) = ({1}, ∅) gives a flow cover withλ = 2. The corresponding flow
cover inequality is given by

f1
2 + x2

1 ≥ 1

defining a facet ofCSUN (u).

Now takeQ = K+ = {1, 2}. LetE1 = {1} andE2 = {2}. The base inequality of type(4.31)is

(f1
2 + f2

2 ) + f̄1,2
4 + 2x1

1 + 3x2
1 − 2x1

2 − 3x2
2 ≥ 4,

wheref̄1,2
4 = 2x1

2 + 3x2
2 − f

1
4 − f

2
4 . SetC1 = {1}, C2 = ∅ andT1 = {1, 2}. It follows thatλ = 1

and the flow cover inequality is

f1
2 + f2

2 + x1
2 + x2

2 − f
1
4 − f

2
4 + x1

1 + 2x2
1 ≥ 3

defining a high dimensional face ofCSUN (u) (dimension≥ 5). Now setE1 = {1, 2} andE2 = ∅.
The base inequality is

2x1
1 + 3x2

1 + 2x1
2 + 3x2

2 ≥ 4.
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5.3 Summary

ChoosingC1 = {1, 2} andT1 = T2 = {2} means complementingx2
1, x

2
2. The corresponding flow

cover inequality withλ = 2 is
x1

1 + x2
1 + x1

2 + x2
2 ≥ 2.

defining a facet ofCSUN (u). The same cut inequality is obtained by calculating the1
2 -MIR inequal-

ity for 2x1
1 + 3x2

1 + 2x1
2 + 3x2

2 ≥ 4 (without complementing).

5.3 Summary

In this chapter we introduced the terms flow cover and flow pack. We started with a literature review
in Section 5.1 and showed how well-known flow cover- and flow pack inequalities can be derived with
aMIR procedure that extend the ones given in Chapter 4 by additionally complementing variables in
an appropriate chosen flow cover. It then turned out that in the single-facility case this extended
procedure is not useful for the sets considered in this thesis, which are based on arc independent
capacity constraints. This is not true if more than one facility is considered.

In Section 5.2 it was shown that the extendedMIR procedure to obtain flow cover inequalities
in the general multi-facility case leads to a new class of strong valid inequalities.MIR-flow cover
inequalities may be used to strengthen the initial formulation in Branch & Cut algorithms in addition
to the pure flow cut inequalities of Chapter 4 obtained with the restricted procedure.
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Chapter 6

Extensions and outlook

6.1 Introduction

In the last two chapters we made use of a generalMIR procedure that has already been developed in
Chapter 3. By aggregating inequalities of the initial formulation with respect to a cut of the network
and applyingMIR-procedure to the resulting valid inequalities it was shownhow to detect strong valid
and even facet-defining inequalities. In this chapter we concentrate on relaxations of network design
polyhedra different from cut sets and apply the sameMIR procedure. All the stated inequalities are
well-known and most of them are facet-defining under certainconditions. We only give a review
without providing any proofs elaborating the way to apply the MIR procedure. As an outlook on
future research we pose some open questions and sketch some interesting ideas.

Literature Review and outline of this chapter Single arc (or edge) sets arise from the capacity
constraint of a single arc (or edge). These sets and the corresponding arc (or edge) residual capacity
inequalities for different models have been investigated by Magnanti et al. [1993, 1995], Rajan &
Atamtürk [2002b] and Hoesel et al. [2000, 2004]. We will consider them in Section 6.2.

As a generalisation to cut inequalities we consider so-called multi cut inequalities in Section
6.3. Multi cut inequalities for partitions of size three have been studied by Magnanti et al. [1993]
(UNdirected), Bienstock & Günlük [1996] (BIdirected) and Bienstock et al. [1995] (DIrected) for up
to two facilities. All these articles are based on the study of complete three-node networks.

Section 6.4 reviews the results of Pochet & Wolsey [1992, 1995] on (unbounded) integer knapsack
sets with divisible coefficients. The corresponding knapsack partition inequalities can be seen as
multiple stepMIR-inequalities.

Mixing and sequential pairing ofMIR inequalities was introduced by Günlük & Pochet [2001].
Extensions are from Guan et al. [2004]. Günlük [1999] shows the usefulness of this approach for
network design problems. The main results are given in Section 6.5.

We conclude with a note on sparse networks and cut set inequalities in Section 6.6.

6.2 Arc residual capacity inequalities

For simplicity we assume that demands are disaggregated (see Chapter 2), hence every commodity
is given as a single point-to-point demand. Given the set of demand arcsD and a commodityk =
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(u, v) ∈ D = K, definedk := dk
u ∈ Z+\{0}. Hencedk is the traffic that has to be routed fromu to

v for k = (u, v). If Q is a subset of the commoditiesK setdQ :=
∑

k∈K dk.
Consider a DIrected network design problem. Given a single arc a of the supply graph we can

upper bound the flow ona by dk for every commodityk ∈ K since we can always delete flow around
cycles:

fk
a ≤ d

k ∀k ∈ K,a ∈ A.

Assume that these constraints are added to the initial formulation which does not affect the optimal
solution. GivenQ ⊆ K we additionally incorporate the (relaxed) capacity constraint of the arca:

fQ
a ≤

∑

t∈T

ctxt
a

Settingf̃Q
a := dQ − fQ

a ≥ 0 the following valid base inequality can be formulated:

f̃Q
a +

∑

t∈T

ctxt
a ≥ d

Q.

Choosings ∈ T , applyingMIR and restating in terms of the original flow variables gives so-called
arc residual capacity inequalities:

−fQ
a +

∑

t∈T

GdQ,cs(ct)xt
a ≥ r

Q
s η

Q
s − d

Q.

with rQ
s := r(dQ, cs) andηQ

s = ⌈d
Q

cs ⌉. Hence arc residual capacity inequalities can be obtained by
considering a single arc of the network and a procedure that consists ofSubstituting, Scaling and
MIR .

The same procedure can now be applied to BIdirected and UNdirected problems. For BIdirected
problems we consider the following two base inequalities defined for a single edgee = ij of the
network and a subsetQ of the commodities

f̃Q
ij +

∑

t∈T

ctxt
e ≥ d

Q and f̃Q
ji +

∑

t∈T

ctxt
e ≥ d

Q

with f̃Q
ij = dQ − fQ

ij ≥ 0 andf̃Q
ji = dQ − fQ

ij ≥ 0 and for UNdirected problems

f̃Q
ij + f̃Q

ji +
∑

t∈T

ctxt
e ≥ d

Q

with f̃Q
ij + f̃Q

ji = dQ − fQ
ij − f

Q
ji . The resulting edge residual capacity inequalities are

BIdirected: − fQ
ij +

∑

t∈T

GdQ,cs(ct)xt
e ≥ r

Q
s η

Q
s − d

Q,

− fQ
ji +

∑

t∈T

GdQ,cs(ct)xt
e ≥ r

Q
s η

Q
s − d

Q

UNdirected: − fQ
ij − f

Q
ji +

∑

t∈T

GdQ,cs(ct)xt
e ≥ r

Q
s η

Q
s − d

Q
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6.3 Multi cut inequalities

For all arc (or edge) residual capacity inequalities the coefficients of design variables can be rounded
down tomin

(
GdQ,cs(ct), r

Q
s η

Q
s

)
.

Edge residual capacity inequalities were introduced by Magnanti et al. [1993, 1995] for UNdi-
rected problems with one and two facilities. We have generalised this class of inequalities to the
multi-facility case.

Outlook By introducing the variablesyk
a := fk

a

dk , upper bound and capacity constraints reduce to

∑

k∈Q

dkyk
a ≤

∑

t∈T

ctxt
a and yk

a ≤ 1

The (splittable flow) single arc set (polyhedron) fora is defined as the convex hull of

{ (y, x) ∈ [0, 1]Q × ZT
+ :

∑

k∈Q

dkyk
a ≤

∑

t∈T

ctxt
a }

For non-bifurcated routing (unsplittable flow)y has to be restricted to{0, 1}Q.
For a study of such polyhedra see Magnanti et al. [1995], Rajan & Atamtürk [2002b] and Hoesel

et al. [2000, 2004]. It is obvious that arc (or edge) residualcapacity inequalities are valid for the
corresponding arc (or edge) set polyhedra. They are facet-defining under certain conditions. This is
proven at least for the one and two facility case (with divisible capacities).

Magnanti et al. [1995] show that edge residual capacity inequalities can even be facet-defining
for NDPUN (with two divisible facilities). Their result might be decomposable. As in Theorem 4.4
one might find conditions under which facet-defining inequalities for arc (or edge) set polyhedra are
facet-defining for the corresponding network design polyhedra. Hoesel et al. [2000, 2004] did so for
BIdirected and UNdirected problems but with non-bifurcated routing.

Applying MIR as above is equivalent to considering arc (or) edge residualcapacity inequalities in
the single-facility case and then lift them to the multi-facility case by using the valid subadditiveMIR
functionG (see Chapter 3). It is not clear if this lifting is exact.

Rajan & Atamtürk [2002b] state a linear-time separation procedure for arc residualcapacity in-
equalities in the single-facility case. This result might be extendable to the multi facility case.

6.3 Multi cut inequalities

Let△ := {V1, ..., Vm} be a (disjoint) partition of the nodesV , with m ∈ Z+\{0} andm ≥ 3. A
multi cut is the set of all arcs (or edges) with endnodes not both in one the setsV1, ..., Vm. For directed
supply graphs we define the multi cut

A△ :=
m⋃

i=1

AVi

and similar for undirected graphs let

E△ :=
m⋃

i=1

EVi

be the multi cut corresponding to△.
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V1 V2

V3

Α∆

(i) directed multi cutA△

V1 V2

V3

Ε∆

(ii) undirected multi cutE△

Figure 6.1: Multi cut△ = {V1, V2, V3}

It will be explained how to derive a multi cut inequality for DIrected problems. At the end we will
state the corresponding inequalities for BIdirected and UNdirected problems. Consider an elementk

of the set2△ of all subsets of△ that is not empty and that is not△. Now letSk ⊂ V be the node set
that is the union of all elements ink. There are2m − 2 such node sets. Given the cutASk

, recall the
base inequality

∑

t∈T

ctxt(A+
Sk

) ≥ d+
k

that was used in Section 4.2.1 and Section 4.3.1 to derive cutinequalities forCSDI , whered+
k = dK+

Sk

denotes the total demand fromSk to V \Sk. Now for all k in 2△ (not empty and not△) we simply
sum up all these base inequalities resulting in

2m−2
∑

t∈T

ctxt(A△) ≥
∑

k∈2△

d+
k .

What we have done is enumerating all cuts that correspond to the partition△ and summing up all the
corresponding (base) cut inequalities. This way we count every link design variable for△ and every
single demand exactly2m−2 times. By setting

d△ :=

∑
k∈2△ d

+
k

2m−2
∈ Z+

we get
∑

t∈T

ctxt(A△) ≥ d△

that we will use as a multi cut base inequality (m ≥ 3). Similar to the procedure in Section 4.3.1 we
can now use theMIR functionGd△,cs for everys ∈ T to obtain a multi cut inequality

∑

t∈T

Gd△,cs(ct)xt(A△) ≥ r△s η
△
s (6.1)

wherer△s = r(d△, cs) andη△s = ⌈
d△
cs
⌉.
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6.4 Divisible coefficients and (multi) cut inequalities

Applying the same procedure that consisted of the stepsAggregating, ScalingandMIR to the
base cut inequalities ∑

t∈T

ctxt(ESk
) ≥ max(d+

k , |d
−
k |)

and ∑

t∈T

ctxt(ESk
) ≥ d+

k + |d−k | (6.2)

for BIdirected and UNdirected problems respectively, results in the multi cut inequality
∑

t∈T

Gd△,cs(ct)xt(E△) ≥ r△s η
△
s (6.3)

with d△ :=
⌈∑

k∈2△ max(d+
k , |d

−
k |)

2m−1

⌉
∈ Z+ for BIdirected problems and

d△ :=

∑
k∈2△(d+

k + |d−k |)

2m−1
∈ Z+ for UNdirected problems.

The multi cut inequalities (6.1) and (6.3) might even be strengthened as in Section 4.3.1 by rounding
down coefficients to the value of the right hand side and considering min

(
Gd△,cs(ct), r△s η

△
s

)
.

Note that for BIdirected problems
P

k∈2△
max(d+

k
,|d−

k
|)

2m−1 is not necessarily integer. We can round
it up before theMIR step. The value|d−k | = |dK−

Sk
| denotes the total demand fromV \Sk to Sk.

Inequality (6.2) is obtained by applying a transformation to the cut variables as described in Section
4.1 to ensure that there are only positive commodities with respect to the cutESk

.
It is possible to strengthen the valued△ for all three types of capacity usage. One has to consider

so-calledmetric inequalities(see for instance Günlük [1999]) and to incorporate shortest paths be-
tween demand endnodes with respect to weights that are defined by the incidence vector of the multi
cut (see also Section 6.6). This will not be done here.

Outlook Bienstock & Günlük [1996] investigate multi cut inequalities form = 3 of type (6.3)
and show that they can be facet-defining for the network design polyhedronNDPBI . An important
condition in this context is that for all node setsSi of the partition it holds that both subgraphsG[Si]

andG[V \Si] are connected. With this result in mind it could be interesting to studymulti cut set
polyhedraas a generalisation of cut set polyhedra and to develop a generalisation of Theorem 4.4.

Another interesting idea in the context of multi cuts is to apply the above aggregation andMIR
procedure to flow cut inequalities resulting inmulti flow cut inequalities. This has been done first by
Rajan & Atamtürk [2002a, 2004]. The question that arises is when those inequalitiesare facet-defi-
ning for multi cut set polyhedra and network design polyhedra.

6.4 Divisible coefficients and (multi) cut inequalities

Suppose that the set of technologiesT is given by divisible base capacities and consider a network
cutAS with S ⊂ V and the corresponding base cut inequality

∑

t∈T

ctxt(A+
S ) ≥ dK+

S .
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This base inequality defines a so-calledinteger knapsack setof the form

X = {x ∈ Zn
+ :

n∑

j=1

cjxj ≥ d, cj , d ∈ Z+\{0} }

wherecj+1

cj ∈ Z+\{0} andc1 = 1 w. l. o. g..
Pochet & Wolsey [1992, 1995] investigate such sets and are able to give a complete description

of conv(X) by considering so-calledknapsack partition inequalities. We will state a multi stepMIR
procedure that produces knapsack partition inequalities (without a proof).

Let us briefly review the results and the notation of Pochet & Wolsey [1992, 1995]: Consider
partitions of{1, ..., n} into blocks

{i1, ..., j1}{i2, ..., j2}, ..., {ip, ..., jp} with i1 = 1, jp = n, it = jt−1 + 1 for t = 2, ..., p.

Defineβt, κt for every block:

βp := d, κt := ⌈
βt

cit
⌉, βt−1 := βt − (κt − 1)cit .

Note that by Lemma 3.11βt−1 = r(βt, c
it). A knapsack partition inequality is now given by

p∑

t=1

(

t−1∏

s=1

κs)

jt∑

j=it

min(
cj

cit
, κt)xj ≥

p∏

t=1

κt. (6.4)

conv(X) is completely described by the non-negativity constraintsand (6.4) with respect to all pos-
sible partitions of the index set{1, ..., n}. Let us first concentrate on partitions into two blocks
{i1, ..., j1} and{i2, ..., j2}. It follows thatη := κ2 = ⌈ d

ci2
⌉ andr := κ1 = r(d, ci2). Hence (6.4)

reduces to
j2∑

j=i1

min(cj , r)xj +

j2∑

j=i2

min(r
cj

ci2
, rη)xj ≥ rη.

But
min(cj , r) = r −

(
r − cj

)+
= Gd,ci2 (c

j) ≤ rη

sincecj ≤ ci2 for j < i2. Similarly,

min(r
cj

ci2
, rη) = min

(
Gd,ci2 (c

j), rη
)

for j ≥ i2. The latter follows from the fact that the capacities are divisible. Hence (6.4) can be
obtained byMIR with scaling factor 1

ci2
-MIR plus rounding down the coefficients to the value of the

right hand side.
It follows that if the integer knapsack set is given by a base cut inequality or by a base multi cut

inequality, then knapsack partition inequalities for partitions that consists of two blocks reduce to the
strengthened (multi) cut inequalities of Section 4.3 and 6.3.

If now the partition of the index set consists ofp blocks, then the corresponding knapsack partition
inequality is obtained by ap − 1-stepMIR procedure. We state an example taken from Magnanti &
Mirchandani [1993] which we already considered in Section 4.3.2.
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6.4 Divisible coefficients and (multi) cut inequalities

Example 6.1 (continued from Example 4.36) Again consider a network design polyhedron with
UNdirected capacity constraints, three facilities and onecommodity, wherec1 = 1, c2 = C ∈

Z+, C > 1 and c3 = λC ∈ Z+, λ > 1. Given a cutES we could formulate two strengthened cut
inequalities with theMIR procedure of Section 4.3.2:

x1(ES) + r1x
2(ES) + min(r1λ, r1⌈

d
C
⌉)x3(ES) ≥ r1⌈

d
C
⌉. (6.5)

and

x1(ES) + min(C, r2)x
2(ES) + r2x

3(ES) ≥ r2⌈
d

λC
⌉, (6.6)

with r1 = r(d,C) andr2 = r(d, λC) These are knapsack partition inequalities. They correspond to
partitions of the index set into two blocks whereci2 = C or ci2 = λC.

There is a third possible partition (giving a new knapsack partition inequality) that consists of
three blocks withci2 = C and ci3 = λC. We apply a two-stepMIR procedure to the base cut
inequality. First we divide byci2 = C and applyMIR as it has been done for(6.5) resulting in

x1(ES) + r1x
2(ES) + r1λx

3(ES) ≥ r1⌈
d
C
⌉.

This is inequality(6.5) but without rounding down coefficients the value of the righthand side. Note
that the coefficients of this inequality again are divisible. Now we divide byGd,ci2 (c

i3) = r1λ and
applyMIR. This gives

x1(ES) + r1x
2(ES) + r1r(⌈

d
C
⌉, λ)x3 ≥ r1r(⌈

d
C
⌉, λ)⌈ d

λC
⌉ (6.7)

Note that⌈
r1⌈

d
C
⌉

r1λ
⌉ = ⌈ d

λC
⌉ andr(r1⌈

d
C
⌉, r1λ) = r1r(⌈

d
C
⌉, λ). The same inequality is obtained when

evaluatingκ1, κ2, κ3 and calculating(6.4).

The last example suggests that the partition{i1, ..., j1}{i2, ..., j2}, ..., {ip, ..., jp} defines a se-
quence for the application of ap− 1 MIR procedure to obtain the knapsack partition inequality (6.4):

We start with the base inequalitycjxj ≥ d. If c̄ defines the vector of coefficients after the step
k − 1 of the procedure, then we divide theMIR inequality byc̄ik+1 in stepk and applyMIR again.
The resultingMIR inequality serves as the base inequality for the next step. After stepp − 1 of the
procedure all coefficients get rounded down to the value of the right hand side (if greater) resulting in
the knapsack partition inequality (6.4).

Outlook It is obvious that thep− 1 stepMIR procedure above can also be applied tomixed integer
knapsack setsdefined by a single constraint of the formf + cjxj ≥ d with f continuous. It follows
that the procedure might be useful when applied to simple flowcut inequalities similar to the way
we applied it to cut inequalities. Moreover, the procedure can be applied even if the coefficients are
not divisible. It is an open question if in these cases the corresponding (mixed) knapsack partition
inequalities define facets of the (mixed) integer knapsack sets or even the network design polyhe-
dra. It it also unknown under which conditions knapsack partition inequalities derived from base cut
inequalities and defined for partitions of the index set greater than two define facets for cut sets.
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6.5 Mixing MIR and mixing cut set inequalities

MIR as introduced in Chapter 3 is applied to a single base inequality. The idea of mixing is now to
consider more than one base inequality at once. This is due toGünlük & Pochet [2001] and there are
some new results given in Guan et al. [2004].

There are many special cases and extensions. Only a motivation will be given here. LetX ⊆
RM

+ ×ZN
+ be a mixed integer set. Consider the following two functions: gi : X → R+ andhi : X →

Z+ with i ∈ J := {1, ..., n}. Let c, di ∈ R+ andri := r(di, c). We have a collection ofn valid
inequalities forX:

gi(f, x) + chi(f, x) ≥ di, ∀i ∈ J, (f, x) ∈ X

Lets assume thatri ≥ ri−1 andr0 := 0

Theorem 6.2 (Günlük & Pochet [2001]) If g : X → R+ and g(f, x) ≥ gi(f, x) for all i ∈
{1, ..., n} and(f, x) ∈ X then the following mixedMIR inequalities are valid forX:

g(f, x) ≥
n∑

i=1

(ri − ri−1)(⌈
di

c
⌉ − hi(f, x)), (6.8)

g(f, x) ≥
n∑

i=1

(ri − ri−1)(⌈
di

c
⌉ − hi(f, x)) + (c− rn)(⌈

d1

c
⌉ − h1(f, x)− 1). (6.9)

Note that if|J | = 1 andg = g1 then (6.8) reduces to theMIR inequality (3.10) and (6.9) reduces
to the base inequality again. So the last theorem provides a generalisation ofMIR to a collection ofn
base inequalities.

Günlük [1999] shows how to exploit this new result for network design problems. As a simple
example assume to have a BIdirected problem with exactly twofacilities and divisible capacities. So
we can setc1 = 1 andc2 = λ. Now for everyi ∈ J consider a cutESi

of the network and the
corresponding base cut inequality

x1(ESi
) + λx2(ESi

) ≥ max(dK+

Si
, |dK−

Si
|).

By settinggi(f, x) := x1(ESi
) andhi(f, x) := x2(ESi

) this collection of base inequalities fulfils the
conditions of Theorem 6.2. It remains to define a functiong with g ≥ gi for all i ∈ J . We can simply
sum up all functionsgi. But this will make the left hand side large and might result in weak mixed
MIR inequalities.

A wonderful idea of Günlük [1999] is to consider a three partition △ := {S1, S2, S3} of the
network and all three cutsES1

, ES2
andES3

. A canonic functiong with g ≥ g1, g2, g3 is now given
by g(f, x) = x1(E△). Moreover, the corresponding base multi cut inequality

x1(E△) + λx2(E△) ≥ d△

provides a fourth base inequality. Günlük [1999] proves that under certain conditions mixing two of
the three cut inequalities corresponding to a three partition or mixing a (three) multi cut inequality
with one of the three corresponding cut inequalities results in facet-defining mixedMIR inequalities
(6.8) for the polyhedronNDPBI with two divisible facilities.
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6.6 A note on sparse networks

Outlook Mixing MIR is somewhat restricted to a single coefficientc and hence can be applied
easily to single-facility network design problems or thosewith two divisible facilities. But for the
multi-facility case more general formulas than (6.8) and (6.9) are missing.

It has not been tried yet to mix flow cut inequalities that for instance arise when considering all
cuts of a three partition.

6.6 A note on sparse networks

In this thesis we have mainly concentrated on cuts of the network and the corresponding cut set
polyhedra to develop strong validMIR-inequalities. By Theorem 4.4, an important condition for
the strength of cut set inequalities is a certain connectivity of the two subgraphsG[S] andG[V \S]

defined by the cut. None of the considered inequalities in this thesis does exploit the structure of
these subgraphs. This might be a drawback when optimising sparse networks as they are common
in practice. In Chapter 7 we can still prove the usefulness ofthe investigated cut set inequalities for
real-life networks but facing the fact that our separation heuristics are very fast, it might be worth to
spend more time for incorporating the structure ofG[S] andG[V \S].

There is not much research on how to strengthen cut set inequalities for sparse graphs. Some
ideas can be found in Ortega & Wolsey [2003]. Given a cutAS and a single commodityk = (u, v)

in K+, they are able to strengthen cut as well as simple flow cut inequalities for uncapacitated, fixed-
charge network design problems by considering subsets of the dicut arcsAS that are reachable from
the demand endnodesu andv.

Bienstock et al. [1995] and Bienstock & Günlük [1996] explicitly calculate subsetsS with the
property thatG[S] andG[V \S] are strongly connected (directed graphs) or connected (undirected
graphs). They do this in addition to fast (contraction) heuristics as those used in Chapter 7 and report
good results for some of their considered networks.

6.7 Summary

It was shown that theMIR procedure introduced in Chapter 3 is not restricted to network cuts. There
are various classes of strong valid inequalities for network design polyhedra that can be derived.
Similar to cut sets and cut set inequalities all stated inequalities correspond to relaxations obtained by
considering certain network structures. For multi cut inequalities, arc residual capacity inequalities
and knapsack partition inequalities we could directly apply our MIR procedure, whereas for mixing
MIR several base inequalities had to be considered at once generalising the procedure used in the last
chapters.

It might be possible to strengthen the base inequalities forall classes of strong validMIR-in-
equalities considered in this thesis if the underlying graphs are sparse.
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Chapter 7

Separation, Implementation and
Computational Results

7.1 Introduction

Due to time limits for this thesis, this chapter mainly addresses the separation and implementation of
the cut set inequalities investigated in Chapter 4 but we will discuss the usefulness of those inequalities
both for bounded and unbounded network design polyhedra.

Literature review and complexity of separation Mirchandani [1989] proves that finding a node
setS that gives a violated cut inequality in the single-commodity case (single source (s), single sink
(t)) is amax flowproblem, for which polynomial time algorithms exist (Schrijver [2003]). Atamtürk
[2002] shows that the generalised problem of finding a violated flow cut inequality is equivalent to a
s-t mincutproblem with negative weights on some arcs, which isNP-hard, having thes-t maxcut
problem as a special case (Garey & Johnson [1979]). Rememberthat cut inequalities form a subclass
of general flow cut inequalities. The multi-commodity case isNP-hard even for cut inequalities,
again by reduction to themaxcutproblem (Baharona [1994]).

There is no literature about the simultaneous determination of the setsS, Q, A+
1 andA−

2 to find
violated flow cut inequalities. All approaches are based on decomposing the separation procedure.
The effectiveness of cut inequalities for network design problems within a Branch & Cut framework
was investigated by Magnanti et al. [1995], Bienstock et al.[1995], Bienstock & Günlük [1996],
Günlük [1999] and Atamtürk [2002]. All of them use heuristics for the separation of a node setS.
Bienstock et al. [1995], Bienstock & Günlük [1996] and Atamtürk [2002] consider the separation of
(simple) flow cut inequalities and implemented different heuristics for the determination of appro-
priate commodity subsetsQ, given a fixed node setS. Atamtürk [2002] is the first to state an exact
polynomial time algorithm for the separation of the arc setsA+

1 andA−
2 , given a fixed cut of the

network and a fixed commodity subset.

Outline of this chapter We will first recall the inequalities developed in Chapter 4 that have been
used in the implementation. The separation problem will be defined in Section 7.2 and we will
show how to decompose it, which motivates a separation algorithm consisting of heuristics for the
determination of node sets and commodity subsets and an exact procedure that computes arc sets
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(edge sets) of the considered cut. When developing this algorithm we make use of the results of
Chapter 4.

Section 7.3 addresses some more detailed implementationalaspects. We will discuss some modi-
fications of the initial separation algorithm and in Section7.4 our approach will be tested against real
world network design problems.

Inequalities We consider the following strong valid inequalities for network design polyhedra. In
Chapter 4 we studied general flow cut inequalities of the form:

NDPDI :

fQ(Ā+
1 )− fQ(A−

2 ) +
∑

t∈T

Gd,cs(ct)xt(A+
1 ) +

∑

t∈T

(ct + Gd,cs(−ct))xt(A−
2 ) ≥ rQ

s η
Q
s (7.1)

NDPBI andNDPUN :

fQ(Ē+
1 )− fQ(E−

2 ) +
∑

t∈T

Gd,cs(ct)xt(E1) +
∑

t∈T

(ct + Gd,cs(−ct))xt(E2) ≥ r
Q
s η

Q
s , (7.2)

with rQ
s = r(dQ

S , c
s) andηQ

s = ⌈
d

Q
S

cs ⌉. A general flow cut inequality is defined by a node setS ⊂ V ,

a subsetQ of the commoditiesK, arc setsA+
1 ⊆ A+

S andA+
1 ⊆ A−

S (edge setsE1, E2 ⊆ ES) and a
facility s ∈ T .

We restrict our attention toQ ⊆ K+ andQ ⊆ K− because in Chapter 4 we proved facet theorems
for these cases. In Section 4.3 it was shown that flow cut inequalities can be strengthened ifA−

2 = ∅

(E2 = ∅) by rounding down coefficients to the value of the right hand side, leading to (strengthened)
simple flow cut inequalities:

NDPDI : fQ(Ā+
1 ) +

∑

t∈T

min(rQ
s η

Q
s ,Gd,cs(ct))xt(A+

1 ) ≥ rQ
s η

Q
s (7.3)

NDPBI andNDPUN : fQ(Ē+
1 ) +

∑

t∈T

min(rQ
s η

Q
s ,Gd,cs(ct))xt(E1) ≥ r

Q
s η

Q
s (7.4)

Eventually the new cut set inequality

cx(E1) +
(
c − rK+)

x(Ē1) + fK+

(E−
1 )− fK+

(E+
1 ) ≥ c − rK+

(7.5)

with rK+

= r(dK+

S , c) will be considered. It was introduced in Section 4.2.2 for BIdirected and
UNdirected problems in the single facility case and we stated a facet proof (By switching toV \S if
necessary, we assume thatdK+

S ≥ |dK−

S |). A generalisation of these inequalities to the multi-facility
case (byMIR) is not known but it might still be interesting to use them fortest instances with|T | = 1.
For this cut set inequality we need to determineS ⊂ V andE1 ⊆ ES .

7.2 Separation

Preliminaries Theseparation problemhas already been sketched in the literature review. For com-
pleteness we will now state some definitions that will be usedin this section. LetP ⊆ Rn be a
polyhedron and̄p a point inRn. Theseparation problem is now to decide whether̄p ∈ P , and if
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not, to find a hyperplane that separatesp̄ from P , more precisely to find a vector(a, d) ∈ Rn × R

such that the inequalityaTx ≥ d is valid forP but violated by the point̄p. In general, given a valid
inequalityaTx ≥ d for P and a point̄p ∈ Rn, we calld − aT p̄ the correspondingviolation. Hence
the pointp̄ is not inP if the violation is positive.

The euclidiandistancefrom p̄ to the hyperplane defined byaTx = d is given by

|d − aT p̄|

‖d‖
,

where‖·‖ denotes the euclidian norm inRn.
Let (aT

1 , d1) ∈ Rn × R and(aT

2 , d2) ∈ Rn × R define two hyperplanes inRn. Then itsorthogo-
nality o(a1, a2) is given by

0 ≤ o(a1, a2) :=
|aT

1a2|

‖a1‖‖a2‖
≤ 1.

The hyperplanes are parallel if and only if its orthogonality equals zero and they are orthogonal if and
only if its orthogonality is one.1− o(a1, a2) will be called theparallelism of the two hyperplanes.

In fact we are not faced with the general separation problem above but with the problem of finding
a violated inequality from a class of valid inequalities forP . Let I be a finite index set and let
C = { (ai, di) ∈ Rn × R : i ∈ I } define a class of valid inequalities forP :

aT

i x ≥ di ∀x ∈ P, i ∈ I.

Given a pointp̄, the separation problem forC is to find i ∈ I such thataT

i p̄ < di or to decide that
such an inequality inC does not exist. Note that the latter does not implyp̄ ∈ P . The separation
problem forC is obviously equivalent to the problem of finding amost violated inequality inC, that
is to determinej ∈ I that maximises the violation with respect top̄:

(dj − a
T

j p̄) ≥ (di − a
T

i p̄) for all i ∈ I.

A most violated inequality always exists but it is not necessarily unique. Moreover, a most violated
inequality is not violated bȳp if and only if there is no violated inequality inC.

Decomposition Given a network design polyhedron and a pointp̄ = (f̄ , x̄), the separation prob-
lem for (simple) flow cut inequalities or cut set inequalities of type (7.5) reduces to the problem of
simultaneously determining a node setS, a commodity subsetQ and arc- or edge sets of the cutδ(S)

that give a most violated inequality. Due to the mentioned result of (Baharona [1994]) this problem
isNP-hard for all three classes of inequalities. Note that by setting E1 = ES , (7.2) can also be seen
as a superclass of cut inequalities as shown in the proof of Theorem 4.29.

We will use the following decomposition approach as a separation heuristic for the mentioned
inequalities:

• Heuristically compute a promising cut of the network (node setS).

• Given a node setS, heuristically compute a promising commodity subsetQ

• Given a node setS and a commodity subsetQ, compute a most violated (simple) flow cut
inequality or a most violated cut set inequality (7.2).
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Note that if the network cut is fixed, the complexity of separating flow cut inequalities is an open
question even for the single-facility case. For some special cases see Atamtürk [2002]. In general
we do not know an efficient way to choose commodity subsets that give most violated inequalities.
But as we will see, it is possible to exactly separate the considered inequalities if both the cut and
the commodity subset are fixed. There are many possible answers to the question, what ispromising.
Some of them will be considered in the following.

Although not tested, the author believes that this decomposition approach is even useful for the
flow cover inequalities considered in Chapter 5. A cover(C+, C−) with C+ ⊆ A+

1 andC− ⊆ A−
2

has to be found in addition. One could extend the approach above by a fourth step, that consists of
finding an appropriate cover.

Finding a node setS The most simple approach for finding cuts of the network that give violated
flow cut inequalities is that of enumerating all node sets with a small number of nodes inS in each
iteration of the cutting plane phase. This approach has beenused by Magnanti et al. [1995] (|S| ≤ 5)
and Atamtürk [2002] (|S| = 1). It might be useful for small instances and at the beginningof the
Branch & Cut algorithm. But once all violated flow cut inequalities corresponding to small sized
node sets are added to the initial formulation, one has to usemore general heuristics.

A more promising idea of Bienstock et al. [1995] and Bienstock & Günlük [1996] is to consider
subsetsS only if G[S] andG[V \S] are connected (undirected graphs) or strongly connected (directed
supply graphs). Recall from Section 4.1 that a cut set inequality is facet defining for a network design
polyhedron if it defines a facet for the corresponding cut setand ifG[S] andG[V \S] are (strongly)
connected. Bienstock et al. [1995] and Bienstock & Günlük[1996] call node setsS with that property
strong(or critical) and enumerate all strong node sets at the beginning of the optimisation procedure
(for networks with|V | ≤ 27 and |A| ≤ 102). Although there are potentially2|V | node sets to be
considered, real-life networks are usually fairly sparse such that the number of strong node sets is
limited, so it might be attractive to enumerate at least someof them.

A very fast and general separation heuristic has been proposed and successfully used by Bienstock
et al. [1995] and Günlük [1999]. Since we basically use their approach in our implementation we
explain it here in more detail. It is in fact the only one that exploits the values of the current primal
solution p̄ = (f̄ , x̄). The idea is that if on arcs of the cut the installed capacity is large compared to
the current flow, then it its unlikely that a flow cut inequality is violated. Thus we concentrate on cuts
that have few arcs with large slack of the corresponding capacity constraint. Define the arc weights:

DIrected: wa :=
∑

t∈T

ctx̄t
a − f̄

K
a a ∈ A

BIdirected: we :=
∑

t∈T

ctx̄t
e −max(f̄K

ij , f̄
K
ji ) e = ij ∈ E

UNdirected: we :=
∑

t∈T

ctx̄t
e − (f̄K

ij + f̄K
ji ) e = ij ∈ E.

In Algorithm 7.1 acontraction procedure is applied to the network using the weightswa (we). The
graph shrinks until it has exactlyPSizenodes. We do that by contracting the endnodes of arcs with
large slack. See Grötschel et al. [1988] for a thorough description of this operation.
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In each step of the algorithm the set△ contains a partitionV1, ..., Vp of the nodesV with PSize≤
p ≤ |V |. AssumePSize≥ 2 and letVu be the unique node set in△ containing the nodeu. Algorithm
7.1 terminates with all cuts corresponding to the shrunken graph.

Input : point p̄ = (f̄ , x̄), PSize≥ 2, G = (V,A) (G = (V,E)) connected with|V | ≥ PSize

Output : a list of2PSize−1 − 1 subsets ofV , all corresponding to different cuts of the network

1: Calculate the slack weightswa (orwe) for all arcs (for all edges).
2: Prepare a list of all arcs (or edges) in decreasing order ofwa (orwe).
3: Initialise△ := {Vi : i ∈ V } whereVi := {i} for all i ∈ V
4: while |△| > PSize do
5: Popa = (u, v) (or e = uv) from the top of the list of arcs (or edges).
6: if Vu 6= Vv then
7: Contract the endnodes of arca (or edgee): Let V̄ = Vu∪Vv. Set△← △∪{V̄ }\{Vu, Vv}.
8: end if
9: end while

10: Considering the contracted graph defined by△, enumerate all cuts and return the corresponding
node sets as a list.

Algorithm 7.1: NODESETSBYCONTRACTION(p̄, PSize,G)

Note that step 2 is not unique. Arcs with the same slack value can be sorted arbitrarily (or ran-
domly). Algorithm 7.1 works correctly since the contractedgraph defined by△ remains connected
during the algorithm. Calculating the weights runs inO(|A||T |) and sorting them inO(|A| log|A|).
The computation time of the shrinking procedure is bounded by the number of arcs (assuming that
contracting two nodes of a graph can be done in constant time). Enumerating the cuts of the final
graph is exponential inPSize. But assumingPSizeto be small and constant over all instances, the
running time for Algorithm 7.1 is inO(|A|(|T | + log|A|) (resp.O(|E|(|T | + log|E|)).

There are several possible extensions to Algorithm 7.1. Instead of using slack weightswa, Günlük
[1999] additionally considers the value of the dual variableπa corresponding to the capacity constraint
and the current fractional solution and uses weightsw

′

a := wa − |πa|.
Another idea is that of “kicking” (Bienstock et al. [1995]).Given a node setS from the list

returned by Algorithm 7.1, one can also checkS\{i} or S ∪ {i} for violated flow cut inequalities,
wherei ∈ V \S.

Input : node setS ⊂ V , net demandsdk
i for all i ∈ V, k ∈ K

Output : DIrected, BIdirected: a listL of positive and negative commodity subsets
UNdirected: a listL of positive commodity subsets

1: Calculatedk
S =

∑
i∈S d

k
i for all k ∈ K

2: return L := {K+} ∪ {K−}
⋃

k∈K+∪K−{k}

Algorithm 7.2: COMMODITYSUBSETS(S, d)

Finding a commodity subsetQ In general no polynomial-time algorithm is known to find a proper
commodity subset even if the arc sets are fixed.
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All mentioned authors use very basic heuristics similar to the one that we use for our implementa-
tion. Given a fixed node setS, we only consider commodity subsetsQ with an aggregated demand of
dQ

S 6= 0. We concentrate on singleton commodities and the setsK+ andK− as defined in Section 4.1.
Those commodity subsets are put into a list by Algorithm 7.2 which runs inO(|K||V |). Remember
that for UNdirected problems we assumeK− = ∅.

Arc setsA
+

1 , A
−

2 or edge setsE1, E2 Atamtürk [2002] states a procedure that, given a fixed cut
and a fixed commodity subset, exactly separates flow cut inequalities. The procedure is given by
Algorithm 7.3 whereARCSETSGFCI is the version of Atamtürk [2002] for DIrected problems and
EDGESETSGFCI is a transformation for the BIdirected and UNdirected case.

Input : point p̄ = (f̄ , x̄), node setS ⊂ V , commodity subsetQ ⊆ K, facility s ∈ T

Output : arc setsA+
1 ⊆ A

+
S andA−

2 ⊆ A
−
S

1: A+
1 := { a ∈ A+

S : Gd,cs(ct)x̄t
a < f̄Q

a }

2: A−
2 := { a ∈ A−

S :

(ct + Gd,cs(−ct))x̄t
a < f̄Q

a }

3: return (A+
1 , A−

2 )

Output : edge setsE1, E2 ⊆ ES

1: E1 := { e = ij ∈ ES : Gd,cs(ct)x̄t
e < f̄Q

ij }

2: E2 := { e = ij ∈ ES :

(ct + Gd,cs(−ct))x̄t
e < f̄Q

ji }

3: return (E1,E2)
Algorithm 7.3: ARCSETSGFCI(p̄, S,Q, s) EDGESETSGFCI(p̄, S,Q, s)

These algorithms have a running time inO(|AS ||T |) respectivelyO(|ES ||T |) since theMIR co-
efficientsGd,cs(ct) and(ct + Gd,cs(−ct)) are evaluated in constant time.

Lemma 7.1 Given a pointp̄ = (f̄ , x̄), a node setS 6= ∅, a commodity subsetQ 6= ∅ and a facility
s ∈ T , Algorithm 7.3 calculates subsetsA+

1 andA−
2 of the arcsA+

S andA−
S (subsetsE1 andE2 of

the edgesES) that give a most violated (general) flow cut inequality(7.1) (or (7.2)).

Proof. Since the DIrected case is a result of Atamtürk [2002] we only give a proof for BIdirected and
UNdirected problems here. SupposeE1 andE2 are the two subsets chosen with Algorithm 7.3. We
assume that the statement is not true, soE1 andE2 do not give a most violated flow cut inequality.
Hence there exist subsetsE3 andE4 of ES which lead to a a smaller left hand side value when
evaluating the corresponding flow cut inequality:

f̄Q(Ē+
3 )− f̄Q(E−

4 ) +
∑

t∈T

Gd,cs(ct)x̄t(E3) +
∑

t∈T

(ct + Gd,cs(−ct))x̄t(E4)

< f̄Q(Ē+
1 )− f̄Q(E−

2 ) +
∑

t∈T

Gd,cs(ct)x̄t(E1) +
∑

t∈T

(ct + Gd,cs(−ct))x̄t(E2).

Now we show that by (resorting edges and) switching fromE3 toE1 and fromE4 toE2 we can only
make the left hand side smaller which contradicts the assumption.

We use the fact thatE3 = (E1\(Ē3 ∩E1))∪ (E3 ∩ Ē1) andE4 = (E2\(Ē4 ∩E2))∪ (E4 ∩ Ē2):

f̄Q(Ē+
3 )− f̄Q(E−

4 ) +
∑

t∈T

Gd,cs(ct)x̄t(E3) +
∑

t∈T

(ct + Gd,cs(−ct))x̄t(E4)

= f̄Q(Ē+
1 )− f̄Q(E−

2 ) +
∑

t∈T

Gd,cs(ct)x̄t(E1) +
∑

t∈T

(ct + Gd,cs(−ct))x̄t(E2)
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−f̄Q(E+
3 ∩ Ē

+
1 ) +

∑

t∈T

Gd,cs(ct)x̄t(E3 ∩ Ē1)

+f̄Q(Ē+
3 ∩ E

+
1 ) −

∑

t∈T

Gd,cs(ct)x̄t(Ē3 ∩ E1)

+f̄Q(Ē−
4 ∩ E

−
2 ) −

∑

t∈T

(ct + Gd,cs(−ct))x̄t(Ē4 ∩ E2)

−f̄Q(E−
4 ∩ Ē

−
2 ) +

∑

t∈T

(ct + Gd,cs(−ct))x̄t(E4 ∩ Ē2)

≥ f̄Q(Ē+
1 )− f̄Q(E−

2 ) +
∑

t∈T

Gd,cs(ct)x̄t(E1) +
∑

t∈T

(ct + Gd,cs(−ct))x̄t(E2).

The= is simply rewriting and the≥ follows from the choice ofE1 andE2 in our procedure and is a
contradiction to the assumption thatE1 andE2 do not give a most violated inequality. This completes
the proof. II

To find a most violated strengthened simple flow cut inequality we have to apply a different
separation procedure as the one for general flow cut inequalities above (see Algorithm 7.4). The
running time of these procedures is again inO(|AS ||T |) (resp.O(|ES ||T |)). To prove that they yield
a most violated strengthened simple flow cut inequality, simply modify the proof of Lemma 7.1

Lemma 7.2 Given a pointp̄ = (f̄ , x̄), a node setS 6= ∅, a commodity subsetQ 6= ∅ and a facility
s ∈ T , Algorithm 7.4 calculates a subsetsA+

1 of the arcsA+
S (a subsetE1 of the edgesES) that gives

a most violated simple flow cut inequality(7.3) ((7.4)).

Input : point p̄ = (f̄ , x̄), node setS ⊂ V , commodity subsetQ ⊆ K, facility s ∈ T
Output : arc setA+

1 ⊆ A
+
S

1: return A+
1 := { a ∈ A+

S :

min(rQ
s η

Q
s ,Gd,cs(ct)x̄t

a) < f̄Q
a }

Output : edge setsE1 ⊆ ES

1: return E1 := { e = ij ∈ ES :

min(rQ
s η

Q
s ,Gd,cs(ct)x̄t

e) < f̄Q
ij }

Algorithm 7.4: ARCSETSFCI(p̄, S,Q, s) EDGESETSFCI(p̄, S,Q, s)

Eventually consider the new cut set inequality (7.5) for single-facility BIdirected or UNdirected
problems. For a fixed cut of the network defined byS ⊂ V exact separation is done by Algorithm 7.5
in O(|ES |)-time.

Input : point p̄ = (f̄ , x̄), node setS ⊂ V

Output : an edge setE1 ⊆ ES

1: return E1 := { e = ij ∈ ES : rK+

x̄e < f̄K+

ij − f̄K+

ji }

Algorithm 7.5: EDGESETNCSI(p̄, S)

Lemma 7.3 Given a pointp̄ = (f̄ , x̄) and a node setS 6= ∅, Algorithm 7.5 calculates a subsetE1

that gives a most violated cut set inequality(7.5).
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Proof. Assume thatE1 is chosen with the described procedure and suppose it does not give a most
violated inequality. Hence there existsE2 ⊆ ES with smaller left hand side:

cx̄(E2) +
(
c − rK+)

x̄(Ē2) + f̄K+

(E−
2 )− f̄K+

(E+
2 )

< cx̄(E1) +
(
c − rK+)

x̄(Ē1) + f̄K+

(E−
1 )− f̄K+

(E+
1 )

But withE2 = (E1\(Ē2 ∩ E1)) ∪ (E2 ∩ Ē1) it follows

cx̄(E2) +
(
c − rK+)

x̄(Ē2) + f̄K+

(E−
2 )− f̄K+

(E+
2 )

= cx̄(E1) +
(
c − rK+)

x̄(Ē1) + f̄K+

(E−
1 )− f̄K+

(E+
1 )

+cx̄(E2 ∩ Ē1) − cx̄(Ē2 ∩ E1)

+
(
c − rK+)

x̄(Ē2 ∩E1) −
(
c − rK+)

x̄(E2 ∩ Ē1)

+f̄K+

(E−
2 ∩ Ē

−
1 ) − f̄K+

(Ē−
2 ∩ E

−
1 )

−f̄K+

(E+
2 ∩ Ē

+
1 ) + f̄K+

(Ē+
2 ∩ E

+
1 )

= cx̄(E1) +
(
c − rK+)

x̄(Ē1) + f̄K+

(E−
1 )− f̄K+

(E+
1 )

+rK+

x̄(E2 ∩ Ē1) − rK+

x̄(Ē2 ∩ E1)

+f̄K+

(E−
2 ∩ Ē

−
1 ) − f̄K+

(Ē−
2 ∩ E

−
1 )

−f̄K+

(E+
2 ∩ Ē

+
1 ) + f̄K+

(Ē+
2 ∩ E

+
1 )

≥ cx̄(E1) +
(
c − rK+)

x̄(Ē1) + f̄K+

(E−
1 )− f̄K+

(E+
1 ).

The first= is rewriting while the final≥ follows from the way we have chosenE1 and is a contra-
diction to the assumption thatE1 does not give a most violated inequality. The proof is complete. II

The three parts of the decomposition are now integrated intoa separation procedure. The proce-
dure is given by Algorithm 7.6 for BIdirected and UNdirectedproblems. The procedure for DIrected
problems is similar except for the steps 5 to 8, the separation of the cut set inequality (7.5), which
is omitted. Note that in step 14 we concentrate on (general) flow cut inequalities that are not simple
because we consider strengthened simple flow cut inequalities separately. For every combination of
cuts and commodity subsets, which are determined heuristically, and for every facility the algorithm
computes a most violated general flow cut inequality (not simple) and a most violated simple flow
cut inequality. IfT = 1 a most violated cut set inequality (7.5) is calculated in addition. All these
inequalities are put into a pool, which finally can be quite large. The next section tries to answer the
question, how to handle a large amount of violated inequalities effectively and how to integrate the
separation procedure into a Branch & Cut algorithm. The running time for the separation heuristic
Algorithm 7.6 can roughly be estimated by

O
(
|K|

(
|T |2|A| log|A|+ |V |

))
respectively O

(
|K|

(
|T |2|E| log|E|+ |V |

))
.

Note that the number of node sets calculated in step 2 does notdepend on the instance but on the size
of the final partitionPSize. But since the number of node sets is exponential inPSizethe implicit
factor in the estimate can be quite large. For UNdirected problems one has to ensure thatK− = ∅

in step 4. Given a cutES , this can be done by swapping flow variables for negative commodities as
described in Section 4.1.

106



7.3 Implementational aspects

Input : point p̄ = (f̄ , x̄), PSize≥ 2, G = (V,E), net demandsdk
i , i ∈ V, k ∈ K

facilitiesT , capacitiesct, t ∈ T

Output : a poolCutPool of flow cut inequalities (7.2), simple flow cut inequalities (7.4) and
cut set inequalities (7.5) all violated bȳp

1: InitialiseCutPool := ∅.
2: LS = NODESETSBYCONTRACTION(p̄, PSize,G)
3: for S ∈ LS do
4: For UNdirected problems ensure thatK− = ∅ (by swapping flow variables).
5: if |T | = 1 then
6: E1 = EDGESETSNCSI(p̄, S)
7: Calculate the unique cut set inequality (7.5) w.r.tS andE1, if violated put it to theCutPool.
8: end if
9: LQ = COMMODITYSUBSETS(S, d)

10: for Q ∈ LQ do
11: If Q ⊆ K− then setS := V \S. (Ensure to consider positive commodity subsets.)
12: for s ∈ T do
13: (E1, E2) = EDGESETSGFCI(p̄, S,Q, s)
14: if E2 6= ∅ then
15: Calculate the unique flow cut inequality (7.2) w.r.tS, Q, E1, E2 ands, if violated put

it to theCutPool.
16: end if
17: E1 = EDGESETSFCI(p̄, S,Q, s)
18: Calculate the unique simple flow cut inequality (7.4) w.r.tS, Q, E1 ands, if violated put

it to theCutPool.
19: end for
20: end for
21: end for
22: return CutPool

Algorithm 7.6: SEPARATIONHEURISTICFLOWCUT(p̄, PSize,G, d, T , c)

Algorithm 7.6 only provides a general framework. It will be modified and extended in the next
section.

Summary We have defined and discussed the separation problem for general flow cut inequalities,
for simple flow cut inequalities and for the new cut set inequalities (7.5).

The problem has been decomposed and a fast separation procedure has been proposed that ex-
ploits the value of the point̄p and that is able to calculate a pool of inequalities all violated byp̄.

7.3 Implementational aspects

In the following it will be discussed how to integrate a separation heuristic such as Algorithm 7.6 into
a state-of-the-art Branch & Cut framework. We used CPLEX 9.0(ILOG [2005]) for the implementa-
tion. CPLEX applies a bunch of separators, heuristics and branching rules within a Branch & Bound
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framework to solve general mixed integer programs. We will see that this generic approach together
with the cutting planes specific for network design problemsprovides a powerful tool to optimise
even larger networks.

CPLEX’s default settings were not changed and we made use ofcallbacks to integrate our sepa-
ration heuristic into the Branch & Cut algorithm. A user-written cut-callback is called at each node of
the Branch & Bound tree having an LP optimal solutionp̄ that is fractional and that has an objective
below the best known upper bound. The callback may add globally valid inequalities to the initial
formulation, that are violated bȳp. These inequalities remain part of all subsequent sub-problems
and apply throughout the Branch & Bound tree. There is no cut deletion (ILOG [2005]).

Modifications and improvements of the separation heuristic In a first attempt Algorithm 7.6 was
implemented as a callback without any modifications and all violated inequalities were added to the
formulation. We were interested in the behaviour of the separation heuristic within CPLEX’s Branch
& Cut framework. The results of the initial experiments weredisappointing. We will not state them
in detail but will summarise the main drawbacks of a naive implementation of Algorithm 7.6 in the
following:

• Although cut inequalities form a subclass of all three considered classes of inequalities they are
seldomly added to theCutPool. Given a cut of the network and one of the setsK+ or K−,
cut inequalities almost never belong to the most violated inequalities calculated by Algorithm
7.6. The absence of strong cut inequalities really reduces the performance. Figure 7.1 shows
a usual distribution of the most violated inequalities and the inequalities that are most violated
and in fact violated bȳp considered by Algorithm 7.6.

(i) |T | > 1: 4915712 most violated inequalities (ii) |T | > 1: 500373 of 4915712 inequalities violated bȳp

Figure 7.1: Distributions of (most) violated inequalitiescalculated bySEPARATIONHEURISTICFLOWCUT

The statistics were made by testing Algorithm 7.6 as a callback against 10 instances all modelled BIdirected
and a time limit of30 minutes.

• The violation of an inequality seems not to be a good measure for its quality, i. e., its ability to
increase the lower bound.

• The number of violated inequalities found by the separator is enormous for most of the in-
stances. Adding them all leads to large LP-relaxations and unacceptable computation times for
solving them.
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• The same inequality might be added to theCutPool several times and many inequalities in the
pool are almost parallel (with an orthogonality close to zero).

As a first improvement it was decided to implement a second separation heuristic that solely com-
putes cut inequalities. Given a cutAS and a facilitys ∈ T , we consider the two (strengthened) cut
inequalities

∑

t∈T

min
(
rK+

s ηK+

s ,Gd,cs(ct)
)
xt(A+

S ) ≥ rK+

s ηK+

s and (7.6)

∑

t∈T

min
(
rK−

s ηK−

s ,Gd,cs(ct)
)
xt(A−

S ) ≥ rK−

s ηK−

s (7.7)

for DIrected problems withrK+

s ηK+

s = r(dK+

S , cs)⌈
dK+

S

cs ⌉ andrK−

s ηK−

s = r(|dK−

S |, cs)⌈
|dK−

S
|

cs ⌉. For
BIdirected and UNdirected problems, a cutES and a facilitys ∈ T we consider the (strengthened)
cut inequality

∑

t∈T

min
(
r(d, cs)⌈ d

cs ⌉,Gd,cs(ct)
)
xt(ES) ≥ r(d, cs)⌈ d

cs ⌉, (7.8)

whered := max(dK+

S , |dK−

S |). Algorithm 7.7 uses the same contraction procedure as Algorithm 7.6
and checks all cut inequalities corresponding to the cuts ofthe shrunken graph for violation.

Input : point p̄ = (f̄ , x̄), PSize≥ 2, G = (V,E) orG = (V,A),
net demandsdk

i , i ∈ V, k ∈ K facilitiesT , capacitiesct, t ∈ T

Output : a poolCutPool of cut inequalities all violated bȳp

1: InitialiseCutPool := ∅.
2: LS = NODESETSBYCONTRACTION(p̄, PSize,G)
3: for S ∈ LS do
4: CalculateK+ andK− with respect toS.
5: For UNdirected problems ensure thatK− = ∅ (by swapping flow variables).
6: for s ∈ T do
7: DIrected: If (7.6) is violated bȳp add it to theCutPool.
8: DIrected: If (7.7) is violated bȳp add it to theCutPool.
9: BIdirected, UNdirected: If (7.8) is violated bȳp add it to theCutPool.

10: end for
11: end for
12: return CutPool

Algorithm 7.7: SEPARATIONHEURISTICCUT(p̄, PSize,G, d, T , c)

We are now faced with two different separation heuristics that can be used independently from
each other. To further improve the overall performance someadditional modifications have been
implemented. To determine the standard settings for lots ofparameters, a series of tests has been
done for all instances. We cannot give a detailed parameter discussion here. We only sketch some of
the improvements and motivate some settings:
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• Only add violated inequalities to theCutPool if they are not too parallel to inequalities already
in the pool and to inequalities already in the formulation.

• Introduce a measure for the efficiency of a violated inequality. We used a linear combination
of the distance to the fractional pointp̄ and the parallelism with respect to the hyperplane given
by the objective function.

Add a violated inequality to the pool only if its efficiency isgreater than a certain minimum. The
minimal efficiency should be changed dynamically. Increaseit if there are too many inequalities
added and decrease it if the pool is (almost) empty.

After the termination of the separation heuristics the poolgets sorted with respect to the effi-
ciency and only a small number of the best inequalities (withlarge distance tōp and almost
parallel to the objective) in the pool is added to the formulation.

• Limit the total number of separated inequalities. Ifm is the number of rows of the initial
formulation, we not allowed the callbacks to add more thanm cutting planes during the whole
optimisation process.

• Do not apply the separation heuristics at every node of the Branch & Bound tree but only in
certain depths.

• The separation of (simple) flow cut inequalities and cut set inequalities of type (7.5) should be
done carefully. It turned out that it is useful to apply the modules Algorithm 7.7 and Algorithm
7.6 in a hierarchical manner. We only executed the module Algorithm 7.6 if in a certain number
of iterations there were no violated cut inequalities.

• The size of the shrunken graph calculated by Algorithm 7.1 should be small,2 ≤ PSize≤
5. We fixedPSize := 3 and the module Algorithm 7.7 additionally checked all multicut
inequalities (6.1) or (6.3) and added them to the pool if violated.

With these modifications we are now prepared for the final tests of the efficiency of our separation
heuristics.

7.4 Computational results

7.4.1 Data sets

For our tests we selected instances from theSNDlib 1.0 – Survivable Network Design Data Library
[2005], which has been launched recently by R. Wessäly and M. Pióro and contains realistic data sets
for (survivable) telecommunication network design. Table7.1 states all used problems.

Each instance is given by a supply graph (nodesV and linksE), a set of (directed) demandsD
and a set of installable link designsT . Demands were aggregated to obtain a set of commoditiesK

as described in Section 2.2.1. It holds for all selected instances that every technology is installable on
all links of the network. To model BIdirected and UNdirectedproblems as considered in this thesis,
every link was interpreted as being undirected. For DIrected problems it was assumed that for every
link between nodesu andv there is an directed arc(u, v) and an directed arc(v, u), such that the
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problem |V | |E| |D| |K| |T |

di-yuan 11 42 22 8 7

newyork 16 49 240 16 2

zib16 16 51 77 15 5

nobel-germany 17 26 121 15 40

france 25 45 300 25 1

norway 27 51 702 27 2

sun 27 102 67 18 1

nobel-eu 28 41 378 27 40

pioro40 40 89 780 39 2

zib54 54 81 1501 42 1

ta2 65 108 1869 42 11

Table 7.1: Data set fromSNDlib 1.0 – Survivable Network Design Data Library[2005]

total number of arcs|A| equals2|E|. Every given pre-installed capacity was removed. We considered
modular link capacities as well as explicit link capacities. There is no flow cost.

All calculations were done on a2 × 3 GHz machine with4 MB of memory. The computational
results are presented in Appendix A in detail. Table A.1, Table A.2 and Table A.3 report results
for modular link capacities and the problem types DIrected,BIdirected and UNdirected respectively.
Table A.4, Table A.5 and Table A.6 show the efficiency of the considered separation heuristics in the
presence of additional GUB constraints and hence models with explicit link capacities.

Every problem was tested with CPLEX and no callbacks, with CPLEX and the separation of cut
as well as multi cut inequalities and eventually with an implementation that used both separation
heuristics Algorithm 7.7 and Algorithm 7.6.

In the following we will analyse these results and state somestatistics. First note that comparing
the performance of different test cycles is difficult and hast to be done carefully. Every single violated
inequality we add to the initial formulation influences various sub-algorithms that are used by CPLEX
within the Branch & Cut framework such as heuristics, general purpose separators and branching
rules. Note that we do not test our separation heuristics within a pure Branch & Bound algorithm but
within (and against) a sophisticated state- of-the-art MIP-solver. Nevertheless, the results may serve
as an indicator of the efficiency of our separation heuristics.

7.4.2 Results for modular link capacities

After the implementation of all mentioned modifications to the first approach, the distribution of
inequalities that are added to the initial formulation has changed drastically. Since the separation of
cut inequalities is now considered separately, these inequalities now dominate the overall separation
process. This can be seen in Figure 7.2 when compared to Figure 7.1. This change of the distribution
has made the solution process much faster and robust and can be seen as the major reason for the
excellent results that have been obtained.

Before giving an overall statistic we briefly summarise the results reported by Table A.1, Table
A.2 and Table A.3 for modular link capacities. The most important observations are the following:
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(i) Algorithm 7.7 only (ii) Both separation heuristics

Figure 7.2: Distribution of separated inequalities – modular capacities

• For all data sets and all problem types we could reduce the computation time or the final gap.

• By only applying the separation heuristic Algorithm 7.7 andseparating cut as well as multi cut
inequality the acceleration of the optimisation process isenormous.

• Additionally separating (simple) flow cut inequalities by Algorithm 7.6 still results in an im-
provement of the overall performance but this improvement is small.

• The separation heuristics behave robust and stable. The added inequalities have integer coeffi-
cients that are small with respect to the given capacities, which follows from Corollary 3.8. We
reported numerical problems only for a single test instancedue to ill posed data (see below).

The behaviour of the separation heuristics was independentfrom the problem type. This is due to
the fact that the heuristics pay regard to the different structure of the models. In the following we will
not distinguish them anymore but consider all instances at once.

Figure 7.3: Easy to solve test instances and improvements made by adding separation heuristics to CPLEX’s
default MIP-solver – modular link capacities

There are11 data sets and3 problem types. From the33 resulting instances3 could be solved
within the time limit of 1 hour by CPLEX independently from adding separators or not. For all
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3 instances we reduced the computation time as well as the visited Branch & Bound nodes when
adding our separation heuristics. For another8 instances CPLEX ended up with a gap between2%

and8% but the problems were solved when applying our separators. The solution time was even
under10 minutes for most of them.

We were obviously able to add all the necessary strong cutting planes for these11 small to medium
sized examples. Figure 7.3 provides a statistic for them comparing the solution time and the visited
nodes during Branch & Bound for adding cut and multi cut inequalities (ci + mci), for adding all
considered cutting planes (ci + mci + fci) in ratio to the values obtained by CPLEX without callbacks
(cplex). If CPLEX ended up with a gap we considered a solutiontime of1 hour and the nodes so far
visited. Hence the actual improvement is even greater than shown by Figure 7.3.

For the remaining22 instances that could not be solved to optimality the endgapswere signifi-
cantly better when applying the separators and for20 of them we improved the best solution. The final
gap could be reduced for13 of those22 instances by more than50%. Even large instances as zib54
ended up with a gap under15%. Figure 7.4 reports the improvements made in the lower and upper
bound, the final gap and the number of nodes in the search tree again in ratio to the values obtained
by CPLEX’s default MIP-solver. We can provide better solutions and better quality certificates and
need to explore less Branch & Bound nodes for it.

Figure 7.4: Hard to solve test instances and improvements made by adding separation heuristics to CPLEX’s
default MIP-solver – modular link capacities

Both charts show that there is a great progress when only adding cut and multi cut inequalities.
The performance is still perceivable better when additionally separating (simple) flow cut inequalities
but it is only a small improvement.

We had some problems with three of the instances. Although the CPU time consumed by the
separation heuristics can be neglected for the rest of instances, for nobel-germany and nobel-eu it is
simply too large. These two examples have a large number of facilities. Our separation heuristics
try to detect violated cutting planes for every given base capacity in each iteration. More research is
needed to exploit the structure of the given capacity values. Nevertheless, even here we reduce the
overall gap or solve these instances within the time limit, whereas CPLEX runs into problems. In
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the DIrected case (the most difficult of the three problem types, since we doubled links and hence
design variables) CPLEX terminates because of a reached memory limit for both nobel-germany and
nobel-eu. The results for the largest problem, ta2 with DIrected capacity usage, might be incorrect.
The simplex algorithm terminated late in the optimisation process because of a singular basis, which
indicates numerical problems. Note that the capacitiesct for ta2 are given in a magnitude of107

while the default precision of CPLEX is10−6 and all ourMIR inequalities are obtained by dividing
base inequalities by the valuesct. One has to rescale the data or to increase the precision of the
calculations.

Let us finally try to answer the question why applying Algorithm 7.6 in addition to the separation of
cut and multi cut inequalities results only in slight improvements of the performance and how this
can be fixed.

First the number of added inequalities by Algorithm 7.6 is small but tests showed that increasing
the number of (simple) flow cut inequalities leads to unacceptable overall computation times. Flow
cut inequalities seem to be somewhat weaker than cut and multi cut inequalities and it is rather a
problem to find strong valid inequalities than to find violated ones. It was already mentioned that
except for nobel-eu and nobel-germany the computation timeconsumed by our separation heuristics
is very small. Hence one could spend more time to solve the separation problem.

The author believes that the biggest drawback of Algorithm 7.6 is the simple heuristic Algorithm
7.2 to find promising commodity subsets. Important strong valid flow cut inequalities might be missed
when largely concentrating on single commodities. But there is no better heuristic known so far.

Our approach of finding promising cuts is based on contraction of the network, which is a very
fast heuristic. But especially for sparse networks we mightend up with cutsES (or AS) that do not
give strong valid flow cut inequalities. Again remember fromSection 4.1 that a cut set inequality is
facet defining for a network design polyhedron if it defines a facet for the corresponding cut set and if
G[S] andG[V \S] are connected (undirected graphs) or strongly connected (directed graphs). Initially
calculating cuts with this property was successfully used by Bienstock et al. [1995] and Bienstock &
Günlük [1996]. A second possible approach is to exploit the structure of the components ofG[S] and
G[V \S] in order to strengthen cut set inequalities. For sparse networks more research has to be done
(see Section 6.6).

Eventually the author conjectures that flow cut inequalities behave better in the presence of flow
cost because then they are in some sense more parallel to the objective function.

7.4.3 Results for explicit link capacities

The separation heuristics were implemented and tested against different parameter settings with re-
spect to the models considered in this thesis. These are given by modular link capacities. Without
changing the algorithms and without doing new parameter tests we were interested in the behaviour
of the investigated inequalities in the presence of GUB constraints

∑

t∈T

xt
a ≤ 1 ∀a ∈ A,

∑

t∈T

xt
e ≤ 1 ∀e ∈ E.

Notice that GUB constraints imply the bound constraintsxt
a ≤ 1 for all a ∈ A, t ∈ T (or xt

e ≤ 1 for
all e ∈ E, t ∈ T ). It follows that the unbounded and bounded network design problems defined in
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Chapter 2 and studied throughout the thesis are relaxationsof problems with explicit link capacities
and hence all developed inequalities are still valid and canbe used to tighten the initial formulation.

One would expect them to be weak but as the following results show they are of significant
practical usefulness even for models with GUB constraints.

Not all of the data sets can be used to model explicit capacities. The limitation of the possible
amount of capacity that can be installed does not allow for a feasible routing for some of the instances.
The corresponding polyhedra are empty. This is the case for the data sets

• france, norway, newyork and pioro40

A first observation is, that with a total number of separated inequalities that is almost the same,
the distribution changes slightly compared to the tests formodular link capacities (see Figure 7.5
compared to Figure 7.2). There are less cut inequalities andmore multi cut inequalities and (simple)

(i) Algorithm 7.7 only (ii) Both separation heuristics

Figure 7.5: Distribution of separated inequalities – explicit link capacities

flow cut inequalities added to the initial formulation. Detailed results can be found in Table A.4, Table
A.5 and Table A.6.

From the left21 problems, di-yuan and zib16 in the BIdirected case are solved more quickly with
CPLEX and no callbacks. For another two examples CPLEX ends up with a better gap. These are
nobel-eu in the DIrected and nobel-eu in the BIdirected case. Note that this is not due to a better lower
bound but because of better solutions. For the rest of the instances adding the separation heuristics
to CPLEX’s default Branch & Cut algorithm results in overallimprovements of the performance, in
some cases enormous. So for11 instances CPLEX ends up with a gap and by adding the heuristics
we solve these instances to optimality or reduce the gap clearly by more than50%.

Figure 7.6 and Figure 7.7 again report overall statistics for easy (solved to optimality within1
hour of computation time) and hard to solve instances. The values are given in ration to the values
obtained by CPLEX without any callbacks. When comparing these charts to Figure 7.3 and Figure 7.4
it can be seen that the reduction of computation time and gap for models with explicit link capacities
is still significant but smaller than for models with modularlink capacities.

It is interesting and unexpected that the effect of adding (simple) flow cut inequalities and cut set
inequalities of type (7.5) in addition to cut and multi cut inequalities is much greater for models with
explicit capacities. This might be due to the change of the distribution of the separated inequalities. It
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happens more often that the Algorithm 7.7 fails to find violated cut inequalities such that Algorithm
7.6 is applied more often and seems to help out.

Figure 7.6: Easy to solve test instances and improvements made by adding separation heuristics to CPLEX’s
default MIP-solver – explicit link capacities

Figure 7.7: Hard to solve test instances and improvements made by adding separation heuristics to CPLEX’s
default MIP-solver – explicit link capacities

7.5 Summary

We considered the separation problem for the strong valid cut set inequalities of Chapter 4 and devel-
oped separation heuristics that can be used within a state-of-the-art Branch & Cut MIP-solver such as
CPLEX. These algorithms were tested against real-world networks.

It turned out that it is useful to separately apply a heuristic that concentrates on cut inequalities
and multi cut inequalities as considered in this thesis and only to add (simple) flow cut inequalities if
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no such cutting planes can be found. The improvements in the overall solution time and the final gap
that could be made are enormous compared to CPLEX’s results obtained without any callbacks.

This is even true for models with explicit link capacities, although GUB or upper bound con-
straints were not considered when developing the inequalities that were integrated into the separation
modules. It can be conjectured that the optimisation process can still be accelerated when additionally
separating inequalities that explicitly exploit bound or GUB constraints as for instance the flow cover
inequalities of Chapter 5. Moreover, the stated algorithmscan be extended easily for the separation
of flow cover inequalities. We can use the basic framework andadditionally find flow covers and
complement variables (see Chapter 5).

117



Separation, Implementation and Computational Results

118



Chapter 8

Conclusion

Telecommunication network design problems with bifurcated routing and a finite set of installable
base capacities have been studied. We have considered bounded design variables as well as un-
bounded design variables and distinguished three common types of capacity usage, DIrected, BIdi-
rected and UNdirected. The corresponding models arise as parts and sub-problems of larger and more
complex problems containing additional requirements suchas survivability of the network, hop limits
or costs for hardware installation at the nodes of the network. All problems have been formulated as
mixed integer programs. A successful approach to solve suchproblems is the use of Branch & Bound
methods in combination with cutting plane algorithms (Branch & Cut). For the effectiveness of these
algorithms it is crucial to understand the facial structureof the considered polyhedra.

We focused on the use ofMixed-Integer Roundingto develop strong valid inequalities for network
design polyhedra. It was shown that by exploiting the structure of the given parameters such as under-
lying graphs, capacities and bound constraints and applying a generalMIR procedure consisting of the
stepsAggregating, Substituting, ComplementingandScaling, it is possible to derive different classes
of strong valid or even facet-defining inequalities. Moreover, the use ofMIR as a valid superadditive
lifting function was emphasised.

In Chapter 4 and Chapter 5 it has been concentrated on so-calledcut setsor single node flow sets,
relaxations of network design polyhedra that are defined with respect to cuts of the network. As a
central result we stated sufficient conditions for facet-defining inequalities of cut sets to define facets
for network design polyhedra. A general class of facet-defining inequalities obtained byMIR, so-
called flow cut inequalities, has been introduced and it has been investigated in detail. In the presence
of bound constraints we could even generalise this class to the well-known flow cover inequalities.

These cutting planes have been considered for the three problem types DIrected, BIdirected and
UNdirected and structural differences of the corresponding polyhedra have been elaborated on.

As an extension, Chapter 6 motivates some extendedMIR techniques and provides a survey of
several classes of strong valid inequalities for network design polyhedra that can be obtained by the
developedMIR procedure.

Eventually we sketched the separation problem for some of the investigated inequalities. Sep-
aration heuristics have been implemented in a Branch & Cut framework and they have been tested
against a bunch of realistic network design problems. We could demonstrate the efficency of the con-
sidered cutting planes and hence the usefulness ofMIR in the context of telecommunication network
design.
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Appendix A

Results

The tables that can be found on the following pages report detailed results of our final tests. For all
instances these tables compare test cycles done with CPLEX and no additional callbacks (none), with
Algorithm 7.7 implemented as a callback (ci+mci) calculating cut inequalities as well as multi cut
inequalities and with both separation heuristics Algorithm 7.7 and Algorithm 7.6 (all).

The first two columns (problem) and (sep) state the problem and the applied separators (in addition
to the general purpose separators of CPLEX). In the following three columns we report the objective
value of the LP relaxation (lp), the final dual bound (lower) and the objective value of the best (mixed)
integer solution found (upper). Note that for clarity we only state the first4 (or 5) leading digits. The
next column (time/gap) provides the final gap or it reports the CPU time (given in mm :: ss) elapsed
if the instance could be solved to optimality within a time limit of 1 hour. Columnnodesreports the
total number of nodes explored in the search tree during Branch & Cut and columntime sepgives
the total CPU time needed by the separation heuristics. The last three columns report the number
of cut inequalities (nof ci), the number of multi cut inequalities (nof mci) and finally the number of
(simple) flow cut inequalities and cut set inequalities of type (7.5) (nof fci) that were added to the
initial formulation.
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Results

A.1 Modular capacities

problem sep lp lower upper time / nodes time nof nof nof
gap % sep ci mci fci

di-yuan none 3161 7314 7776 5.93 426382
ci + mci 3161 7621 7621 11:11 28482 00:00 175 0
all 3161 7621 7621 07:11 28482 00:01 175 0 0

france none 1887 2059 2200 6.40 401526
ci + mci 1887 2130 2200 3.14 159923 24 138 0
all 1887 2128 2180 2.36 134846 00:51 128 0 166

newyork none 6385 7093 7485 5.24 199550
ci + mci 6385 7239 7446 2.78 78309 00:12 193 1
all 6385 7241 7446 2.74 63531 00:29 196 1 143

nobel-eu none 8588 8863 12266 27.7M 247385
ci + mci 8588 9149 11371 19.5 115595 07:32 402 2
all 8588 9062 11315 19.9 82747 26:48 363 2 83

nobel-germany none 1474 1589 2172 26.8M 956134
ci + mci 1474 1815 1843 1.48 367965 20:23 246 3
all 1474 1815 1894 4.16 256191 37:14 215 3 77

norway none 1627 1635 1676 2.44 640842
ci + mci 1627 1647 1673 1.53 254499 00:57 205 0
all 1627 1647 1672 1.52 251512 02:27 200 0 15

pioro40 none 4120 4137 4203 1.57 80157
ci + mci 4120 4142 4205 1.50 63877 00:20 119 0
all 4120 4142 4205 1.50 57087 00:54 106 0 8

sun none 744.8 831.6 1054 21.0 69475
ci + mci 744.8 933.7 1050 11.0 24175 00:06 234 3
all 744.8 932.9 1050 11.1 25319 00:14 241 3 102

ta2 none 1064 1382 3613 61.7 6548
ci + mci 1064 1454 3592 59.5 2995 00:02 480 25
all 1064 1454 3592 59.5 2955 00:04 460 21 0

zib16 none 2097 2954 3397 13.0 264511
ci + mci 2097 3011 3408 11.6 75224 00:02 343 0
all 2097 3013 3321 9.2 72515 00:08 329 0 14

zib54 none 3813 10703 15994 33.1 7338
ci + mci 3813 13693 14697 6.83 4282 00:01 257 20
all 3813 13695 14697 6.82 4341 00:02 258 20 9

Table A.1: Results DIrected modular link capacities
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A.1 Modular capacities

problem sep lp lower upper time/ nodes time nof nof nof
gap sep ci mci fci

di-yuan none 2746 5537 5537 02:26 23880
ci + mci 2746 5537 5537 02:35 10187 00:00 141 31
all 2746 5537 5537 02:28 10187 00:00 141 31 0

france none 1096 1181 1240 4.689 391378
ci + mci 1096 1240 1240 02:06 3279 00:00 53 6
all 1096 1240 1240 02:05 3316 00:00 53 6 5

newyork none 3312 3697 3796 2.593 188325
ci + mci 3312 3780 3780 29:42 42029 00:03 274 19
all 3312 3780 3780 27:28 36872 00:04 245 18 91

nobel-eu none 6019 6120 6697 8.626 856138
ci + mci 6019 6317 6461 2.233 349235 07:50 222 12
all 6019 6318 6435 1.823 258124 28:09 273 11 38

nobel-germany none 1154 1241 1336 7.083 2809373
ci + mci 1154 1325 1325 05:55 91242 01:52 158 13
all 1154 1325 1325 05:08 49161 04:40 140 11 37

norway none 8483 8531 8627 1.110 410441
ci + mci 8483 8573 8606 0.384 335596 00:41 69 0
all 8483 8574 8605 0.366 331433 01:44 63 0 13

pioro40 none 2540 2545 2559 0.562 105351
ci + mci 2540 2545 2559 0.529 100843 00:20 22 0
all 2540 2545 2559 0.523 104105 00:53 21 0 7

sun none 570.2 604.4 700.8 13.758 75456
ci + mci 570.2 648.7 697.4 6.987 14845 00:02 340 43
all 570.2 648.7 695.5 6.739 14292 00:05 339 47 79

ta2 none 6724 8548 17144 50.138 6796
ci + mci 6724 8546 16437 48.002 2341 00:03 1713 391
all 6724 8546 16437 48.002 2415 00:05 1713 391 0

zib16 none 1582 2182 2182 21:25 199260
ci + mci 1582 2182 2182 07:09 16886 00:01 201 19
all 1582 2182 2182 07:16 14242 00:04 187 19 198

zib54 none 2018 7719 9788 21.136 10603
ci + mci 2018 8697 10216 14.863 7335 00:02 1406 629
all 2018 8699 10216 14.847 7358 00:04 1406 629 0

Table A.2: Results BIdirected modular link capacities
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problem sep lp lower upper time/ nodes time nof nof nof
gap sep ci mci fci

di-yuan none 3161 6557 6557 15:20 223903
ci + mci 3161 6557 6557 02:09 14877 00:00 117 13
all 3161 6557 6557 02:07 14877 00:00 117 13 0

france none 1887 1979 2020 1.99 964435
ci + mci 1887 2020 2020 00:02 284 00:00 27 2
all 1887 2020 2020 00:02 284 00:00 27 2 0

newyork none 6386 6716 6820 1.53 817467
ci + mci 6386 6790 6790 06:45 23160 00:01 234 7
all 6386 6790 6790 05:25 18343 00:04 221 11 35

nobel-eu none 8588 8686 9190 5.49 1057431
ci + mci 8588 8962 8985 0.26 293300 07:09 295 18
all 8588 8958 9000 0.47 247342 30:14 279 20 6

nobel-germany none 1474 1530 1664 8.05 2835350
ci + mci 1474 1619 1619 00:42 6467 00:12 142 22
all 1474 1619 1619 00:59 7060 00:54 150 22 2

norway none 1627 1631 1644 0.78 1090799
ci + mci 1627 1638 1643 0.30 496723 01:17 105 0
all 1627 1638 1643 0.30 493550 03:21 113 0 11

pioro40 none 4120 4125 4145 0.49 177311
ci + mci 4120 4127 4144 0.41 140488 00:30 35 0
all 4120 4127 4144 0.41 139770 01:31 37 0 5

sun none 744.8 776.0 867.3 10.5 204753
ci + mci 744.8 851.4 863.7 1.43 40902 00:05 229 20
all 744.8 851.4 863.7 1.43 33975 00:11 223 20 151

ta2 none 1064 1218 2183 44.2 15600
ci + mci 1064 1233 1970 37.4 2754 00:04 2047 441
all 1064 1233 1970 37.4 2754 00:08 2047 441 0

zib16 none 2097 2703 2786 2.98 784484
ci + mci 2097 2757 2757 23:16 63778 00:00 273 18
all 2097 2757 2757 21:55 63778 00:01 273 18 0

zib54 none 3813 7193 10687 32.7 23693
ci + mci 3813 9228 10334 10.7 7442 00:02 1298 539
all 3813 9228 10334 10.7 7491 00:04 1300 540 0

Table A.3: Results UNdirected modular link capacities
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A.2 Explicit capacities

problem sep lp lower upper time / nodes time nof nof nof
gap % sep ci mci fci

di-yuan none 3161 7391 7767 4.84 473766
ci + mci 3161 7621 7621 06:27 18707 00:06 259 0
all 3161 7621 7621 06:48 20017 00:04 252 0 6

nobel-eu none 8588 8890 11192 20.6 1179254
ci + mci 8588 9062 14196 36.2 123530 32:49 507 2
all 8588 9063 12271 26.2 114033 43:22 455 2 140

nobel-germany none 1474 1613 2115 23.7 2240597
ci + mci 1474 1796 1931 7.02 140206 31:50 271 1
all 1474 1802 2026 11.1 125403 39:11 272 1 70

sun none 745.4 832.4 1038 19.8 63030
ci + mci 745.4 935.1 1067 12.4 30080 00:17 241 1
all 745.4 934.8 1066 12.3 29386 00:17 236 1 117

ta2 none 1064 1380 4605 70.0 12680
ci + mci 1064 1474 4188 64.8 5521 00:11 605 18
all 1064 1474 4188 64.8 5518 00:11 605 18 0

zib16 none 2097 2934 3315 11.5 343400
ci + mci 2097 2987 3314 9.88 84516 01:15 417 0
all 2097 2997 3261 8.11 70766 00:24 314 0 148

zib54 none 3813 11205 16333 31.4 9314
ci + mci 3813 13878 14830 6.42 5134 00:03 225 16
all 3813 13875 14903 6.90 5112 00:03 224 17 38

Table A.4: Results DIrected explicit link capacities
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problem sep lp lower upper time/ nodes time nof nof nof
gap sep ci mci fci

di-yuan none 2746 5537 5537 02:02 18653
ci + mci 2746 5537 5537 04:25 19088 00:02 182 32
all 2746 5537 5537 02:59 12127 00:02 177 32 5

nobel-eu none 6019 6149 6739 8.75 1098305
ci + mci 6019 6301 7738 18.6 184018 29:35 540 18
all 6019 6321 6803 7.08 146661 38:36 398 13 131

nobel-germany none 1154 1226 1346 8.91 2970487
ci + mci 1154 1325 1325 17:38 140365 13:28 197 13
all 1154 1325 1325 12:02 79266 09:06 192 10 63

sun none 571.6 614.3 699.9 12.22 80106
ci + mci 571.6 663.6 693.0 4.24 12119 00:04 273 32
all 571.6 663.4 693.0 4.26 11771 00:04 269 33 74

ta2 none 6724 9745 21375 54.4 31277
ci + mci 6724 9204 17675 47.9 678 00:02 734 152
all 6724 9204 17675 47.9 678 00:02 734 152 0

zib16 none 1582 2182 2182 09:44 60630
ci + mci 1582 2182 2182 10:25 23034 00:07 167 16
all 1582 2182 2182 10:54 19793 00:07 164 17 215

zib54 none 2018 7557 9950 24.0 16085
ci + mci 2018 8563 9994 14.3 5340 00:03 1116 469
all 2018 8563 9994 14.3 5340 00:03 1116 469 0

Table A.5: Results BIdirected explicit link capacities
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problem sep lp lower upper time/ nodes time nof nof nof
gap sep ci mci fci

di-yuan none 3161 6566 6566 12:24 247328
ci + mci 3161 6566 6566 02:46 17471 00:00 163 10
all 3161 6566 6566 02:44 17471 00:00 163 10 0

nobel-eu none 8588 8749 9532 8.214 1884632
ci + mci 8588 8968 9349 4.083 158449 32:47 577 17
all 8588 8962 9160 2.158 163275 32:22 515 14 25

nobel-germany none 1474 1550 1674 7.365 2881728
ci + mci 1474 1619 1619 00:25 2976 00:24 93 14
all 1474 1619 1619 01:25 8212 01:19 159 19 4

sun none 749.6 779.7 880.1 11.411 176617
ci + mci 749.6 858.7 863.7 0.579 27470 00:09 142 9
all 749.6 859.5 863.7 0.485 24395 00:08 141 8 115

ta2 none 1075 1232 2127 42.0 36103
ci + mci 1075 1310 1938 32.4 2662 00:07 1347 295
all 1075 1310 1938 32.4 2577 00:07 1325 287 0

zib16 none 2097 2708 2805 3.453 719285
ci + mci 2097 2800 2800 21:03 58292 00:09 322 20
all 2097 2800 2800 19:28 52523 00:05 273 19 52

zib54 none 3875 7671 10422 26.4 38733
ci + mci 3875 9383 10422 9.972 5952 00:03 1055 404
all 3875 9382 10422 9.980 5868 00:03 1053 403 0

Table A.6: Results UNdirected explicit link capacities
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Appendix B

Proofs

The following definition and lemma is crucial for the understanding of the proofs of Theorem 4.23,
4.25 and 4.29.

Definition and Lemma B.1. Consider the cut setCSBI in the single-facility case and suppose a
feasible pointp0 is given such that all demand is routed

cηK+
dK+

S

dK−

S

p0 :

e0

Figure B.1: All flow is routed
one0.

on e0 = uv with capacity exactlycηK+

, more precisely all flow for
positive commodities is routed onuv and all flow for negative com-
modities is routed onvu (see Figure B.1). Assume thatdK+

S ≥ |dK−

S |

andrK+

< c, which is equivalent todK+

S < cηK+

.
Hence the capacity one0 is not saturated. Let|ES | ≥ 2. To con-

struct a second feasible pointp, one unit of capacity is deleted one0.
Note thatc(ηK+

− 1) = dK+

S − rK+

(see Lemma 3.11).

1. If dK+

S − rK+

> 0 there is still capacity one0. We decrease the flow onuv (with respect to
K+) by exactlyrK+

by changing flow for every positive commodity. Hence the capacity on
uv is saturated. The flow onvu (with respect toK−) is decreased byδK−

, whereδK−
:=

|dK−

S | − (dK+

S − rK+

) if |dK−

S | − (dK+

S − rK+

) > 0 and0 < δK−
< min(|dK−

S |, rK+

) else.

To do so we change the flow of every negative commodity. Note that δK−
≤ rK+

since
dK+

S ≥ |dK−

S |.

The missing flow is now routed on a second edgee = ij with one unit of capacity (see Figure
B.1).

2. If dK+

S = rK+

⇐⇒ ηK+

− 1 = 0 we just copy the flow frome0 to e. SetδK−
:=

∑
k∈K− dk

S

in this case.

This way we ensure that the new point is feasible, that the capacity on e is not saturated in both
directions, that flows are positive onij for k ∈ K+ and that flows are positive onji for k ∈ K−.

In both cases we will denote byϕk
r the amount of flow that has been rerouted fork ∈ K. It

follows that0 < ϕk
r ≤ d

k
S for all k ∈ K,

∑
k∈K+ ϕk

r = rK+

and
∑

k∈K− ϕk
r = δK−

.
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c(ηK+

− 1) dK+

S − rK+

dK−

S − δK−

rK+

δK−

p0 :

e0

p :

e
c

Figure B.2: e is used to reroute the
flow.

If moreoverdK+

S − rK+

> 0, thenϕk
r < dk

S for all k ∈ K,
flows are positive onuv for k ∈ K+ and flows are positive on
vu for k ∈ K−.

There is another way to construct a feasible pointp from
p0 if BIdirected capacity constraints are given. We delete flow
and capacity the same way as above, but we construct a vector
ϕc such that the total flow onij is

∑
k∈K+ ϕk

c = c. On ji we
route

∑
k∈K+(ϕk

c − ϕ
k
r ) +

∑
k∈K− ϕk

r such that the capacity
on ji is not saturated ifdK+

S > |dK−

S | (see Figure B.1).
Notice thatδK−

= rK+

if |dK−

S | = dK+

S .

c(ηK+

− 1) dK+

S − rK+

dK−

S − δK−

p0 :

e0

c

c− rK+

+ δK−

p :

e
c

Figure B.3:e is used to reroute the flow in a
different way.

These constructions are used in the proofs of Theo-
rem 4.25 and Theorem 4.29. In the proof of the following
theorem (Theorem 4.23) a subsetQ+ of the positive com-
modities is considered initially routed one0. All the flow
for K+\Q+ andK− ∪ K0 is routed on a second edge
and is not touched by the construction of points as above,
the vectorsϕc andϕr are defined with respect todQ+

S and
rQ+

then and there is only flow onuv andij.

B.1 Proof of Theorem 4.23

Proof. We will show that the related face

FBI = { (f, x) ∈ CSBI : (f, x) satisfies (4.18) with equality}

is nontrivial and then by contradiction, we will show that itdefines a facet (approach 2 for facet proofs
Wolsey [1998, chap 9.2.3]).

Givene = ij ∈ ES , let be denote the unit vector inR|ES|+2|K||ES| for the integer design variable
of e and letgk

ij , g
k
ji be the unit vectors for the continuous flow variables ofij, ji for commodity

k ∈ K.
We setd := dQ+

S , η := ηQ+

, r := rQ+

< c andǫ > 0 small enough. Let̄Q+ := K+\Q+.
Choosee0 = uv ∈ E1\E2 andē0 = ūv̄ ∈ Ē1\E2. We construct a point on the faceFBI by sending
all flow for Q+ one0 and the flow for all other commodities on̄e0:

ue0
:= ηbe0

+
∑

k∈Q+

dkgk
uv +Mbē0

+
∑

k∈Q̄+

dkgk
ūv̄ +

∑

k∈K−

dkgk
v̄ū.

whereM ∈ Z+ is large enough.ue0
is a feasible point ofCSBI since all demands are satisfied

and the flow does not exceed the installed capacity. It is on the faceFBI becausex(E1) = η and
x(E2) = fQ+

(Ē+
1 ) = fQ+

(E−
2 ) = 0. HenceFBI is not empty.ue0

+ be0
is a point that is inCSBI

but not on the faceFBI .
We have shown that∅ 6= FBI 6= CSBI . It remains to show thatFBI is inclusionwise maximal.

We do this by contradiction. Suppose there is faceF of CSBI with FBI ⊂ F and letF be defined by

∑

e=ij∈ES

βexe +
∑

e=ij∈ES
k∈K

γk
ijfij +

∑

e=ij∈ES
k∈K

γk
jifji = π (B.1)
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whereβe, γ
k
ij , γ

k
ji, π ∈ R. We will show that (B.1) is (4.18) up to a scalar multiple and alinear

combination of flow conservation constraints, contradicting toFBI ⊂ F .
Adding multiples of the|K| flow conservation constraints to (B.1) givesγk

uv = 0 for all k ∈ Q+,
γk

ūv̄ = 0 for all k ∈ Q̄+ andγk
v̄ū = 0 for all k ∈ K− ∪K0.

Setβ := βe0
andβ̄ := βē0

. Sinceue0
lies on the hyperplane, we conclude thatβη + β̄M = π.

Now we modifyue0
by installing a capacity ofM + 1 on ē0. This is another point on the face and

thusβ̄ = 0. It follows that

βη = π (B.1a)

The capacity one0 is not saturated sincedQ+

S < cη. Modifying ue0
by simultaneously increasing

flow onuv andvu by ǫ for k ∈ Q+ gives new points on the face and thus

γk
uv, γ

k
vu = 0 ∀k ∈ Q+.

The same can be done onūv̄, v̄ū for k ∈ K− ∪K0 ∪ Q̄+, hence

γk
ūv̄, γ

k
v̄ū = 0 ∀k ∈ K− ∪K0 ∪ Q̄+

Now consider the disjoint partitionES := (E1 ∩ E2) ∪ (E1\E2) ∪ (Ē1 ∩ E2) ∪ (Ē1\E2). We
compute the coefficientsγe, βij , βji for e = ij in each of the four sets by constructing new points.
They obviously fulfil the flow conservation constraint and satisfy inequality (4.18) with equality. To
see that they meet the BIdirected capacity constraints (4.11) just use thatr < c and remember the
equations

cη = d + c − r and c(η − 1) = d − r (Lemma 3.11)

Note that all the points defined with edges inĒ1 ∩E2,E1\E2 andĒ1\E2 additionally satisfy the
UNdirected capacity constraints (4.12) Hence withE1 ∩ E2 = ∅ the theorem holds forCSUN .
Ē1 ∩ E2 6= ∅: Fore = ij ∈ Ē1 ∩ E2 andk ∈ Q+ define:

ue0
+ be + (c − r)gk

uv + (c − r)gk
ji =⇒ βη + βe + (c − r)γk

ji = π (B.1b)

ue0
+ be0

+ cgk
uv + be + cgk

ji =⇒ βη + β + βe + cγk
ji = π (B.1c)

ue0
+ (c − r)gk

uv + be + r
2g

k
ij + (c − r

2)gk
ji =⇒ βη + βe + r

2γ
k
ij + (c − r

2)γk
ji = π (B.1d)

Comparison of (B.1b) and (B.1c) shows that−rγk
ji = β for all e ∈ Ē1 ∩ E2, for all k ∈ Q+.

From (B.1b) it follows similarly thatβe = β
r
(c − r) ∀e ∈ Ē1 ∩ E2. From (B.1d) we find that

β
r
(c − r)− (c − r

2 )β
r

+ r
2γ

k
ij = 0, which implies thatrγk

ij = β for all e ∈ Ē1 ∩ E2, for all k ∈ Q+.
To conclude thatγk

ji = 0 for all k ∈ K− ∪K0 just modify the point in (B.1b) by increasing flow
for k ∈ K− ∪ K0 on ūv̄ by someǫ and routing thisǫ-flow back onji. Simultaneously increasing
flow on ij, ji givesγk

ij = 0 for all k ∈ K−∪K0. Since the same can be done fork ∈ Q̄+ on the arcs
ūv̄, ij, ji, we getγk

ij = γk
ji = 0 for all k ∈ Q̄+.

E1 ∩ E2 6= ∅: Fore = ij ∈ E1 ∩ E2 andk ∈ Q+ define:

vk
e := ue0

+ be + cgk
ij + cgk

ji =⇒ βη + βe + cγk
ij + cγk

ji = π (B.1e)

We can still increase flow onuv by a small amount for every commodity inQ+ . Decreasing flow on
ij at the same time gives another point on the face and thusγk

ij = 0 for all k ∈ Q+. When having
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changedvk
e this way, some flow fork ∈ K− ∪K0 ∪ Q̄+ can be routed onij while the same amount

of flow increases on̄vū. Henceγk
ij = 0 for all k ∈ K− ∪K0 ∪ Q̄+.

Fork1, k2 ∈ Q
+, e = ij ∈ E1 ∩ E2 consider the point

vk1

e − ǫg
k1

uv + ǫgk2

uv − ǫg
k1

ji + ǫgk2

ji

It is well defined and feasible because flow onuv is positive for everyk ∈ Q+ and flow onij is
positive fork1. It follows thatγ+

ji := γk1

ji = γk2

ji for all k1, k2 ∈ Q
+.

For the construction of the following vector see Definition and Lemma B.1. We modifyue0
by

deleting one unit of capacity fore0 and rerouting flow one ∈ E1 ∩E2:

ue0
− be0

−
∑

k∈Q+

ϕk
rg

k
uv + be +

∑

k∈Q+

ϕk
cg

k
ij +

∑

k∈Q+

(ϕk
c − ϕ

k
r )g

k
ji

=⇒ βη − β + βe + (c − r)γ+
ji = π (B.1f)

Note that
∑

k∈Q+(ϕk
c − ϕ

k
r ) = c − r andγk

ij = 0. Comparing (B.1e) and (B.1f) gives

−rγ+
ji = −rγk

ji = β ∀k ∈ Q+.

From (B.1e) and (B.1a) follows then

βe = c β
r
∀e ∈ E1 ∩ E2.

The total flow onji in (B.1f) is c − r, thus the capacity onji is not saturated. Increasing flow on
ūv̄ andji for commodities inQ̄+ ∪K− ∪K0 givesγk

ji = 0 for all k ∈ Q̄+ ∪K− ∪K0.
Ē1\E2 6= ∅: Fore = ij ∈ Ē1\E2 define:

ue0
+ be =⇒ βη + βe = π (B.1g)

The point can be modified by simultaneously increasing flow onuv andji. This can be done for
every commodity inQ+, thusγk

ji = 0 for all k ∈ Q+. Comparing (B.1g) with (B.1a) givesβe = 0

for all e ∈ Ē1\E2.
For the construction of the following vector see Definition and Lemma B.1. We modifyue0

by
deleting one unit of capacity fore0 and rerouting flow one ∈ Ē1\E2:

ue0
− be0

−
∑

k∈Q+

ϕk
rg

k
uv + be +

∑

k∈Q+

ϕk
rg

k
ij

=⇒ βη − β +
∑

k∈Q+

ϕk
rγ

k
ij = π (B.1h)

Modifying this point by simultaneously increasing flow onij and v̄ū for k ∈ K− ∪ K0 ∪ Q̄+

givesγk
ij = 0 for all k ∈ K− ∪K0 ∪ Q̄+. If e 6= ē0, then simultaneously increasing flow onij, ji

givesγk
ji = 0 for all k ∈ K− ∪K0 ∪ Q̄+.

It remains to show thatγk
ij = β

r
for k in Q+.

Assume first thatE2 = ∅. If |Q+| = 1, it follows that βη − β + rγk
ij = π and rγk

ij = β.

If |Q+| > 1 anddK+

S > c flows are positive both onuv and ij for every commodity inQ+ (see
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Definition and Lemma B.1). We choosek1, k2 ∈ Q
+ and modify the point in (B.1h) by adding the

flow ǫgk2
uv − ǫg

k1
uv + ǫgk1

ij − g
k2

ij . This way we conclude thatγk1

ij = γk2

ij . From (B.1h) followsrγk
ij = β

for all k ∈ Q+ since
∑

k∈Q+ ϕk
r = r.

Now let us assume that there is an edgee = ij in E1 ∩ E2. Modify the point in (B.1h) by
installing one unit of capacity on̄e0 and sending a flow ofc on ij andji for a commodityk1 ∈ Q

+.
Now addingǫgk2

ij − ǫg
k1

ij + ǫgk1

ij − g
k2

ij givesγk1

ij = γk2

ij andrγk
ij = β for all k ∈ Q+ again since

γk1

ij = γk2

ij = 0.

Finally assume that there ise = ij in Ē1 ∩ E2. For a commodityk ∈ Q+ ande = ij ∈ E1 ∩ E2

consider the following vector:

ue0
+ (c − r)gk

uv + be + be + cgk
ji + rgk

ij =⇒ βη + βe + βe + cγk
ji + rγk

ij = π

=⇒ βη + (c − r)β
r
− c β

r
+ rγk

ij = π

=⇒ β = rγk
ij ∀k ∈ Q

+

E1\E2 6= ∅: For e = ij ∈ E1\E2 we construct the following vector as in Definition and Lemma
B.1:

ue0
− be0

−
∑

k∈K+

ϕk
rg

k
uv + be +

∑

k∈K+

ϕk
rg

k
ij+

=⇒ βη − β + βe +
∑

k∈K+

ϕk
rγ

k
ij = π (B.1i)

Fork ∈ K add anǫ-flow to ij andji to conclude thatγk
ij = −γk

ji for all k ∈ K. If we can show that
γk

ij = 0 for all k ∈ K we are done because it follows thatγk
ji = 0 for all k ∈ K andβe = β for all

e ∈ E1\E2.

For this modify the point (B.1i) by simultaneously increasing flow on ij and v̄ū for a k in K.
Henceγk

ij = −γk
vu = 0.

Plugging in all coefficients we arrive at:

βx(E1\E2) + β
r
f (Ē+

1 \E
+
2 )

+ β
r
(c − r)x(Ē1 ∩ E2) + β

r
f (Ē+

1 ∩ E
+
2 ) − β

r
f (Ē−

1 ∩ E
−
2 )

+ c β
r
x(E1 ∩E2) − β

r
f (E−

1 ∩ E
−
2 )

= βη

⇐⇒

f (Ē+
1 ) + cx(E2)− f (E−

2 ) + r
(
x(E1)− x(E2)

)
= rη

We have shown that the hyperplane (B.1) is a multiple of (4.18) plus a linear combination of flow
conservation constraints. It follows thatFBI andF induce the same face. This is a contradiction.
HenceFBI is inclusionwise maximal and together with∅ 6= FBI 6= CSBI it defines a facet ofCSBI .
proper. This concludes the proof. II
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B.2 Proof of Theorem 4.25

Proof. We will show that the related face

FBI = { (f, x) ∈ CSBI : (f, x) satisfies (4.18) at equality}

is nontrivial and then by contradiction, we will show that itdefines a facets (approach 2 for facet
proofs Wolsey [1998, chap 9.2.3]).

Givene = ij ∈ ES , let be denote the unit vector inR|ES|+2|K||ES| for the integer design variable
of e and letgk

ij , g
k
ji be the unit vectors for the continuous flow variables ofij, ji for commodity

k ∈ K.
We setdS := dK+

S , η := ηK+

, r := rK+

< c andǫ > 0 small enough. Choosee0 = uv ∈ E1\E2

and consider a point as in Definition and Lemma B.1. All demandis satisfied by using onlye0 to send
flow. In terms of the unit vectors this is:

ue0
:= ηbe0

+
∑

k∈K+

dk
Sg

k
uv +

∑

k∈K−

dk
Sg

k
vu.

ue0
is a feasible point ofCSBI since all demands are satisfied and the flow does not exceed the

installed capacity. It is on the faceFBI becauserx(E1) = rη. HenceFBI is not empty.ue0
+ be0

is
a point that is inCSBI but not on the faceFBI .

We have shown that∅ 6= FBI 6= CSBI . We still have to show thatFBI is inclusionwise maximal.
We do this by contradiction. Suppose that there is a faceF of CSBI with FBI ⊂ F and letF be
defined by the hyperplane

∑

e=ij∈ES

βexe +
∑

e=ij∈ES
k∈K

γk
ijfij +

∑

e=ij∈ES
k∈K

γk
jifji = π (B.2)

whereβe, γ
k
ij , γ

k
ji, π ∈ R. We will show that (B.2) is completely described by (4.18) upto a scalar

multiple and a linear combination of flow conservation constraints, contradictingFBI ⊂ F .
Adding multiples of the|K| flow conservation constraints to (B.2) givesγk

uv = 0 ∀k ∈ K+ and
γk

vu = 0 ∀k ∈ K− ∪K0 w. l. o. g..
Setβ := βe0

. Sinceue0
lies on the hyperplane, we conclude that

βη = π (B.2a)

Modifying ue0
by simultaneously increasing flow onuv andvu by ǫ for every commodity gives

new points on the face and thusγk
uv, γ

k
vu = 0 ∀k ∈ K.

Now consider the disjoint partitionES := (Ē1∩E2)∪(E1∩E2)∪(E1\E2). (Note thatĒ1\E2 =

∅). We calculate the coefficientsγe, βij , βji for e = ij in each of the three sets by constructing new
points. The fact that all the points are on the faceFBI will not be mentioned anymore. They obviously
fulfil the flow conservation constraint and satisfy inequality (4.18) with equality. To see that they meet
the BIdirected capacity constraints (4.11) just use thatc(η + 1) = dS + 2c − r, cη = dS + c − r,
c(η − 1) = dS − r (see Lemma 3.11) andr < c.

Note that all the points defined with edges inĒ1 ∩ E2 andE1\E2 additionally satisfy the UNdi-
rected capacity constraints (4.12) when no negative commodities are given. Hence withE1 ∩E2 = ∅

andK− = ∅ the theorem holds forCSUN .
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B.2 Proof of Theorem 4.25

Ē1 ∩ E2 6= ∅: Fore = ij ∈ Ē1 ∩ E2 andk ∈ K+ define:

ue0
+ be + (c − r)gk

uv + (c − r)gk
ji =⇒ βη + βe + (c − r)γk

ji = π (B.2b)

ue0
+ be0

+ cgk
uv + be + cgk

ji =⇒ βη + β + βe + cγk
ji = π (B.2c)

ue0
+ (c − r)gk

uv + be + r
2g

k
ij + (c − r

2)gk
ji =⇒ βη + βe + r

2γ
k
ij + (c − r

2)γk
ji = π (B.2d)

Comparing (B.2b) and (B.2c) shows that−rγk
ji = β ∀e ∈ Ē1 ∩ E2, ∀k ∈ K+. From (B.2b) it

follows similarly thatβe = β
r
(c− r) ∀e ∈ Ē1∩E2. From (B.2d) we find thatβ

r
(c− r)− (c− r

2)β
r

+
r
2γ

k
ij = 0 ⇐⇒ rγk

ij = β ∀e ∈ Ē1 ∩ E2, ∀k ∈ K
+.

To conclude thatγk
ij = 0 ∀k ∈ K− ∪K0 just modify the point in (B.2b) by increasing flow for

k ∈ K−∪K0 onvu andij by someǫ. Finally modify the point by simultaneously increasing flowon
ij andji by a small amount for everyk ∈ K−. This givesγk

ji = 0 ∀e ∈ Ē1 ∩ E2, ∀k ∈ K
− ∪K0.

E1 ∩ E2 6= ∅: We can assumeK0 = ∅ here. Fore = ij ∈ E1 ∩E2 andk ∈ K+ define:

vk
e := ue0

+ be + cgk
ij + cgk

ji =⇒ βη + βe + cγk
ij + cγk

ji = π (B.2e)

We can still increase flow onuv by a small amount for every commodity inK+ . Decreasing flow on
ij at the same time gives another point on the face and thusγk

ij = 0 ∀k ∈ K+. When having changed
vk
e this way, some flow fork ∈ K− can be routed onij while the same amount of flow increases on
vu. Henceγk

ij = 0 ∀k ∈ K−.
Fork1, k2 ∈ K

+, e = ij ∈ E1 ∩ E2 consider the point

vk1

e − ǫg
k1

uv + ǫgk2

uv − ǫg
k1

ji + ǫgk2

ji

It is well defined and feasible because flow onuv is positive for everyk ∈ K+ and flow onij is
positive fork1. It follows thatγ+

ji := γk1

ji = γk2

ji ∀k1, k2 ∈ K
+.

For the construction of the following vector see Definition and Lemma B.1. We modifyue0
by

deleting one unit of capacity fore0 and rerouting flow one ∈ E1 ∩E2:

ue0
− be0

−
∑

k∈K+

ϕk
rg

k
uv −

∑

k∈K−

ϕk
rg

k
vu + be +

∑

k∈K+

ϕk
cg

k
ij +

∑

k∈K+

(ϕk
c − ϕ

k
r )g

k
ji +

∑

k∈K−

ϕk
rg

k
ji

=⇒ βη − β + βe + (c − r)γ+
ji +

∑

k∈K−

ϕk
rγ

k
ji = π (B.2f)

If |K−| = 0, we compare (B.2e) and (B.2f) and conclude−rγk
ji = β ∀k ∈ K+ From (B.2e) and

(B.2a) follows thenβe = c β
r
∀e ∈ E1 ∩E2.

Else if |K−| > 0, dS = dK+

S > |dK−

S | anddK+

S > c there is still capacity ons = uv and the
vectorϕk

r can be constructed such that arcvu is not saturated (see Definition and Lemma B.1). We
can increase flow onvu and decrease it onji which givesγk

ji = 0 ∀k ∈ K− and thus−rγk
ji =

β ∀k ∈ K+ andβe = c β
r
∀e ∈ E1 ∩E2 as above.

E1\E2 6= ∅: For e = ij ∈ E1\E2 we construct the following vector as in Definition and Lemma
B.1:

ue0
− be0

−
∑

k∈K+

ϕk
rg

k
uv −

∑

k∈K−

ϕk
rg

k
vu + be +

∑

k∈K+

ϕk
rg

k
ij +

∑

k∈K−

ϕk
rg

k
ji

=⇒ βη − β + βe +
∑

k∈K+

ϕk
rγ

k
ij +

∑

k∈K−

ϕk
rγ

k
ji = π (B.2i)
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For k ∈ K add anǫ-flow to ij andji to conclude thatγk
ij = −γk

ji ∀k ∈ K. If we can show that
γk

ij = 0 ∨ γk
ji = 0 ∀k ∈ K we are done because it follows thatβe = β ∀e ∈ E1\E2.

All conditions imply thatE2 6= ∅. First suppose that there is̄e0 = ūv̄ in E1 ∩ E2. Modify the
point in (B.2i) by installing one unit of capacity on̄e0 and sending a flow ofc on ūv̄ and v̄ū for a
commodityk ∈ K+, which gives a point on the face. Now decrease flow onūv̄ and increase it onij
by ǫ. Henceγk

ij = 0 ∀k ∈ K+ sinceγk
ūv̄ = 0 ∀k ∈ K. Having done so simultaneously increasing

flow on ūv̄ andji givesγk
ji = 0 ∀k ∈ K− ∪K0.

Finally suppose that there is̄e0 = ūv̄ in Ē1 ∩ E2. Fork ∈ K+ consider the vector

ue0
+ (c − r)gk

uv + būv̄ + be + cgk
v̄ū + rgk

ij

Simultaneously increasing flow onvu and onij givesγk
ij = 0 ∀k ∈ K.

Plugging in all coefficients we arrive at:

βx(E1\E2) + β
r
f (Ē+

1 \E
+
2 )

+ β
r
(c − r)x(Ē1 ∩ E2) + β

r
f (Ē+

1 ∩ E
+
2 ) − β

r
f (Ē−

1 ∩ E
−
2 )

+ c β
r
x(E1 ∩ E2) − β

r
f (E−

1 ∩ E
−
2 )

= βη

⇐⇒

f (Ē+
1 ) + cx(E2)− f (E−

2 ) + r
(
x(E1)− x(E2)

)
= rη

We have shown that the hyperplane (B.2) is a multiple of (4.18) plus a linear combination of flow
conservation constraints. It follows thatFBI andF induce the same face, which is a contradiction.
HenceFBI is inclusionwise maximal and with∅ 6= FBI 6= CSBI it defines a facet ofCSBI . This
concludes the proof. II

B.3 Proof of Theorem 4.29

Proof. Sufficiency:If (E1 = ∅ anddK+

S < c), then (4.21) reduces to the cut inequality (4.23) which
is facet-defining forCSBI if |ES | = 1. The same happens when̄E1 = ∅, (4.21) reduces to the cut
inequality (4.23), which is facet-defining if|ES | = 1 or dK+

S > c (see Theorem 4.21).
For the rest of the proof we can assume thatE1, Ē1 6= ∅.
We use the same technique as in the proof of Theorem 4.23 (approach 2 for facet proofs Wolsey

[1998, chap 9.2.3]).
We will show that the related face

FBI = { (f, x) ∈ CSBI : (f, x) satisfies (4.21) with equality}

is nontrivial and then by contradiction, we will show that itdefines a facets.
Givene = ij ∈ ES let be denote the unit vector inR|ES|+2|K||ES| for the design variable ofe and

let gk
ij , g

k
ji be the unit vectors for the flow variables for commodityk ∈ K of e in both directions.

SupposerK+

< c andE1, Ē1 6= ∅. We setdS := dK+

S , η := ηK+

, r := rK+

< c andǫ > 0

small enough.
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B.3 Proof of Theorem 4.29

Choosee0 = uv ∈ E1\E2 andē0 = ūv̄ ∈ Ē1. Consider a point as in Definition and Lemma B.1,
all demand is satisfied by using onlye0 to send flow. In terms of the unit vectors this is:

ue0
:= ηbe0

+
∑

k∈K+

dk
Sg

k
uv +

∑

k∈K−

dk
Sg

k
vu.

ue0
is a feasible point ofCSBI (see proof of Theorem 4.25). It is on the faceFBI becausecx(E1)−

dS = cη − dS = c − r (see Lemma 3.11). HenceFBI is not empty.ue0
+ be0

is a point that is in
CSBI but not on the faceFBI .

We have shown that∅ 6= FBI 6= CSBI . It remains to show thatFBI is inclusionwise maximal.
We do this by contradiction. Suppose that there is a faceF of CSBI with FBI ⊂ F and letF be
defined by the hyperplane

∑

e=ij∈ES

βexe +
∑

e=ij∈ES
k∈K

γk
ijfij +

∑

e=ij∈ES
k∈K

γk
jifji = π (B.3)

whereβe, γ
k
ij , γ

k
ji, π ∈ R. We will show that (B.3) is (4.21) up to a scalar multiple and alinear

combination of flow conservation constraints, contradictingFBI ⊂ F .
We may add multiples of the|K| flow conservation constraint to (B.3). Therefore we assume that

γk
v̄ū = 0 for all k ∈ K w. l. o. g..

Setβ := βe0
andβ̄ := βē0

. Sinceue0
lies on the hyperplane, we conclude that

βη +
∑

k∈K+

dk
Sγ

k
uv +

∑

k∈K−

dk
Sγ

k
vu = π (B.3a)

Modifying ue0
by simultaneously increasing flow onuv andvu by ǫ for every commodity gives

new points on the face (cη − dS + ǫ− ǫ = c − r) and thusγk
uv = −γk

vu for all k ∈ K.
Now consider the disjoint partitionES := E1 ∪ Ē1. We calculate the coefficientsγe, βij , βji for

e = ij in each of the two sets by constructing new points. It will notalways be mentioned that all the
points are on the faceFBI . In most of the cases they obviously fulfil the flow conservation constraint
and satisfy inequality (4.21) with equality. To see that they meet the BIdirected capacity constraints
(4.11) just use thatcη = dS + c − r, c(η − 1) = dS − r (see Lemma 3.11) andr < c.

If K− = ∅, then all the points additionally satisfy UNdirected capacity constraints. WithK− = ∅

the theorem holds forCSUN .
First we define a vectorue for all e ∈ ES , see Definition and Lemma B.1 for this construction.

We modifyue0
by deleting one unit of capacity fore0 and rerouting flow one ∈ ES :

ue := ue0
− be0

−
∑

k∈K+

ϕk
rg

k
uv −

∑

k∈K−

ϕk
rg

k
vu + be +

∑

k∈K+

ϕk
rg

k
ij +

∑

k∈K−

ϕk
rg

k
ji

=⇒

βη − β +
∑

k∈K+

(dk
S − ϕ

k
r )γ

k
uv +

∑

k∈K−

(dk
S − ϕ

k
r )γ

k
vu + βe +

∑

k∈K+

ϕk
rγ

k
ij +

∑

k∈K−

ϕk
rγ

k
ji = π.

(B.3b)

Modifying ue by simultaneously increasing flow onij andji by ǫ for every commodity gives

γk
ij = −γk

ji ∀e = ij ∈ ES , k ∈ K.
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E1 6= ∅: Fore = ij ∈ E1 andk∗ ∈ K+ consider:

ve := ue + (c − r)gk∗

ij + bē0
+ (c − r)gk∗

v̄ū

=⇒

βη − β +
∑

k∈K+

(dk
S − ϕ

k
r )γ

k
uv +

∑

k∈K−

(dk
S − ϕ

k
r )γ

k
vu + βe +

∑

k∈K+

ϕk
rγ

k
ij +

∑

k∈K−

ϕk
rγ

k
ji

+ β̄ + (c − r)γk∗

ij = π. (B.3c)

Remember thatγk∗

v̄ū = 0 and note that inve the total flow onij equalsc, since
∑

k∈K+ ϕk
r = r (see

Definition and Lemma B.1). Withx(E1) = η, x(Ē1) = 1 andfK+

(E1) = dS − r + c, the point is
on the face. By comparing (B.3b) and (B.3c) we conclude that

γk
ji = −γk

ij =
β̄

c − r
∀e = ij ∈ E1, k ∈ K

+.

Fork ∈ K−∪K0 we modifyve by increasing flow onji andūv̄. With γk
v̄ū = −γk

ūv̄ = 0 as assumed,
we get

γk
ji = −γk

ij = 0 ∀e = ij ∈ E1, k ∈ K
− ∪K0.

(B.3a) and (B.3b) (withe ∈ E1) now reduce to

βη − dS

β̄

c − r
= π and βη − β − dS

β̄

c − r
+ βe = π (B.3d)

It follows

βe = β ∀e ∈ E1.

Ē1 6= ∅: Fore = ij ∈ Ē1 andk∗ ∈ K+ define:

we := ue0
+ (c − r)gk∗

uv + be + (c − r)gk∗

ji

=⇒

βη +
∑

k∈K+

dk
Sγ

k
uv + (c − r)γk∗

uv + βe + (c − r)γk∗

ji = π. (B.3e)

Fork ∈ K− ∪K0 increasing flow onvu andij gives

γk
ji = −γk

ij = γk
vu = 0 ∀e = ij ∈ Ē1, k ∈ K

− ∪K0.

For k ∈ K+ we modifywe by simultaneously increasing flow onuv, ji by ǫ and at the same time
decreasing flow fork∗ onuv, ji by the same amount. Hence

−γk
ij = γk

ji = γk∗

ji = −γk∗

ij ∀e = ij ∈ Ē1, k ∈ K.

(B.3b) withe ∈ Ē1 now reduces to

βη − β − (dS − r)
β̄

c − r
+ βe + rγk∗

ij = π. (B.3f)
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B.3 Proof of Theorem 4.29

(B.3e) can be written as

βη − (dS + c − r)
β̄

c − r
+ βe − (c − r)γk∗

ij = π. (B.3g)

Evaluating (B.3f) fore = ē0 = ūv̄ and comparing with (B.3a) gives

β =
cβ̄

c − r

sinceβē0
= β̄ andγk

ūv̄ = 0 for all k ∈ K. Then from (B.3f) and (B.3g) follows thatrγk∗

ij = (r−c)γk∗

ij

But c > r > 0 and thus
γk

ji = −γk
ij = 0 ∀e = ij ∈ Ē1, k ∈ K.

Now comparing (B.3g) with (B.3a) results in

βe = β̄ ∀e ∈ Ē1.

Plugging in all coefficients we arrive at:

cβ̄

c − r
x(E1)−

β̄

c − r
f (E+

1 ) +
β̄

c − r
f (E−

1 ) + β̄x(Ē1) = β̄

⇐⇒

cx(E1)− f (E+
1 ) + f (E−

1 ) + (c − r)x(Ē1) = (c − r).

We have shown that the hyperplane (B.3) is a multiple of (4.21) plus a linear combination of flow
conservation constraints. It follows thatFBI andF induce the same face, which is a contradiction.
HenceFBI is inclusionwise maximal and together with∅ 6= FBI 6= CSBI it defines a facet of
CSBI . II
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Appendix C

Notation

R, Q, Z real, rational, integer numbers

R+, Q+, Z+ nonnegative real, rational, integer numbers

V nodes

A, E arcs, edges

a, e arc, edge

(i, j), ij arc with sourcei and targetj, edge with endnodesi andj

G = (V,A) directed graph

G = (V,E) undirected graph

S node set

CSDI , CSBI , CSUN DIrected, BIdirected, UNdirected cut set polyhedron

G[S] subgraph induced byS

A[S], E[S] arcs, edges with both endnodes inS

AS , ES directed, undirected cut defined byS

A+
S ,A−

S arcs fromS to V \S, arcs fromV \S to S

A+
1 ,A−

2 subset ofA+
S , subset ofA−

S

E1, E2 subsets ofES

K,Q set of all commodities, subset of all commodities

K+,K−,K0 positive, negative, zero commodities w. r. t. a node setS

T set of technologies (facilities, link designs)

f continuous variable – often denotes flow

x integer variable – often denotes the number of installed link designs

c, d, κ capacity, demand, cost

〈a〉 a− ⌊a⌋

⌈a⌉ smallest integer greater than or equal toa

⌊a⌋ greatest integer smaller than or equal toa

r(d, c) d − c(⌈d
c
⌉ − 1)

Gd,c(a) r(d, c)⌈a
c
⌉ − (r(d, c) − r(a, c))+ — subadditiveMIR-function

Fd,c(a) r(−d, c)⌊a
c
⌋+ (r(−d, c) − r(−a, c))+ — superadditiveMIR-function

M ,N , L, R, U , C often denote index sets

(C+, C−), (P+, P−) flow cover, flow pack
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