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Zusammenfassung

In dieser Diplomarbeit werden grundlegende Probleme dstek@ptimalen Dimensionierung von
Telekommunikationsnetzwerken untersucht. Diese wertddimaare gemischt ganzzahlige Program-
me formuliert, wobei sich in der Modellierung auf die KonRoutingund Kapazititszuweisung
beschrankt wird. Es werden parallel drei Uibliche, ausRIi@ixis motivierte Moglichkeiten behan-
delt, die auf gerichteten oder ungerichteten Kanten eiredzwerkes installierte Kapazitat zu nutzen.
Diese unterscheiden wir ai3lrected Bldirectedund UNdirected Die studierten Probleme treten als
Relaxierungen vieler realistischer Fragestellungen derMerkoptimierung auf. Sie enthalten ele-
mentare Strukturen, deren Studium ausschlaggebendrigiafiiVerstandnis komplexerer Modelle.
Letztere kbnnen zusatzliche Erfordernisse berickigieh, wie zum Beispiel die Ausfallsicherheit
von Netzwerken.

Zur Losung solche//P-schweren Optimierungsprobleme werden erfolgreich Bra&a®ound
und Schnittebenenverfahren kombiniert (Branch & Cut). dié@ Wirksamkeit dieser Algorithmen ist
es sehr nitzlich, moglichst genaue Kenntnisse der Struldr Seitenflachen der zugrundeliegenden
Polyeder zu haben, welche die konvexe Hille der Losunggméeschreiben. Es sind starke gltige
Ungleichungen zu finden, welche hochdimensionale Sedtemdli oder sogar Facetten definieren.
Diese sollten zudem schnell separiert werden kdnnen wndutnerische Stabilitat der Algorithmen
moglichst nicht beeinflussen.

Diese Arbeit beschaftigt sich im Wesentlichen mit der sglgemeinen Rundungstechriikixed-
Integer RoundindMIR) zur Verstarkung glltiger Ungleichungen unter Verwemglder Ganzzahlig-
keitsnebenbedingungen. Es wird eldéR-Prozedur motiviert, bestehend aus den Schrifggre-
gieren Substituieren Komplementiererund Skalieren welche durch Ausnutzung der Struktur der
gegebenen Parameter zu einer gultigen Basisungleichitmmg €lie dann durcMIR eine starke und
oft facetten-induzierende Ungleichung gibt. Es werdersaliieden Klassen solcher Ungleichungen
untersucht und auf ihre Praxistauglichkeit beim Einsarznch & Cut-Verfahren getestet.

Nach einer kurzen Einfuhrung werden in Kapitel 2 die fus un dieser Diplomarbeit relevanten
Probleme definiert. Kapitel 3 gibt eine ausfilhrlidiieersicht tiber die TechniMIR. Wir beschaftigen
uns vor allen Dingen mit den BegriffeBuperadditiviit und Lifting und behandeln Aspekte wie
Numerik und beschrankte Variablen.

Kapitel[4 und Kapitel 5 umfassen Untersuchungen zu so géeamunt sets Diese Polyeder
werden durch Schnitte in Netzwerken definiert und relaxiedi® von uns behandelten Probleme.
Hauptsachlich durcMIR entwickeln wir sowohl neue als auch bekannte Klassen vagttiae-defi-
nierenden Ungleichungen figut setswobei strukturelle Unterschiede herausgearbeitet vwerdie
durch die drei verschiedenen Typen der Kapzitatsbeedlitag und durch beschrankte Variablen ent-




stehen. Als ein zentrales Resultat wird bewiesen unterhgel®edingungen facetten-induzierende
Ungleichungen flr cut sets auch Facetten der zugehoraarierten Polyeder sind.

Im Kapitel 6 geben wir weitere Typen vavlIR-Ungleichungen an, die auf anderen Netzwerk-
strukturen basieren und weisen ferner auf offene Frageiesnteressante Ideen hin.

Das Kapitel 7 widmet sich schlief3lich der Entwicklung unglementation von Separationsalgo-
rithmen. Wir testen einige der entwickelten Ungleichuriaséen mit Hinblick auf Ihre Wirksamkeit
zur Losung von realistischen Problemen der Netzwerkdsiosierung aus der Telekommunikation
und diskutieren die Ergebnisse.




Abstract

In this thesis some basic mixed integer programming modglshe design of telecommunication
networks are investigated. These models cover bifurcateting and modular capacity assignment.
Three common types of capacity usage are distinguished amddied as well as unbounded link
design variables are considered. This work focuses on thefuslixed-Integer RoundingMIR) to
strengthen the initial problem formulations. A genévdlR-procedure (based bn Marchand & Wolsey
ﬂ1998], Louveaux & WoIseM [2003]) is applied to the corresgimg network design polyhedra that,
by exploiting the structure of the given parameters suchndenlying graphs, capacities and bound
constraints, is able to detect different classes of stratig inequalities. Moreover, the use iR as
avalid superadditive lifting function is emphasised. Salelasses of facet-definingIR-inequalities
are presented.

Large parts of this thesis address the investigation oftyamlya based on cuts of the network. Itis
shown under which conditions facet-defining inequalitiesthese relaxations are facet-defining for
the corresponding network design polyhedra. Facet praofsvo new classes of cut set inequalities
are provided. Some of the developedR-inequalities are used as cutting planes within a Branch &
Cut algorithm and tested against real-life networks witbedent results.
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Chapter 1

Introduction

Nowadays, global economy depends on high quality data canmations as much as on physical

transport and businesses increasingly reliant on low cogheir telecommunication needs. The lib-
eralisation of the European telecommunication marketsaréast few years, the rapid development of
Internet technologies and the demand for new multi-mediécs puts pressure on telecommunica-
tion companies and makes the market more competitive. Ther toardens of network carriers and

telecommunication service providers are their expenektfior network construction and the costs of
bandwidth lease. They generally hope to realise easy to geanetworks at low cost that survive

certain failure situations and that satisfy all given costo demands.

In the mathematical literature there is a vast variety ofagpghes to model and solve telecommu-
nication network design problems depending on the req@ntsto incorporate. All these approaches
have two basic concepts in common on which we will conceatirathis thesis. These areuting
andcapacity assignment

We address a network design problem as follows: Given a canwation demand between cer-
tain locations in a region, the topology of a network conimgcthese locations has to be determined.
All physical links have to be dimensioned hgsigning capacitguch that all demands can tmited
over the network and the installation cost for capacity inimal. In practice the possible capacities
(bandwidths) always have a discrete structure. We reslréah to a finite set of base units, which
may be installed several times on every link of the netwanldular link capacities This can be
formulated as the problem of minimising a cost function @hhis assumed to be linear) over the set
X c R of all feasible routings and capacity assignments:

min{k"z: z € X }.

Because of the discrete structure of the capacities, sore ofariables in: are restricted to integer
values. HenceX is amixed integer seand network design optimisation problems as considered in
this thesis arenixed integer programs

Despite the absence of more sophisticated requiremenfigrasstance, survivability of the net-
work, these mixed integer programming problems are knowletd/P-hard, meaning that in the
sense of complexity theory there exists no efficient (pahgiad-time) algorithm to solve them, unless
P =NP.

A common approach to solving hard mixed integer programbésapplication of heuristics to
find good solutions. However, it is usually impossible tafyetheir quality. Another possibility, that
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we will make use of, is an algorithmic framework basedBranch & Cut dWoIsey ’[1@8]). Such
algorithms provide feasible solutions as well as a qualistificate by computing a lower bound on
the cost of the optimal solution. In addition, any primal figtic can be integrated into a Branch &
Cut algorithm.

A very important step in the design of a Branch & Cut algoriftand crucial for its efficency, is
to detect classes of strong valid inequalities for the miréeger setX. Among other techniques, the
linear programming relaxation of the problem is tightengadding some of these valid inequalities
(cutting planes) to the formulation, resulting in a bettppximation of the convex hull ok and
hence better lower bounds. In fact, a Branch & Cut algorithrgdly depends on the quality of the
added cutting planes.

One way to generate such inequalities is to exploit the sira®f the combinatorial optimisation
problem as well as the polyhedral structure of the problemmédation. Very often an analysis of the
problem regarding all requirements and constraints tuahgoobe too complex, and one concentrates
on relaxations and simpler structures that somehow reflrthio attributes of the actual problem
such aknapsack setandsingle node flow sets

Another possibility is to consider so-called general psgoutting planes that do not require any
special knowledge about the (combinatorial or polyhedstilcture of the problem. In this category
fall disjunctive split, lift and project Chvatal-Gomory Gomory fractionaendGomory mixed integer
cuts.

A useful observation in this context is, that many of theseegal purpose cuts can be derived with
the same technique, call&ixed-Integer Roundingvhich is based on rounding by exploiting given
integer constraints. Moreover, recent work documents gbate strong valid inequalities detected
by problem specific combinatorial and polyhedral studiesiarfact MIR-inequalities. This is for
instance true for classes kifiapsack coveandflow coverinequalities (Chapter| 3, 5).

Edmond’s blossom inequalities may serve as a simple exafoptdrong inequalities that arise
from the polyhedral study of a combinatorial optimisationigem:

z(B[S]) < L5151,

whereG = (V, E) is an undirected graph artiC V" a subset of the nodes. These inequalities com-
pletely describe the matching polytope together with negativity constraints and the inequalities
r(0(v) <LveV dSchrijver [2003]). They can be facet-defining for the matghpolytope if.S
contains an odd number of nodes. The validity of the blossmqualities follows from the combi-
natorial structure of the matching problem. But without kinewledge of the problem itself we may
simply sum upz(6(v)) < 1 for all v in S resulting in the valicbase inequality

2z(E[S]) +x(5(5)) <S].

Dividing by 2 and applyingMIR (Chapter 3) gives a blossom inequality. (In this case therlds
equivalent to applying a Chvatal-Gomory step.).

In this thesis we will follow a mixture of the two mentionedpaipaches to derive strong valid
inequalities for mixed integer sets. We will first exploitduwledge of the structure of network design
problems or simpler sets and relaxations to derive promibise inequalities, which will then be
strengthened using the general purpose cordeRt

For the last little example we have already used two basitnigoes that are concerned with
MIR, the Aggregationof valid inequalities and th&calingof base inequalities. In the subsequent




1.1 Literature Review

chapters we will show that these techniques can be extendethbre general and sophisticatdtR
procedure that is able to detect strong valid inequalitiesn&twork design polyhedra. For some of
them we will investigate if they are even facet-defining,ving the power oMIR.

Before giving a thorough definition of the network designhpems considered in this thesis in
Chapter 2, we will give a short literature review, followey &n outline and some mathematical
preliminaries.

1.1 Literature Review

Important literature is referred to at the beginning of eabbpter and whenever introducing new
theory. But some articles deserve mention here becauseaitbeybasic motivation for this thesis.

Marchand‘[le?] anbl Marchand & Wolsév [1@98] show that knalasses of strong valid in-
equalities for various types of mixed integer sets are inN8K inequalities. They motivate a generic
MIR procedure and prove their practical usefulness. In a subs&@apér Louveaux & Wolsey [2003]
consider certain cut sets (or single node flow sets), whintbesseen as relaxations of network design
polyhedra, and make use of a simildiR procedure to develop flow cover and flow pack (reverse
flow cover) inequalities.

The polyhedral study of telecommunication network desigrblems as considered in this thesis
was set up bk/ Magnanti & Mirchandahi [199‘3], Magnanti é y: ] SJ 1995] anb Bienstock & GUnI‘Uk
M]. All of their facet-defining inequalities can be dbtd byMIR.

In a recent articld, Atamtirk [2002] is the first to presertetailed polyhedral analysis for cut
set polyhedra with unbounded design variables. He provadasmplete description of cut sets in the
single-commaodity, single-facility case and shows how taatly lift a general class of so- called flow
cut inequalities if more than one facility is given. All inegjities as well as the lifting process are
based orMIR.

In this thesis we bring together some of these differentrétemal aspects and put them into the
general context of telecommunication network design.

1.2 Outline of the thesis

The thesis is organised as follows: The preliminariespfuihg this outline, serve as a short reference
to the notation and concepts used. Some areas of graph tedyolyhedral theory are covered.

In Chapter 2 we briefly describe telecommunication captdtaetwork design problems and
show how our models can be classified within the existingdftee. We introduce the necessary
notation and formulate linear mixed integer programmirapfems for three types of capacity usage.

Chapter 3 investigatedixed-Integer Roundings a general tool to develop strong valid inequal-
ities for mixed integer sets. We develop notation and teofoiy used in the subsequent chapters to
study certain relaxations of network design problems. Atpef numerics, superadditivity, lifting
and bounded variables are considered.

Chapter 4 focuses on the polyhedral study of cut sets witlowmiled design variables. A co-
herent presentation of the knowledge of these polyhedrasaindg valid inequalities is provided.
Mainly by applyingMIR, we present several new classes of facet-defining inemsaliélaborating
the differences caused by the three different types of dypeanstraints. As a central conclusion, it
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is demonstrated under which conditions facet-defininguaéties for cut sets are facet-defining for
the corresponding network design polyhedra.

In Chapter 5 we again consider cut sets, but with boundedydesiriables. It is shown how to
extend theMIR procedures of the preceding chapter in order to exploit thmd constraints by using
the observations of Chapter 3. It is proven that so-called flover inequalities can be seen as a
generalisation of the flow cut inequalities introduced ira@ter 4.

Chapter 6 provides some more examples of strong valid iiigsdor network design polyhedra
that can be obtained BMIR and some open questions and promising ideas are posed.

In Chapter 7 we address the separation problem for somesslaévalid inequalities considered
in this thesis. Separation heuristics are developed asa&awn how to integrate them into state-of-
the-art MIP-solvers. The resulting algorithmic framew@kested on a set of real-life telecommuni-
cation networks and we discuss the usefulness of the igetst inequalities.

1.3 Preliminaries

Basic knowledge of graph theory, polyhedral theory, lingatimisation and mixed integer program-
ming is assumed. It was attempted to adhere to standardsspedialy to Grotschel et al. [1988].
Concerning the fundamental theory the reader is referr@emhauser & Wolsé)} [19%@]. Wolsey
1998] an(j Schrijve@S]. This section only presents soratation and terminology that is used
frequently or that diverges from the standard.

1.3.1 Basic notation

If K is one of the set®, Q or Z, thenK, := {z € K: z > 0}. If we want to exclude zero, we
explicitely write K, \{0}. The transposition of a vectar € R™ is z”. So the inner product of two
vectorsz,y € R™is z”y. The superscript is solely used fotechnologiesor facilities as defined in
Section 2.2.1. The inequality < y for two vectorsr andy is meant to hold component-wise.

If N is a finite index set, them € RY is a real vector, whose components are indexed by the
elements ofN. To shorten the notation for sums we writéN) := >, y z;. GivenR C N, the
(sub)vectorr , € R% contains all entries of that are indexed by elements Bf

For the concept oMixed-Integer Roundingntroduced in Chapter 3 some special notation is
needed that will be used throughout the thesis.d_etR andc € R, . We define:

e ¢ :=max(0,a) and a  :=min(0,a)

e (a):=a — |a], the fractional part of

01 _1)— {(%}c if (2)>0

o r(a,c):=a—c([z
c else

C

Hencer(a, c) is the remainder of divided byc if % ¢ Z andc else. It follows that'(a,c) < c.
Moreover, in the common case that bathndc are integery(a, c¢) € {1,...,min(a,c)} C Z.

(ay if (a)y >0
1 else

e r(a) ::r(a,l):a—(cﬂ—i—lz{
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1.3.2 Graphs

An undirectedgraph G = (V, E) consists of a set’ of nodesand a set of edges Both sets
are considered to be non-empty and finite. We will not exjgigi use an incidence function :
E — V x V but will associate an unordered pair of nodes with every ecgiéed itsendnodes We
explicitely allow parallel edges. An edgec E, having the endnodesandv, is denoted by = uv
only if there is no danger of confusion. No loops are allowiee, the two endnodes of an edge are
always distinct.

A directed graph, odigraph G = (V, A) consists of a sét” of nodes and a set of arcs. With
every arca € A an ordered pair of (end)nodés, v), with v # v, is associated. We may write
a = (u,v) whenever it is not ambiguous. The nodés called thesourceandw is called thetarget
of a.

Let® # S C V. We denote byFs := 4(S5) the set of edges it with one endnode irf
and one endnode iW\S. Eg is called acut. Similarly for directed graphsds := 6(.S) denotes
the cut defined bys, WhereAgr C Ag is the set of edges with source $thand target inl”\ S and
Ag = Ag\AL.

A graph is said to beonnectedif every cut is nonempty. A directed graphsigsongly connected
if both A, and Ay are nonempty for alp # S C V.

The setE[S] C E (or A[S] C A) is the set of edges (arcs) with both endnodes'inThe
corresponding subgrapiteduced by S are defined a&/[S] := (S, E[S]) or G[S] := (S, A[S]).

1.3.3 Polyhedra
A polyhedron P is defined as the intersection of finitely many affine halfgsac
P={feR": Af <b}.

In this thesis, every polyhedron is assumed to be rational, data is always given rational, gois
anm x n rational matrix and € Q™. We call the problem of optimising a linear function overa
linear program (LP). Let M and N denote two finite index sets. Wixed integer setX is given by

7
_

Figure 1.1: Mixed integer set and its convex hull

X={(f,x) eRY xZY: Af + Bt <b}.
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The problem of optimising a linear function ov&t, or equivalently over the convex hulbnv(X),
is called amixed integer program (MIP). Note that (assuming rational daté&),;;p := conv(X) is
a polyhedron (sée Nemhauser & WoHey [JJ988] for a proof).

Generally we do not know a set of linear inequalities definidg;p. Moreover, a MIP is
NP-hard in general. We cannot expect to derive a completerlidescription of VP-hard prob-
lems unlessP = co-NP, which follows from the equivalence of separation and ojstion
{Grbtschel et dl‘ [1988]). For an introduction to comptgxheory see for instanée Schrijver [2003].
Nevertheless, it is usually possible to identify at leashealasses of (strong) valid inequalities for
Pyrp. From a theoretical as well as a computational point of vie® ¢rucial to know whether they
induce high dimensional faces or even define facets. An alégu

Vf<T (1.1)

is said to bevalid for a polyhedronP if 47 f <« for all f € P. We call the set” of points in P that
satisfy [(1.1) with equality éaceof P induced by (1.1):

F={feP:~yf=n}

A facet of P is an inclusion-wise maximal fackE with ' # P. Inequalities determining facets are
calledfacet-defining Any facetF satisfieslim(F') = dim(P) — 1.

Consider two inequalitiesy” f < wand~™ f < s, which are valid forP, both of them having the
same right hand side. Assume furthermore that all poinf3 &me non-negative, that 8 = PN R’ .
We say that the inequality defined hyis at least as strongas the one defined by; if v < «. If this
is the case and there additionally exists an indesxth v; < «; thena®” f < « dominatesy” f <«
or is said to bestronger.

The use of PORTA In most of the examples stated in this thesis we were ineléstthe dimension
of faces induced by certain valid inequalities. Very oftpreviously developed theoretical results
(facet theorems) could be applied, but sometimes we usesbfheare package PORTA (Christof &
Lobel @5]) to calculate or estimate dimensions of facasnsider the inequality

YVf+pBe < (1.2)

valid for Py;;p. Generally PORTA is not able to directly compute the dimensiim ;; p of the face
induced by[(1.2). But we can do the following: Consider theR&axation ofP,,;p after adding
(1.2) to the initial formulation:

Prp =conv{ (f,z) € Rﬂ\f X Rf : Af+Bx <b, A'f+p"x <7}
and the bounded integer polytope:
Prp =conv{(f,x) € Zﬁ/[ X Zf: Af +Bx <b, ~'f+p"2<m f<u,z<u}
with (u1,u2) € ZY x Z% chosen appropriately. It is obvious that

Prp C Pyrp € Prp
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and that/(1.2) is valid for all three polyhedra. Additioyadissume
dim(P]p) = dlm(PM[p) = dlm(PLp)

The dimensions of’;p and Py, p as well as the dimensionimy p, dim;p of the faces induced by
(1.2) can be evaluated with PORTA (by using the commaliabstraf, vint andfctp) at least for smalll
instances and

dim[p S dimM[p S dimLp (13)

holds, which can be used to estimdten;; . Moreover, if[(1.2) defines a facet &% p then it defines
a facet of P, p and if (1.2) does not define a facet Bf p then it does not define a facet 8%,;p.
(This holds only ifdim(P;p) = dim(Prp) can be ensured.) These observations have been used
whenever referring to the dimension of a face of a polyhedraine form Py;;p and no theoretical
result could be applied.

Note thatP;p has to be bounded because PORTA needs to enumerate all iptégis in P; p to
calculate its dimension.




Introduction




Chapter 2

Network Design Problems

2.1 Introduction

In this thesis we consider routing and capacity instalfatiothe design of telecommunication net-
works. The presented formulations serve as relaxationgeawtt as sub-problems of larger and more
complex problems that may include additional constraintsrequirements such as survivability, hop
limits, costs for hardware at the nodes of the network andcemor

Literature Review and Problem Description Depending on the practical background there are
many ways to define a telecommunication network design pneblWVe will briefly classify the most
important models and will state the corresponding refeenc

Given a telecommunication network, communication demdndudtiple commodities between
certain locations has to be routed over the network. A rgutor flow) satisfying all given demands
has to be assigned to the network and capacity has to beléasthat suffices to accommodate the
data flow. A network design problem or network loading prabkonsists of finding such a capacity
and flow assignment that minimises the overall installatiost.

This problem has been studied in many variants with resjpesétwork layout, capacity usage
and the way of routing. The routing can be done by sending @l hn a single path between
the endnodes of a point-to-point demamari-bifurcatedor single-pathrouting) or by considering
several paths for every commodityifurcatedrouting). Single-path routing has been investigated by

‘BrockmUIIer et aH[1998] an‘d Hoesel et‘ $I. [2004]. The palgiral study of models with bifurcated

routing as considered in this thesis was initiated in a sesferticles bﬂ/ Magnanti & Mirchandani
ﬂ1993] and Magnanti et ai. [199‘3. 1595]. Important extensiare frorﬁ Bienstock & GUnIUi( [1996].
In most of the practical applications the available techg@s have a discrete structure, where
capacity is restricted to a finite set of values. This mightrizglelled in different ways. For every link
one may select exactly one capacity from a finite set of ples&igilities Explicit link capacitie} or
alternatively every base capacity can be installed setianak on every link up to a potentially given
upper boundrfiodular link capacities The base capacities might additionally be divisible. Dah
& Stoer tlggm 19@8] consider explicit link capacities. Bamental work for models with divisi-
ble modular link capacities up to three technologies wasdnnMagnanti & Mirchanda @93},
‘Magnanti etal. [19%, 199§], Bienstock & Ginlitk [L996HaBhopra et aIJ@S]. Explicite as well
as divisible modular link capacities were studied b ]. In this thesis we investigate
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Berlin

[Frankfurt]

Stuttgart|

(i) Supply graph (ii) A capacity assignment: At most one of two technolo-
gies is selected for every link to satisfy all demands.

Figure 2.1:G-WiN — German Research Netwd2005] — The data is taken frof8NDIib 1.0 — Survivable
Network Design Data LibrarﬂgOOS].

very general problems with modular link capacities thatresenecessarily divisible as it was done
for instance b§ Atathrli[T(ﬁ)Z]. To model explicit link cagties our problems simply have to be
extended by additional constraints.

The literature discerns three possible ways of capacitgaisa link might be directed, offering
its capacity for flow in one direction onlyD(rected capacity usage). If a link is undirected, the in-
stalled undirected capacity may either be shared betwedmwthpossible flow directiondJNdirected
capacity usage) or it can be consumed by each of the two fleetains independentlyB(directed
capacity usage). For Dlrected capacity assignment it ened td Bienstock et él‘ [1995], Chopra
etal. @fﬂ ana AtathH{@OZ]. Bldirected problems warainly studied bk/ Bienstock & Gunluk
ﬂ@ﬂ an GUnIUkmm whereas a detailed analysis ofdlétted models can be found in Ba-
harona [19§4]‘. Magnanti & Mirchandal%i [1993] and Magnantale f1993j 1995]. We will consider
all three forms of capacity usage in this thesis.

In the last decade it has become more and more important sidessurvivability of telecom-
munication networks. In addition to the mentioned conceptsetwork design one wants to protect
networks against certain failure situations such as calikear hardware failures. We do not consider
survivability here. For some basic results on survivapitit telecommunication networks the reader
is referred ti Dahl & Stoet |19££! 1Q9§|! Alevras eﬁ al. |1Q@agnanti & Wanb [1997], Balakrish-
nan et al. [1998] and Bienstock & Muratore [2000]. A good esvican be found i WessaWOO],

wherea:ls Rajan & Atamtu‘rk rzodi, 2004] present some recent work and new ideas.
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2.2 Mathematical models

Outline of this chapter This chapter presents the models investigated in thisghé#e discuss
the given parameters and introduce variables as well asidtiigs. Finally, we define the polyhedra
corresponding to the considered network design problems.

2.2 Mathematical models

2.2.1 Parameters

Underlying graphs The telecommunication network or supply graph can be directed or undi-
rected depending on the problem type. We denote iGby= (V, A) for Directed problems or
G = (V, E) for Bldirected and UNdirected problems. Nodes can be int¢ed as being cities or
locations whereas the arcs (or edges) represent connectitinks between these locations (for in-
stance by cable or some kind of radio contact). A supply gisglupposed to be connected and not
to contain loops, but we allow parallel arcs and edges.

A provider of a telecommunication network has to face custodemands between some of the
locationsV/'.

Demands and Commodities A demandis an arca = (u,v) of the digraphH = (V, D) (not
necessarily connected), which we cadéimand graph The demand graph is assumed to be simple,
i. e., there are neither loops nor parallel arcs. A demanakvale Z\{0} is assigned to every given
demand: = (u,v) € D. We have to establish a flow @ of ¢, from u to v.

With the demands we associate a finite setavhmodities K. For every commodity: € K there
exists a function?® that assigns a non-negative integer to every node of théysgpaphd® : V' —
Zoyyiv d¥

We call d* the net demand of commodity & at nodei. In the literature on multi-commodity
network flow problems there are mainly two approaches mliatehe definition of commaodities and
net demands. The first is to consider one commodity for everyaihd, resulting ik | € O(|V|?)
commodities { = D). For every node € V' and every commodity = (u,v) € D we can define:

—t(u’v) 1=
df = bw G=u i€Vik=(uv) €K
0 else

This concept is calledisaggregated demands

The second approach is thatajgregated demands One defines a commodity for each node
that is source of at least one demand. Héfé € O(|V|). The net demand of commodity= u €
K C V atnodei is therefore defined the following way:

o u#i,(u,i) €D
k . . . o
di = Z(u,v)eDtUU u =1 ZEV,]{?—UGK
0 else

Aggregating demands leads to a significantly reduced pmolsiee since a feasible routing has
to be found for every commodity, respectively. There@f¢A||V|) flow variables in the aggregated
formulation opposed t®(|A||V|?) flow variables in the disaggregated formulation.

11
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A drawback of the aggregated formulation is that it often egaik impossible to formulate addi-
tional (demand-dependent) constraints, as for instanpditmits.
If not stated otherwise we will refer to a commodity simplyaefunctiond® : V — Z, i — d¥
with the property that
> di=o. (2.1)
eV
To satisfy the given demands, they have to be routed overdiveork. Capacity is provided on the
links of the network in order to accommodate a feasible nguti

Capacities A finite set of installabléechnologiesT is given. The literature often refers to the set
T aslink designsor facilities. We will use all three synonyms. Every technolagy 1" has abase
capacity ¢! € Z\{0}, which for instance reflects a certain bandwidth. Each ofah#ities can be
installed several times on every link of the network.

Note that in this thesis arc- or edge-dependent sets oflaig&technologies are not considered.
However, all of the strong valid inequalities for networlsidg polyhedra and most of the results are
extendable to this more general case.

2.2.2 Variables

Link design variables There is an integer variable for every technology and evaky ivhich we
denote byz!, € Z, orz! € Z,. This variable indicates how many times facilitys installed on a
given arca € A or edgee € E. Hence

tot tot
E c'x,, E c'x,

teT teT

is the total capacity available an(or ). Given a subsefi; C A or E; C E and a facilityt € T', we

define
r'(Ay) = Z xt, r'(Ey) = Z xt.
acA; ecFy

Thus ctzt(A;) gives the total capacity that is installed on the set of atgswith respect to the
technologyt.

Flow variables In the following letQ be a subset of the commoditi6sandk € K. Flow is always
directed, independent of the type of the supply graph. Garearca = (u,v) € A, we denote by
fk e R, the flow ona (from u to v) with respect tdk. The notation for sums will be shortened the
following way:
fQ(Al) = Z f(fa
a€A1,keQ
with 4, C A. For simplicity we defingf*(4,) := f*}(4;) andf& := fQ({a}).

With every undirected edge= ij and every commodit € K two flow variables are associated.
The flow fromi to j is denoted byf € R, and the one frony to i is denoted byf}; € R..
Considering the commaodity subs@twe write fg = Y eo f5 and fﬁ = Yreo [} Given a
subsetly; of the network edges, shortening the notation for sums adiffected supply graphs would

12



2.2 Mathematical models

be ambiguous in general, because of the two possible flowtitires for every edge iv;. But if £y
is a subset of a cuE's with S C V/, there are two canonical ways to orientate the edgds, inWe
denote by

FUEN) = Y Jg and fOED) = Y S

e=ij e=ij
i€S,jeV\S i€S,jEV\S

the total flow fromS to V\ S and fromV'\ S to S on E; C E with respect ta. We usef*(E;") and
f*(ET) instead off (¥} (B and fI¥}(E)).

2.2.3 Inequalities

Flow conservation constraints The following inequalities ensure a feasible flow (routifay)every
given commodity such that all demands are satisfied. Wetstaie for directed and undirected supply
graphs respectively.

S N fF =df keKjiev (2.2)
acst (4) acs— (i)

S S i =df keKiev (2.3)
e=ijes(i) e=ijcé(i)

Capacity Constraints We distinguish three problem types. Given a directed suggph, the flow
on every arc of the network is not allowed to exceed the ilestalapacity DIrected). For undirected
supply graphs the capacity available on an edgeij may be used by the data flow of both directions
17 andji independently Bldirected) or the capacity is shared between thasiN@irected).

1:(i )] fji fiJ fji + fiJ
. > . . - > . . - > .
(i) Dlrected, Flow and ca- (i) Bldirected, Both di- (i) UNdirected, Both di-
pacity are directed. rections may independently rections share the installed
use the installed capacity. capacity.

Figure 2.2: Capacity usage — single-facility, single-cowality
The three corresponding capacity constraints are as fsilow

Dlrected capacity constraints:

> s <> dal, acA (2.4)

keK teT

Bldirected capacity constraints:

> OrE <> il e=ijeE

keK teT (2.5)
Z Jkl chtxé, e=1ijckl
keK teT

13
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UNdirected capacity constraints:

STl <> el e=ijeE (2.6)
keK teT
Nonnegativity Constraints
0 < fkat acAkeKteT (2.7)
0 < fhi.fhal e=ije B ke KteT (2.8)

Bound constraints The number of base capacities that can be installed can liedifor every
technologyt € T and can even depend on the link of the network.

acAteT (2.9)

a
! ecEteT (2.10)

o+ Q o+

U
Uu

IN N

x
x
with uf, vl € Z,\{0} foralla € A,e € E,t € T.

2.2.4 The models

We will now define the multi-commodity, multi-facilithetwork design polyhedracorresponding
to the three problem types Dlrected, Bldirected and UNt#e¢hat are going to be investigated in
this thesis. If no bound constraints are required we define

NDPPT .= conv{ (f,z) € RIEIAI » zZITIAL. (7 ) satisfies[(2.2X2.4), (2.7)}
NDPB! .= conv{ (f,z) € RAKIEL 5 ZITIEL. (1 2) satisfies/(2.3)2.5), (2.8) }
NDPYN .= conv{ (f,z) € RAKIEL» ZITIEL . (7 ) satisfies(2.3)2.6), (2.8)}

Note that these polyhedra depend on the underlying graphtheoset of commaodities and on the
set of facilities. For simplicity of notation, we do not vweithem as a function off = (V, A),
G = (V,E), K or T. If some special properties of those parameters are refjuire will explicitly
state them.

Finally, letu € Z,\{0}**T (oru € Z,\{0}**T) be the vector defining the bounds for the link
design variables of every link and every facility. We write

NDPPI(u) := conv{ (f,z) € NDPPT . (f, z) satisfies(2.9)
NDPBI(u) := conv{ (f,z) € NDPP! . (f, ) satisfies/(2.10)
NDPYN () := conv{ (f,z) € NDPYN . (f,z) satisfies[(2.10)

These polyhedra model network design problems with bitet@aouting and modular link ca-
pacities. Adding generalised upper bound (GUB) conssaihthe form

ZxéﬁlVaeA, ZxéﬁlVeeE

teT teT
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to our formulations yields problems with explicit link cagii@des. These inequalities model the com-
mon practical requirement that only one facility can bedhstl on a given arc or edge of the network
and that it can be installed at most one time. We will not itigege such problems but in Chapter 7
the usefulness of the cutting planes developed in thisgheghe presence of GUB constraints will
be tested. Note that GUB constraints imply bound conssaiith ), = 1 for alla € A,t € T (or

ul =1foralle € E,t €T).

Objective function We want to minimise the overall cost of a capacity assignrisatdtallows for
a feasible routing and do not consider flow costs in this thdsétx!, € Z, be the cost of installing
the technology € T on arca € A and similar lets! € Z, be the cost of installing facility on edge
e € E. Then the objective can be formalised as follows:

Directed problems: min sl
teT,acA

Bldirected and UNdirected problems: min > klal
teT,ecF

The problem of minimising a linear function over a networlsige polyhedron will be called a
network design problem Note that the defined network design problems/de-hard already for
very special cases, see for instches Bienstock & th]ﬁﬁdﬂ, Chopra et aﬂ [19@8] aﬂwd Atamtirk
[2002].

2.3 Summary

We have started by classifying the type of models that wilkcbasidered in this thesis. We will
study problems with bifurcated routing and a finite set ofdliable base capacities. We will consider
bounded design variables as well as unbounded design leariabhree types of capacity usage will
be distinguished: Dlrected, Bldirected and UNdirected.

All given parameters have been discussed. We have intrddaltehe variables used and all
necessary constraints. Finally we have defined the polgheairesponding to the different problem

types.

15



Network Design Problems

16



Chapter 3

Mixed-Integer Rounding - MIR

3.1 Introduction

Literature review Mixed-Integer Roundin@MIR) is a very basic and general tool in mixed integer
programming and has many applications. The idea itselb'm{&O]. He introduced the
so-calledGomory mixed integer cuivhich can be seen &4IR with a valid base inequality taken from
the simplex tableau (see for instaﬁce Marchand & WoI‘sevSDQQAIgorithms to separat&omory
mixed integer cutare included in state-of-the-art MIP-solvers suclC® EX(ILOG [2005]), Xpress
{Dash Optimization§ [20d)5]) @CIP{Achterberg‘[ZOOS]) and are crucial for the efficiency oftsuc

solvers (seé Bixby et éi [2000]). The genawlR-cut for arbitrary base inequalities can be found for
instance in Nemhauser & Wolséy [1988] &nd Wo‘ls%ey [1998].

MIR was somehow rediscovered in the nineties of the last centirgt of all, computational
results showed thaBomory mixed integer cutsan be effective when implemented in a Branch &
Cut framework, in contrast to Gomory’s cutting plane algori of the early sixties (s al.
ﬂ1996] and! Bixby et alJ [2000]). Moreover, it was observeattbeveral general methods of generating
inequalities are equivalent (specifically disjunctivelitsgisomory mixed andMIR inequalities) and
that certain families of strong inequalities are in fAttR-inequalities (seé Marchanbl [1@)97] and
‘Marchand & Wolsdy‘ [19§8]). The latter is in particular trugr fmost of the well-known cuts for
network design problems (see Chapter 4, Chapter 5 and Gl@pte

Outline of this chapter In this chapter we will present some common techniques foividg
strong valid inequalities from mixed integer sets udihigR. Those techniques will be part ofAIR
procedure for network design problems, which will be diseasin Section 3/4.

We start with the generdllIR-inequality for<- and>-base inequalities. We explain the relation
to superadditivity and subadditivity, make some statesabbut scaling and show how to ugéR
safely from a numerical point of view. Section 3.2 explaims tise oMIR for lifting and in Section
we show how to exploit the special structure of mixedgatesets when bounds are given.

The basic idea To explain the basic idea dflixed Integer Rounding suffices to consider a two-
variable set (Figure 3.1) and a valid inequality that isregtbened by a simple rounding step. The
corresponding result is easily generalised to higher dgiosis.
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MIR-cut

Mixed integer set

\ 4

Figure 3.1: AMixed-Integer Roundingut

Lemma 3.1 Consider(f,z) € R} x Z satisfying the inequality
af +x <d

witha,d € Qanda < 0. (f,x) also satisfies the following inequality:
a

1_<d>f+w§Ldj.

Proof. The result is trivial if(d) = 0. Suppos€d) > 0. If a = 0 the validity ofx < |d] follows
from the integrality ofc. Leta be negative.

If x < |d| we haver — |[d| <0 = (z — [d])(1 — (d)) < 0since0 < (d) < 1. But then
(z — [d])(1 = (d)) < —af because-af > 0.

If x > [d] = |d] + 1 we have—(z — |d]|) < —1. Rewriting the valid inequality, f + = < d
results in(z— |d|) < (d)—af. Combining those two inequalities with weighity and1 respectively
gives(z — [d])(1 — (d)) < —af. [ |

In the following the last result will be used to define the gah®IR-inequality and to prove its
validity. Given(f,z) € RY x Z& consider the following base inequality:

D asly + ) ey < d CRY
JEM JEN
whereM denotes the (finite) set of continuous variabl¥sjenotes the (finite) set of integer variables

anday, c;, d are rational numbers. Inequality (3.1) may arise as a liegearbination of rows of a

general mixed integer program. With (3.1) we associate fmple mixed integer sets:

X ={(f,z) e RY x Z& . (f,z) satisfies/(3.1)
and Y ={(f,z) e RY x Z : (f,x) satisfies/(311) z; <u;,j €N}

whereu; € Z,\{0} Vj € N.
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Theorem 3.2 The following inequality is valid foX andY and defines thdlixed-Integer Rounding
cut
Zl_<d>fj+z(1cjj+ @ Jo; < L. (3.2)
jeEM JEN

Proof. The inequality/(3.1) can be relaxed by deleting flow varialile;; > 0 and by rounding down
coefficientsc; for integer variables ifc;) < (d):

doaifit Y lglui+ Y Telay— Y (= {e))a; <d

a;<0 (e;)<(d) (c;)>(d) {e;)>(d)
Note that from(c;) > (d) follows (c;) > 0 and hence; = [c;]| — 1 + (c;). Observing that
) —Z(cj>>(d>(1 {¢;))z; + Za <0@;f <0
) X< le] Ty + Xy e12; €z

we use Lemma 3.1 to obtain:

1—(¢;)
‘ Z Jz; + Z [cjlx; = x; < |d]
jEM ) <(d (e;)>({d) (c;)>(d)
Noting that
1—(¢;) (c;) — (d)
Gty Tl =l
concludes the proof. [ |

The MIR inequality (3.2) often strengthens the base inequalit}) (BinceX andY can be seen
as relaxations of more complex mixed integer sets, (3.2)iges a very general cutting plane that
can be used in Branch & Cut algorithms to solve mixed integegiams. How to derive good base
inequalities is one of the major questions considered mttigsis.

Remark 3.3 If d is integer and hencél) = 0 inequality(3.2) reduces to
Z a: f; + Z cjr; < d,
JEM JEN

which relaxes the base inequalif§.1).

The MIR-inequality is well defined and valid i#/ = (. In this casel (3.2) is obviously at least
as strong as the so-call&hvatal-Gomory cutﬂGomoN ‘[1958] an&l Chva&e{l [1973]) for pure integer
sets:

> lejlz; < 14

JEN

c.)— +
sinceLcjj + % > Lcjj.
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MIR inequalities are of algebraic nature. They do not alway® temgeometrical interpretation
since scaling the base inequality with some constant mattea differentMIR inequality. Given a
positive rational numbek the inequality

ka; kc.) — (kd))T
Zil_jkcwfj + ;:V(chjﬁ $ 1J>_<]id>>) Ja; < Lkd] (3.3)
VIS

jeEM
is also valid forX, Y and called &-MIR inequality ‘( Cornuejols et él‘ [2003)).

Example 3.4 TheMIR inequality of 3.4z; + 3.7x9 < 8.2, with x1,29 € Z, is 3.25x1 +
3.62525 < 8 dominating the Chatal-Gomory cut 3z1 + 3z < 8. But even stronger is the MIR
inequality 10z + 11xo < 24.

Superadditivity and subadditivity = The function mapping coefficients of integer variables )3
onto coefficients in (3/2) has a nice property, which turnstowbe crucial for the theory of mixed
integer sets and strong valid inequalities.

Definition 3.5 A functionF' : R — R is superadditivef
F(a) + F(b) < F(a+b)
forall a,b € R. A functionG : R — R is subadditiveif
G(a) + G(b) > G(a +1b)
G(at)

forall a,b € R. We writeF (a) = limy o @ andG (a) = limp o — if the limes exist.

R(©)

T2

Figure 3.2: The superadditiMIR function F; with (d) = 0.5

It is well-known that the function
. _ (e) = )™
Fd.RHR, Fd(c)—LCJ—F 1—<d> 5
with d € R, is superadditive and nondecreasing tsee Nembhauser &y\léjJ988] and Figure 3/2).
Moreover F;(0) = 0 and if (d) > 0 thenFy(a) = 15@ Va € R. If otherwise(d) = 0 then
Fy(a) = a Ya € R. Hence

> Fala)f;+ > Falej)z; < Fu(d).

jeM jEN
is the theMIR inequality (3.2) if(d) > 0 and the base inequality (3.1) else.
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Remark 3.6 Note that) _,,, F(a I+ 2 en Flej)z; < F(d) defines a valid inequality foX
andY wheneverF'is a superaddltlve nondecreasmg functlon wittD) = 0 and F(a ;) exists for
all 7 € M, which generallses Theorem 3.2 and is a crucial result ineahixteger programming (see

\Nemhauser & Wolseﬂ/ [19 8)).

We state a corollary to Theorem 8.2 anMR inequality for>-base inequalities because this is
the setting we will consider most of the time. Given the basgjuality

Zajf-—i-Zcx > d (3.4)

JEM JEN

define

XZ ={(f,x) e R x 7Y . (f, ) satisfies/(3.4)
and Y= ={(f,z) e RY xZ : (f,x) satisfies/(3.4) z; <u;,j € N}.

whereu; € Z\{0} Vj € N.

Corollary 3.7 TheMIR inequality

(d) —r(e))*t
> (j 5+ (e —)T(d)(J)) Jo; > [d] (3.5)

jeM jEN
is valid for X= andY =.

Proof. Multiplying (3.4) by —1, applying Theorem 3|2 and again multiplying by results in

—e) — (—d))T
D B B R

jEM JEN

Using that for allA € R
) —(=\)" =" i) —|=A] =T[A] i) (=A) =1-—r(\)

gives the desired result. [ |

Note thatGy : R — R, G4(c) = [c] — W is subadditive withG/y(a) = f(—jz) when

(d) > 0andGg(a) = a else. This follows fromGy(c) = —F_4(—c). Similar to the result above

Z Gd f + Z Gd(cj)xj > Gq(d).

JjEM JEN

gives theMIR-inequality (3.5) wher{d) > 0 and the base inequality (3.4) fai) = 0.
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Numerics and integer coefficients A shortcoming of theMIR cut, compared to the Chvatal-Go-
mory cut, is that the rational coefficiens;(a i) Fy(a ;) and Fy(c;), Ga(c;) might be fractional
with large denominators. Hence scalijR mequalltles to obtaln mteger coefficients may cause
numerical problems. This is known especially for implenagiohs ofGomory mixed integer cuts
However, when solely considering base inequalities witagar coefficients and right hand side we
can avoid such problems. Givenc Z,\{0}, the correspondiné-MlR inequality can be scaled in
such a way that all coefficients (and right hand side) aregerebounded by the coefficients (right
hand side) of the base inequality. In the following we withgly scale thg}-MIR inequality with the
factorr(d, c). Fora,c,d € R andc > 0 define

Ga.cla) == r(d,c)G%(%) and Gy.(a) = r(d,c)a%( )

Corollary 3.8 Letc € Q, ¢ > 0. The following:-MIR inequality is valid forX= and Y =:

Z Ed,c(aj)fj + Z gd,c(cj)xj > gd,c(d) (36)
JEM JEN

— Z Gacla;)f; + Z (d,c) ?J —(r(d,c) = r(c;e))")a; > r(d,c) [%1
JEM JEN

If a,d,c € Z,c > 0then bothG, .(a) € Z andG,.(a) € Z. Moreover, theMIR coefficients are
bounded by the base coefficients:

0<Gac(a) <la] and 0<|Ggc(a)l < |al.
Proof. We divide [(3.4) bye, apply Corollary 3.7 and arrive at

(r(%) —r(2))*

I

Multiplying with ¢ - r(%) = r(d,c) gives (3.6). Suppose,d,c € Z,c > 0. Then obviously
?d,c(a) =at€Z Or§d7c(a) =a € ZandG, .(a) = (r(d,c)[%] — (r(d,c) — r(a,c))+) e 7.

Moreover0 < |Gy.(a)| < |a]. It remains to show thdtj, .(a)| < |al. Itis easily checked that
Ga.c(0) = 0. Firstassume > 0. Letr(d,c) < r(a,c). With Lemma 3.11 follows

0< Gacla) =r(d,)[Z] <r(a,0)[c]=a—([Z] - 1)(a—r(a,0) <a

since[2] > 1 and0 < r(a,c) < a. Now letr(d,c) > r(a,c). Thenr(a,c) <c¢ = (%) > 0 and

0 < gd,c(a) = r(d,c) (%-I - (r(d,c) - r(a,c)) r(d,c) L%J + r(a,c)
cl2] +r(a,c)

— c[2] +c(%) = a.

IN

If a < 0we use that;.(a) = G_4.(—a) + a (Lemma 3.11 iii)). FromD < G_;.(—a) < —a

follows thena < Gy .(a) < 0. [
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Similarly, we define
Facla) :=r(—d,c)Fa(%) and

Facla) =r(—d,c)Fa(%) = —r(=d,c)G-a (=) = —G_q.(—a) (3.7)

) Cc
c c

= —(r(~d,)[72] = (r(~d,c) = r(~a,¢))T)
= r(~d, )| 4] + (r(~d,¢) - r(~a,0))".

Note thatFy.(a) = —G_a.(—a). S0, Fy.(a) = a~ if (£) > 0andF4.(a) = a else. We can
formulate the following valid inequality foX, Y:

Z Faelay)f; + Z Faelej)z; < Faeld). (3.8)
jeEM JEN
Again if a,c,d € Z,c > 0then0 < Fy.(a),Facla) € Z and|Fy.(a)],|Fac(a)| < |al. The
formulas [(3.6) and (3.8) should be used when implemenimglR inequalities. When separating
suchMIR inequalities within a Branch & Cut algorithm we are now suo¢ to worsen the condition
of the underlying matrix, which is crucial for the correctseand effectiveness of those algorithms.

Example 3.9 The following investigation have been made by using thevadgt package PORTA
dChristof & Lobel f200§5]). Consider the integer knapsack set

YZ(u) = {2 € Z% : doy 4+ Tog + 25 + 224 > 13, 2; <w,i€{1,.,4}}

whereu € Z, U {oco}. Using formula(3.6) we calculate three possibl?—MlR inequalities with
c € {4,7,2} and state the dimension of the induced faces correspondingitv(Y=(2)) and

conv (Y Z(c0)):

~MIR : 2, 4+ 2xy + x5 +x, >4 dimensionfo¥=(2):2 dimension fory=(c0) : 3
— MIR : 4z + 629 4 25 + 22, > 12 dimension fo?’=(2) : 3  dimension fory = (c0) : 3
—MIR : 22y + 429+ 25 +2, >7 dimensionfo¥=(2):1 dimension fory=(c0) : 3

N[—= I [

Both conv YZ(2) and conv Y= (cc) are full-dimensional. Note that the coefficients of BIIR-
inequalities are not greater than the corresponding coieffits of the base inequality. For the polyhe-
dronconv Y= (00) all three MIR-inequalities are facet-defining. This is not the casectory Y= (2).

In Section 3.8 techniques are presented that exploit theiapgructure of sets with bounded vari-
ables.

A special case of Corollary 3.8 and inequality (3.6) is useddently in the Iiteraturé (Atamtﬂ' rk
[2002] and Bienstock & Giinliik [1996] and Magnanti & Mirafgani [1993] and Chopra et al. [1998]
and others):

Corollary 3.10 If

ftex>d (3.9
is a valid base inequality foff,z) € R, x Z withc € R, ¢ > 0 then
fxr{d,c)x > r(d,c)[%} (3.10)

is also valid.
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Proof. Setz := —x~ = x =27 —Z withz™, % € Z,. Rewrite (3.9):
fxc (2t —2)>d
and apply Corollary 3.8 using(d, ¢) < r(c,c) =r(—c,c) =cand[$] =1=—[=]. [ |

We conclude with a lemma that will be needed several timesisthsed on the introduced
notation.

Lemma3.11 Letz €e R,y € Ry d,c,c; € Z, andz € Z:
i) c[%] =d+c—r(d,c)andr(d, c)[%] =d— ([%] —1)(ec—r(d,c))
i) If () >0then(7) =1— (%) andr(z,y) =y —r(-=,y)
iii) If (4) > 0thenFy (—2) = F_gc(2) — 2z andGyc(—2) = G_q.(2) — 2

iv) If ¢ > dandc > ¢; then

Facler) = (aa—d)t, Gaclc1) =min(d,cp)
Fodgeler) =(d—c+e)",  Ggelcr) =min(c—d,cr)
Fac(—c1) =—min(c—d,c1), Gac(—c1) =—-(d—c+ c1)t
F-de(—c1) = —min(d, c1), G age(—c1) = —(c1 —a)*.

i) (¢) > 0thenr(d,c) < candr(—d,c) = ¢ —r(d,c). We can write

Fac(=2) = (c—=r(d,c))[Z] + (c —r(d,c) —r(z, c))Jr
= (r(d,e) — )[2] + (¢ = r(d,¢) — r(z,¢)) "
and

F_ae(z) —2z= r(d,c)| 2] + (’I“(d, c) —r(—z, c))+ —z.

@ (%) =0 = Fie(=2) = (r(d,c) — )2 + (c —r(d,c) — c)Jr = r(d,c)2 —z =
F_de(z) — 2.

(b) AssumethatZ) > 0andc—r(d,c) —r(z,c) > 0. HenceFq.(—z) = (r ( c)—c )(%1
(¢ —r(d,e) = (2,¢)) = (r(d,¢) = ¢)|Z] = r(z,0) = r(d,€)|Z] — 2 = Fgel2) —

(c) Finally suppos€Z) > 0 andc — r(d,c) — r(z,¢) < 0. ThusFy.(—= ) = (r(d, ) -
Alel =r(d,)[2]+rd,c)=c[T] = r(d )| Z]+7(d, c)—z—ctr(z,¢) = r(d, ) [T+
r(d,c) =z =r(=z¢) = Fge(z) — 2.
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Using equation (3.7) give§, .(—a) = —F_4c(a) = —~Fyc(—a) —a =G_4.(a) — a.

iv) We prove thatFy.(c1) = (c1 — d)T andF_g.(c1) = (d — ¢+ ¢1)™. The rest follows from
Lemma 3.11 iii) and Equation (3.7).

(@) Ficler) = [Z]r(=d,c) + (r(—d, c) —r(—c, c))+. If ¢ > ¢ thenFyc(c1) = (c—d—
= (

c+c)t = (e —d)T. Elseifc = ¢y thenFy(c1) = (c—d)+ (c—d—c)" = (c—d) =
(01 - d)Jr.

(b) F_geler) = [2]r(d,c) + (r(d,c) — r(—cl,c))+. If ¢ >cithenF_g.(c1) = (d—c+
c1)t. Elseifc =ci thenF_y.(c1) =d+ (d—c)t =d=(d—c+c)". [ |

Summary In this section we have introduc®iR and made some statements about superadditivity
and numerics. The inequalities (3.6) and (3.8) will be useenvderiving strong valid inequalities
throughout the rest of this thesis.

3.2 MIR, Superadditivity and Lifting

We cannot give a complete introduction to the conceptéifirig and superadditivityhere. The
intention of this section is only to motivate the useMiiR as a superadditive function when lifting
strong valid inequalities to higher dimensions. In termaetfvork design polyhedra we want to lift
facets of sets with a single design variable to strong vakdjualities of the corresponding multi-faci-
lity sets (see for instance Section 4.3).

This is only a short overview, we will not go into any detaifr a more thorough overview see

‘Nemhauser & Wolsey [1988]. We follow in some parts introdtuts given b)Jr Agra & Constantino
[2003] and Atamtirk [2008. The basic theory of lifting and superadditivity was sethypWolse
[1976, 19ﬂ7] and Gu et al. [19@9, Zd)OO] and Atamtiirk [2004] athers.

We consider the mixed integer Sétas already defined:

Y={(fo) eRY xZY: D a;f;+) oy <d, z;<u;jeN}
JeEM JEN

whereu; € Z\{0} Vj € N. Let(L,U, R) be a partition ofN and set := d — cjuy;. Given
S C N andh € R define

Vs(h) :=={(f,zg) €RY x Z§ : a"f + cfxg <h, z;<u;j€S}

HenceYR(b) is the restriction oft”, obtained by setting all variables into their lower bound zero
and all variables it/ to their upper bound,. AssumeYyr(b) # 0.
Let

Y f + Bhrp < (3.12)

be a valid inequality fok’z(b), where~, S are vectors of appropriate dimension and R. The
lifting problem is now to find a vectoisy, f) € RY x RY such that

Y'f + Breg + Bra + Bl (uy —xy) <7

is valid forY'.
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To compute these coefficients we make use of the so-chlied) function, which is associated
with (3.11). Forz € R™ (with Yz (b — 2) # ) define

¢r(z) =min{m —~"f — Brrr: (f,zp) € Yr(b—2) }.

(¢r(z) is a finite value ifYg(b — 2) # 0, sed Atathrk4]). One way to lift variables is to
introduce them one by one in a certain sequence (sequéifttiaj)l This leads to an optimisation
problem in each of the steps. Suppase € L is the first variable to be lifted. A lifting coefficient;
produces a valid inequality fdrz ;, if and only if the following condition holds ([\Nolsemm]

Biz; < drlcr;) Vo = 1,(f,2pum) € YRugiy(0) (3.12)
equivalent to
: CiTi i
Bi < min{ % Dy >, (fvau{z}) € Yruiy (0) } = ¢(c).

7

Calculating¢’;(c;) is a nonlinear optimisation problem in general. Howevdtinj a binary
variable requires the solution of a linear mixed integegpam since thew, (c;) = ¢r(c;).

Proposition 3.12 dWoIseQ [1976]) If (3.11)is valid for Yz(b) and—oco < 3; < ¢%(c;) then
V'f +Brar+ Biw; <7 (3.13)

is valid for Yz ;1 (b). Moreover, if—oco < 3; = ¢4 (c;) and (3.11)defines ak-dimensional face of
conv(Yr) then(3.13)defines a face afonv(Yp ;) of dimension at least + 1.

Note that lifting of variables it/ can be done in a similar way by usiag;.
We say that lifting isexactif 3; = ¢%(c;). It is known thatgbg%u{k}(ci) > ¢4 (c;). For a particular
i € L, the laterz; is introduced to the inequality in a lifting sequence, thabien ¢’ (c;) is, implying
that the lifted inequalities may depend on the lifting semae

Now suppose that the lifting functiof is superadditive. In this case, it turns out that lifting is
sequence independent and that we can lift all variablds, in simultaneously[ Wolse6] and
Gu et al. MO] show that superadditive lifting functiomad to sequence independent lifting for
sets with only binary variables and for mixed 0-1 sets rehpsg. Atamtirk ] proves this for
general mixed integer sets.

Proposition 3.13 (fAtathrIJ ¢2004]) Lety : R — R be a superadditive function with < ¢p. If
(3.11)is valid for Y (b) then the lifted inequality

7' f + Brrp + Z p(c;)z; + Z o(=c)(u; —a;) < m (3.14)
ieL €U
is valid for Y. Moreover, ifo = ¢r thendr(c;) = ¢%(c;) and (3.14) defines a face afonv(Y") of
dimension at least + |L| + |U| if (3.11)is ak-dimensional face afonv(Yz(b)).

We say thatp is asuperadditive lower bound apz and avalid lifting functionthat can baised
for lifting. Having >-base inequalities we speaksfbadditive upper boundm the lifting function.

Knowing a superadditive lower boundon the exact lifting function is a great convenience from
a computational point of view. For calculating the liftingedficients we only have to evaluatéc; )
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3.2 MIR, Superadditivity and Lifting

forall i € L andyp(—c¢,) forall i € U instead of solving a potentially hard optimisation problem
each step of the lifting procedure.

Itis now of interest under which conditions the superadditiliR-function F;; (or the subadditive
MIR-function G,;) can be used for lifting. An answer to this question can bendoin Louveaux &
Wolsey ‘[200@].

Proposition 3.14 {Louveaux & Wolse% ﬁ2003]) Suppose the initial valid inequality fdrz(b) is

of the form
Zf )1 —l—ZF x; < F(d).

jEM JjER

with F superadditive and nondecreasing. THEn R — R, F(u) = F(d) — F(d — ) is a valid
lifting function with /" < og. If moreoverF’ = Fy, thenF = F,; and hence thMIR-function itself
can be used for lifting.

Note that/(0) = 0. We have already stated that superadditive functions g property
can produce valid inequalities faf (see Remark 3.6). That thdIR-function F; produces a valid
inequality is in fact a direct consequence of Thedrem 3.2 [ahkt sentence of Proposition 3.14 only
says that we can sédIR as lifting with a superadditive lower bound on the exactngtfunction.
MIR as a lifting procedure was successfully used in Marchand &s@yo[1998, 1999] and Louveaux
& Wolsey [2003] an(ﬁ AtathM[Z—CNM].

Example 3.9 (continued) We have already defined the §&t (u). Now consider the restriction
Y3(u) = {o € Z2 : 4o, + 72y > 13, x;, <w,ic{1,2}}

by settingz; = 2, = 0. The:-MIR inequality
Gi34(4)zy + Gi34(N)zy > G134(13) <=  ;+229 >4

defines a facet of bottonv (Y% (2)) andconv (Y5 (o)), while thei-MIR inequality
Giz7(4)xy + G13(Nry > Gi37(13) <= 4wy + 61y > 12

defines a face afonv(Y; 2( )) and conv(YEQ(oo)) of dimensior0 with the unique point0, 2) satis-
fying4z, 4 6z, > 12 with equality.

We now want to lift these inequalities to valid inequalitiesthe sets=(2) andY = (o). From
Proposition 3.14 we know that we can UdéR as a valid lifting function and from Proposition 3.13
that we can lift simultaneously. THeMIR inequality fory = (u) is

T+ 2+ 23+ >4

which defines a facet abnv (Y =(c0)) but it defines a face afonv(Y=(2)) of dimension only.
Hence the lifting function of, + 2z, > 4 for Yfg(oo) is superadditive and equals thR-function,
whereas lifting fory;> (2) with MIR is valid but not exact.

Let us calculate the exact lifting coefficients for liftingr, — 2z, < —4 to a facet-defining
inequality ofY ;% (2) in the sequenca, 4.

—4 2
w: T3> 1, —4w) —Teg — x5 > —13, 2, <2} =
L3

3,2(03 = —1) = min{ 2
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It follows thatz, + 2z, + 224 > 4 s facet defining for:onv(YE273(2)). Similarly, ¢} 5 3(cy = —1) =
—1 resulting in the facet-defining inequality

$1+2$2+%$3+CE424

for conv(Y'=(2)). (It turns out, that the exact lifting function is superaiilcé as well, so the sequence
4, 3 produces the same inequality dominating ghMIR inequality.)

The 1-MIR inequality forY'=(u) is 4z, + 6z, + x4 4+ 22, > 12 which defines a facet of both
conv (Y Z(o0)) andconv(Y=(2)). Superadditive lifting wittMIR is exact in both cases and surpris-
ingly the lifted inequality is facet-defining althougdh, +6x, > 12 only defined a lower dimensional
face Ofconv(YEz(oo)) and conv(YEQ(Z)).

Summary In this section we have emphasised the usefulnebiRfas a valid superadditive lifting

function. ‘Gu et aﬂ‘ [19§d. 2000“. Atathri( [20@%], ‘Louveaux & WoIseM[ZOO?»] and Agra &

Constantino [2003] and many others, construct superadditiver bounds on exact lifting functions
different to the simpléVlIR-functions considered in this thesis.

The intention of the author is to show that for network degigmblems and the sets considered
in this thesis it suffices to consid®fIR. This restriction at least provides the possibility of depe
ing a generic separation procedure that is able to detdetelift classes of robust and strong valid
inequalities and that might be useful for practical impletagons.

3.3 Upper bounds,complemented MIRnequalities, covers and packs

In Examplée 3.9 we observed thelR-inequalities might be weak, if variables are bounded. & th
sequel a procedure is motivated that exploits the speciaitste of such sets. Again consider the set

jEM JEN
with u; € Z,\{0},j € N. A basic idea now is that afomplementingLet C N, R := N\U and
definez; := u; — z; for j € U. The base inequality (3.1) can be rewritten as

J
doaifi+ Y Yy ¢ <d =) cuy=:b.
JjEM JER = =
Sincez; € Z, forall j € U, itis straightforward to appiMIR (Theorem 3.2) now, which after
reintroducing the original variables, results in

Z Fy(a;) f; + ZFb(cj)wj + Z Fy(—c;)(u; — ;) < Fy(b). (3.15)
jeM jER jEU
MIR inequalities of typel (3.15) will be calledomplementedIR inequalities These inequalities
were introduced bk/ MarchaJnH [1997] a{nd Marchand & Wcﬂl%e@&l_l&(see Section 3.4). In fact we
already know them. Considering the restrictibp of Y obtained by fixing variables ity to their
upper bound we get

> Folayf;+ > Foley)z; < Fy(b). (3.16)

jeEM JER
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as a validMIR-inequality for the set’z(b). Now using theMIR-function F, as a superadditive valid
lifting function, we can lift all variables i/ simultaneously and arrive at (3.15) (see Proposition 3.13
and Proposition 3.14). Similarly,

> Fula)f;+ Y Fo(—e))(u; — z;) < Fy(b). (3.17)
jeEM jeu
is a valid complementeIR inequality for the restrictiory;; (d) obtained by fixing variables iR to
their lower bound zero. Lifting with}, yields (3.15) again.
It follows that the three procedures

1. Complement variables iii and applyMIR,

2. Fix variables inR to their lower bound, apply (complementddiR and finally lift variables in
R using the superadditive functiaf,,

3. Fix variables inU to their upper bound, appIMIR and finally lift variables inU using the
superadditive functior,

are equivalent. This observation is important becausdatval us to make a statement about the
strength of the inequality (3.15). If (3.16) is facet-defigifor conv(Yx(b)) and F}, is the exact lifting
function for lifting variables inU, then [(3.15) is facet-defining faonv(Y'). Similarly, if (3.17) is
facet-defining forconv(Yy;(d)) and Fy, is the exact lifting function for lifting variables i, then
(3.15) is facet-defining foconv(Y'). If otherwise F, is not the exact lifting function in both cases,
we can at least use it for (computationally easy) simultasdifting and might get high dimensional
faces forconv(Y).

It turns out that it is crucial to choose the g&in such a way that the restricted inequalities ((3.16)
or (3.17)) define facets for the restricted setav(Yx (b)) or conv(Yy(d)). Itis in this context that
the terms and definitions @bversandpacksarise.

In the sequel let the sét be given withc; > 0 for all j € N.

Definition 3.15 A subseC of IV is called acoverif ug.co = ;o ujc; > d. Seth := ufcq —d.
Similarly, a subseP of IV is called apackif p := d — upcp > 0.

Covers and packs and the correspondinger-and pack-inequalitieshave been studied exten-
sively in the literature. The main approach here is that dhdixvariables with respect to an ap-
propriately chosen cover or pack, considering a facet-uhgfimequality of the convex hull of the
restriction ofY” obtained this way and then lifting this facet to a high dimenal face ofconv(Y).
See‘[Atathrl&, 20(@ for a detailed introduction and literature overview.

Marchand & WolseyM8] show that some classes of liftedecoand pack inequalities are
just MIR-inequalities, or are even dominated lyR-inequalities. In the following we will give two
examples of this.

Covers First we consider anixed 0-1 knapsack sehat isY” but withu; = 1 andc; > 0 for all
Jj € N. LetC be a cover with excess such that\ < ¢ := max;cc c;. SetR := N\C. Fixing all
variables inR to zero and complementing all variablesGiresults in

D aifi+ ) —eT; < A

JjEM jeC
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Now calculating théc—(complementedMlR inequality gives

Z ?—)\,E(aj)fj + ZF—)\,E(_Cj)(l - 5'3]') < Fone(=A)

jEM jeC

= > a;f + Y Foaal—¢)(1 —x;) < —A
JEM jecC

= Z a; f; - Z min( )1 —xz;) < =\ (3.18)
JEM jeC

The last step follows from Lemma 3/11 |iv).
(3.18) is the so-callethixed 0-1 cover mequalnﬁMarchand & Wolseﬁ [1999]) and defines a facet
of conv(Yy). If C'is a minimal cover, i. ec; > A forall j € C and alsoM = (), then inequality
(3.18) reduces to
> w <ol -1,

jeC
the well-knowncover inequalityfor 0-1 knapsack sets. (Note that for mixed 0-1 knapsacktbets

minimality of a cover is not a necessary condition for (3.Bpe facet-defining, it suffices to have
A < ¢.) Itis now obvious that we can usé_, ; to lift inequality (3.18).

Za J; —i—Z]—" aelc)xs —me D1 =) < =A (3.19)

jeEM JER jeC

is valid for Y and it can be a strong. §ee Marchand & WdIJsev [19QQi and AIEQ’:I%EOO?D{] for exact
lifting functions and superadditive lower bounds differéom 7_, ..

Packs Now, givenY with ¢; > 0,5 €N, let P be a pack with residugl such thaty < ¢ :=
max;e v\ p Cj. SEtR := N\ P. Now complementing all variables iR results in

doafi Y —emi Y gy <
jeEM jeP JjER
Calculating théc-(complementedMlR inequality gives
a4 Y Fuel—c)u; — ) + > Fuele;)z; <0, (3.20)
JjeEM jeEP JER

We call (3.20) a (lifted)mixed integer pack inequalityUsing Lemma 3.11 V) givefm(cj) =

(¢; —p)* forj € Rsincec > pande > c;. From Corollary 3.8 we know thak, ;(—c;) > —c;. It
follows that|(3.20) is at least as strong as
Z a; f; +Z (u; —m; —i—Z cj — <0
JjeM JEP JER
= Y af; +) ¢z Y (e —wte; <Y uy=d—p,
jeM jEP JER jEP
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which\ Martin & Weismantel\ [1997] aHd Weismantbl [1997] refe as aweight inequality Weight
inequalities define facets af under certain conditions. Inequality (3.20) reduces to

Z(Cj - M)+xj <0,
the well-knownpack inequalityfor 0-1 knapsack sets, i¥/ = () and variables in the padk are fixed
to their upper bound.
Example 3.9 (continued) We have already considered the set
VZ2(2) ={x €Z% : day + Twy + 24 +21, > 13, 1z, <2,i€{1,.,4}}

and derived strong valid inequalities b§IR. Here, we try to obtain new facets by considering covers
and packs. We only state five examples. Most of the nontfadat-defining inequalities for=(2)

can be obtained with this procedure. First we will only calesi covers and packs with excess or
residual smaller tha@ := max(c;);en = 7. We have not defined covers and packsfenequalities
yet. But by complementing all variables we arrive at the egjigint system

YS(2)={z €2y : 43, + T2y + T4 +27, <15, T, <2,5€{l,..,4}}.

C = {2,3} is a cover with exces§ = 7-2 4+ 1-2 — 15 = 1. Complementing all variables in the
cover yields

We arrive at the same inequality by definifg= {1,4} to be a pack with respect to the origina-
base inequality and by complementing all variables in thekp&low calculate thé—MlR inequality
given by

Ty + x5 > 1.

ConsideringC' = {2, 3,4} gives a cover withh = 5 and theMIR-cover inequality
2xy + 579 + T3 + 274 > 9.

Now letP = {1,4}. It follows thaty = 15 — 4 -2 — 2.2 = 3. Complementing all variables in the
pack gives

—Adxy + 7Ty + 23— 224 <3 <= dx; —TTy— T3+ 2z, > 3.

The same inequality is obtained by definiig= {2, 3} to be a cover with respect to the original
>-base inequality and by complementing all variables in ttreet. The%-MIR inequality is

dxy 4+ 4y + 224 > 8.
ConsideringP = {1, 3} gives a pack with. = 5 and theMIR- pack inequality

221 + 229 + 23 > 4.
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All of the cover- and pack inequalities we have derived ia ay define facets &f=(2). Itis crucial
to only consider covers and packs with small values ahd x.. Let for instanceP = {3,4} with
u = 9. Complementing gives

4r) + 729 — 23 — 224 <9 <=  —4x; — 7Ty + 23+ 224 > 9.

Choosinge = 10 > 1 leads to thel-MIR inequality
1'3 + x4 Z O7

which is trivial and does not define a facetof (2).
Summary In this section it has been shown how to exploit the speciatsire of bounded mixed
integer sets. We simply complemented variables in prelyaisen covers and packs before scaling
andMIR. In this context it is important that the excesor covers or the residual for packs is small
with respect to the coefficients of the base inequality. Md#&d by the stated strong valid cover and
pack inequalities and by Example 3.9, we will restrict ouemtion toMIR-cover- andMIR-pack

inequalities with

¢ = max(c;)jen > A, 1,

where% will be used as the factor to scale the base inequalities.

3.4 AMIR procedure

Marchand |19Q7] anbl Marchand & Wolsév [1998] observed thahynfamilies of strong valid in-
equalities of certain mixed integer sets are in fetR-inequalities obtained by the following proce-
dure:

1. Aggregation: Choose a positive linear combination of the inequalitied tiescribe the mixed
integer set to get a valid base inequality of the farm (3.1(8ot).

2. Bound Substitution: Substitute continuous variables by potentially giveni@lke) lower or
upper bounds.

3. Complementing: Choose a subséf of the integer variables and complement them with re-
spect to their bound constraints.

4. Scaling: Divide the base inequality by some positive integer
5. MIR: Apply MIR.

Strong valid inequalities with respect to certain mixe@gdr sets that can be obtained by the proce-
dure above are, for instance:

o (lifted) cover and pack inequalitie(ﬁ\tamtl]rlk f200ﬂ])

e arc residual capacity inequalitieNaqnanti et al.‘ [19d3])
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. fcut inequalitiesdBienstock & GUnIUH[lQ%] anﬁ Chopra et‘dl. [1@98] e{nd tark
[2002])

o (lifted) flow coverandflow pack inequalitieéGu etal. ‘[1999] anH AtathrIk [2001])

e knapsack partition inequalitie&’ochet & Wolse% [199i, 19@5])

Given a general mixed integer set, the simple idéa of Mamtlﬁh%')(] andl Marchand & Wolsey
M] is to apply each of the stepggregating substituting complementingndscalingheuristically
before applyingMIR. They propose a very generic separation heuristic baseki®NI IR procedure
and showed that, when integrated into a Branch & Cut algworitlh computationally gives results as
good as, or better than, those obtained from several exiéfieneral purpose) separation routines.

The approach used throughout this thesis is slightly difier We are not faced with general
mixed integers sets but with network design problems and watake into account the structure of
those problems and the underlying networks. In fact, evetlyesteps above will be part of oMIR
procedure, but they will not be used heuristically (in thn&rmoli Marchaﬁd [19@7] and Marchand &
Wolsey ‘[1998]) and although they can be useful for impleragons, they are of a theoretical nature
rather than being a pseudo-code. In the presence of a certass of inequalities one has to face the
separation problemwhich usually causes some modifications in actual pra¢Gtepter 7).

The procedure, that will be described below in more detadstto generalise the way to obtain
the strong inequalities specific for network design prolsiewhich will be introduced in Chaptet/4, 5
and 6. For a thorough description see the appropriate ahdpt€hapter 4 we will see how to obtain
certain flow cut inequalities and in Chapter 5 we will consifiew cover and flow pack inequalities.
Sections 6.3, 6.2 and 6.4 are devoted to multi cut inegasjitirc residual capacity inequalities and
knapsack partition inequalities, respectively.

The following approach may even be of interest for probleifisrént to those considered in this
thesis. We concentrate on the Directed case. The BldirestddJNdirected cases are analogous.

Aggregation Given a network design polyhedron as defined in Section 2@se subsets of the
nodesV/, the arcsA (or edgesF) and the commoditie&” and consider a linear combination of the
flow conservation constraints (2.2) or (2.3), the capaaitgstraints((2.4), (2/5) (2.6) and the non-
negativity constraints (2.7) or (2.8) with respect to theegi subsets. The selection of nodes and
arcs (or edges) will not be done heuristically but shouldemfa certain structure of the underlying
network. For example, it turns out that it is useful to coesid

e a subsetS of the noded” and subsets of the arcs in the 6¢b) defined byS (see Chapter 4,
Chapter 5 and Section 6.4)

e a partition of the network nodds and the corresponding multi cut (see Section 6.3),
e asingle arc (see Section 6.2).

In this context, it is crucial to know more about the polyta@dtructure of the relaxations obtained
with such an aggregation procedure, sucltassets single arc set®r multi cut sets In Chapter 4
and 5 we considetut setsand learn how to choose subsets of commodities, arcs and sadbk that
our approach produces strong valid or even facet-definiegualities.
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By aggregating valid inequalities as mentioned we arriv& sihgle constraint of the form (3.4).
We could directly calculate é-MIR inequality with respect to this single constraint. But sinc

?d@(aj) = aj (in the only intersting case thag> > 0), we would round up negative coefficients of
flow variables to zero.

Substituting The intention of this step is to obtain a base inequality with-negative coefficients
for all flow variables. Suppose that after aggregation all flariablesf” for a € Ag andQ C K
have the same negative coefficient/in (3.4).

We use the slack variabbé? > 0 of the corresponding capacity (or variable upper bound} con

straint
[EHTE =)
teT

to substitutefs for 3, clat, — fi2.
If we are able to bound the floyfzf,2 with some constant value:
$2+ =g e Ry,

we can similarly substitutg? for u& — £, (This is complementing of flow variables and will be
used in Sectioh 612.)

Proceeding this way for all flow variables with negative ¢icefnts we get a modified base inequality
of type (3.4) where all coefficients of flow variables are magative.

Complementing We choose a subsét of all bounded integer design variables. Thelewill be
either empty or an appropriately chosen cover or pack sirtdléghe examples of the last section. In
Chapter 5 we consider flow covers and flow packs as an extetssimvers and packs. We chodse
such that the corresponding excessr residualu is smaller than the maximumof the coefficients
of the base inequality.

All variables inU will be complemented.

Scaling andMIR It remains to define the facterthat is used to scale the base inequality. For many
strong inequalities given in the literature (and all inddigs considered in this thesis) it suffices to
selecte from the coefficients of the base inequality.

Now we calculate the -MIR inequality.

Since the%-MIR can be seen as new base inequality the step ‘ScalingvdRdcan be repeated.
Finally, we have to restate the resulting inequality in tehthe original variables.

3.5 Summary

This chapter is the basis for the rest of this thesis. All theassary notation concerniMJR has been
introduced. It has been shown how to derive numerically BdRRinequalities. We have learned how
to scale them such that all coefficients are small integers.
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3.5 Summary

It is often useful to consider restrictions of given mixedemer sets by fixing some variables
to their bounds. It was emphasised thR can be used for the simultaneous lifting of the valid
inequalities of such restrictions. It was furthermore shdhat if a valid inequality for a restriction
has already been obtained B}R, thenMIR provides a canonic valid superadditive lifting function.
In this context the strength of such liftddIR inequalities can be investigated by comparing Mi&
function with the exact lifting function.

In cases where variables are bounded by some constant itdhas, been explained how to ex-
ploit this additional information. Those variables can benplemented before applyingIR, which
is equivalent to fixing those variables to their bound, abitej a valid inequality for the restriction
by MIR and then lifting with the sam®!IR function. It turned out that it is crucial to properly choose
the sets of variables that are to be complemented. It hasdesm that well-known cover (pack) in-
equalities are obtained with this approach when compleimgrariables in the corresponding cover
(pack). Those covers (packs) have to be chosen such thaatbeyinimal (maximal) in the sense
that their excess (residual) is small with respect to thdfictents of the base inequality considered.

A MIR procedure has been proposed which is able to produce stadinjivequalities for the
network design problems investigated in this thesis. Itripartant for the success of suchvlR
procedure to restrict the large pool of possible base irldimsa In the following chapters, especially
Chapter 4, we will investigate the facial structure of certalaxations of network design polyhedra,
which will provide more information about how to derive gdoaise inequalities.
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Chapter 4

Cut sets and flow cut inequalities

4.1 Introduction

Cut setg(or single node flow setarise from the aggregation of flow conservation constsafot a
node setS C V. The network design polyhedra are restricted to thej¢6y and the two artificial
nodesS andV'\S. The resulting cut set polyhedra, or simply cut sets, sesveexations of the
original network design polyhedra. It is important to uredand the polyhedral structure of cut sets
because they cover a significant part of the characterisfitise related network design polyhedra.
When developing Branch & Cut algorithms for those problefaset-defining inequalities for cut sets
play a crucial role (see Chapter 7).

Literature review The cut set polyhedron with bounded integer design varsatadad here espe-
cially the 0-1 case, has been investigated by many authees.Chapter |5 for a literature review. In
this chapter we consider unbounded design variables but ohtise stated results are useful for the
bounded case too. In fact, all of them hold if the bounds gaenlarge enough. Valid inequalities
for cut sets will be calledut set inequalities

The most important cut set inequality is thet inequality It simply says that the demand that
can be routed across a cut of the network is upper boundedebinstalled capacity. Sée SchrijL/er
@03, Volume C, Chapter 70] for a survey on cut inequaliiag multi-commodity flow problems
with existing capacities. Cut inequalities for capacatetwork design problems with UNdirected
capacity constraints were investiatedrna 188d]in a series of articles by Magnanti
& Mirchandani [1993] and Magnanti et al. [1993, 1995]. Biwtk et al. ‘[1995] consider network
design polyhedra with Dlrected capacity constraints. Tgregent cut inequalities and second class of
cut set inequalities, which we will cadimple flow cut inequalitiegeneralising cut inequalities. The
support of such inequalities additionally contains cerféw variables with respect to the edges of
the cut considered. Cut inequalities and simple flow cutuadities for the Bldirected case have been
studied b)l' Bienstock & GUnIthJ( [1996] The most general fafilow cut inequalityas investigated
in this chapter was first introduced by Chopra et al. [1998jeyi consider Directed supply graphs.
Atathrﬂ( 2002] presents a detailed analysis for a cut st rected capacity constraints, which
we refer to ag’ S, He states necessary and sufficient conditions for flow @fialities to be facet-
defining forC'SP! even for the general multi-commodity multi-facility casghe work of Atamtiirk
@] can be seen as the basis of this chapter.
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Cut sets and flow cut inequalities

Outline of this chapter After introducing the cut set§’S”!, €SB’ andC'SYYN and stating some
additional definitions and assumptions, we will motivate @imalysis of cut sets by showing that facet-
defining inequalities folC'SPL, C'SB! or CSYN define facets otV DPP!, NDPB! or NDPUN
with certain additional demands on the structure of the dyiteg graphs.

In Section 4.2 we will first restrict ourselves to single fagiproblems and will investigate the
polyhedral structure of cut sets in detail. We will presexttett-proofs for certain classes of flow cut
inequalities. They will be established in a very generairfdor all three capacity models. For the
cut sets with undirected supply grapfis®’ andCSY" this is done for the first time, generalising
inequalities proposed l£y Magnanti & Mirchandéni [1‘993] binelnstock & GUnIUH[leG]. It will be
emphasised that flow cut inequalities can be obtainell &

We start with cut sets for directed supply graphs in Secti@14 The most important results
of ‘AtathrI){ f2002] forCSPT will be summarised and even supplemented. In Section 422 t
Bldirected and UNdirected versions of cut sets will be stddiWe will define a class of flow cut
inequalities, similar to that cbf Chopra et éﬂ. [1@98] tos !, which contains known flow cut inequal-
ities, so-called cut inequalities and simple flow cut indijea, as a special case. The corresponding
facet-proofs extend results‘of Magnanti & Mirchan&léni [3pand‘ Bienstock & GUnIUQ [19@6]. As
an extension, a new class of facet-defining cut set ineipslii stated that has no analogue for the
Dlrected case.

In Section 4.3 we will investigate how all those facet-defininequalities for cut sets with a single
facility can be generalised to strong valid inequalitiestfe multi-facility case. Again, the results for
directed supply graphs are fr(£m Atamtdrk [2b02]. We wilbshthat the exact lifting function he uses
to lift valid flow cut inequalities of single facility restifions is in fact theMIR function introduced
in Chaptef 3. We will make use of the saiR function for the cut set§' S5’ and C'SYY and
propose aVlIR procedure to obtain strong valid flow cut inequalities in gemeral multi-facility,
multi-commaodity case for all three capacity models.

One intention of this chapter is to present strong valid flawicequalities in a closed form for all

three capacity models, including all the special cases. Weslaborate on the differences between
the polyhedral structures 6tSP!, 'SP andCSUYN.

—_—)
As WS
As
(i) A cut based on a directed supply graph (ii) A cut based on an undirected supply graph

Figure 4.1: Cuts and flow directions

Definitions We will now define the three cut sets corresponding to theidifit capacity models.
Let Ag := 6(S) # 0 be adicut in the digrapt¥ = (V, A) where() # S C V. SetA! := §7(9) and
Ag = 07 (S). For every commodity respectively we sum up all flow constowaconstraints| (2.2)
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4.1 Introduction

for i € S and arrive at the following system of inequalities.

o= fh=dg Vk e K (4.1)
aeAg acAy
fo < Z cal, Va e Ag (4.2)
keK teT
0 < fkat Vae Ag, ke K,t €T, (4.3)

wheredt, := 3", o d¥ k € K andc € Z,\{0}. The capacities’, ¢ € T were introduced in Section
2.2. The corresponding multi-commaodity, multi-facilityit set polyhedron or simply cut set, for
directed supply graphs is defined as:

CSPT = conv{ (f,x) € RIIASl s ZASITI . (£ 2 satisfies|(4.1X4.2) and](4.3)

For undirected supply graplis = (V, E) let Es := §(S) # () be a cut withS C V. Aggregating the
flow conservation constraints (2.3) as above gives

S-S gk = d Vk e K (4.4)
e=ij€Eg e=ij€Es

Zle; §thﬂ:’é Ve =1j € Fg

keK teT (4.5)

fol chtw’é Ve =1j € Fg

keK teT

S+ <Y dal Ve=ijeEg (4.6)

keK teT

0 < fhfhal Ve=ije Es, ke K, teT 4.7)

The corresponding multi-commodity, multi-faciligut setsfor undirected supply graphs are:

CSBL = conv{ (f,x) € RAKIEs| 5 ZIESIITI . (f 1) satisfies|(4.4)4.5) and[(4.7}
CSUN .= conv{ (f,z) € R2AKIIEs| » ZIBsITI . (¢ o) satisfies| (4.4X4.6) and[(4.7}

As for NDPP!, NDPBI and NDPYN we do not writeC'SP!1, €SB andC'SYN as functions of
or any other parameter. The cut sets are defined in the spac \wdriables but it is obvious that

NDPPT c T8PT = 0gP! « RIKINAI-IAs]) o RITIIAI-IAs])

since a point f,z) € NDPP! satisfies[(4.2) and (4.3) by definition and (4.1) is the sungabgions
satisfied by(f, =) for everyk € K. Hence every valid inequality fars” " is valid for NDPPI.

In the sequelmm will not be mentioned anymore, instead we say that a valiquaéty for
CSP! (in the space of the dicut-variables) is valid f61D PP’ (in the space of the original variables).
Similarly, we say that a valid inequality farS?! (CSY™) is valid for NDPB! (N DPUN).

Valid inequalities forC' P!, ¢S andC'SYN will be calledcut set inequalities
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Cut sets and flow cut inequalities

Note that|(2.1) implies
dk — _gk
= ~0y\s-
Thus cut sets, together with an objective function, can ke ss two-node network design problems
(see Figure 4]1). For every commodity, a flow on the cut ortdias to be established such that the
(aggregated) demant@ is satisfied. Moreover, the cut sets®&ndV'\ S are identical, since we only
have to multiply every flow conservation constraint by -

Givenk € K we will distinguish the direction of the deman that has to be routed across the
cut. Define

Kt ={keK: di>0}

K- :={keK: di<0}
K ={keK: di=0}

K g———
|ds]

(i) A cut based on a directed supply graph (ii) A cut based on an undirected supply graph

Figure 4.2: Cuts and demand directions

HenceK = K+ U K~ U K°. Commodities: € K+ are calledpositive commoditiesand those
in K~ are callechegative commoditiesee Figuré 4/2). Note that given a commoditg K, the
corresponding demands can be satisfied without the needforcfossing the cut if botldi7[.S] and
G[V'\S] are connected for undirected supply graphs or stronglyected for directed supply graphs,
because the problem of finding a feasible flow#aran then be restricted to these subgraphs.

Note that these commodity sets depend on the chosen networkor simplicity we omit the
subscriptS.

Additional Assumptions The caseK~ U K™ = () is not interesting and since we can switch
between the cut sets sfandV'\ S, we assume that there is at least one positive commaHity =~ (.

For simplicity we make the following additional assumpgowhich will be used throughout the
rest of this thesis. For directed supply graphs arst’! we claim that

° A;C # 0,
o if K~ #(0thenAg # () and
e if KO+ () then bothA andAg are not empty.

For the cut set€’S?! andC'SUY it is required thatls # () as already mentioned.
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4.1 Introduction

Before we investigate the dimension of cut sets we show tinahé cut se€' SV we can assume
K~ = (), w.l.o.g.. Commodities for cut sets with UNdirected capaconstraints can always be
seen as being undirected (neither positive nor negativesiderC SUV with |[K+| > 0, |[K~| > 0.
We will construct an identical cut set with only non-negatsommodities by simply renaming flow
variables. It follows that the direction of the demands fadditected problems is just a matter of
modelling. Consider the following new flow vectg?r

fe=gk and fhi=jk Ve=ijeEske K\K
fE=rk and J=fk Ve=ijeEskeK"

What we have done is change the direction of demandsinby swapping the corresponding flow
variables. By additionally multiplying the flow consenaticonstraints by-1 for all negative com-
modities, we have transformed — into a set of positive commodities. Givéne K, the corre-
sponding flow conservation constraint is now written:

>, M= X fi=—dy>o.

e=ijElg e=ijelg

That the cut set defined fcégf, r) and the cut se€ SU¥ are identical, follows from the fact that
the capacity constraints are identical since

S+ 7 = U+ 1)
keK keK
The latter is not true fo€ S?!. Here we explicitly make use of the UNdirected formulatioml ghe
capacity constraints (4.6).
In the following, we will assumé{~ = () whenever referring t@' SY" unless explicitly stated
otherwise.

Dimension of cut sets It is obvious that the dimension 6fS”7 is atmos{ K || As|+ |T||As| — | K|
since there areéK||Ag| + |T'||As| variables and K| equations satisfied by every point @S™?.
Similarly, the dimension oS! andC'SY¥ is at mosR|K || Es| + |T||Es| — | K]|.

Under the assumptions above there are no additional imptiedtions and we can formulate the
following lemmas:

Lemma 4.1 (Atamtiirk [2002]) The dimension of'SP7 is exactly|K||As| + |T'||As| — |K].

Some of our claims are even necessary for this lemma to hf)lﬂgL I= () we cannot route the
demand forK*. Similarly, we cannot route the demand far~ # () if Ay = 0. In both cases the
polyhedronC'SP! is empty. If on the other han&® # () and eitherAJSr or Ag is empty, then the
flow for everyk € K° has to be fixed to zero on every arc of the cut, which gives iadit implied
equations if Ag| > 1.

Lemma4.2 CSYN c ¢sB!

Proof. A pointp = (f,x) in CSYN satisfies|(4.4)] (4.6) and (4.7). But from (4.6) and (4. 7)ofob
(4.58) and thug € C'SPL. [ |
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Lemma 4.3 {Magnanti et al. ﬁ1995h, Bienstock & GUnIUI& ﬁ1996h, GUnIUI& ﬁ1994l,

dimension of2 S andCSYN is exactly2| K||Es| + |T||Es| — |K|.

1999]) The

For Lemma 4.3 to hold it is necessary ttaf # 0.

A decomposition Before investigating the polyhedral structure of the defioat sets it will be
proven that facet-defining inequalities 6tS”!, C'SP! or C'SYYN can be facet-defining for the cor-
responding network design polyhedra.

Magnanti & Mirchandani‘ [1993] anb Magnanti et AI. [1995] aellvxas‘ Bienstock & GUnIdk
@] do not consider cut sets, but directly show that gizetode sef5 certain cut set inequalities
are facet-defining fotv DPB! and NDPYYN. What they need to prove their results is that both
subgraphg+[S] andG[V'\S] are connected. It is possible to decompose their resultpauds into
two parts. The first part says that a certain cut set inequialitacet-defining for the corresponding
cut set. The only additional argument needed then to sedhtisatut set inequality is facet-defining
for the network design polyhedron is that the mentioned tyitg subgraphs are connected.

The following theorem, which to the best of the authors kmealgk is presented here for the
first time, formalises this decomposition. The facial stues of the cut sets and network design
polyhedra are closely related, which motivates a detaitedyais ofC'S”!, C'SB! or C' SV,

Theorem 4.4 GivenN D PP! defined forG = (V, A), let.S C V be chosen such that bo@iS] and
G[V\S] are strongly connected and l€tS”! be the corresponding cut set. If the cut set inequality

Sk Y Bl za (4.8)
a€Ag, keK a€Ag, teT

is a facet-defining inequality fa’'S”!, wherey®, 3t = € Rforall a € Ag,k € K andt € T, then
it defines a facet aV D PP! (in the space of the original variables).

GivenN DPB! (NDPYN) defined foilG = (V, E), letS C V be chosen such that bo#{S] and
G[V\S] are connected and let.S?! (CSUY) be the corresponding cut set. If the cut set inequality

S b Y ke Y etz

e=ijeFlg, keK e=ijelg, ke K ecEg, teT

is a facet-defining inequality faP'S?! (C.SUN), wheren):, v}, 6., € Rforall e = ij € Eg,k €
K andt € T, then it defines a facet & DPP! (N DPYY) (in the space of the original variables).

Proof. First consider the Dlirected case. It can be assumed thati$4&en with
r=0vVkeK

for a chosen ara € Ag, since we can add multiples of the balance constraints {d.(4).8).
We will first show that the related face

F={(f,z) e NDPP! . (f, ) satisfies[(4.8) with equality

is nontrivial, i. e. it is not empty and it does not eqiaD P!, Then, by contradiction, we will show
that it defines a facet (approach 2 for facet prcgofs Wolseﬁlﬁhap 9.2.3)).
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Let
Fs ={(f,z) e CSP1. (f,z) satisfies[(4.8) with equality

be the facet o€ S”! defined by[(4.8). Choose a point= (f,z) € Fs. Fromp we want to construct
apointp = (f,#) e F. Definep the following way:

. acA R _
Ta @EA5 gie o= Vae Ag ke K

M else
where)M is a large number. It remains to defififor arcsa in A\Ag = A[S]UA[V\S]. Fork € K
temporarily define the following demand vector:

d* 8(i)N Ag =0
df = db 4+ FE(5 ()N Ag) — FRT() N AE) ()N As#£D,ie S
dF 4+ FR(5 (i) N AL) — PR (i) N Ag)  6(i) N Ag #0,i € V\S

Thus, ifi is head or tail of an arc in the dicutg, we defined}l; to be the flow that has to leave (or
enter) the node across the cut.

It follows thatdy = >, qdf = df — f*(AL) + F*(A5) = 0 since f satisfies the flow con-
servation constraints (4.1). Similarlyy,, ¢ = 0. Hence a feasible flow with respect & can be
constructed that solely uses arcsApS] and A[V'\'S]. Note that the capacity is large enough. Here,
again, we need’[S] andG[V'\ S] to be strongly connected. Together with the flownthis defines
a flow f that meets all flow conservation constraints (2.2) and dgpecnstraints/(2.4)p = (z, f )
is in NDPPI, Since we did not change flow and capacity 4g, the point still satisfies (4.8) with
equality and hencg is on the facer" and thust’ is not empty.

SinceFy is a facet ofC'SP!, there is a point irC'SP! not in F. From that point we construct
a feasible point ofV DPP! using the same construction. This point then cannot k&. it follows
that ' # NDPPL,

We have already shown thét# F # NDPP!. We still have to show thaF is inclusion-wise
maximal. We do this by contradiction. Suppose thas not a facet. There is a fade of NDPP!
with F ¢ F # NDPP! whereF is defined by

Moo A+ Y Bl =7 (4.9)

acA, k€K a€A, teT

Thus, every point inF’ satisfies[(4.9). We will show that (4.9) is (4.8) up to a lineambination of
flow conservation constraints (2.2) which proves thidhduces the same face, contradictifg- F.

Foralla ¢ Ag and everyt € T we can modifyp by increasing the capacity,. This way we
obtain new points on the fadé and hence

Bt=0Va¢ Ag,t €T.

LetU C A[S] be a spanning arborescencedpsS| with rootr, wherer is a node inS. The arbores-
cenceU exists since~[S] is strongly connected. For every notles S\{r} there exists a unique
directed path itV from r to 1.
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By adding a linear combination of the flow conservation ceists (2.2) to[(4.9) we can assume
that

F*=0VaeUkeK

That this is possible follows from the fact, that for evérg K, theS x U incidence matrix defined
by (the left hand side of) all flow conservation constrai) for: € S and all arcs i/ has a rank
of exactly|S| — 1 = |U|.

Now letay = uwv be an arc inA[S]\U and

(’U = il,’ig, ...,’L'k = T’)

a directed path ii7[S] from v to r with £ > 1 (v = r if £ = 1), which exists sinc&[S] is strongly
connected.

We want to conclude th‘ﬁ@,v) = 781,1'2) = W@MS) = .. = ’i@kil,ik) = 0. There is a circuit
in G = (V, A) defined by the unique path fromto i, in U and the arqi,_1,7). For every
commodity & we can modifyp by sending a circulation flow through that circuit. This wag get
a new point on the face that satisfies (4.9). It follows tﬁ@;[_w) = 0 since”d* = 0 Va € U.
Similarly, there is a closed directed path defined by theumijgath fromr to i, _, in U and the arcs
(ig—2,ix—1) and(ix_1, 7). Again, sending a circulation flow on that path gi%_wk_l) =0. We
proceed inductively and get the desired result. Since- uv was chosen arbitrarilj* = 0 Va
A[S], k € K. The same procedure applied4¢l"\ S] gives

¥ =0 Va e A\Ag,k e K.

Now we can concentrate on coefficients of variables in thetdiGiven the above chosen aicwe
first add a linear combination of flow conservation constsa{.2) to[(4.9) such that

F¥=0=1kVke K.

The left hand side of (4.9) now has at mo&t||As| + |T'||As| — | K| nonzero coefficients. From
Lemma 4.1 follows tha¥g contains|K ||As| + |T'||As| — | K| affinely independent points. From
any of them we can construct a feasible poinfimaintaining the affine independence as it has been
shown forp andp above. All those points satisfy (4.9) sinée C F. Hence(v, ) is the unique
solution to the corresponding linear system (up to a scaldtipte) and [(4.9) defines the same face
as (4.8). We have shown th&t = F. This is a contradiction td&@ C F. It follows that F is
inclusion-wise maximal and together with#£ F £ N D PP’ we have proven thal' defines a facet

of NDPPT,

The proof for the Bldirected and UNdirected case is analegolihe first part of it, showing that
all coefficients of (4.9) corresponding to variables nothie tut are zero, can in fact be found in
‘Bienstock & GUnIUH[leG, proof of Theorem 2.2]. The imtaott difference to the proof above is
that we choose a spanning treein G[S], which exists sinc&7[S] is connected, and that we send
circulation flows (in both directions) on undirected citsuilefined by edges @f and a single edge
in E[S]\U. The arguments of the second part of the proof are identicdie arguments above. B
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Summary We have defined the cut sets, which will be investigated m¢hapter and stated neces-
sary additional definitions and assumptions. It was showhftr C'SY"V we can assum& — = () in
the following.

Moreover, we have proven that facet-defining inequalit@scfit sets are facet-defining for net-
work design polyhedra if the subgrapfi$S] andG[V'\S] are connected (undirected supply) graphs
or strongly connected (directed supply graphs). With teguitt in mind, we will from now on con-
centrate on the facial structures of cut sets and develat-thfiningMIR-inequalities.

4.2 The cut set for single facility problems

In this section the cut setS?!, C'SPL andCSYYN are given with a single-facility, having a capacity
of ¢ € Z,\{0}. It follows that|T| = 1 and rewriting the capacity constraints (4.2), (4.5) an@)(4.
with respect to the three capacity models yields:

Dlrected: > sk <cx, VacAg (4.10)
kel

Bldirected: > ff <czx,
kek (4.11)
Z fjkl <czx, Ve=1ijc Es.
ke

UNdirected: > (ffi+ f};) <cz, Ve=ij € Ey (4.12)
kel

We will state strong valid inequalities for all three setabalrating the differences.

4.2.1 Dlrected capacity constraints

Figure 4.3: Directed cutls with selected arc setd] and A5

We start with an example.

Example 4.5 Consider a single-facility, single-commodity cut set witfo outflow arcsAg =
{a1,a2} and two inflow arcsAy = {a3,as}. We have to satisfy a demand &f = 7 and we
are allowed to install capacity in units ef= 3:

CSPl=conv{z € Z* f eRY | fi+ fo—fs—fu=T
0 < f; <3x; Vie{l,2,3,4}}
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Cut sets and flow cut inequalities

If z; = 0 (xy = 1, x; = 2), there has to be a flow of, > 7 (f, > 4, f, > 1) on arcay since f;
cannot exceed a value 0f(3, 6). On the other hand, it; > 3, then all flow can be routed through
arc a;. We can formulate the valid inequality

Jfotx >3,

which is a simple flow cut inequality and defines a faceCsf’/. The same inequality can be
obtained by considering the valid inequalify + 3z, > 7 and applyingMIR (Corollary|3.10).

In the following, we will generalise the last example andedep a class of flow cut inequalities
using theMIR-procedure defined in Section 3.4. L@tbe a subset of the commoditiés. Define
FR(As) == e FF(As) and similard? := 3, .o d&. If |K| = 1, we setdy := d¥ and assume
thatdg > Ow.l.o.g..

Aggregating Summing up the flow conservation constraints [(4.1)Jagives
f9(4%) - F9(A3) = dg.

Let AT C A%, A5 C Ag be subsets of the arcs in the dictig and A} := AL\ Af. Adding to the
aggregated flow conservation constraint the aggregateatitpgonstraintcz (A7) > f¢(A]) and
the non-negativity constraints fots\ A, results in the valid base inequality:

FOAT) + ca(A]) — FoA7) > dE.
Substituting Let faQ be the slack variable of the (relaxed) capacity Constrﬂ%tg cx,. Substitut-
ing f& for ca, — f& foralla € A; yields
FRUAD) + FRAZ) + e(w(AT) —2(47)) = dF. (4.13)

Note thatf@ (45 ) = cz(Ay) — fQ(A;) > 0.

Scaling andMIR  The 1-MIR inequality for (4.13) is

FUAT) + ex (A7) = fO(A7) +r(dF, o) (x(A]) —2(47)) = T(dg,C)[ﬁl (4.14)

since
?dg,c(l) =1, ng,c(c) = r(dg,c) and ng,c(—c) = —r(dg,c).
The inequalities| (4.14) will be callefiow cut inequalities. They were first introduced by Chopra

etal. t199é] and studied in detall by Atamtiﬂ'k [2002].
Recall that

Q Q Q
Eys0 and r(dc)=c = (£)=0 < r@d? )[%] =d?.

C

r(d?,c) <c = {
Proposition 4.6 The flow cut inequality4.14)is valid for C.SP?.

Proof. This follows by construction and Corollary 3.8. [ |

46



4.2 The cut set for single facility problems

We will distinguish some special cases of flow cut inequesiti

Definition 4.7
e Asimple flow cut inequalityis a flow cut inequality{4.14)with only outflow, that isA; = 0:

dg

FUAT) +r(dS, )z(AT) > r(d, e)[ %]

e Acutinequalityis a simple flow cut inequality witd; = A¥:
Q
(Ad) = [%]

In the following, necessary and sufficient conditions wél firovided for((4.14) being facet-defi-
ning for C'SP1.

Q
Letn@ = (dTS} andr@ := r(dg,c) and remember that'* = (). The following Lemma states
necessary conditions for flow cut inequalities (4.14) todmef-defining.

Necessary conditions A valid inequality for C'SP! is called trivial if it is equivalent to a non-
negativity constraint (4.3) or a capacity constrdint (3d®to a linear combination of flow conserva-
tion constraints (4/1).

Lemma 4.8 Let A C Ak, A C A, Q C K, dg > 0. If (4.14)is a nontrivial facet-defining
inequality forC'SP!, then every of the following statements is true:

) ¢ <candA] # 0.

ii) If (4.14)is a simple flow cut inequality with # A% andQ C K, then|Q| = 1 or d¥ > c.
iii) If (4.14)is a cut inequality, them®@ = =",

iv) If (4.14)is a cut inequality andA¥| > 1, thendg(+ >corAg #0.

Proof. i) If 7@ = ¢, then inequality (4.14) reduces f& (A} ) + cx(AT) — f(A3) > d< which
is the sum offQ(A%) — f2(Ag) > d¥, non-negativity constraints fofig\ A5 and capacity
constraints ford". Hence it is not a facet or trivial.

Else if A] = (), then inequality/(4.14) can be written as
FOAL) = AL + (e = (A7) = v = dg — (% = (e =)

(see Lemma 3.11i)), which is dominated 5% (A%) — f2(A5) > d¥ sincen® > 1 and
c>r9.

i) Supposedg < cand@ = {q1,...,q} with I > 2. Itfollows d¥ < ¢ Vi € {1,..,1}, dg =
r@ =" d% =Yt 7% andn® = % = 1. So (4.14) is the sum of thevalid simple flow
cut inequalities (different from flow conservation congits):

FHCED) + 1 (AT) 2 1%,

They differ if A7 # A&, which is equivalent tol] # 0.
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Cut sets and flow cut inequalities

Q + Q +
iily By definition of i+, d% < dX* and thus[ %57 < [4-7. 1f %3] < [47, thena(Af) >
dK+ ) dQ
[=5—] dominatess (AL) > [==].
iv) SupposdAd| > 2,d9 < candAg = (). ChooseB* C A and setB* := AL\B* # . We
can formulate two valid simple flow cut inequalities:
[EBT) +r%(BY) = r9?  and  f9BY) +r9%(BY) > r9®
Adding them up results iff®(A%) + d2z(A%) > 2d%. Note thatr® = d¢ and® = 1. But
from A3 = 0 follows thatf?(A¢) = d¢ and hence the cut inequality
z(Af) > 1

is the sum of valid inequalities (different from flow consatien constraints). [ |

The cut inequality After stating the necessary conditions for the flow cut iredigjes (4.14) to be
facet-defining foiC'SP!, sufficient conditions will now be provided. Cut inequaiare crucial both
from the theoretical and the computational point of of vid®ecause of that, we handle them here
separately. Moreover, the techniques needed to prove lowviiog result form the basis for each of
the facet theorems of this chapter.

Theorem 4.9 The cut inequality:(A}) > »’" is facet-defining for'SP? if and only ifr" < ¢
and one of the following conditions holds:

) |AL =1
i) Ag #0
i) a5 > ¢
Proof. Necessitysee Lemma 4/8.
Sufficiency:Setn" = (@}. Remember that by Lemra 3111

+ + +
en =dET e KT

Kt
and that-"" < ¢ is equivalent todsT ¢ 7. We will show that the related face

Fpr={(f,z) € CSP1: z(A%) =n""}

is nontrivial i. e., it is not empty and it does not eq@ab”’. Then by contradiction, we will show
that it defines facets (approach 2 for facet pr@lﬁhap 9.2.3)).

Chooseayg € Ag. Now construct a feasible poipt = (f, Z) on the faceFp; the following way:
Setz,, = 77K+ and satisfy the demand for commoditiess K+ by sending a flow o]’ffo = d’g on
ag.

Hencep, fulfils the flow conservation constraints with respectio. It meets the capacity
constraints fomn since

7k e K+ K+ Kt Kt -
Zfao: stzds <dg +c—r" =cnt =cr,.
keK keK+

It remains to route the demands &~ (flow for KV is fixed to zero). IfK~ # () thenAg # 0
(see Section 4.1). Additionally, choose anasc= Ay and install a large integer capacity; = M.
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4.2 The cut set for single facility problems

Do e’ . §+ Satisfy all demand fok: € K~ by sending a flow off¥ = d%. If
Qo > M is large enough, thepy is on the faceFp; since all demands and
< | capacity constraints are satisfied ardi}) = .

cM ‘_dfs( We have shown thaf'p; is not empty. Modifyingpy by setting
Figure 4.4:00 andag are used Fao = 7" + 1 gives a point that is i?.S7 but not on the facé ;.

to route the total flow. Hence # Fpr # C:SP!. Fpy is nontrivial.

We will now prove thatf'p; is inclusion-wise maximal by contra-
diction. Supposép; is not a facet. There is a fade of C.SP! with Fp; ¢ F # CSP!. Let F be
defined by

BTz +~"f =m, (4.15)

whereg, v are vectors of appropriate dimension and R.

We will show that [(4.15) is a multiple af (A%) = »"" up to a linear combination of flow
conservation constraints contradictifg; C F.

Since multiples of th¢K| flow conservation constraints may be added to (4.15) witbbahging
the induced facey? = 0 Vk € K can be assumed. Note that so far we have not used any of the
conditionsi), i), ii7). However, we now distinguish several cases.

If |Af| = 1 andAg = 0 we have finished because (4.15) reduces,tar,, = Ba,n" "

Assume thatdg # (. We can modify the poinp, by settingz,, = M + 1. This gives a new
point on the face and sineg was arbitrary

Ba=0Va € Aj.

Modifying pg by simultaneously increasing flow ap andag by a small amount for every commodity
k € K respectively changes neither a flow conservation nor a @guamstraint and hence

Vh=0VkeK,ac Aj.

The proof is complete fofA{| = 1 and Ay # 0 becausel (4.15) again reducesfgz,, =
Baon™ . We can assume that | > 1 in the following.

Choose: € Ag different fromag and construct a point from p, by settingz,,, = n " —1and
%, = 1. The maximum amount of flow that can be routedagris nowc(n*" — 1) = d&" — K7,
Note thaty " > 1 anddk ™ > rK".

It depends o " how to reroute the flow. Assume firstth#f ~ < c. Itfollows thatdX " = /"
and the capacity ong equals zero. We simply copy the flow frowg to a. Hencep is defined agp
but for arca instead ofa.

If d§" > cthends" > 5" and (" —1) > 1. We [PT G K
construct the poinp the following way. There is still capacity| ao cp” —1) —> > "
ona. Reroute a total flow of exactly " such that the flow is K
positive on both arcs, anda for every positive commaodity. We| a & —
have to change the flow of every positive commodity. (- B

In both cases the capacity aris not saturated and the new cM ~ dé(

point p is on the faceFp; because we did not change the tot@igure 45 4 is used to reroute the
capacity onA;C. Flow conservation and capacity constraints afigyy.
still satisfied.
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Cut sets and flow cut inequalities

The proof is complete if we can show that
VE=0VkeK,ae A}

because plugging in the points, p into (4.15) gives3,,n" " = m andfB,, (X" —1) + 3, = =. It
then follows that
Bay = Pa Ya € A;

sincea was arbitrary. Hencé (4.15) reducesiga (A}) = Bayn™ .
First suppose that g # (). We can modifyp by increasing flow o andag. This results in

Vh=0VkeK,aec A}

Finally assume thatly = 0 anddg(+ > c. Inthis caseK = KT (see Section 4/1). We can
modify p by decreasing flow fok € K onag and increasing it on. This gives

VW=0Vke KT =K,a € A{.

The last perturbation of the flow fgr was only possible becaua%( " > ¢ and we could construct
the pointp as mentioned.

We have shown that (4.15) is a multiple ;ﬁ(AJSF) > nK+ plus a linear combination of flow
conservation constraints. Thus and F'p; induce the same face which contradidts; C F. It
follows that Fp; is inclusion-wise maximal and together with# Fp; # CSP! it defines a facet of
CSP!. The proof is complete. [ |

General flow cut inequalities It has to be mentioned that Atath@OOZ, Theorem 2] isaoot
rect. It says that in the single-commodity case the flow cagumlity (4.14) is facet-defining for
CSPLif and only if r(dg,c) < c and Al # (. From Lemma 4.8 i) a counter-example can be
constructed. In the proof bf Atamtillri( [2d02, Theorem 2] anp@s considered similar tgp and it

is implicitly assumed that there is still capacity ap after deleting one unit. This is only true if
dE" > ¢. The last proof gives an idea of how to fix this. We state a mediifiersion o& Atamtirk
2002, Theorem 2].

Theorem 4.10 (fAtathrIJ ¢2002]) Let|K| =1, Q@ = K. The flow cut inequality4.14)is facet-de-
fining for C.SP! if and only ifr(dg,c) <e¢, A7 # 0 and one of the following conditions holds:

i) (4.14)is a cut inequality andA§| = 1
ii) (4.14)is a cut inequality|Af| > 1and Ay # 0
iii) (4.14)is a cut inequality]A%| > 1 andd¥ > ¢
iv) (4.14)is not a cut inequality = A] # 0 or A, # ().
Equality (4.1) and inequalitieg4.10), (4.3) and (4.14)completely describé'SP!.

The last sentence of this theorem is a crucial result in therthof strong valid inequalities for
network design polyhedra. When dropping the integer caimsr for design variables it suffices to
add all flow cut inequalities to the initial formulation givéy (4.1), [(4.10) and (4.3) to maintain a
complete description af’S”! in the single-commodity, single-facility case.
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4.2 The cut set for single facility problems

Example 4.5 (continued) All nontrivial facet-defining inequalities of

CSDI:COHV{ZU€Z4,f€R4|f1+f2—f3_f4:7
0 < f; <3 Vie{1,2,3,4}}

are the following flow cut inequalities:

fotx, =3

fot+2z3— fs+x >3
fot+2zy— fy+2 23
fot2w3+20y — f3— fy+x, 23
fi+tzy>3

Ji+2e3— fs+a,2>3

(A7 ={1}, A; =0) simple flow cut inequality
(
(
(
(
( —
Ji+2zy— fy+a9>3 (Af ={2}, 4; =
( —
(
(
(
(

Al = {1}, 4, = {3})

AT = {1}, 47 = {4})

AT = {1}, Ay ={3,4})

AT =1{2}, A; =0) simple flow cut inequality

3})

4})
3,4})

AT =1{1,2}, A; =0) cutinequality

AT ={1,2}, 4; ={3})

AT ={1,2}, 4y = {4})

AT ={1,2}, 4; ={3,4})

Ji+203+20y — f3— fy+xy23
T+ 29 >3

2w3 — fy3+ a1+ 29 >3

20y — fy+xy+29 >3

2e3 4+ 22y — fa— fr+ a1 +29 >3
The following theorem generalises Theorem 4.10 to the rooltnmodity case.

Theorem 4.11 dAtathrk ﬁZOOZ]) Let@Q C K. The flow cut inequality4.14)is facet-defining for
CSPLif AT, AT, Ay, Ay #0,r(d%,¢) < c.

Atamtirk mZ] only states the theorem without provindrit Section 4.2.22 we prove a similar
result (Theorem 4.23) for cut sets with undirected suppipbs. Many of the ideas developed there
to handle the multi-commodity case can be used to prove thdtrabove based on the proof of
Atathrﬂ( m Theorem 2] and the proof of Theorem 4.9.

Remark 4.12 The condition) C K indicates that it is promising to aggregate positive comimod
ties only. This is the only case investigate(ﬁ by At‘a% 2002]. Due to the symmetry of the cut sets
of S andV'\ S, there is an analogue to Theorem 4.11 widgre K —.

However, note that there is no reason to drop the case@hebntains both positive and negative
commodities. In fact, it is an open question if the flow cugiradities (4.14) are strong in that case.
Switching between the cut set férand the cut set foi"\ S is equivalent to multiplying every flow
conservation constraint by-1. A positive commaodity with respect &is a negative commodity
with respect toV'\S. In the following we show that the flow cut inequal{@.14) with dg <0
induces the same face as the flow cut inequality obtained sftiéching toV'\\S and considering
the same commodity subs@t Suppose tharffg2 < 0 and assume tha’t(dg,c) < c. It follows that
(ﬁ} = —L@j and in Lemma 3.11 we showed thétl?, ¢) = ¢ — r(|d%], ¢).

Setr := r(|d§|, ¢). We can writg4.14)as:

FOAT) +ca(Ay) = fOAL) + (e =) (2(A]) — 2(47))

S A -4 P - NP 5 Y 1 R
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Q
Usingd@} = |dg| + ¢ —r (see Lemma 3.11) and adding the flow conservation constraiﬁt:

9] = fQ(A3) — fR(AS) gives
ALY + cx(Af) — FUAT) +r(w(43) — w(A])) > r[lEE],

which is inequality(4.14)but for the cut set oF’\ S. Hence both inequalities induce the same face of
CcsPI,

Since the cut set of andV'\\S are identical, this leads to the following corollary of Them
4.11:

Corollary 4.13 Let@Q~ C K~. The flow cut inequality
o _ Q™
O (Ay) + ea(A]) = FO(AD) +r(a(4y) — 2 (4])) = [, (4.16)
wherer := r(|d¢ |, ¢), is facet-defining fo'SPT if Af, AT, A7, A7 # 0 andr(|d¢ |,¢) < c.

Summary In this section we have considered the cut set with DIrectgghcity constraints in the
single-facility case, as investigated‘in Atamtu‘rk [2002)Ve have stated necessary and sufficient
conditions for a large class of cut set inequalities called ftut inequalities to be facet-defining for
CSP!. In the single-commodity, single-facility case those ngifies suffice to completely describe
the cut set. Facet-defining for the relaxatios”! with respect toS are facet-defining folv D PP!
if both G[S] andG[V'\S] are strongly connected as already shown in Theorem 4.4.

In the remainder of this chapter similar results for the @is €S2’ andC'SY" for undirected
supply graphs will be proven.

4.2.2 Bldirected and UNdirected capacity constraints

Given a node se§ C V of the undirected supply grapii = (V, E) and a single-facility we will
consider the cuEs := §(S) # () and the cut set€’SP! andC'SV¥ in this section.

After stating the necessary definitions, we will transfohm tesults of the last section to undi-
rected supply graphs.

A class of flow cut inequalities analogous to (4.14) will beaduced, generalising inequalities of
‘Maqnanti & Mirchandaﬁi‘ [19@3] and Bienstock & GUnIMQWe will give conditions for those
flow cut inequalities to be facet-defining frS?! andC SVN.

It turns out that these conditions depend on the capacityemtbreover, the introduced flow cut
inequalities do not suffice to completely describe the Bictied and UNdirected cut sets in the single-

commodity, single-facility case which is reflected by a néass of facet-defining cut set inequalities
that has no analogue f6rS””.

4.2.2.1 Cutsetinequalities and necessary conditions

Now we will develop strong valid inequalities fa¥S?! andC'S?!, transforming results of the last
section. To obtain a similar inequality to (4/14), we simapply the sam&lIR procedure.
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4.2 The cut set for single facility problems

\/

2AALD!

Figure 4.6: Undirected cuf's with selected edge sels and F; and demand directions

Given a subsef) of K let

FUED =D MEY) and fO(Ey) =) fH(Ey).

keQ ke@

Q
Setd? = Yo dh 79 =[] and rQ := r(d¥, ). If |K| = 1, we setdg := d¥ and assume
thatdg > O w. 1. 0.g., since the cut sets sfandV'\ S are identical.
Aggregating Summing up the flow conservation constraints@oresults in

fRUEE) - OBy = df.

Let E4, By be two subsets of the cufs and E; := Es\F;. Adding to the aggregated flow
conservation constraint the aggregated (Bldirected) agpeonstraintcz (E;) > fQ(E;") and the
non-negativity constraints fat's\ E» gives the base inequality

FRED) + ca(By) — fO(Ey) > dY

valid for C:SP! andC'SYN. Note that Bldirected capacity constraints are valid@esV V.

Substituting Let fﬁ be the slack variable of the (relaxed Bldirected) capaccityslraintfﬁ < cz,.
Substitutingfjcf for cz, — fﬁ forall e =ij € Ey gives

FUED) + [OEy) + c(a(Br) — 2(By)) > dS. (4.17)

Note thatf@(E; ) = cz(By) — fR(E;) > 0.
Scaling andMIR  Apply MIR (Corollary[3.8). Thet-MIR inequality for (4.17) is

FUBT) + ca(Ba) — f9UEy) +r(dS, c) (x(Br) — 2(By)) > r(dg, SIEA] (4.18)

C

The inequalities (4.18) will be calleftow cut inequalities for C'SB! andC SV and can be seen as
the undirected analogue to (4.14). They are presented ménesigeneral form for the first time.

In contrast to inequality (4.14), bofh, and E; are chosen from the same set. Hehge) Ey # ()
is possible. Itis going to be investigated how to chofseand E- such that/(4.18) is strong.
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Proposition 4.14 The flow cut inequality4.18)is valid for CSYY and C S5/,
Proof. This follows by construction and from Lemma 4.2 and Corgliau8. [ |

Definition 4.15 As for the Dlirected capacity model we call flow cut inequaditimpleif there is no
inflow, Ey = 0:
FR(B) +r9z(Br) > r9n9

A cut inequalityis a simple flow cut inequality with'; = FE:
z(Es) > 1®

The demanahlé2 might be negative fo€S?! but with the same arguments as in Remark 4.12 we
can assume tha@ > 0w.l.o.g., because iﬂg < 0 we can switch to the cut sets Bf\ S and get

FUEY) + ca(Ba) — fUES) +r(—dg, c) (x(Br) — (By)) > r(—dZ,c) == (@19

c
as a valid inequality fo€ S?!. Note again thaﬂg\s = —d9.
Example 4.16 Similar to Example 4.5 we define cut sets with two edgess 7 andc = 3:

CSBI — conv{z € Z?, f e R*| fi+ f, —fs— =T,
0 éfz <3z Vi € {173}7
0 <f; <3y Vie {2,4}}

CSUN =conv{z € Z* f eRY | i+ fo—fs— f1 =T,
f1+ f3 S 3$1,

Jot f4 < 3z,
0 <f Vie{l,..4}}

Note thatf;, f, are the forward flows on the first and second edge respectiwbiye f; and f, are
the corresponding backward flows. With # () we can formulate the following flow cut inequalities
which are valid forC'S?! andC.SUY:

fo+axy >3 (Ey={1}, E; =0) simple flow cutinequality (4.20a)

fo+22 — fs+2, 23 (BEr={1}, B2 ={1}) (4.20b)
fot+2xy— fy+2 23 (B1={1}, B2 ={2}) (4.20c)

fot 2w + 239 — fos— fu+21 23 (B1={1}, By ={1,2}) (4.20d)
fi+xzy>3 (Ey={2}, E; =0) simple flow cutinequality (4.20e)

fi+2x = fy+a, >3 (B1={2}, B2 ={1}) (4.20f)

fi+2xy = fy+xy >3 (B1={2}, B2 =1{2}) (4.209)
fi+2z,+2x9— fs— fi+x9 >3 (B1={2}, B2 =1{1,2}) (4.20h)
xy+1xy>3 (Ey={1,2}, E; =0) cutinequality (4.20i)

20, — fs+x; +2, >3 (E1={1,2}, By ={1}) (4.20))
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20y — fy+xy +29 >3 (Ey ={1,2}, By ={2}) (4.20K)
200+ 2y — fy— fut @ +rp >3 (Br={1,2}, B2 ={1,2}) (4.201)

These are the inequalities from Example| 4.5 butvas replaced by, andx, by z,. Now some of
these inequalities are weak or trivial. For instan@e20b)can be written ag, + 3z, — f; > 3 which
is the sum off, + f, — f3 — f, > 7, capacity- and non-negativity constraints. The same ie far

(4.20g)and (4.201)

Necessary Conditions The following Lemma provides necessary conditions for flewvinequali-
ties to be facet-defining. A crucial observation in this ests, that for Bldirected problems it has
to be E1\ E> # 0 and for UNdirected problemE; N E; = 0 is needed additionally.

A valid inequality forC'SB! (resp.CSUY) is called trivial if it is equivalent to a non-negativity
constraint[(4.7) or a capacity constraint (4.11) (resp.13}).up to a linear combination of flow
conservation constraints (4.4).

Lemma 4.17 LetFE,Es C Eg,Q C K, dg > 0. If (4.18)is a nontrivial facet-defining inequality
for CSB! or CSYN, then every of the following statements is true:

) r¢ < cand B\ Fsy # 0.

i) If (4.18)is a simple flow cut inequality with'; # Es and@Q C K™, then|Q| = 1 or dg > c.
iii) If (4.18)is a cut inequality, them@ = %"

iv) If (4.18)is facet-defining for’ SUY, thenE; N Ey = (.

Proof. i) If 7@ = ¢, then inequalityi (4.18) reduces f& (E; ) + ca(E1) — fQ(Ey ) > d which
is the sum off?(EY) — fQ(Eg) = d¥, non-negativity constraints fdEg \ E; and capacity
constraints forZ;". Hence it either trivial or does not define a facet.

Assume that®? < c andE;\E> = (. It follows E; C E». Inequality (4.18) can be written as
FOUED) + ca(Br) = [O(Ey) + (¢ = rP)a(E2\Er) > r9? = dg — (% = 1)(c —r9)
(see Lemma 3.111)), which is dominated by
FUES) - fOUE;) = dd

sincen® > 1 ande > r9. Note thatex (Ey) > fQ(E]) and(c — r9)z(Ex\Ey) > 0.
i) see Lemma 4.8
iii) see Lemma 4.8
iv) If By N Ey # (0, inequality (4.18) can be written as

FRET) + cx(B2\Er) + cx(By N Ba) — (B, \E;) — f9(E; NEy)

4 r(d2, ¢) (2(By\Ey) — 2(B\EY) > r(d%, ¢)[%2].
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But formulating the flow cut inequality (4.18) with} := F1\ E» andEj := E,\ Fy, implying
E} = E1 U (E1 N Ey), results in:

FUE) + FET N ES) + ca(By\Er) — f2(Ey \EY)

T 1(dS. ) (2 (B \Ba) — 2(Ba\Ey)) = r(d, )21,

C

Sincecz(Ey N Ey) — fO(E N ES) — f9(E; N Ey) > 0is valid for CSUYN, (4.18) with
Ey N E5 # () is the sum of valid inequalities (different from flow consatien constraints). ll

Remark 4.18 General flow cut inequalities of typd.18) ((4.19) can be facet-defining if) is a
subset ofK T (K ™), as we will see. FoC'S?! we will not consider the more general case, that
() contains both positive and negative commodities. Thereoiseason to drop that case when
separating flow cut inequalities. It is unknown if they amoist) or even facet-defining whep
contains positive and negative commodities.

Bienstock & @inlik 1996| restrict themselves @ C K+ and do not consider the more general
caseR C K neither, just a [2002] (see Theorem 4.11).
Remember that fof' SV we assumé(~ = ().

A new class of cut set inequalities It follows from TheorenWrZ]) that a corad
linear description of>'S”! can be derived by adding all flow cut inequalities of type 43.tb the
initial formulation when| K| = 1. This is not true folC'S?! (C'SYY) and the flow cut inequalities of
type (4.18)

Example 4.16 (continued) When adding all flow cut inequalitie@.20a). . .,(4.20I) to the LP-
relaxations ofC'SP! and CSUY, both resulting polyhedra still have the two fractional tiees
(3,42,1,0,1,3)and (42,1,0,1, 2, 1). But we can formulate two valid cut set inequalities cutting
off these points, namely:

3ry +2zy+ f3—f1 =22

and
3x2+2x1+f4—f2 22

The surprising result now is, that these two inequalitiegtber with all flow cut inequalities describe
all non-trivial facets ofC'SB! andC'SUY, which yields a complete description of both polyhedra.

The inequalities given in the last example belong to a newscta valid cut set inequalities
introduced by the following theorem.

Theorem 4.19 Let E; be a subset of the cufs and let() be a subset of the commoditi&swith
dg > 0. Setr? := r(dg, c). The following inequality is valid fo€ S?! and C.SV*:

cx(Er) + (c = r9)z(By) + fOED) — fOUBT) > ¢ — 9. (4.21)

Proof. If r¢ = ¢ then inequality/(4.21) reduces ta (E;) — f9(E;) + f9(E;) > 0, which is valid
because of the capacity constraint £, ) > f@(E;"). We can suppose tha¥ < c.
First assume that(F;) = 0. All flow has to be routed through, . It follows that

FOUET) - fOED) = d? and w(E) > [,
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Hence
cx(By) — (fOE) — fED) 2 e[ —dg=dg+c— 19 —dg=c— 12 (see Lemma 3.3
On the other hand if (E;) > 1 then fromez (Ey) — fQ(E]) + f9(E;) > 0 we conclude that
cx(By) + (c — )z (Ey) + fO(Ey) — fOUES) > ¢ —rC. u
Note that ifdfg2 < 0 we get
cx(EBr) + (c —r)z(Er) + fRES) — fYEy) >c—r, (4.22)

with r = r(|d?|, ¢), as a valid inequality fo€'S?’ andC'SUN. This again follows after multiplying
all flow conservation constraints by1.

To be able to easily generalise the inequality (4.21) to théti+facility case, it is of interest to
express it as MIR inequality. A base inequality and some positive inteédras to be found, such
that (4.21) reduces to the correspondWlR inequality.

Unfortunately, it turns out to be difficult to find such a baseduality and\. The author conjec-
tures that they simply do not exist.

A necessary condition for cut inequalities Finally, consider the two cut inequalities, that we get
from (4.18) and((4.19):

a5t

z(Es) > [=-1,

Thus
z(Es) > max([%-1, 14 1)) (4.23)

is valid for C B! andC SUN,

We will see that/(4.23) can be facet-defining. In Lemima 4.8aswhown that the cut inequality
for CSP7 is not facet-defining whed? < ¢, |A%| > 1 andAg = 0. There is a similar result for the
undirected counterpart (4.23). But the key to prove it aeertbw cut set inequalitiels (4.21):

Lemma 4.20 If the cut inequality(4.23)is facet-defining fo' S?! (or CSYV) and |Es| > 1, then
max(ngr, |d5")) > c.

Proof. Assumeds " > [d5 | w.].0.g.. The casdX ™ = ¢ was discussed in Lemma 4.17. Suppose
d5" < ¢. Henced5X" = r%" andn®" = 1. ChooseE; C Es such thatEy, E; # (). Then with
Theorem 4.19

ca(Br) + (c — " Ya(Er) + fO(E) — fOEF) > ¢ —rKT

and

cx(Er) + (c — 5 )z (Br) + fO(BT) — fOEf) > ¢ —rKT
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are both valid inequalities fofS?! (and CSUYN) different from the flow conservation constraint
(4.1). Adding them up gives

(2¢ = 5 )a(Bs) + f2UBg) - [O(EE) > 2¢ - 20"
<~
(2c = 1" )a(Bg) = df" > 2e — 20T = 2(Bg) > 1=y

Hencel(4.23) is a sum of non-trivial valid inequalities whHéR| > 1 andd?+ <ec. [ |

Summary We have developed strong valid cut set inequalities for thesetsC S?! and C.SUN .
By applying the sam#IR procedure we have been able to state a class of flow cut ingq(4all8)
analogous to (4.14) fo€SP!, introduced b\i' Chopra et a‘. [1998]. We have specified necgss
conditions for them to be facet-defining and have shown thabntrast to Theorem 4.10 they do not
suffice to completely describe the cut sets in the singlersodity, single-facility case.

A complete description may be obtained by additionally ateréng a new class of valid cut set
inequalities((4.21).

4.2.2.2 Cutsetinequalities and sufficient conditions

In this section sufficient conditions for cut set inequaktiof type (4.18) and of type (4.21) to be
facet-defining will be provided.

We will mainly concentrate on the cut S€152/ but all of the results in this section also hold for
CSYN with K~ = () and some additional assumptions. The results will be foated! forC' S?/,
we will prove them and will then discuss which modificatiores/é to be carried out to make the
statements true fag'SY".

The cut inequality Cut inequalities foiC'S?! were studied by Bienstock & Guinliik [1996]. Con-
sidering two facilities, they state a result quite similauthie following one. Some parts of the proof
are from their article. Moreover, it is similar to the the pf@f Theorem 4.9. Even so, the proof is
stated here to show the difference between facet-proofaf@ets based on undirected supply graphs
and those based on directed supply graphs.

Theorem 4.21 The cut inequality4.23)is facet-defining for’ S5 if and only ifr " < ¢ and one
of the following conditions holds

i) max(d¥",|dE ) > ¢
i) [Eg| =1
Proof. Necessitysee Lemma 4.17 and Lemma 4.20.
Sufficiency:We assumes > |d5 | w.l.0.g.. Set)X" := (@}. Remember that
enf T = d§(+ +e—r5" (Lemmd3.11)

It has to be proven that(Eg) > " defines a facet of'SB!. To do so, we will show that the
related face
Fpr={(f,z) € CS"": 2(Bs) =n""}
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4.2 The cut set for single facility problems

is nontrivial. Then by contradiction, we will show that itfilees a facet. Considef = uv € Fg. T

construct a poinpy = (f,7) € R‘fS' X Zi‘ESHKI on the faceF'z; define:
_ + z 7
Tey =1 Fuv=ds, fru=0 VkeK",
fay=0, fh,=0VkeK fa=0, fh,=dsVke K~
Po- K and fix the rest of the variables to zero. This means that we aién
cn —» g

€0

> flow for K™ onwwv and all flow for K~ onwvu after installing sufficient
<_d§ capacity oney. The pointp, fulfils the flow conservation constraints
for everyk € K since every demand is satisfied. It meets the capacity
constraints folC'S?! because

= + + + + _
fovz Zd@zd? <df te—rE =i = CT,,
keK keK+

Figure 4.7: All flow is routed
Ooneyg.

and|d¥ ™| < d5" < 97, Sincez(Eg) = 7%, the pointpy is on the faceFz;. Modifying po by
settingz,, = 7™ +1 gives a point that is i6’S”! but not on the fac&s;. Hence # Figy # CSP1.

It remains to show thaf'z; is inclusion-wise maximal. This will be done by contradicti
Suppose there is a fadéof C'SB! with Fg; C F. Let F be defined by

Bx+~y"f=mn (4.24)

where3, v are vectors of appropriate dimension andg R. We will show that|(4.24) is a multiple
of z(Es) = %" up to a linear combination of flow conservation constraimthjch contradicts
Fpr C F.

Since multiples of théK| flow conservation constraints may be added to (4.24) withbahging
the induced facey®, = 0 for all k € K with respect to the edge, = uv can be assumed.

Now, since capacity ong is not saturatedd@ "< en +), we can modifypy by simultaneously
increasing flow fork € K onwuv andvu by a small amount. This can be done for every commodity
k € K without violating neither a flow conservation constraint a@apacity constraint, so the points
modified this way are still on the fadés;. We can conclude that®, = 0 for all k € K.

Now we have to use the conditions of the theorem|El§| = 1 we are finished. If otherwise
|Eg| > 2 anddlg+ > ¢, we choose: = ij € Fg different fromey. Next we construct a new poipt
from po by settingz,,, = 7" — 1 andz, = 1.

The maximum amount of flow that can be routedegmow isc(n”" — 1) = d&" — 5. Note
that fromd% ™ > ¢ follows d% * > %" andp®" — 1 > 1.

We reroute a total flow of X" such that

fELfE>0 and fh,fE=0vke KT,

uv? vur J ji

s f1:=0 and fr. f;>0Vke K™

uvr Jij v

and the capacity on is not saturated. This is possible becad§e > r" andrX" < ¢. (For
a detailed description of such a rerouting see Definitionlaamdma B.1). The poinp is on the face
because we did not change the total capacityzgrand all demands as well as capacity constraints
are still satisfied.
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g K First we modify this new poinp by decreasing flow for

e < > k € K* onwuwv and increasing flow onj. The same can be
«—di — 0" ] done onvu andji for k € K~. When having decreased flow

onuv for k € K*, we can increase it fok € K° on uv

p: o andji. It follows that; = 0 forall k € K+ andy}; = 0
e & .7 forall k ¢ K~ U K% Next we modifyp by simultaneously
«— o8 increasing flow onij and ji, which results im}; = 0 for all

ke KT andfyfj = 0forall k € K~ U K° Now plugging in
the two constructed poings andp into (4.24) we get

ﬁeOnK+ =7 and ﬁeo(nK+ — 1)+ B = .

Figure 4.8:¢ is used to reroute the flow.
(5 <K

Hencef,, = (.. Sincee is arbitrary, we can conclude that= 0 andg, = j, forall e € Es.

We have shown that (4.24) is a multiple ofEs) > 75" plus a linear combination of flow
conservation constraints. It follows thAtand F'z; induce the same face, which is a contradiction.
Hence Fig; is inclusion-wise maximal and together with# Fg; # CSB! it defines a facet of
CSBI, [ |

Corollary 4.22 The cut inequality
dE*
z(Bs) > [ =n""
is facet-defining for” SUY if and only ifr5" < ¢ and one of the following conditions holds
i) d" > ¢
i)y |Es|=1.

Proof. Theorem 4.21 holds faf'SY" with K~ = (. If a feasible point folC'S?! additionally meets
the UNdirected capacity constraints, it is feasible@sV " .

The pointpg in the proof fulfils the UNdirected capacity constraints dugse there is no flow on
vu. The same is true for the poipt there is no flow onyi. In the remainder of the proof we perturb
flow by small epsilons which does not affect the validity|ofi(2). [ |

General flow cut inequalities We have shown under which conditions cut inequalities acetfa
defining forC'SB! and will now state sufficient conditions for general flow cutgualities of type
(4.18) to be facet-defining far’S?!. The key to the proof of Theorem 4.21 was the construction of
the pointp by rerouting, such that the total flow on edggedoes not exceed a value .ﬁ(an+ —1).
Similar constructions will be used in the proofs of all théidaing facet theorems. A formalisation
of such constructions can be found in Definition and Lemma Bifice the skeleton of those proofs
is identical to the proof of Theorem 4,21 and because theyuaite technical in the details, it was
decided to put them to Appendix B.

Bienstock & GUnIUk‘[leG] investigate simple flow cut ingdjities (> = ) of the form (4.18)
for the polyhedronN DPB! with two facilities. They show under which conditioris (4) A8ith
E, = 0 is facet-defining. The following two theorems together witheorem 4.4 can be seen as
a generalisation of their work and resul{s. Bienstock & [Bk'uﬂl%é] state two more classes of
flow cut inequalities in their article, both handling the edlse demand being fractional, which is not
considered here.
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Theorem 4.23 LetEy, E; C EgandQt C KT. Assume®’ < ¢. SettingQ = Q, the flow cut
inequality (4.18)

FOED) + cu(By) — f97 (By) + 19" (2(By) — 2(E2)) > r9 2"
is facet-defining fo' SP! if E1\Fy # () and E1\ E» # () and one of the following conditions holds:
) E;=0and|QT| =1
i) By =10 anddg2+ > c
iy By #£0
Proof. see Appendix B.1 [ |
Corollary 4.24 The flow cut inequality
FEUED) +ea(By) — 1 (By) + 19 (e(Br) —a(B) 2 997

with Q* C KT is facet-defining foC'SUY if E1\E, # () and E1\ E> # () and one of the following
conditions holds:

i) Ba=0and|QT| =1
i) By =0andd? > c
III) EQ#@andElﬂEQ =0

Proof. If K~ = (), then from the points constructed in the proof of Thedren3 42y those defined
with edges in&; N E> do not meet the UNdirected capacity constraints (4.12)aReé@t £y N Ey = ()
is a necessary condition for flow cut inequalities of typel@}.to be facet-defining fo€ SV, see
Lemmd 4.17. [ |

The following theorem is an extension to Theorem 4.23. WQer- K and déﬁ > |d5 |
there are more facet-defining flow cut inequalities of typ&&% We can additionally handle the case
El\EQ = @

Theorem 4.25 Let By, B>, C Eg. Assumel;\E, # 0 and E;\E; = 0, 7" < ¢ and d§+ >
|dE ™ |. Setting@ = K the flow cut inequality4.18)

PUES) + ca(By) = £ (By) + i (@(Br) —w(Bp)) = vyt
is facet-defining for>'SP! if one of the following conditions holds:
i) BEiNEy=0andEy # 0
i) BEyNEy#Pand K- UK =0
i) By1NEy#0andK® =0andds’ > |d5 |andds" > ¢

Proof. see Appendix B.2. The main difference to the proof of the Teen4.23 is the construction
of the starting point..,. There is no edge, = @ in E;\E, to route the flow fork —. This flow is
routed onvu instead, which is possible sindé+ > a5 [ ]
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It might be possible to construct a proof for the last theovéthout the restrictiong<® = () and
d5" > cinfii)andii)
Corollary 4.26 LetFE,, Ey C Eg. AssumeX " < ¢. The flow cut inequality
PEUED) + en(By) = 117 (By) + " (@(By) - o(B2) = o
is facet-defining fo’' SUN if By, B, # ) andE, = E.

Proof. This is Theorem 4.25 with the additional assumptiéns = () and E; N E5 = (. The point

ue, is feasible forC SUN with K~ = () (see Definition and Lemmia B.1). To ensure that the rest
of the constructed points fulfil the UNdirected capacity stomints [(4.12) we additionally need that
EiNEy=10. [ |

At least in the single-commodity, single-facility case, ave now all sufficient and necessary
conditions for flow cut inequalities of type (4.18) to be fadefining.

Theorem 4.27 In the single-commodity case, thatjis*| = 1, K~ U K" = § anddg = dfg“, the
flow cut inequality(4.18)

FET) + ca(B) — f(By) +r(dg, ¢) (¢(Er) — 2(B2)) > r(dg, ¢)[ %]

is facet-defining fo€SP! if and only ifr(dg, ¢) < ¢, B\ E2 # () and one of the following conditions
holds:

) By =0andE; # 0
i) B2 =0andE; =0anddg > ¢
III) Ey = 0 andE1 = and|E5| =1

V) Ey # 0
Proof. This follows from Lemma 4.17, Lemma 4.20, Theorem 4.21, Teen4.23 and Theorem
4.25. [ |

Corollary 4.28 In the single-commodity case, the flow cut inequality
J(ED) + ca(By) = [(By) + r(ds. ) (¢(Er) - 2(E)) 2 r(ds,c)[%E]

is facet-defining foC'SUY if and only ifr(dg,c) < ¢, E1 # () and one of the following conditions
holds:

) Eo=0andE; # 0

iy Ey =0andE; =0anddg > ¢
iii) E,=0andE; =0 and|Eg| =1
iV) Eo A(0andEy N Ey # 0

Proof. This follows from Lemma 4.17, Lemma 4.20 Corollary 4.22, @lary 4.24 and Corollary
4.26. |

Example 4.16 (continued) The inequalitieg4.20a) (4.20c) (4.20e) (4.20f) and ( 4.20i) are facet-
defining forC'SP’ andC SV . Inequalities(4.20j) and (4.20k) define facets of'S?! only, because
EyNEy # 0.
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A new class of cut set inequalities Until now we have only considered flow cut inequalities. la th
following we will state a facet proof for the cut set ineqtiak of type [(4.21). Examples show that
they are often weak whe@ is a proper subset df (or K ). ButforQ = K" anddfg(+ > \dfg(_]
it can be proven that they are facet-defining.

Remember that the cut set inequalities of type (4.21) havanatogue forC'SP!. They reflect
the special structure of Bldirected and UNdirected cut Gtkeast in the single-facility case).

Theorem 4.29 Letd5" > |45 |. The cut set inequalitg#.21)with Q = K+
cx(Fy) + (c — T’K+)$(E1) + fK+(E1_) — fK+(Ef) >c— KT
defines a nontrivial facet af'$5! if and only ifrX " < ¢ and one of the following conditions holds:
) E1, By #10
i) By =0anddf" <cand|Es| =1

i)y £y =0and @& > cor|Es|=1)

Proof. Necessitylf K" = ¢ then inequality (4.21) reduces to
ca(Ey) — (< (B]) = 17 (BD) 2 0,

which is the sum of capacity constraints and non-negatogtystraints, thus it is trivial or not a facet.
AssumerX™ < ¢ in the sequel.

SupposeE; = (). Inequality (4.21) reduces to(Es) > 1, which is dominated by the cut
inequalityz (Es) > n™" if d5" > c.

If on the other han(zilé(+ < cand|Eg| > 1, thenz(Es) > 1is the sum of two valid inequalities
(see Lemma 4.20).

Now suppose thalb; = (). We can write[(4.21) as

cx(Eg) —i—fK+(E§) - fKJr(E;) >c—rf = cx(Eg) > d§(+ fo—rET = epft

the cut inequality( (4.23) again, which is the sum of validgunalities Whernlfg(+ < cand|Eg| > 1
(see Lemma 4.20).
Sufficiency:If (E; = () and d§+ < c¢), then [(4.21) reduces to the cut inequality (4.23) which is
facet-defining folC SB1 if |Eg| = 1.

The same happens whén = (), (4.21) reduces to the cut inequality (4.23), which is feobefi-
ning if |Es| = 1 ord5 " > ¢ (see Theorem 4.21).

For the rest of the proof, which can be found in Appendix B.8,agsume tha,, £y # (. W

Corollary 4.30 The cut set inequalit{4.21)

cx(Ey) + (e = v )a(By) + X7 (BD) = f () 2 0= KT
defines a nontrivial facet af'SUY if and only ifr" < ¢ and one of the following conditions holds:

) B, Ey #0
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i) By =0anddf" <cand|Es| =1
iy £y =0and @& > cor|Es|=1)

Proof. Again with K~ = () all constructed points in the proof of Theorem 4.29 fulfil thddirected
capacity constraints. [ ]

Example 4.16 (continued)

and
3ry+ 22+ fy — 222

are facet-defining inequalities far'S?! and C.SYY of the form(4.21) Together with all flow cut
inequalities they describe all nontrivial facets of botHyt®dra in this example (and many others).
It can be presumed, that cut set inequalities of t{fé&8)and (4.21) (together with all trivial facets)
suffice to give a complete description@s?! and CSU¥ in the single-commaodity case, analogous
to Theorem 4.10 (Atariatk @]).

For completeness all nontrivial facet-defining inequaktofC S2!, C'SUN are stated here again:
Flow cut inequalities of typé4.18)

fotax >3 (Ey = {1}, E, =0) simple flow cut inequality
fo+2my— fy+x 23 (Er={1}, By ={2})
fi+txy>3 (Ey = {2}, E, =0) simple flow cut inequality
fi+2z, — fs+a,2>3 (B ={2}, B> ={1})
Ty +x9 >3 (Ey ={1,2}, E, =0) cutinequality
31, — fy+xy >3 (B ={1,2}, B, ={1}) facetonly ofC'S?!
3zy— fi+x, >3 (B, ={1,2}, E; ={2}) facetonly ofCS?!

Flow cut inequalities of typ¢4.21)
3xy+ 229+ f3— f1 > 2 (Er= {1}, E1 ={2})
3ty 420+ fu— fo>2  (Er={2}, B1={1})

Summary In Section 4.2 the facial structure of the cut set§”!, C'SB! and CSYYN has been
investigated. We started withiS”’, summarised and even supplemented results of Ata@lzo
A large class of cut set inequalities called flow cut inediesihas been introduced and facet theorems
have been stated.

By simply using the samMIR procedure in Sectidn 4.2.2 it has been shown that there i®an o
vious analogue for flow cut inequalities in the Bldirected &iNdirected case. Flow cut inequalities
generalise already known cut inequalities and simple flowrmqualities.

In contrast taC'SP! they do not suffice to give a complete description in the simgimmodity,
single-facility case, which is reflected by a second classibket inequalities fofSZ! andC SUN .

For both classes of cut set inequalities we have presentet faoofs.
In the following section we will concentrate on the generaltivfacility case.
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4.3 The cut set for multi-facility problems

In this section the results for cut sets with a single desimable will be extended to cut sets with
more than one facility to install. We will fix all but one desigariables to their lower bound zero. For
the resulting single-facility restrictions we know facktfining inequalities from Section 4.2, which
will be lifted by using the subadditivelIR functions defined in Chapter 3.

The polyhedraC'SP!, CSBT andCSYN for the general casd’| € Z,\{0} were already intro-
duced in Section 4.1. Assume tHay > 2. ] states the exact lifting function for flow
cut inequalities of cut sets with DIrected capacity constran Section 4.3.1 it will be shown that it
equals a certaiMIR function which proves that lifting wittMIR is exact. This observation motivates
a generaMIR-procedure that produces strong valid flow cut inequalitiee multi-facility case for
all three capacity models Dlrected, Bldirected and UNdéedc

4.3.1 Dlrected capacity constraints

Aggregating and substituting as in Section 4.2.1 gives dlleviing valid base inequality for the set
CSP! similar to (4.13)

FRAT) + FOA7) + ) (2'(AT) — 2'(47)) > df. (4.25)

teT

wherefQ(Ay) = >, o c'al(45) — f9(A5) > 0 and AT, A5 are subsets afl; = §7(5), Ag =
0~ (9), respectively.

Given the facilitys € T, let CSP! be the restriction o SP! obtained by fixing all design
variablesz!,, with a € Ag andt € T'\{s}, to their lower bound zero. Hence

CSSDI = conv{ (f,x) € csPr . xfl =0,a € Ag,t € T\{s} }.

From Proposition 4.6 follows that

FOUAT) + cta*(Ay) = FO(AY) + 18 (a°(A]) = 2°(A7)) = rdnd (4.26)
is a valid single-facility flow cut inequality fo€'S;”*, wherery’ = r(dg, c¢®) andns = [ |. From
Lemmad 4.8, Theorem 4.9, 4.10, 4.11 and Corollary 4.13 we kmevessary and sufficient conditions
for (4.26) being facet-defining far'SP!.

Lifting  The flow cut inequality (4.26) is és——MIR inequality as shown in Section 4.2.1. Hence with
Proposition 3.14 the subadditive functiGggcs defines an upper bound on the exact lifting function
and can be used for lifting (4.26) to a valid inequality@$ ! (see Section 32, Proposition 3.14).

Atamtirk tZOOﬂZ] calculates the exact lifting function asdows that under certain additional
conditions exact lifting off (4.26) to a valid inequality 6fS”! can be done simultaneously, because
the exact lifting function is subadditive. He states thietifinequality as

FEAT) - )+ Y i)t (AN) + 65 ()t (Ay) = réng, (4.27)

teT teT
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Cut sets and flow cut inequalities

where
Lk —53 if kev < ¢ < ke® + 7
oH() = c (c® —ry) | c _CQ c+r  integer
(k+1)r¥ if ke® +ry < < (k+1)cf
and
t(k—1)r if (k—1)c* < < ket — 18
o5 (') = ¢~ Q)T ( )c CSECTT Linteger
k(c® —rs) if kc® —rs < kc < ¢*

Note that the integek is unique sincé® < rSQ < s,

Setd = dg. In the following we will show that inequality (4.27) can bees as thel-MIR
inequality for the base inequality (4.25). This gives aeralative proof for the validity of (4.27) and
implies that the subadditive lifting function used foriliiy (4.26) to(4.27) is thMIR functionGg .

It turns out that

¢y (') = Gaes(c),
which provides an alternative description @y .s.
Theorem 4.31 Inequality(4.27)is thecis—MIR inequality for the base inequaliii#.25)
Proof. Rewriting (4.27) gives
FOAT) + FRA7) + Y o (" (AT) + ) (5 () = )a' (A7) = rdn?.
teT teT

1 - . r -
The —-MIR inequality for (4.25) is

Gae(MFAT) + Gaos (D) FUA) + ) Gaer (' (AT) + D Gaes(—c)a' (A7) > Gaes(d)
teT teT
= UL+ FUAD) + 7 Gae ()" (AF) + D Guer (—N)a' (A7) = r(d, ) [ 2] = rEn?.
teT teT

It remains to show that
1. ¢j(ct) = gdﬁs(ct) and 2. (¢;(ct) — ct) = gdﬁs(—ct).

To prove this we make use of the equations

TSl =ct 4 —r(ch,e®) and r(—c,c) =c* —r(c, )

cs

several times. The latter is validifct, c¢*) < ¢*, thus(i—i> > 0. The validity of both is proven in
Lemma3.11 |\) and 3.11 ii) respectively.
1. Setk := (—} — 1. First suppose that(d, ¢*) > r(ct, ¢®). It follows thatr(ct, ¢*) < ¢* and hence

k= LC—SJ. Using Lemma 3.11 i) yields

([C—t}—l)c =k << —r(c, ) +rd,cf)=c [C—t}—cs+r(d,cs):kcs—|—r(d,cs).

cs cs
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4.3 The cut set for multi-facility problems

Henceg? (¢!) = ¢ — k(c® — r(d,c*)) = ¢ — | S |(c® — r(d, ¢*)). But again with Lemma 3.11]i)

¢ — 1S ( —r(d, ) = ¢ — [S](c* —r(d, c*)) + ¢ —r(d, )
= r(d. )]+ + et = 5] —r(d,)

— 1 (d, ") [S] + (e, ) = 1(d, ) = Gaes ().
Now suppose that(d, c*) < r(ct, c*). Then

het 4+ r(d, ) < ([5] = 1) + (el ¢*) = ¢ < [S]e* = (h+ )"

cs

andg; () = r(d, ) (k + 1) = r(d, ¢*)[ %] = Ga.es ().
2. Setk = Lg—zj + 1. First suppose that(d, c®) > r(—c',c®) implying thatc® > r(—c',c¥) =
cf—r(ct,c®), k= [E—:} and

ke® —r(d,c’) = (g—hcs —r(d,c’) < (5—;%3 +cf —r(d, )= < (C—t

= = ke’

Thus
¢ () — & = k(¢* —r(d, ")) — ¢ = S[S] +r(d, )| 2= ] — ¢

t] —r(d,c®) — c

=ct 4+ — r(ct, ) +r(d, )=

— r(d,cs)[_cgt] —r(d,c®) + r(—ct, ) = gd7cs(—ct).

If r(d,c®) <r(—ct, c®) = c* then
(k—1cf=c <+ —r(dc’) = (LE—ZJ +1)c® —r(d,c®) = ke® —r(d, ).
And if 7(d, c®) < r(—c', c®) < ¢ then
(k—1)c* = Lg—zjcs <cd < +r(=c,c®)—r(d,c)=c +c —r( ) —r(dc)
= [2—2]08 —r(d,c®) = kc® —r(d, ).

It follows that

67 () = = —(k — Dr(d,¢*) = —r(d,*)| &) = 1(d, ) [55] = Gaes (—).

cs

The proof is complete. [ |

Atamtirk i2002] states conditions for (4.27) to be facetiing forC SP!. The following results
are a consequence of Proposition 3.13 about superadditirisubadditivity) and lifting.

Proposition 4.32 dAtathrk ﬁ2002]) Supposer(d,c®) < cand|K| = |[KT| = |Q| = 1. In
the single-commodity case the multi-facility flow cut irgldy (4.27)is facet-defining foC'SP! if
Af AT A7 #0.

Proposition 4.33 ﬂAtathrk IfZOOZh) Suppose(d, ¢®) < c. The multi-facility flow cut inequality
(4.27)is facet-defining foC'SPLif Af, AT, A5, Ay # 0.
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Strengthening Notice that both propositions exclude cut inequaliti¢s (= () and A = ()) as well
as simple flow cut inequalitiesA = ). The reason is, that in those caghs. is not the the exact
lifting function (but still a valid subadditive upper bou)natamturk EZ] proposes a strengthening
of the inequality|(4.27) (hence a strengthening of the Mélidg function) if A, = (). Set

FH(ct) = {¢+<> Gues(ct) i ¢ < df

rénd else.
Note that ifc" = dg, then qﬁ* ¢s(c"). Another important observation is that
ct > dQ —= () < o7 (c (see{ Atamtur 2002])

Proposition 4.34 (fAtathrIJ ¢2002]) The strengthened simple flow cut inequality

FEAD) +D o (el (A]) = r@n@ (4.28)
teT

is valid for CSP! and at least as strong d¢.27)if A; = 0.

We prove this result by showing that (4.28) can be obtained sgcondVIR step.

Proof.

FEAD) +D o (el (Af) = r@n@ (4.29)
teT

is a valid 1 -MIR inequality forC'SP7 as already shown. Let:= max(¢f (c'))ier. If & < r&n?,
theng (c!) = ¢ (c!) for all t € T. Suppose > r¥n%. It follows that
ri=r(r@n,e) = 1@ and r(ef(c),¢) = 61 (c).
This gives
Gy o) =1 = (r = ¢f ()T =min(r’, 65 (")) = &7 ().
Hence using (4.29) as the base inequality for the calcmiaifcbhe%—MlR inequality gives|(4.28). B
The secondIR step is equivalent to rounding down all coefficieits. (¢*) to the value of the

right hand side«sQng2 =7 if Gd,cs (") > r’. Note that every coefficient of the left hand side is
positive if A; = (). The new inequality is at least as strong astfKMIR inequality if A; = 0.

TheMIR procedure to obtain strong valid flow cut inequalities@s$! in the multi-facility case can
be summarised as follows:

Aggregating and Substituting Choose a commodity subsé), subsets of the dicut arcé;” and
A5 and a facilitys € T such that the restricted flow cut inequality (4.26) defineacet forC'SP7.
Aggregate and substitute to arrivelat (4.25). For necessatysufficient conditions see Section 4.2.1.
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4.3 The cut set for multi-facility problems

Scaling andMIR
1. Calculate theé%—MlR inequality (4.27) corresponding to (4.25) given by

FRAT) + FUAD) + Y Gaes ()2 (A) + D Gaes(—c)at (A7) > 1@ =

teT teT
2. If A; =0 andc := max(Gg cs("))er > 7', then round down left hand side coefficients-to
This gives
FRUAT) + FRA7) + > min(r', Gaes ()2 (AT) > 7

teT
being at least as strong as tléeMIR from step 1.

Example 4.35 Consider the following two-facility cut set with two outflaand one inflow-arc. The
two possible capacities to install aré¢ = 2 andc? = 5. A demand ofl = 3 has to be satisfied.

CSDI:conV{w EZG,feRi’f1+f2_f3:3
f; <2zl +5a2,i € {1,2,3}}

If AT # () we can formulate the following 12 flow cut inequalities ofet¢#.27)

fo+xl + 327 >2 (A1+ = {1}, Ay =10, =2) (4.30a)

fo 22t +322 >3 (A = {1}, Ay =0, =5) (4.30b)

fo— f3+x1+327 +a5+325 >2 (A f- = {1}, A; = {3}, =2) (4.30c)
fo— f3+ 227 + 32 + 223 + 223 >3 (Af - = {1}, A; = {3}, =5) (4.30d)
fi+xs+322>2 (AF ] = {2}, A; =0, :2) (4.30¢)

fi+2zh +322 >3 (A = {2}, Ay =0, =5) (4.30f)
fi—fs+ay 33 +ay+303>2 (Af ' = {2}, 4; = {3}, :2> (4.30g)
fi— fa+22d 43z + 228 + 222 >3 (A 1 = {2}, A; = {3}, =5) (4.30h)
r} + 322 + )+ 325 >2 (A - ={1,2}, A; = =2) (4.30i)

2x1 + 327 + 2z + 323 >3 (A = {1,2}, A—_(Z) ¢ :5) (4.30))

—fy o+ 307 +ay+ 323 + a3 + 325 >2 (A ={1,2}, A, = {3}, =2) (4.30K)

—fy 221 + 327 + 22y + 323 + 228 +223 >3 (A ={1,2}, A; = {3}, =5) (4.30)

From Proposition 4.32 we know that the inequaliti@s30c) (4.30d) (4.30g)and (4.30h)define
facets forC'SP! becaused}, A}, A5 # () holds for them. Usin@ ORTA (Christof & Lobel f200$])
it can be seen thgid.300) (4.30f), 44.30k)and (4.30I) are facet-defining either.

The inequalitieg4.30a) (4.30e)and (4.30i) can be strengthened with Proposition 4.34 because
Ay = 0 andé = max(¢f ())er = 3 > 2 = r&n¥. Rounding down the coefficients of the left
hand side gives the following two-stBfiR inequalities

fotal+223>2 (Af ={1}, A; =0, strengtheneyl (4.30a2)
fi+ad+223>2 (Af ={2}, Ay =0, strengtheneyl (4.30e2)
o]+ 207 + 2y + 223 > 2 (A7 ={1,2}, A, =0, strengtheneyl (4.30i2)

all facet-defining forC'SP7.
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Summary It was shown how to exploit the results of Section 4.2.1 taiwbstrong valid inequalities
for C'SP! in the general multi-commodity, multi-facility case.

Facet-defining flow cut inequalities for single-facilitystdctions ofC'S”! can be lifted to valid
inequalities ofC'SP!. We made use of the introduction MIR, superadditivity and lifting given
in Section 3.2 to show that under certain conditions iR function G, .« equals the exact lifting
function. A strengthening of the lifted inequalities wasposed if this is not the case. Motivated by
these results we statedvllR procedure that can be used to obtain strong valid inegesiitir cut sets
with DlIrected capacity constraints.

4.3.2 Bldirected and UNdirected capacity constraints

We proceed similar to the last section. Facet-defining iakiigs for single-facility restrictions of the
cut setsC'SBT andCSUN will be lifted using the same subadditivéIR function. In fact the only
difference between theIR procedure of'SP!, C'SBPL andCSUY is, that it depends on the capacity
model which inequalities are facet-defining for singledffgcrestrictions, as shown in Section 4.2.

With the arguments of Section 4.2.2 we assufiie = () for the cut seC'SYV. Aggregating and
substituting as in Section 4.2.2 gives the following valigé inequality for the setsS?! andC SUN
similar to (4.17)

FRED) + FUEy) + ) (2(By) — ' (By)) > dE, (4.31)
teT

wheref9(Ey ) = Y, cp c'z'(Es) — f9(E, ) > 0 andEy, E; are subsets of the cifs.

Given the facilitys € T, let C.S2 andCSY™ be the single-facility restrictions @ S?! andC SYY
obtained by fixing all design variableg, with ¢ € Eg andt € T'\{s}, to their lower bound zero.
Hence

CSBI = conv{(f,z) € CSP!: 2! =0,e € Eg,t € T\{s}}.
CSYN = conv{ (f,z) € CSYN . 2l =0,e € Eg,t € T\{s}}.

From Proposition 4.14 follows that
FOUE) + Ca®(By) = f9(Ey ) + 1 (a°(Br) — w8<Ez>) > rdnd (4.32)

is valid for C.S52! andCSUN, wherer? = r(d¥, ¢*) andn® = [% 1.

Lifting ~ Setd := d<. For conditions for((4.32) being facet-defining 181527 or C'SUN see Section
'4.2.2. Both inequalities arcé-MlR inequalities. Hence with Proposition 3114 the subadditivetion
Ga .+ defines an upper bound on the exact lifting function and cansee for lifting (4.32) to valid
inequalities ofC SB! andC'SUY, respectively (see Section 3.2).

The exact lifting functions are not known but motivated bg tiesults o% AtamturlJ[Z—(ﬁ)Z] for
Dlrected cut sets (see Section 4.3.1), it can be conjecthiadinder certain additional assumptions
the exact lifting function for((4.32) is given by, ... We useMIR here as a valid lifting procedure.
Given the base inequality (4.31), the following flow cut inatity is valid forCS?! andCSVV:

FRED) + FUEY) + > Gae ()" (Br) + D Gaes (—ch)a! (o) > r¥nf. (4.33)
teT teT
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Strengthening If £y = (), then all left hand side coefficients of (4,33) are positind e can round
down all coefficients of integer variables to the value oftilgat hand side if they are greater. Note
that rgngz > 1. As shown in Section 4.3.1 this strengthening can be seensasandMIR step.
Applied to (4.33) we arrive at the simple flow cut inequality

fQ(E_fr) + Zmin(r?ng, Gaes ()2t (Ey) > r?n?. (4.34)
teT

It turns out that theMIR procedure, to derive strong valid flow cut inequalities fat sets with
Bldirected and UNdirected capacity constraints, is edeivao the procedure in Section 4.3.1:

Aggregating and Substituting Choose a commodity subs@t subsets of the cut ards, , £ and
a facility s € T such that the restricted flow cut inequality (4.32) definescats ofC'S2! or C SV,
For necessary and sufficient conditions see Section/412@ortant necessary conditions were

ErAOANE\Es #£ 0

for C ST and
E; 7é(2)/\E1ﬁE2:®

for CSYN (Lemmad 4.17). Aggregate and substitute to arrivé at (4.31).

Scaling andMIR
1. Calculate th(—;};—MIR inequality (4.33) corresponding to (4.31).

2. If E5 = () then round down left hand side coefficients to the value ofitte hand side. This
gives inequality| (4.34).

Example 4.36 Bienstock & @inluk [1996] consider network design polyhedra with Bldirecta-
pacity constraints and two facilities, whete = 1 andc? = )\ € Z,, A > 1. Specialising{4.33)with
d= dg, s =\r=r(d\)andn = (%1 gives

FYED + FOUB )+ Gap(D)a (Er) + Gaa(N2? (Er) + Gaa(—1)z' (B2) + Gax(—N)2?(E2) >
<
FUBD) = fOEy) + 2 (By) + ra?(Br) + (1 - r(§))2' (B2) + (A — r)a?(Es) >,

which reduces to the simple flow cut inequalitie% of Bieks®G& Unluk ﬁ1996] if £5 = () and to the
cut inequalities df Bienstock &mnuli ﬁ199é5] if additionally £, = FE5. They state two more classes
of simple flow cut inequalities, both corresponding to theecthatd is fractional, which we do not
consider here.

Magnanti & Mirchandani \[199@] investigate network desigolyhedra with UNdirected capacity
constraints, three facilities and one commodity, whére= 1, ¢> = C € Z,,C > 1l and¢® =
AC € Z, ) > 1. We can formulate two cut inequalities of ty{@e33) corresponding te* = C' and
c¢® = AC, which are

Ga.c(1)z (Es) + Ga.c(C)z*(Es) + Ga.c(AC)a®(Es) > m[&]
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and
Garc ()2 (Es) + Garc (C)z*(Es) + Garc(AC)z® (Es) > ra[ 4]

reducing to the cut inequalities ‘of Magnanti & Mirchand‘ajriq%]:

2H(Es) + 2 (Es) + ra®(Bg) > [ &]

and
xl(Eg) + min(C, 7“2)1‘2(E5) + 7“2.%'3(E5) >y [%L

wherer; = r(d,C) andry = r(d, AC'). The first cut inequality can be strengthened to

xl(ES) + rlmQ(ES) + min(\, f%})nx?’(Eg) >y f%w

‘Maqnanti & Mirchandaﬁi ‘[1993] describe a third cut inequiglj valid for C SUY, which we will study
in Section 6.4.

A new class of cut set inequalities In Section 4.2.2 we found (4.21)
cx(Br) + (¢ —r9)z(Ey) + fOED) = fUES) > ¢ =@

as a new class of cut set inequalities for the polyh&d$&’ andC' SU for the case thdfl'| = 1. We
could even prove that it can define a facefif= K. But it was not possible to express it abitR
inequality and hence we cannot apply Proposition [3.14 dn#l21) to the multi-facility case. We
can only calculate the exact lifting function or find a sulitidel upper bound, which will not be done
here. For computations and separation we will use (4.23) famlsingle facility instances (Chapter

7).

4.4 Summary

We have introduced the cut seiss?!, C.SPT andCSYYN as relaxations of the network design poly-
hedraN DPPL, NDPB! andNDPUY in Section 4.1. Cut sets are defined with respect to a node set
S C V of the underlying networks. It has been shown that facetgfiinequalities for cut sets are
facet-defining for the corresponding network design paliyaef both subgraphé&:[S] andG[V'\ 5]
are connected (undirected graphs) or strongly connectezt{eld graphs).

This result has motivated the investigation of the polyhedtructure of cut sets in Section 4.2
for the single facility case. Facet proofs for differentsdes of so-called flow cut inequalities were
provided while emphasising the differences between treethapacity models Dlirected, Bldirected,
UNdirected. We have been able to generalise well-knownualitips used to solve network design
problems.

In Section 4.3 MIR procedure has been developed that produces strong vadjdalites for cut
sets in the general multi-commodity, multi-facility cagehis procedure is based on lifting facet-de-
fining inequalities of single-facility restrictions MIR.
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Chapter 5

Cut sets, upper bounds and flow cover
Inequalities

5.1 Introduction

In this chapter cut sets with bounded design variables wilhiestigated. The sets, corresponding to
the capacity models Dlrected, Bldirected and UNdirecteel, a

CSPI(u) = conv{ (f,z) € OSPT: ol <ul ac Ag,t €T}
CSB(u) = conv{ (f,z) € CSPL: @g u,, e € Eg,t €T}
CSYN(u) =conv{ (f,z) € CSYN . 2! <ul, ec Eg,t €T}

with ul, u! € Z,\{0}.

We assume throughout this chapter that the polyhedra ammaty. All demands can be satisfied.
For simplicity, additionally suppose that the dimensiortta# polyhedra is not changing when the
bound constraints are added. Hence bounds have to be grgeneiaough.

SinceCSPL(u) € CSPI, €SB (u) € €SP andCSYN(u) € CSYN the cut set inequalities
stated in Section 4.2 and Section 4.3 are valid for the baliedé sets. ThélIR- procedures given
there can still be used. In fact all the results of Chapterld fa C'SP(u), CSB! (u) andCSYN (u)
if u!,ul > Mforalla € Ag, e € Eg,t € T, whereM is an integer number large enough.

In order to exploit the special structure of bounded cut setsvill develop strong valid inequal-
ities that are valid only in the presence of bound constsdyt simply extending the procedures of
Section 4.2 and Section 4.3. In Section 3.3 it was shown fliahgo-called knapsack sets, bounds on
integer variables can be handled by considering covers ackkpmand by deriving cover inequalities
as well as pack inequalities. The analogue for the more ot sets or single node flow sets are
flow coversflow packsand the corresponding inequalities.

Literature review The polyhedral study of single node flow sets (with boundesigtevariables)
was initiated b\b Padberg et a{l [1§85] They introduce aispease of flow cover inequalities (with
only outflow arcs). The generalisation to the inequalitiebjch will be presented below is from

‘Van Roy & Wolself‘[1986]
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Important work on the strengthening of flow cover inequeditby superadditive lifting has been
carried out bI 1999]. Flow pack inequalities werieaduced br7] and in-
vestigated in detail by Atamt"r%Ol]. Flow pack inedtie$ are derived as flow cover inequalities
after reversing the flow directions.

Atamtirk et al. ‘[200‘1] state flow cover- and flow pack inedgies for single node flow sets with
a very general capacity model. Their results can be usediforud sets in the multi-facility case.

Louveaux & WoIseyH&)3] recently showed how strong valiavflmver- and flow pack inequal-
ities can be obtained BYIIR and other superadditive lifting functions. TRER procedure they apply
to single node flow sets is similar to the one that has beenirirstduced W Marchand & Wolsey
M] (see Sectian 3.4).

A good survey can be found|in Wols@b%].

Outline of this chapter  To derive strong valid flow cover- and flow pack inequalities® S’ (u),
CSB1(u) andCSYN (u) MIR procedures are motivated in this chapter that are basedeomdtk of
‘Atathrk etal. ‘[200‘1] anb Louveaux & Wolséy [26)03]. We véBpecially concentrate on the cut set
for directed supply graph§ SP!. A slightly modifiedMIR procedure will then be applied to the sets
CSPI(u) andCSYN (u) in Section 5.2.2.

We start with an introduction to flow covers and flow packs fairaple 0-1 single node flow
set, which differs from the cut s€tS”!(u) in the single-facility case in the way that arc dependent
capacities are given. It will be shown how known flow coverd dlow pack inequalities can be
derived by aMIR procedure based on complementing variables in an appteptiesen flow cover
or flow pack. This procedure is similar to the one given in Bec8.3 for knapsack sets.

Switching to the cut sef'SP!(u) we prove that flow cover- and flow pack inequalities reduce to
the flow cut inequalities of Section 4.2.1 if only one fagilis given (arc independent capacities). It
turns out that the procedurd of Louveaux & Woléey [2003] fowftover- and flow pack inequalities is
identical to the procedure that was already developed itide4.2.1 if we additionally complement
design variables.

A MIR-procedure for the general multi-facility case for the tie¢s<' S’ (u), CSP!(u) and
CSYN(u) is provided in Sectioh 5.2 to handle bounded design varsadiel to obtain strong valid
flow cover- and flow pack inequalities. If more than one fagils given, the procedure to derive
the flow cut inequalities from Section 4.3 will be extended obtain flow cover- and flow pack
inequalities, variables will be complemented in flow covansl flow packs, defined as in Atamtirk
etal. tZOOﬁ].

First assume that only one facility can be installed on ewscyin the dicutdg. To introduce flow
cover- an flow pack inequalities as they are given in thedite®e, we will first consider a modification
of the setC'SP!(u) in the single-commaodity, single-facility case. Supposa the capacity to install
depends on the atc

Yoofo= D fa<dg (5.1)

acA} a€Ay
CaTy, @€ AS (52)

1,
o <u, € As, (5.3)

IN A
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wherec € Z4\{0}, dg € Z.. The following set the literature refers to asiagle node flow set

avua

XNE .= conv{ (f,x) € R‘fs‘ X Z‘f‘ﬂ : (f,z) satisfies/(5.1)5.2) and/(5.3}

Under the assumptiongy # 0 anddg + 3" _ - c,u, > ug foralla € Ag or similarly A = () and
S
dg > 0, the polyhedronX N is full dimensional (see Atamtiirk [2001]) in contrast@s P! (u).

Definition 5.1 (C*,C~) is aflow coverfor XNF if

CtcAf,c-cAy and D cu,— Y cuu, —dg=A>0.
aceCt acC—

(P*, P~) is aflow packor reverse flow covefor XNF if

Pt C A;“,Pi cAy and Z Colhy — Z C U, —dg = —p <0.
aeP+ a€eP~

In the following results ok Louveaux & WoIsH/ [2d03] will beimmarised. Strong valid flow
cover- and flow pack inequalities fof SN can be obtained by a certaiiR procedure. This will
serve as a motivation for a more general procedure for th€ S& (u).

For simplicity we restrict our attention to the casg =1 Va € Ag. With the same procedure
and Definition 5.1, flow cover- and flow pack inequalities abtamed for integer single node flow
sets, i.eu, € Z,\{0} foralla € Ag.

The MIR flow cover inequality Suppos€C+,C™) is a flow cover forX V¥ and choose € 7,
with ¢ > A. Let (CT,L*,RT) and(C~, L™, R™) be partitions ofA} and Ag, respectively. The
base inequality

DTN DR DN D DI T (54)
acCHtULt+ acC—UL— aER~ acCHULt

with f, := c,z, — f,, is obtained by substituting, for c,x, — f, foralla € Ct* ULt UC~ UL~
and using the nonnegativity ¢f fora € R* and of f, fora € C~ U L~.
Additionally complementing all variables i U C'~ gives

S T ST SRR S D DE T DI SN
acC+ acLt acC— acL— a€ER~ acCHULt
wherez, := 1 — z,.

The 2-MIR inequality for (5.5) is

Z f—A,E(—Ca)ja + Z F—A,E(Ca)xa + Z f—A,E(Ca)ja + Z f—A,E(_Ca)xa

acC+ acLt acC— acl—
- L= Y, f<Fai-N=-1 (56)
acER~ acCHULT
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‘Louveaux & Wolsey‘[2003] show that # = max,cc+c, > A, then theMIR flow cover in-
equality (5.6) is at least as strong as ti&'C'2 (Generalised Flow Cover) inequality anddf=
max,cco+ur- ¢, > A (5.6) is at least as strong as thé'C'1 inequality given by

Z (fa + (Ca - )‘)Jr(l - xa)) - Z min(ca’)‘)xa - Z fa < d+ Z Ca>s (57)
acCt a€Ll~ a€R~ acC—

If LT = { this can easily be seen by using Lemma B.11 &F'C'1 and GFC2 inequalities were
introduced b\b Van Roy & Wolse\[/ [1956]

Proposition 5.2 dNemhauser & Wolsey ﬁ1988]) The GFC1 inequality (5.7) defines a facet of
XSNEif 0~ = 0, max, et ¢, > Aandc, > Aforalla € L.

The MIR flow pack inequality Suppose(P*, P~) is a flow pack forX*N and choose ¢
Zy with & > p. Let (PT,LT,R™) and(P~,L~,R™) be partitions ofA}; and A, respectively.
Aggregating and substituting as for flow cover inequalitiesl complementing all variables " U
P~ gives

_ani.a—i_zcaxa—’—anja_zcaxa_Zfa_ Z fgﬂv

acP+ aclLt aceP— acL— a€ER~ acPtULt

as a valid inequality fo V. Now calculating thet-MIR inequality yields

Z Fuyé(—ca)ja + Z ‘7_—#75(Ca)xa + Z fu,é(ca)ja + Z fu,é(_ca)xa

acPt aclLt a€EP~ acl—
=Y fam Y fu < Fus(w) =o0. (5.8)
a€ER~ acPtTULT

If L= = () and¢ = max,cp-_1+ ¢, > i, theMIR flow pack inequality/(5.8) is as least as strong as
the flow pack inequality (reverse flow cover inequality)

Moo fut D (fo—min(e, wa) + D (Gu—m)T(l—z)= > fu< Y ¢, (59

acPt acLt acP— aER™ acPt

given in‘ Atathrk‘[ZOOl] anb Louveaux & Wolséy [2003]. Tloian be seen by replacidg, (—c,)
by —¢, for all @ € P*, which is possible sincé > F,,:(—c,) > —¢, (Corollary/3.8) and using
Lemma 3.11 iv).

Flow pack inequalities may be facet-defining for the restic
XV = conv{ (f,x) € XN 2, =1Vac P}

of X*NF obtained by fixing all variables i+ to their upper bound. In this context (5.8) is obtained
by lifting (5.9) to a valid inequality forX*V*" using the superadditive functiafi, .. A weakened
formulation of a result *fAtamtu 1] is:

Proposition 5.3 (Atamtiirk [2001]) (5.9) defines a facet ok 2NV if max,ep- ¢, > p, ¢, > pfor
allae LT andR~ U P # 0.
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Remark 5.4 The Propositions 5/2 and 5.3 indicate that in order to desw#eng valid flow cover-
and flow pack inequalities, it is necessary to choose flowrsoaed flow packs such that or
are small. This is true for all kinds of single node flow seEe‘(ésu et aJI.‘[1999], Ataniirk ﬂzooi],

‘Atamt]rk etal. t2001] andl Louveaux & Wolsfdy [2003)).

The excesa for flow covers or the residual for flow packs should be smaller than certain coeffi-
cients of the base inequality. The same holds for all theskaiknapsack sets and the corresponding
covers and packs (sEe Ata‘Irlf ﬂ20033] for a survey).

Note that a flow cover foX V¥ can be seen as a cover with respect to the single constraint
(5.4). Similarly, a flow pack is a pack with respect to the ineqyalitat is obtained by aggregating
and substituting. We introduced covers and packs for miregs$ack sets in Section 8.3.

Flow cover inequalities andC SPT  We reviewed that strong flow cover- and flow pack inequalities
can be obtained with a certaMiIR procedure introduced ﬂ)y Marchand & WoIsEy [1‘998] and applie
to single node flow sets ﬂv Louveaux & Wolsév [2b03]. The pdoaee consists of the five steps
Aggregating, Substituting, Complementing ScalingandMIR .

In the following we will show that the procedure is in facttjas extension to the one that was
developed to derive the strong valid flow cut inequalities@s ™’ in Section 4.2.1. Set

VINE = conv{ (f,x) € XN f(AL) - f(Ag) =dg )}

HenceY N is 'SP () but with arc dependent capacities. Note that now we can sevitie
directions of the flow and consider a relaxation of the flowsssmation constraint foy >N of the
form
F(Ag) — f(A§) < —ds.

Thus flow packs foi *V" (or C'SP! (u)) are flow overs when multiplying the flow conservation con-
straint by—1. In terms of the underlying graph, switching between flowaszsvand flow packs means
switching between the cut set férand the cut set fo?v’\S. So, in the sequel we can concentrate on
flow covers and flow cover inequalities.

Let(CT, LT, RT)and(C~, L™, R™) be partitions ofA} and A, respectively, wheréC™, C ™)
is a flow cover, as defined above. S&f := C+ U Lt and A, := C~ U L~. Aggregating and
substituting as in Section 4.2.1 gives the base inequality

Z Culy — Z CoTq + FAD) + F(CTULT) > dg.

aeAT acAy

Notice thatA] = R*. Extending the procedure from Section 4.2.1 by additignedimplementing
variables inC* U C yields

=D CaBat D CaTat D Culla— Y oty + FAT)+ F(CTULT) > =X (5.10)

acC+ acLt acC— acl—

Choosez > \. The 1-MIR inequality for (5.10) is

Z gf)\,é(_ca)'fa + Z gf)\,é(ca)wa + Z gf)\,é(ca)ja + Z g*A,E(_Ca)wa

acC+ acLt acC— acL—
+f(RY+f(CTUL)>0 (5.11)
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In the following we show that inequality (5.11) is equivalémthe MIR-flow cover inequality[(5.6) up
to a scalar multiple of the flow conservation constreitt{)— f (Ag) = dg. Hence both inequalities
induce the same face af*VF,

Lemma 5.5 If A < ¢ then(5.11)and (5.6) induce the same face BV E
Proof. Adding to (5.11) the flow conservation constrajiitdy) — f(AL) = —dg gives

Z g*)\ﬁ(_ca)ja—’_ Z g*)\ﬁ(ca)wa—’_ Z g*A,E(Ca)'fa + Z gf)\,é(_ca)xa

acCt acLt acC— acl—
—f(c+UL+)+ Z Caxa_{_f(Ri) > —dS
aceC~UL—

with G_» z(c,) = —Fx¢(—c,) reducing to
Z FA,E(Ca)ja + Z FA,E(_Ca)xa + Z FA,E(_Ca)ja + Z FA,E(Ca)xa

acC+ acLt acC— acl—
+f(CTULY) = Y e, — f(RT) < ds.
acC—UL—

Using thatZ) (—c,) = F_xz(c,) — ¢, if (5) > 0 (Lemma 3.11ii)) yields
Z f*)\ﬁ(_ca)'fa + Z f*A,E(Ca)wa + Z f*)\ﬁ(ca)'fa + Z f*)\ﬁ(_ca)xa
acC+ acLt acC— a€Ll—
—f(CTULT) = f(R7) < =),
which is inequality [(5.6). We have shown that (5.11)[is (5uf)to a scalar multiple of the flow
conservation constraint. Hence both inequalities indbeesame face af SNVF', [ |

It turns out that in presence of the flow conservation coimtra(AL) — f(Ag) = dg the MIR
procedures of Section 4.2 and Section 4.3, augmented witiplemnenting, can be used to obtain
flow cover inequalities. Hence flow cover inequalities gafise flow cut inequalities.

The single facility case For the seCSP!(u) in the single-facility case it will be shown now that
the extended procedure does not provide a new class of iliteegiaA capacityc can be installed
independent fronm € Ag. The conditions from Proposition 5.2 and Proposition 5.8ceoning the
size of A andp reduce to\ < c andu < c.

Lemma 5.6 If ¢, = cforall a € Ag and X < ¢, theMIR flow cover inequality reduces to the flow
cut inequality(4.14) of Section 4.2/1.

Proof. Let (C*,C~) be a flow cover. Hence

Z cu, — Z cu, —dg = c(u(Ch) —u(C7)) —dg =\ > 0.

acCt acC—

With (u(Ct) — u(C)) € Z ande > A follows that (%) > 0, (u(C*) — u(C™)) = [%] and

A =c—r(dg,c) =:c—r.Butthen

g—)\,é(ca) = grfc,c(c) =r and g—)\,é(_ca) = grfc,c(_c) = —T.
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5.1 Introduction

and inequality((5.11) takes the form

—Zr:ﬁa+2ra@a—i—Zria—era+Zfa+ Z f,>0
aceCt acLt aceC— a€Ll~ a€ER* acC~UL™

—

ra(CHULY) —ra(CTULT) + f(RY) + F(CTULT) 2 r[%],

which after settingd| := C* U L* andA; := C~ U L~ leads to the flow cut inequality (4.14)H

It was shown that for single-facility bounded cut sets with iadependent capacities we cannot
obtain a new class of strong valid inequalities with MER procedure described above. Comple-
menting does not change the correspondifii® inequalities. The question that arises is, how can
the special structure of such sets be exploited? The autimeatures that the bound constraints
itself suffice here. The set8SP!(u), CSB! andC SN (u) are completely described by all cut set
inequalities from Section 4.2 together with all bound coaists.

Example 5.7 Consider the cut sets from Example 4.5 and Example 4.16 butwith bounded
design variables:

CSPl(u) = conv{z € Z', f €R* | fi+ fo—f3—f1=T
0 <f <3z, ic{l,2,34}
z; <u;}
withu = (1, 3,2,1) and
CSPl(u) = conv{z € Z, f e R*| fi+ fo—f3—f1=T,
0 <f <3z, <6, ic{l,3},
0<f <31,<9, ic{24}},

CSYN(u) =conv{z € Z>, f eR* | fi+ fo— f5— f1 =T,
Jit+ f3 < 3z <6,
Jot fq <32y <9,
0 <fi, ie€{l,..,4}}.

Adding all flow cut inequalities stated in Example 4.5 to tinedr relaxation ofC'S”!(u) yields a
complete description af' SP7 (u) (PORTAL Christof & bbel f2005]). The same holds farS?! (u)
as well asC'SY" (u) and the cut set inequalities given in Examiple 4.16 (POﬁ?TAis(dh& Lobel

[2005]).

Summary We gave an introduction to flow covers and flow packs and shaatflow cover
inequalities generalise flow cut inequalities t@@6°!. They are obtained by the sakR procedure
but by additional complementing variables in the flow coveithe single-facility case this procedure
does not provide a new class of inequalities.
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Cut sets, upper bounds and flow cover inequalities

5.2 AMIR procedure in the multi-facility case

In this sectionC'SP!(u) is considered to be given with a set of faciliti#shaving a cardinality of
at least2. We first restrict our attention to cut sets with Directeda&fy constraints. Th&1IR
procedure that is going to be developed can be appli€d8’ (u) andCSUY (u) in a similar way.

5.2.1 Directed capacity constraints

If there is more than one commodity to route we choose a sibséthe commodities and aggregate
as already shown in Section 4.2 to arrive at a system of time for

FR(AL) — fo(Ag) = a2

1o < czl  Va e Ag
teT
ng’; Va € Ag,t €T

In the last section it was shown that to obtain strong valial ffover inequalities we simply have
to extend theMIR procedure of Section 4.2. This approach will be used in thiifacility case too.
We will apply the stepsaggregatingandsubstituting to arrive at the base inequality (4/25) that was
used in Section 4.3.1 to obtain the flow cut inequalities{}. But beforescaling andMIR we will
complementdesign variables in previously chosen flow covers. It turastbat in contrast to the
single-facility case this extended procedure provides clegses of strong valid inequalities.

To be able to calculate flow cover inequalities in the mutiity case, the definition of flow
covers has to be extended.

Definition 5.8 (C+,C™) is aflow coverfor CSP!(u) if

CTCAf,c-CAy and > dul— Y duf-dZ=x>0.

a
acCt teT acC— teT

Note again that considering the cut set orS by multiplying the flow conservation constraint
F(AE) = f(Ag) = d¥ by —1 we obtain reverse flow covers f6tS”/ (u) with the same definition.
Hence we can concentrate on flow covers.

If u! =1foralla e Ag,t € T, then this definition can be seen as a special case of thetiefini
first given b))( Atamturk et sm [2001], who investigate theshgeneral single node flow set given in the
literature. Their additive variable upper bound capacdwpstraints, in fact, generalise the Directed
and even the Bldirected case considered in this thesis.

Before we explicitly state th®IIR flow cover inequalities, a little example is given to demacaist
our approach.

Example 5.9 Here we consider the cut set from Example 4.35 given in $edt®but with bounds
on the design variables:

CSPI(1) =conv{z € Z5,f €RY | fi+ fo — f3=3
fi < Qxil + 5%2,
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5.2 A MIR procedure in the multi-facility case

CSPI(1) has dimensioB. The flow cut inequalities stated in Examiple 4.35 are alld/&dr C'SP1(1)
sinceCSP1(1) ¢ CSP!. From the facet-defining flow cut inequalities 1015 (4.30b) (4.30d)
(4.30f), (4.30n)and (4.30I) still define facets of?S”’(1) while (4.30a2) (4.30e2)and (4.30i2) are
faces of dimensiofi. The remaining flow cut inequalities are weak @67 (1) (inducing faces of
dimension 3 to 5).

There are four flow covers with respect to Definition 5.8:

(CF,07) =({1},0) A =4,
(CT,C7) =({2},0) A=4,
(Cc*t,07) =({1,2},0) =11,
(Ct,C7)=({1,2},{3})) A=4.

Choosing the covefC*,C~) = ({1}, {0}) it will be shown in the following how to derive a flow
cover inequality. C* has to be a subset of and C~ a subset ofd;. SettingA] = {1} and
A, = {3} the base inequality is

fo+ f3+ 221 + 523 — 228 — 522 >3

wheref, = 2x1 4+ 523 — f5. Note that with respect to this inequalitg/™ U C~) is a cover as defined
in Section 3.3. Complementing variables in the flow covddyie

fo+ f3 — 271 — 57; — 223 — baj > —4.
Settingc = 5 > A and calculating thel-MIR inequality gives

fo+ fs— 2] — 23 >0

fot+ 2wy +4a5 — fy+ai>1

defining a facet o> S”7(1). We will now state all possible flow cover inequalities wigispect to
Definition 5.8:

Ct={1},C0" =0,A7 = {1}, A; =0) (5.12a)
Ct={1},0~ =0,A = {1}, 45 ={3}) (5.12b)

Ct={1},0" =0,A] ={1,2}, A; =0) (5.12¢)
2wy +4rh — fa+ad +as a3z >1 (CH={1},C” =0,A7 ={1,2},A;, ={3}) (5.12d)
fi+a3>1 (CT={2},0" =0,A] ={2},A; =0) (5.12¢)

fotai>1 (
(
(
(
(

fid2aei 440 - fo+23>1 (CM={2},C” =0,A7 ={2},A; = {3}) (5.12f)
(
(
(
(
(

fot+2w3+4a35 — fs+ a7 >1

x4 a3 >1

eh+a? 423 >1 (Ct={2},0" =0, Af ={1,2}, A; =0) (5.129)

2wy 4423 — fatai +ad+ai>1 (CF={2},C" =0,A ={1,2},4; ={3}) (5.12h)
0>0 (Ct={1,2},C™ =0,A] ={1,2},A; =0) (5.12i)

2wy + 523 — f3>0 (CT={1,2},C™ =0,A] ={1,2},4; ={3}) (5.12))

i dei - fo+a? a2l >0 (CT={1,2},07 ={3},A] ={1,2},A; = {3})
(5.12K)
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All inequalities, based on flow covers with excess ef 4, are not trivial and are not equivalent to
already known cut set inequalities. All define facetsds”’(1). Note that4 < 5 = max(c,)ser,
thus\ is small with respect to the coefficients of the base inetiesli

Both (5.12i) and (5.12j), based on the flow coveilCt,C~) = ({1,2},0) with large excess
A = 11, are trivial.

Reversing the flow directions we could consider the flow eswatien constraintf; — f, + f, =
—3 in order to obtain reverse flow covers. But singg ., c'ul, = 7 > 3 for all a € {1,2, 3}, there
is no reverse flow cover far'SP(1)

From the last example we draw the following conclusions:

e Extending theMIR procedure of Sectidn 4.3 by additionally complementindgaldes in a flow
cover provides a new class of strong valid inequalities iersetC' 5?7 (u).

e A shortcoming of Definition 5.8 is that it is not very genertiimay happen that there are no
flow covers or that all flow covers have large excess

The second point can be handled by generalising the defiriti@ flow cover. We follow the ap-
proach of Atamtiirk et al. [20&)1]. We will (implicitly) coider restrictions ofC'S”!(u) by fixing
design variables to their lower bound zero. Flow covers bglidefined with respect to such restric-
tions. The corresponding flow cover inequalities can be sadifted inequalities. The lifting from
valid flow cover inequalities of the restrictions to valiccgualities ofC'SP’(u) is done by using the
same subadditivMIR function that was used to generate the (restricted) flowrdoegualities, such
that we can explicitly state the lifted inequalities with@onsidering neither the restrictions nor the
restricted inequalities (see Proposition 3.14 about sujuitive (subadditive) lifting wittMIR).

Note that this approach can be extended by using other, ghpsgronger valid superadditive
(subadditive) lifting functions to lift thIR flow cover inequalities, as it has been done by Atamtuirk
et al. mﬁ] and b¢/ Louveaux & Wolse}v [2003]. In this thesis 8olely consideMIR as a lifting
procedure.

Definition 5.10 LetT, CT,T, # (forall a € Ag.
(C*,C™) is ageneralised flow covelor C'SP!(u) with respect to the seff,, a € Ag if

CtCAf,c-CAg and D N dul— Y >l —dZg=x>0.
acCt teT, acC— teT,
Notice that settingl,, = T for all @ € Ag gives Definition 5.8. Again, ifu = 1 for all
a € Ag,t € T, then this definition is a special case of the definition ofegatised flow covers of
‘Atathrk et a‘. ‘[2001].

Example 5.9 (continued) With the extended definition there is a bunch of generalised ¢overs
for the setC'SPI(1). We only state two examples. Jgt= {1} andT> = {1}. It follows that
(C*,C7) = ({1,2},0) is a generalised flow cover with excess- 1. Taking the base inequality

fs + 221 + 527 + 223 + 523 — 2z} — 5a3 > 3,
complementing:} andz} and calculating th%-MIR inequality gives
fa—Zt+4a? — 3 +4as —2l — 422 >0 =
fo+ @y + a3 — f3+ @) +4a] + xh + daf > 2
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5.2 A MIR procedure in the multi-facility case

defining a facet o€ .SP(1).

Now setly = {1,2}, To = {2} and T3 = {1,2}. Hence(C*,C~) = ({1,2},{3}) is a
generalised flow cover with excess= 2. Taking the same base inequality, complementing j:?,
23, 2}, 23 and calculating thet-MIR inequality results in

f3— 3T 4 20} — 3724+ 275 4+ 372 > 0 —
213 — fy + 3x3 4 2x3 + 323 > 1,

which is facet-defining.

We will now generalise the last example and will describe pghecedure to obtain flow cover
inequalities for the sef'S”!(u) in the multi-facility case.

Aggregating and Substituting Aggregate and Substitute as in Section 4.3.1 to arrive abdse
inequality
FOAD) + FOAG) + - (@A) —2'(4)) = dE,
teT

where A C Ak, A; C Ay andQ@ a subset of the commoditigs. The arc setsi, 4, and the
commodity set) are chosen as described in Section 4.3.1.

Complementing This step is an extension to the procedure in Section 4. 5ok set§, C T,

T. # Oforalla € Ag and a generalised flow cover'*, C~) with small excess such thatU+ C AT
andC~ C A, . We restrict our attention to flow covers with< max(c);c7. Let Lt := AT\C,

L™ := A;\C™ andT, := T\T, for a € As. Complementing all design variables in the chosen flow
cover yields

PAN+ A - > dal+ Y dal+ D]

acCt teT, acC+ teT, acLt teT
+ g 'zl — g cal — g cdal > -\
acC~ teTy, a€C~ tely, acL— teT

Scaling andMIR  Seté := max(c!);er. Hencec > X andc > ¢! for all t € T. Now calculate the
1-MIR inequality

FRAT) + F2(47)

+ Z g—A,E(—Ct)jZ+ Z g—)\,E(Ct)v"32+ Z g—A,E(Ct)v’UZ

acCt teT, acC+ teT, acLt teT

i\t
+ Y Gae)zh+ D Gas=dEl+ D Gaae(=c)al > 0.
acC~ teT, a€C~ teT, a€L~ teT
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Using Lemma 3.11 iv) leads to
FOAD) + T2(43)

_ Z (ca—)\)+jta+ Z min(c,, ¢ ﬂc + Z min(c,, ¢ —)‘)5'32

acCt teT, acCt teT, aelt teT
+ E min(c,, ¢ — \)z!, — E (cg — N Fal — E (e, — N Tzl >0.
acC~ teT, a€C~ teT, acL— teT

Note that the last inequality is still valid if > max(c!);c7. But it gets weakere = max(c!);er is
the best choice here. Rewriting in the space of originalaldeis gives

FOAT) — f9(A7)

+ Z (cg — N T2l + Z min(c,, ¢ — \)z!, + Z min(c,, ¢ — \)z!,

acC+.,teT, acC+ teTy, acLt teT
— e+ N2t : At : At
+ (Ca c+ ) xa + I’IllIl(Ca, )xa + I’IllIl(Ca, )xa
a€C— teTy aceC— teT, acel— teT
4t : = t
> Z (cg —A)Tuy — Z min(c,, ¢ — \)uy, (5.13)
acC+.,teT, acC— teTy

which we call a (generalisedlIR flow cover inequality for the polytop€'S”7(u) in the multi-faci-
lity case.

Similar to Lemma 5.5 it can be shown that by adding a scalatipheilof the flow conservation
constraint inequality (5.13) reduces to the additivéVlIR flow cover inequality stated in Louveaux
& Wolsey M]

Supposel, = T foralla € CT andC~ U LT = (. If additionally max(ct);cr > A then
(5.13) reduces to the additive flow cover mequalth of Atarktet al. [2001], which is facet-defi-
ning for the set considered there under these conditiorenfirk et al. [2001, Proposition 3]). This
generalises Proposition 5.2 and provides the still missintjvation to only consider flow covers with
max(c)er > A

Flow cover inequalities may be strong and non-redundanemuneaker conditions (Atamturk
etal. m Remark 2]) as for instance inequality (5/12K)ich is facet-defining although'— # ().

If T, # T for somea € C™ U C~, then[(5.13) can be seen as obtained by lifting variables in
T,,a € C*T U C~ using the valid subadditiv®IR functionG_, .. For other valid lifting functions
se Atamturk et al@gbl] aﬁd Louveaux & Wolsby [2003].

Summary Based on the observations of Section 5.1 we developédRarocedure that can be used
to separate flow cover inequalities 615”7 () in the general multi-commodity multi-facility case.
It turned out that thiMIR procedure provides a large class of strong valid ineqgealiifferent from
flow cut inequalities.

5.2.2 Bldirected and UNdirected capacity constraints

In this section we consider the s€t$”! (u) andC SV (u) in the multi-facility case. We will simply
apply theMIR procedure developed in the last section.
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In Section 4.3.2 we stated valid base inequalities for the@85! (u) andC SN (u) that were
used to obtain the flow cut inequalities of type (4.33)\b\R.

The same base inequalities will be used here but before iagglye finalMIR step, variables will
be complemented in a previously chosen flow cover.

Definition 5.11 LetT, C T, T, # () forall e € Egs.
(C1,Cy) is ageneralised flow covelior C'SB!(u) and CSYN (u) with respect to the seff., e € Eg
if

Ch,Cy C Eg and Z Zc’éui— Z Zcﬁui—dg:)\>0.

ecCy teTe ecCy teTe

Note that not necessarily; N Cy = (. We will now describe théMIR procedure that produces
strong valid flow cover inequalities for the s€tss”!(u) andC'SY¥ (u).

Aggregating and Substituting In Section 4.3.2 it was shown how to obtdin (4.31)

FUBN) + FREY) + Y (eH(Br) — o (E)) > df,
teT

as a valid base inequality for the sét$?/ andCSYN. SinceCSB! (u) € CSB andCSYN(u) C
CSYN, this inequality is also valid for the bounded cut sets. Reiver that

fREy) =) dal(B) — fR(Ey) >0

teT

and E, E5 are subsets of the cufs. We will use inequality[(4.31) as a base inequality for the
derivation of flow cover inequalities. We choose the $gtd7; and £, with the same restrictions as
in (4.3.2). So for the Bldirected bounded cut sétS”/ (u) we only consider the casg,\Ey # ()
and forC SUN (u) we restrict ourselves td) N E, = () (see Lemma 4.17).

Complementing, Scaling andMIR  We start with the base inequality (4/31). As an extensiohéo t
procedure in Section 4.3.2 choose sEtsC T, T, # () for all e € Eg and a generalised flow cover
(C1, Co) with excess\ < max(c')yer such thatC; C Ey andCy C Es.

Notice that ifC; U Cy C Eq N E5 there are no variables to complement in the base inequality
(4.31). SupposeC; U Co)\(Ey N Ez) # 0.

Let Ly := E1\C1, Ly := E)\Cs andT, := T\T, for e € Es. Complementing all design
variables in the chosen flow cover yields

FUEN+ B - Y dai+ Y dal+ D

acC,teTe ecCy teTe ecLiteT
+ g dzt — g cat — g cdal > -\
ecCateT, ecCy teT, ecLaoteT
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Similar to the last section we get
FRE) - [R(By)
+ Z (co — Nzl + Z min(c,,é — )k + Z min(c,,é — \)a!

ecC,teT, ecCq teTe ecLi,teT
+ Z —c+ Nl 4 Z min(c,, \)z! + Z min(c,, \)z!
ecCateT, ecCo,teT, e€LoteT
+,t : - t
> Z (ce. — A\)Tu, — Z min(c,, ¢ — A)u, (5.14)
ecC,teT, ecCoteTe

as a generalised flow cover inequality for the $88°! (u) andC' SV (u), wherec = max(ct);er.
We conclude this section with an example.

Example 5.12 Consider a bounded cut set with UNdirected capacity coirgsa

CSYN(u) = conv{z € Z2, f e R® | fl + f3 — fa— fi =3,

R+f-f-f=1

0 < fi+ f3+ fi + f3 < 2a1 + 321,

0 < fo +fi+f5+ [i < 205 + 33}
First note that we can calculate the flow cut inequalit{és33)that are obtained with MIR proce-
dure without complementing as described in Section 4.3ghy\f those inequalities are strong for
C SYN (u) but we will concentrate on the derivation of flow cover indiigs.

SinceCSYN (u) is a cut set with UNdirected capacity constraints, we onlyase base inequali-

ties with £y N Ey = () and sett = max(c!);er = 3. FirstletQ = {1}, £y = {1} and B, = (. The
corresponding base inequality of typ@31)is

f3 + 221 + 327 > 3.

Setting?; = {1,2} and (C1, C2) = ({1}, 0) gives a flow cover with = 2. The corresponding flow
cover inequality is given by
fa+ai>1

defining a facet oSV (u).
Now take@ = KT = {1,2}. LetE; = {1} and E;, = {2}. The base inequality of tyd.31)is
(f3 + 13) + Fi? + 22} + 323 — 208 — 323 > 4,
wheref,? = 2z} + 322 — f} — f2. SetCy = {1}, Co = P and T} = {1,2}. It follows that\ = 1
and the flow cover inequality is
fat fi+aytas— fi— fi+a+20] >3

defining a high dimensional face 6fSY" (u) (dimension> 5). Now setF; = {1,2} and Fy = (.
The base inequality is
2xt + 327 4 2} + 323 > 4.
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5.3 Summary

ChoosingC; = {1,2} andT} = T» = {2} means complementing, x2. The corresponding flow
cover inequality with\ = 2 is
m% +x%+x%+x% > 2.

defining a facet oSV (u). The same cut inequality is obtained by calculating %FMIR inequal-
ity for 221 + 322 + 223 + 322 > 4 (without complementing).

5.3 Summary

In this chapter we introduced the terms flow cover and flow p¥iék started with a literature review
in Section 5.1 and showed how well-known flow cover- and floskgaequalities can be derived with
aMIR procedure that extend the ones given in Chapter 4 by addiljocomplementing variables in
an appropriate chosen flow cover. It then turned out that énsihgle-facility case this extended
procedure is not useful for the sets considered in this shegnich are based on arc independent
capacity constraints. This is not true if more than one itsdé considered.

In Section 5.2 it was shown that the extendétR procedure to obtain flow cover inequalities
in the general multi-facility case leads to a new class afrgfrvalid inequalities.MIR-flow cover
inequalities may be used to strengthen the initial formaitain Branch & Cut algorithms in addition
to the pure flow cut inequalities of Chapter 4 obtained withriéstricted procedure.
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Chapter 6

Extensions and outlook

6.1 Introduction

In the last two chapters we made use of a gendit&d procedure that has already been developed in
Chapter 3. By aggregating inequalities of the initial fotation with respect to a cut of the network
and applyingMIR-procedure to the resulting valid inequalities it was shdvw to detect strong valid
and even facet-defining inequalities. In this chapter wecentrate on relaxations of network design
polyhedra different from cut sets and apply the saviR procedure. All the stated inequalities are
well-known and most of them are facet-defining under certainditions. We only give a review
without providing any proofs elaborating the way to applg MIR procedure. As an outlook on
future research we pose some open questions and sketchrenesting ideas.

Literature Review and outline of this chapter Single arc (or edge) sets arise from the capacity
constraint of a single arc (or edge). These sets and thespameing arc (or edge) residual capacity
inequalities for different models have been investiqate@qnanti et al. [199§. 1995], Rajan &
Atamtirk t2002b] and‘ Hoesel et élt [ZOOb, 2004]. We will consider them in ®&c6.2.

As a generalisation to cut inequalities we consider saedathulti cut inequalities in Section
6.3. Multi cut inequalities for partitions of size three baveen studied dy Magnanti et ﬁl. [1@93]
(UNdirected)L Bienstock & GUnIUIJK [1996] (BIdirected)(ﬂBienstock et am [1995] (Dlrected) for up
to two facilities. All these articles are based on the stuldgomplete three-node networks.

Section 6.4 reviews the result§ of Pochet & Wolé;ev [ib925].9 (unbounded) integer knapsack
sets with divisible coefficients. The corresponding knaksaartition inequalities can be seen as
multiple stepMIR-inequalities.

Mixing and sequential pairing d¥lIR inequalities was introduced IBV Gunlik & Pocmet [2001].
Extensions are fro% Guan et ﬁ[?OO ]. GUnIM999] shale usefulness of this approach for
network design problems. The main results are given in G@étis.

We conclude with a note on sparse networks and cut set inggsiah Section 6.6.

6.2 Arc residual capacity inequalities

For simplicity we assume that demands are disaggregateddsapter 2), hence every commodity
is given as a single point-to-point demand. Given the seteafi@hd arcd) and a commoditys =
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(u,v) € D = K, defined” := d* € Z,\{0}. Henced” is the traffic that has to be routed fromto
vfork = (u,v). If Q is a subset of the commoditids setd®? := 3", _ - d”.

Consider a Dlrected network design problem. Given a single:&f the supply graph we can
upper bound the flow om by d* for every commoditys € K since we can always delete flow around
cycles:

ff<d® VkeK,aeA.

Assume that these constraints are added to the initial filation which does not affect the optimal
solution. Givenp) C K we additionally incorporate the (relaxed) capacity caistrof the arau:

fe <> da,

teT
Setting £ := d? — f2 > 0 the following valid base inequality can be formulated:
]‘ZQ + th:vz > d.
teT

Choosings € T, applyingMIR and restating in terms of the original flow variables givesalted
arc residual capacity inequalities

2+ Gaaes(al = ¥ —d.
teT
with 79 = r(d?, %) and77§2 = (‘i—f]. Hence arc residual capacity inequalities can be obtaiged b
considering a single arc of the network and a procedure thadists ofSubstituting, Scaling and
MIR.
The same procedure can now be applied to Bldirected and ©btdul problems. For Bldirected
problems we consider the following two base inequalitieBnee for a single edge = ij of the
network and a subsé} of the commodities

}’;? + th:v’é >d? and fﬁ + th:v’é > d9
= =
with /& = d? — f2 > 0andf7 = d? — f > 0 and for UNdirected problems
fg —Ffjcl2 + thac'é > 9
teT

with f;‘f + f;cf =d? — fg — fﬁ The resulting edge residual capacity inequalities are

Bldirected: — £;? +3 " Gaa o ()t = 8@ — d9,
teT

— D Gaae ()l = P — e
teT

UNdirected: — fff - fﬁ + ngQ,cs(Ct)xi > Q@ _ 4@
teT
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6.3 Multi cut inequalities

For all arc (or edge) residual capacity inequalities thdfaments of design variables can be rounded
down tomin (Gyo .« ("), T’?’OSQ).

Edge residual capacity inequalities were introduceﬁ by Mag et a‘. ‘[199§, 1995] for UNdi-
rected problems with one and two facilities. We have geisadlthis class of inequalities to the
multi-facility case.

Outlook By introducing the variableg? := 5—%, upper bound and capacity constraints reduce to

> dyg <) clap and y<1
keQ teT

The (splittable flow) single arc set (polyhedron) ois defined as the convex hull of

{o) e 0,12 x 2L Y dtyy <y i}

keQ teT

For non-bifurcated routing (unsplittable flowhas to be restricted t0, 11<.

For a study of such polyhedra éee Magnanti H al. [15595LrR&iAtathrk fzoozﬂ and Hoesel
et al. MJ&M]. It is obvious that arc (or edge) residigdacity inequalities are valid for the
corresponding arc (or edge) set polyhedra. They are fafatidg under certain conditions. This is
proven at least for the one and two facility case (with dblsicapacities).

Magnanti et al.‘ [1995] show that edge residual capacitylasties can even be facet-defining
for NDPUN (with two divisible facilities). Their result might be demposable. As in Theorem 4.4
one might find conditions under which facet-defining inediga for arc (or edge) set polyhedra are
facet-defining for the corresponding network design paﬂyhéHoeseI et éﬁz%iob 2004] did so for
Bldirected and UNdirected problems but with non-bifurdateuting.

Applying MIR as above is equivalent to considering arc (or) edge resadymcity inequalities in
the single-facility case and then lift them to the multiifidg case by using the valid subadditivéIR
functionG (see Chapter!3). It is not clear if this lifting is exact.

Rajan & Atamtiirk [200B] state a linear-time separation procedure for arc residaphcity in-
equalities in the single-facility case. This result mightdxtendable to the multi facility case.

6.3 Multi cut inequalities

Let A = {V1,...,V;,,} be a (disjoint) partition of the noddg, with m € Z,\{0} andm > 3. A
multi cut is the set of all arcs (or edges) with endnodes ntit oone the set¥, ..., V,,,. For directed
supply graphs we define the multi cut
An =] Ay,
i=1
and similar for undirected graphs let
Ep = U Ey.
=1

be the multi cut corresponding t.
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\\/// N

(i) directed multi cutA A (ii) undirected multi cutt'a

Figure 6.1: Multi cutA\ = {V;, V5, V3}

It will be explained how to derive a multi cut inequality fotrigcted problems. At the end we will
state the corresponding inequalities for Bldirected andlldd¢ted problems. Consider an elemént
of the se2® of all subsets of\ that is not empty and that is ndt. Now let.S;, C V' be the node set
that is the union of all elements in There ar€™ — 2 such node sets. Given the cdig, , recall the

base inequality
Z c'x ) > d+

teT

that was used in Section 4.2.1 and Sedtion 4.3.1 to deriieegualities forC'SP!, whered,” = d "
denotes the total demand frofij to 1\ S,. Now for all & in 2° (not empty and not\) we simply
sum up all these base inequalities resulting in

om—2 th:vt(AA) > Z i

teT ke2s

What we have done is enumerating all cuts that corresporeetpdrtition/A and summing up all the
corresponding (base) cut inequalities. This way we couetyeink design variable for\ and every
single demand exactl™—2 times. By setting

dr = ZkeQA dli_
AT T

2m72 € ZJF

we get

> dal(Ap) = dp
teT

that we will use as a multi cut base inequality ¢ 3). Similar to the procedure in Section 4.3.1 we
can now use th#MIR functionG, . for everys € T' to obtain a multi cut inequality

ngA e (At (Ap) > 7“ 775 (6.1)

teT

d
wherers = r(d,, c,) andn’ = [=1.
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6.4 Divisible coefficients and (multi) cut inequalities

Applying the same procedure that consisted of the stepggegating, ScalingandMIR to the
base cut inequalities

> dat(Bs,) = max(dy, |d; |)

teT
and
> dal(Bs,) > df + |dy | (6.2)
teT
for Bldirected and UNdirected problems respectively, ltssn the multi cut inequality
> G, () (En) = oS (6.3)
teT
di, |d;
with  du ::{Z’€62A I;li}i(l i w € Z, for Bldirected problems and

_ Sresn (df +1dg )

dA om—1

€ Z4 for UNdirected problems.

The multi cut inequalities (6.1) and (6.3) might even bergiteened as in Section 4.3.1 by rounding
down coefficients to the value of the right hand side and cemsig min (G4, ("), rsAnsA).

. x(dyf|dy ) . -
Note that for Bldirected problemzé:‘“€2A ;“fj‘_ﬁ i is not necessarily integer. We can round

it up before theMIR step. The valugd, | = |d§k_| denotes the total demand froin\ Sy to Si.
Inequality (6.2) is obtained by applying a transformatiorite cut variables as described in Section
4.1 to ensure that there are only positive commaodities veisipect to the cutls, .

It is possible to strengthen the valdg for all three types of capacity usage. One has to consider
so-calledmetric inequalitieg(see for instancE Gunla 99]) and to incorporate @sbrpaths be-
tween demand endnodes with respect to weights that are défjnene incidence vector of the multi
cut (see also Section 6.6). This will not be done here.

NG

Outlook Bienstock & Gunluk MG] investigate multi cut inequids form = 3 of type (6.3)
and show that they can be facet-defining for the network dgsidyhedronN DP5!. An important
condition in this context is that for all node sefsof the partition it holds that both subgrapf$s; |
andG[V'\S;] are connected. With this result in mind it could be interegtio studymulti cut set
polyhedraas a generalisation of cut set polyhedra and to develop aajesation of Theorem 4/4.

Another interesting idea in the context of multi cuts is tplgghe above aggregation andiR
procedure to flow cut inequalities resultingrimulti flow cut inequalities This has been done first by
‘Rajan & AtathrH[ZOOi 2004]. The question that arises is when those inequattiegacet-defi-
ning for multi cut set polyhedra and network design polyhedr

6.4 Divisible coefficients and (multi) cut inequalities

Suppose that the set of technologiEss given by divisible base capacities and consider a network
cut Ag with S C V and the corresponding base cut inequality

Z cat(AY) > d§(+.

teT
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This base inequality defines a so-callatkger knapsack seff the form

X={xez}: ) dal>d, J,deZ,\{0}}
j=1
wherecjf,-1 € Z,\{0} andc! =1w.l.o.g..

Pochet & Wolsey [1992, 1995] investigate such sets and deetalgive a complete description
of conv(X) by considering so-callekinapsack partition inequalitiesNVe will state a multi stefMIR
procedure that produces knapsack partition inequalitigh¢ut a proof).

Let us briefly review the results and the notatioﬁ of Pochet &IW ‘[199?1 1995]: Consider
partitions of{1,...,n} into blocks

{’L'l, ...,jl}{iz, ...,jg}, ceny {ip, ...,jp} with il = 1,jp = TL,’L't = jt,1 +1 for t= 2, ey P
Defineg;, k. for every block:

Bpimd, re= L], By = i — (e — D).

cit
Note that by Lemma 3.1%8; 1 = (3, c't). A knapsack partition inequality is now given by

P t—1 Jt o P

> (I #s) Zmin(g,nt)mj > ] 5 (6.4)
t=1 s=1  j=it t=1

conv(X) is completely described by the non-negativity constraamts (6.4) with respect to all pos-
sible partitions of the index sdftl,...,n}. Let us first concentrate on partitions into two blocks
{i1, ..., j1} and{is, ..., j2}. It follows thatn := ko = [c%} andr := k1 = 7(d,c?). Hence|(6.4)
reduces to

e j2 ;
g oo
Z min(¢?, r)z; + Z mln(rcz,rn)xj > ).
j=i1 =iz
But
min(c¢/,r) = r — (7“ — cj)Jr = Qd7ci2(cj) <rn

sincec < ¢z for j < iy. Similarly,
o .
min(rCE, 7)) = min (Qd7ci2 (), 7"77)
for j > iy. The latter follows from the fact that the capacities ardsitie. Hence[(6.4) can be
obtained byMIR with scaling factorcl%-MlR plus rounding down the coefficients to the value of the
right hand side.

It follows that if the integer knapsack set is given by a bagemequality or by a base multi cut
inequality, then knapsack partition inequalities for jhns that consists of two blocks reduce to the
strengthened (multi) cut inequalities of Section/ 4.3/ar® 6.

If now the partition of the index set consistspdblocks, then the corresponding knapsack partition
inequality is obtained by g — 1-stepMIR procedure. We state an example taken from Magnanti &
Mirchandani [1993] which we already considered in Sectich2}
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Example 6.1 (continued from Example Again consider a network design polyhedron with
UNdirected capacity constraints, three facilities and arwmmodity, where! = 1, ¢2 = C €
Z,,C >1landc® = \C € Z,,)\ > 1. Given a cutEs we could formulate two strengthened cut
inequalities with theMIR procedure of Section 4.3.2:

xl(ES) + nxQ(ES) + min(ri\, rq (%} )x3(E5) >y [%} (6.5)

and
2 (Es) + min(C, ro)z%(Es) + r2a°(Es) > ra[ 351, (6.6)

withr; = r(d,C) andry = r(d, AC) These are knapsack partition inequalities. They corredpon
partitions of the index set into two blocks whete= C or ¢z = \C.

There is a third possible partition (giving a new knapsacktiian inequality) that consists of
three blocks withe’? = C and ¢ = AC. We apply a two-stepIR procedure to the base cut
inequality. First we divide by? = C and applyMIR as it has been done f@6.5) resulting in

2! (Es) + ma*(Es) + riAa® (Es) > [%1-

This is inequality(6.5) but without rounding down coefficients the value of the riggmd side. Note
that the coefficients of this inequality again are divisibléow we divide by, ., (¢3) = riA and
applyMIR. This gives

xl(Eg) + rle(ES) + rlr((%w,)\)x?’ > rlr([%l,)\)[%l (6.7)

d
Note that(”rig 1 =141 andr(ri[Z],71A) = r17([&], ). The same inequality is obtained when

evaluatingr, ko, k3 and calculating(6.4).

The last example suggests that the partit{on ..., ji }{i2, ..., j2}, ..., {ip, ..., jp } defines a se-
quence for the application ofja— 1 MIR procedure to obtain the knapsack partition inequality)(6.4

We start with the base inequalityz/ > d. If ¢ defines the vector of coefficients after the step
k — 1 of the procedure, then we divide tMIR inequality byc**+! in stepk and applyMIR again.
The resultingMIR inequality serves as the base inequality for the next stdfer Atepp — 1 of the
procedure all coefficients get rounded down to the valuefitiht hand side (if greater) resulting in
the knapsack partition inequality (6.4).

Outlook Itis obvious that they — 1 stepMIR procedure above can also be appliediiged integer
knapsack setdefined by a single constraint of the forfn+ ¢/ > d with f continuous. It follows
that the procedure might be useful when applied to simple @otinequalities similar to the way
we applied it to cut inequalities. Moreover, the procediar be applied even if the coefficients are
not divisible. It is an open question if in these cases theesponding (mixed) knapsack partition
inequalities define facets of the (mixed) integer knapsa&tk sr even the network design polyhe-
dra. It it also unknown under which conditions knapsackipaintinequalities derived from base cut
inequalities and defined for partitions of the index set getnan two define facets for cut sets.
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6.5 Mixing MIR and mixing cut set inequalities

MIR as introduced in Chapter 3 is applied to a single base iniégudhe idea of mixing is now to
consider more than one base inequality at once. This is leelmduk & Pochét‘ [20d1] and there are
some new results given ‘ln Guan e& Lal [2004].

There are many special cases and extensions. Only a motivatil be given here. LefX C
RM x 7% be a mixed integer set. Consider the following two functigyis X — R, andh’: X —
Z, withi € J := {1,....n}. Lete,d* € R, andr’ := r(d’,c). We have a collection of, valid
inequalities forX:

g'(foa) +ch(foa) > d', Viel (f,x)eX

Lets assume that > ri~1 andr® := 0

Theorem 6.2 (Gunlik & Pochet [2001]) If g : X — R, and g(f,z) > ¢'(f,z) for all i €
{1,...,n} and(f,z) € X then the following mixeMIR inequalities are valid forX:

PIROED DRl (e EUATAO ©9)

i 1

fmzZr—r W) =K (Fa) + =D =R =D, 69)

Note that if|.J| = 1 andg = ¢' then [6.8) reduces to thdIR inequality (3.10) and (6!9) reduces
to the base inequality again. So the last theorem providesiarglisation oMIR to a collection ofn
base inequalities.

Gunluk tlggb] shows how to exploit this new result for netkv design problems. As a simple
example assume to have a Bldirected problem with exactlyfagitities and divisible capacities. So
we can set! = 1 andc®> = X\. Now for everyi € J consider a cus, of the network and the
corresponding base cut inequality

2} (Es,) + Ae?(Es,) > max(d5", |d5 7).

By settingg’(f,z) := x'(Es,) andhi(f,z) := 2%(Es,) this collection of base inequalities fulfils the
conditions of Theorem 6.2. It remains to define a funcgawith g > ¢' for all i € .J. We can simply
sum up all functiong;’. But this will make the left hand side large and might resuilvieak mixed
MIR inequalities.

A wonderful idea oMk@)Q] is to consider a threetpian A := {51,52,53} of the
network and all three cutBs,, Es, and Es,. A canonic functiory with g > ¢, ¢%, g% is now given
by g(f,z) = ' (Ex). Moreover, the corresponding base multi cut inequality

21 (Ep) + Ae2(Ep) > da

provides a fourth base inequali{y. GUnIMQQ] provest inder certain conditions mixing two of
the three cut inequalities corresponding to a three pamtitir mixing a (three) multi cut inequality
with one of the three corresponding cut inequalities resulfacet-defining mixeIR inequalities
(6.8) for the polyhedrov D PP with two divisible facilities.
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Outlook Mixing MIR is somewhat restricted to a single coefficienand hence can be applied
easily to single-facility network design problems or thegéh two divisible facilities. But for the
multi-facility case more general formulas than (6.8) an@)@re missing.

It has not been tried yet to mix flow cut inequalities that fostance arise when considering all
cuts of a three partition.

6.6 A note on sparse networks

In this thesis we have mainly concentrated on cuts of the orétvand the corresponding cut set
polyhedra to develop strong validIR-inequalities. By Theorem 4.4, an important condition for
the strength of cut set inequalities is a certain connégtii the two subgraphé&/[S] andG[V'\ 5]
defined by the cut. None of the considered inequalities i tiesis does exploit the structure of
these subgraphs. This might be a drawback when optimisiagssmetworks as they are common
in practice. In Chapter 7 we can still prove the usefulnesh®fnvestigated cut set inequalities for
real-life networks but facing the fact that our separatienristics are very fast, it might be worth to
spend more time for incorporating the structurespf] andG[V'\S].

There is not much research on how to strengthen cut set ihiégegidor sparse graphs. Some
ideas can be found fn Ortega & Wolséy [2b03]. Given a4ytand a single commodity = (u,v)
in KT, they are able to strengthen cut as well as simple flow cutiakites for uncapacitated, fixed-
charge network design problems by considering subsetedfitut arcsd s that are reachable from
the demand endnodesando.

Bienstock et al.‘ [1995] aHd Bienstock & GUnIdk [1996] exijtly calculate subset$ with the
property thatG[S] and G[V'\S] are strongly connected (directed graphs) or connectedréated
graphs). They do this in addition to fast (contraction) &ios as those used in Chapter 7 and report
good results for some of their considered networks.

6.7 Summary

It was shown that th#IR procedure introduced in Chapter 3 is not restricted to nétwots. There
are various classes of strong valid inequalities for neftwagsign polyhedra that can be derived.
Similar to cut sets and cut set inequalities all stated iaéties correspond to relaxations obtained by
considering certain network structures. For multi cut uredigies, arc residual capacity inequalities
and knapsack patrtition inequalities we could directly gppir MIR procedure, whereas for mixing
MIR several base inequalities had to be considered at oncealjsimgy the procedure used in the last
chapters.

It might be possible to strengthen the base inequalitiesafloclasses of strong valiVIR-in-
equalities considered in this thesis if the underlying beagre sparse.
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Chapter 7

Separation, Implementation and
Computational Results

7.1 Introduction

Due to time limits for this thesis, this chapter mainly addies the separation and implementation of
the cut set inequalities investigated in Chapter 4 but wiedigtuss the usefulness of those inequalities
both for bounded and unbounded network design polyhedra.

Literature review and complexity of separation Mirchandani M‘Q ] proves that finding a node
setS that gives a violated cut inequality in the single-commpdiase (single source), single sink

t)) is amax flowproblem, for which polynomial time algorithms exkt (Sgber If2003]) ‘Atamturk
EO%Z] shows that the generalised problem of finding a vealdtow cut inequality is equivalent to a
s-t mincut problem with negative weights on some arcs, whicWi®-hard, having the-t maxcut
problem as a special ca%e (Garey & Johh}son [1979]). Remeimtesut inequalities form a subclass
of general flow cut inequalities. The multi-commodity casé\iP-hard even for cut inequalities,
again by reduction to thmaxcutproblem (Baharona [1994]).

There is no literature about the simultaneous determinaifdhe setsS, Q, A{ and A; to find
violated flow cut inequalities. All approaches are based erothposing the separation procedure.
The effectiveness of cut inequalities for network desigmbfgms W|th|n a Branch & Cut framework
was investigated bk/ Magnanti et a{l [199%1 Bienstock etﬂ]aQQé] [1996],
Gunluﬂ( 519] antﬁ Atamtii ﬁ [2002]. All of them use hetiigs for the separation of a node st
Bienstock et ah ‘ [1995h Bienstock & Gunl‘u‘k [1596] a{nd AtHIrk f2002] consider the separation of
(simple) flow cut inequalities and implemented dlfferenumm{lcs for the determination of appro-
priate commaodity subset9, given a fixed node sef. ] is the first to state an exact
polynomial time algorithm for the separation of the arc séfs and A5, given a fixed cut of the
network and a fixed commodity subset.

Outline of this chapter We will first recall the inequalities developed in Chaptehdtthave been
used in the implementation. The separation problem will néd in Section 7.2 and we will
show how to decompose it, which motivates a separation ighgorconsisting of heuristics for the
determination of node sets and commodity subsets and am gea@edure that computes arc sets
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(edge sets) of the considered cut. When developing thigitigo we make use of the results of
Chapter 4.

Section 7.3 addresses some more detailed implementaéispatts. We will discuss some modi-
fications of the initial separation algorithm and in Secfiofi our approach will be tested against real
world network design problems.

Inequalities We consider the following strong valid inequalities forwetk design polyhedra. In
Chapter 4 we studied general flow cut inequalities of the form

NDPP!:
FAUAD) = FAUAD) + Y Gaer (Do (AT) + D (e + Gaes (—c))at (A7) > @@ (7.2)
teT teT
NDPBI and NDPUN:
FRE) = fUED) + Y Gae()a'(Br) + D (e + Gues (=)l (Ba) > r¥l,  (7.2)
teT teT

with & = r(d¥, ¢*) andn? = [i—%}. A general flow cut inequality is defined by a node Set V,
a subset) of the commoditiess’, arc setsd]” C AL andA| C Ay (edge set€, B> C Eg) and a
facility s € T

We restrict our attention t@ C K+ and@Q C K~ because in Chapter 4 we proved facet theorems
for these cases. In Section 4.3 it was shown that flow cut mlé@s can be strengthenedAf, = ()
(B2 = 0) by rounding down coefficients to the value of the right haide sleading to (strengthened)
simple flow cut inequalities:

NDPP!: fOAT) + me (r@n@, Ga.cs ()l (AT) > r@n@ (7.3)
teT

NDPB andNDPYV: FUED) + min(r@n?, Gaes ()2 (Br) = r¥nf  (7.4)
teT

Eventually the new cut set inequality
ca(Br) + (e =" )a(B) + f(BD) = F (BN 2 e =% (7.5)

with 75" = (a5, ¢) will be considered. It was introduced in Section 4.2.2 fodiBicted and
UNdirected problems in the single facility case and we statéacet proof (By switching t&"\ S if
necessary, we assume tlzizgﬁ+ > ]d{;,(*\). A generalisation of these inequalities to the multiHiagci
case (byMIR) is not known but it might still be interesting to use themtst instances witf{’| = 1.
For this cut set inequality we need to determie V andFE; C Eg.

7.2 Separation

Preliminaries Theseparation problenmas already been sketched in the literature review. For com-
pleteness we will now state some definitions that will be usethis section. LetP C R" be a
polyhedron and a point inR"™. Theseparation problemis now to decide whethef € P, and if
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not, to find a hyperplane that separatesom P, more precisely to find a vectdn,d) € R" x R
such that the inequality” x > d is valid for P but violated by the poinp. In general, given a valid
inequalitya™z > d for P and a poinp € R"”, we calld — a”p the correspondingiolation. Hence
the pointp is not in P if the violation is positive.

The euclidiardistancefrom p to the hyperplane defined lyf = = d is given by

|d — a”p|
[

where||-|| denotes the euclidian norm .

Let (af,d;) € R” x Rand(aZ,d,) € R™ x R define two hyperplanes iR". Then itsorthogo-
nality o(a,, a,) is given by

0 <o(ay,ay) = U <1
o lla [[flag]l —

The hyperplanes are parallel if and only if its orthogowyaditjuals zero and they are orthogonal if and
only if its orthogonality is onel — o(a4, a,) will be called theparallelism of the two hyperplanes.

In fact we are not faced with the general separation problemneabut with the problem of finding
a violated inequality from a class of valid inequalities #8r Let I be a finite index set and let

C={(a;,d,) e R" xR : i eI} define aclass of valid inequalities fé.
alx >d; NrePiel.

Given a pointp, the separation problem far is to findi € I such thata]p < d, or to decide that
such an inequality i’ does not exist. Note that the latter does not implg P. The separation
problem forC' is obviously equivalent to the problem of findingrest violatedinequality inC, that
is to determingj € I that maximises the violation with respectio

(dj —ajp) > (d; —a;p) foral iel.

A most violated inequality always exists but it is not neeeitg unique. Moreover, a most violated
inequality is not violated by if and only if there is no violated inequality i@’

Decomposition Given a network design polyhedron and a pgint (f, ), the separation prob-
lem for (simple) flow cut inequalities or cut set inequatitief type [(7.5) reduces to the problem of
simultaneously determining a node $gta commodity subsép and arc- or edge sets of the @)
that give a most violated inequality. Due to the mentionexlilteof &Baharonaj&ﬂ) this problem
is N'P-hard for all three classes of inequalities. Note that byirept); = Fg, (7.2) can also be seen
as a superclass of cut inequalities as shown in the proof ebEm 4.29.

We will use the following decomposition approach as a sdjgerdneuristic for the mentioned
inequalities:

e Heuristically compute a promising cut of the network (nodes.
e Given a node seft, heuristically compute a promising commodity subQet

e Given a node sef and a commodity subs&p, compute a most violated (simple) flow cut
inequality or a most violated cut set inequality (7.2).
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Note that if the network cut is fixed, the complexity of sepiag flow cut inequalities is an open
question even for the single-facility case. For some spesises se Atathr@OZ]. In general
we do not know an efficient way to choose commodity subsetsgikia most violated inequalities.
But as we will see, it is possible to exactly separate theidensd inequalities if both the cut and
the commodity subset are fixed. There are many possible asiswihe question, what gromising
Some of them will be considered in the following.

Although not tested, the author believes that this decoitippsapproach is even useful for the
flow cover inequalities considered in Chapter 5. A col@r, C~) with C*t C Af andC~ C A
has to be found in addition. One could extend the approacheayp a fourth step, that consists of
finding an appropriate cover.

Finding a node setS The most simple approach for finding cuts of the network thag giolated
flow cut inequalities is that of enumerating all node setdwaitsmall number of nodes i# in each
iteration of the cutting plane phase. This approach has bse@bﬂt Magnanti et é‘ [1995]1| < 5)
and@Z] IS] = 1). It might be useful for small instances and at the beginmifthe
Branch & Cut algorithm. But once all violated flow cut ineqtiak corresponding to small sized
node sets are added to the initial formulation, one has tonmse general heuristics.

A more promising idea &)f Bienstock et él. [1§95] énd Bienkt&dGlunluk ﬁ1996] is to consider
subsetsS only if G[S] andG[V'\S] are connected (undirected graphs) or strongly connectezt{ed
supply graphs). Recall from Section 4.1 that a cut set inggusfacet defining for a network design
polyhedron if it defines a facet for the corresponding cuiaset if G[S] andG[V'\ S| are (strongly)
connected. Bienstock et SLI. [1995] énd Bienstock & GUI’ﬂﬂiﬂQé] call node set§ with that property
strong(or critical) and enumerate all strong node sets at the beginning of tivmisation procedure
(for networks with|V| < 27 and|A| < 102). Although there are potentiallg!”! node sets to be
considered, real-life networks are usually fairly spansehsthat the number of strong node sets is
limited, so it might be attractive to enumerate at least sofiteem.

A very fast and general separation heuristic has been pedg®d successfully used by Bienstock
et al. ‘[1995] an(fl GUnIiW [19@9]. Since we basically usédrthpproach in our implementation we
explain it here in more detail. It is in fact the only one thapleits the values of the current primal
solutionp = (f, ). The idea is that if on arcs of the cut the installed capasitiaige compared to
the current flow, then it its unlikely that a flow cut inequgli$ violated. Thus we concentrate on cuts
that have few arcs with large slack of the corresponding @gpeonstraint. Define the arc weights:

Directed:  w,:=» c'al, — fX acA
ieT

Bldirected: w, :=» c'zl —max(ff,f{) e=ijcE
ieT

UNdirected: w, :=> _c'zl — (f§ + £f) e=ijekE.
ieT

In Algorithm[7.1 acontraction procedure is applied to the network using the weightqw.). The
graph shrinks until it has exactlSizenodes. We do that by contracting the endnodes of arcs with
large slack. Sée Grotschel e{ ial. [1988] for a thorough rifgtgan of this operation.
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In each step of the algorithm the s&tcontains a partitioryy, ..., V), of the noded” with PSize<
p < |V|. AssumePSize> 2 and letV, be the unique node set ih containing the node. Algorithm
terminates with all cuts corresponding to the shrunkeply

Input : pointp = (f,z), PSize>2, G = (V,A) (G = (V,E))connected witiV’| > PSize
Output : a list of2PSz&-1 _ 1 subsets of/, all corresponding to different cuts of the network

Calculate the slack weights, (or w,) for all arcs (for all edges).
Prepare a list of all arcs (or edges) in decreasing order,qbr w.).
Initialise A :={V; : i € V } whereV} := {i} foralli € VV
while |A| > PSize do
Popa = (u,v) (or e = uv) from the top of the list of arcs (or edges).
if V,#1V, then
Contract the endnodes of ar¢or edger): LetV = V,,UV,,. SetA «— AU{V}I\{V,, V,}.
end if
end while
Considering the contracted graph defined/byenumerate all cuts and return the corresponding
node sets as a list.

=
e

Algorithm 7.1:  NODESETSBYCONTRACTION(p, PSize G)

Note that step 2 is not unique. Arcs with the same slack vaduebe sorted arbitrarily (or ran-
domly). Algorithm 7.1 works correctly since the contracgrdph defined by\ remains connected
during the algorithm. Calculating the weights rungi(|A||T"|) and sorting them IO (| A|log|A|).
The computation time of the shrinking procedure is boundethb number of arcs (assuming that
contracting two nodes of a graph can be done in constant.tiBelmerating the cuts of the final
graph is exponential ifPSize But assumingPSizeto be small and constant over all instances, the
running time for Algorithm 7.1 is irD (| A|(|T| 4 log|A|) (resp.O(|E|(|T| + log|E|)).

There are several possible extensions to Algorithm 7.1e&usof using slack weights,, GUnluﬂi
@] additionally considers the value of the dual vaiéah) corresponding to the capacity constraint
and the current fractional solution and uses weights= w, — |q|.

Another idea is that of “kicking” (Bienstock et ‘ai. [1995])Given a node seb from the list
returned by Algorithm 7)1, one can also cheg¥{i} or S U {i} for violated flow cut inequalities,
where: € V\S.

Input : nodesetS C V, netdemandg’ forallic V,ke K

Output : Dlrected, Bldirected: a list. of positive and negative commaodity subsets
UNdirected: a listL of positive commodity subsets

1: Calculated? = 3", g df forall k € K

2: return L :={K"} U{K"}Uper+ur-{k}

Algorithm 7.2:  COMMODITYSUBSETS(.S, d)

Finding a commaodity subset) In general no polynomial-time algorithm is known to find ajpeo
commaodity subset even if the arc sets are fixed.
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All mentioned authors use very basic heuristics similahtodne that we use for our implementa-
tion. Given a fixed node sét, we only consider commodity subsé&pswith an aggregated demand of
dg # 0. We concentrate on singleton commodities and thelSetand K ~ as defined in Section 4.1.
Those commodity subsets are put into a list by Algorithm 7kécv runs inO (| K||V'|). Remember
that for UNdirected problems we assutie = ().

Arc sets A;“, A, oredge setsE;, Eo Atamturk mZ] states a procedure that, given a fixed cut
and a fixed commodity subset, exactly separates flow cut The procedure is given by
Algorithm[7.3 whereARCSETSGFCI is the version l&%OZ] for Dlrected problems and
EDGESETSGFCI is a transformation for the Bldirected and UNdirected case.

Input : pointp = (f,Z), node setS ¢ V, commodity subse) C K, facility s € T
Output : arc setsd] C A andA; C Ag Output : edge setF;, F» C Eg
1 Af ={a€ AL : Gy (Tl < f_}?} 1 Ey:={e=1ij € Eg: Gy ()Tl < fg}
2: Ay =={acAy: 2: By ={e=1ij€ Eg:
(" + Gaes (=T, < [} (" + Gues (—eNT < f2}
3: return (A7, A7) 3: return (Ey, E»)
Algorithm 7.3:  ARCSETSGFCI(p, S, Q, s) EDGESETSGFCI(p, S, Q, s)

These algorithms have a running time(xi| As||T|) respectivelyO(|Es||T'|) since theMIR co-
efficientsGy .« (¢') and(c’ + G4 .« (—c")) are evaluated in constant time.

Lemma 7.1 Given a pointp = (f, ), a node set5 # (), a commodity subse&) # () and a facility
s € T, Algorithm[ 7.3 calculates subse}&lsjr and A; of the arcsAg and Ay (subsetst; and B, of
the edged’s) that give a most violated (general) flow cut inequalityl) (or (7.2)).

Proof. Since the Directed case is a result 002] we@ gite a proof for Bldirected and
UNdirected problems here. Suppase and E; are the two subsets chosen with Algorithm|7.3. We
assume that the statement is not truefsand £5 do not give a most violated flow cut inequality.
Hence there exist subsets and £, of Eg which lead to a a smaller left hand side value when
evaluating the corresponding flow cut inequality:

fOUES) - +ng es ()3 (E3) +Z !+ Gaes (=) 7' (Ey)
teT teT

< FUED) = FAEY) + ) Gae (DT (E) + D (" + Gaes(—c))T' (E).
teT teT

Now we show that by (resorting edges and) switching figsrto £, and fromE, to £ we can only
make the left hand side smaller which contradicts the assamp
We use the fact that; = (El\(E3 N El)) U (E3 N El) andb, = (EQ\(E4 N Ez)) U (E4 N Ez):

FUES) = FUED) + D Gaes ()T (Bs) + D (¢ + Gaes(—c")) T (Ea)

teT teT
= FUE) = FUEy) + > Gaes ()3 (Br) + D (" + Gaes (—c))7" (E2)
terT teT
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B NES) +) Gae()T' (B3N Ey)

teT

+fES NEY) = Gaes()Z' (B3N Ey)
teT

+fE; NEy) = (¢ + Gaer(—¢))T (Ea N Ey)
teT

—fE; NEy +ZC + Gaes (—")Z(Eg N Es)
teT

> JUED) = FUB) + Y Gae ()T (E) + ) (¢ + Gaos (—¢) (Ea).
teT teT

The=is simply rewriting and the> follows from the choice ofy; and Es in our procedure and is a
contradiction to the assumption thiaf and E's do not give a most violated inequality. This completes
the proof. [ |

To find a most violated strengthened simple flow cut inequalie have to apply a different
separation procedure as the one for general flow cut inggsaibove (see Algorithm 7.4). The
running time of these procedures is agaiifjAs||T|) (resp.O(|Es||T|)). To prove that they yield
a most violated strengthened simple flow cut inequality pbirmodify the proof of Lemma 7.1

Lemma 7.2 Given a pointp = (f, ), a node set5 # (), a commodity subs&p # () and a facility
s € T, Algorithm 7.4 calculates a subseft!g“ of the arcsAJSr (a subsetr; of the edged’s) that gives
a most violated simple flow cut inequal{f.3) ((7.4)).

Input : pointp = (f,z), nodeselS C V, commodity subsef) C K, facilitysec T
Output : arc setd] C A Output : edge setF; C Eg
1: return A = {a € A} : 1 return Ep:={e=1ij € Eg:
min(réne, Ga.e () < f&} min(réne, o+ ()zl) < f}
Algorithm 7.4:  ARCSETSFCI(p, S, Q, s) EDGESETSFCI(p, S, Q, )

Eventually consider the new cut set inequality (7.5) fogkrfacility Bldirected or UNdirected
problems. For a fixed cut of the network defineddby V' exact separation is done by Algorithm 7.5
in O(|Es|)-time.

Input : pointp = (f,z), nodesels CV
Output: an edge sef; C Eg
1 retumn By ={e=ije Eg: vf'z, < fET - KT

e

Algorithm 7.5:  EDGESETNCSI(p, S)

Lemma 7.3 Given a pointp = (f,z) and a node se§ # (), Algorithm[7.5 calculates a subsg}
that gives a most violated cut set inequalifys).
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Proof. Assume thatF; is chosen with the described procedure and suppose it doegveca most
violated inequality. Hence there exidis C Eg with smaller left hand side:

c(Bs) + (c =" )z (Eo) + FX7(By) — 77 (E5)
< czZ(E) + (c - 7“K+)9?(E1) + [N (B - T (B

But with Ey = (El\(EQ N El)) U (E2 N El) it follows
cT(By) + (¢ — ") a(Bo) + f5 (By) — 57 (E7)

= cx(By) + (c— K a(By) + X)) - 7B

—|—Cf(E2 N El) — CZE(EQ N El)
+(C—TK+)E(EQQE1) — (C—TK+)E(EQHE1)
+fE By N EY) — FXN(Ey nEBY)

— 5 (B n EY) + By n EY)

= ci(Br) + (c—rK)a(By) + FX(BD) - FRT(ED)

K 2 (Ey N Ey) — K 2 (By N Ey)
+fET By N EY) — FXN(Ey nEY)

— 5 (B n EY) + 5By N EY)

> ci(By) + (e — KN a(By) + FXT(ED) - FET(ED).

The first= is rewriting while the final> follows from the way we have chosdry and is a contra-
diction to the assumption th#t; does not give a most violated inequality. The proof is coteplell

The three parts of the decomposition are now integratedarsgparation procedure. The proce-
dure is given by Algorithm 7.6 for Bldirected and UNdirectemblems. The procedure for Directed
problems is similar except for the steéps 5 to 8, the separatidhe cut set inequality (7.5), which
is omitted. Note that in step 14 we concentrate on (genemi) ¢ut inequalities that are not simple
because we consider strengthened simple flow cut inegqsaigparately. For every combination of
cuts and commodity subsets, which are determined hewadigtiand for every facility the algorithm
computes a most violated general flow cut inequality (notps#nand a most violated simple flow
cut inequality. If7 = 1 a most violated cut set inequality (7.5) is calculated initalal All these
inequalities are put into a pool, which finally can be quitgéa The next section tries to answer the
question, how to handle a large amount of violated inedaali¢ffectively and how to integrate the
separation procedure into a Branch & Cut algorithm. The ingntime for the separation heuristic
Algorithm|7.6 can roughly be estimated by

O(|K|(|T|?|Allog|A| + V) respectively O(|K|(|T*|E|log|E| + |V])).

Note that the number of node sets calculated in/step 2 doetepend on the instance but on the size
of the final partitionPSize But since the number of node sets is exponentid? 8izethe implicit
factor in the estimate can be quite large. For UNdirectedlpras one has to ensure thidt = ()

in stepg 4. Given a cuk’s, this can be done by swapping flow variables for negative codities as
described in Sectidn 4.1.
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Input : pointp = (f,z), PSize>2, G = (V,E), netdemandd’,ic V,ke K
faciliies T, capacities!,t € T

Output : a poolCut Pool of flow cut inequalities (7.2), simple flow cut inequaliti€s4) and
cut set inequalities (7.5) all violated kpy

1: Initialise CutPool := (.

2: Lg = NODESETSBYCONTRACTION(p, PSize 7)

3 for S € Lgdo

4:  For UNdirected problems ensure tHat = () (by swapping flow variables).

5. if |T| = 1then

6 FE; =EDGESETSNCSI(p, S)

7 Calculate the unique cut set inequality (7.5) werand E1, if violated put it to theC'ut Pool.
8 endif

9:  Lg = COMMODITYSUBSETS(S, d)

10: for Q € Lgdo

11: If @ C K~ then setS := V'\S. (Ensure to consider positive commodity subsets.)

12: for s € T'do

13: (E1, Ey) = EDGESETSGFCI(p, S, Q, s)

14: if By # () then

15: Calculate the unique flow cut inequality (7.2) w$.tQ, E1, E> ands, if violated put

it to the CutPool.

16: end if

17: E; =EDGESETSFCI(p, S, Q, s)

18: Calculate the unigue simple flow cut inequality (7.4) ws,1Q, E; ands, if violated put|
it to the Cut Pool.

19: end for

20: end for

21: end for

22: return CutPool

Algorithm 7.6:  SEPARATIONHEURISTICFLOWCUT(p, PSizeG, d, T, ¢)

Algorithm 7.6 only provides a general framework. It will beodified and extended in the next
section.

Summary We have defined and discussed the separation problem foraéiogs cut inequalities,
for simple flow cut inequalities and for the new cut set indijjea (7.5).

The problem has been decomposed and a fast separation ®des been proposed that ex-
ploits the value of the poini and that is able to calculate a pool of inequalities all \ediebyp.

7.3 Implementational aspects

In the following it will be discussed how to integrate a sep@n heuristic such as Algorithm 7.6 into
a state-of-the-art Branch & Cut framework. We used CPLEXd B.OG [2005]) for the implementa-
tion. CPLEX applies a bunch of separators, heuristics aaddbing rules within a Branch & Bound
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framework to solve general mixed integer programs. We il hat this generic approach together
with the cutting planes specific for network design problgrmsvides a powerful tool to optimise
even larger networks.

CPLEX’s default settings were not changed and we made usallbbcksto integrate our sepa-
ration heuristic into the Branch & Cut algorithm. A user-an cut-callback is called at each node of
the Branch & Bound tree having an LP optimal solutjpthat is fractional and that has an objective
below the best known upper bound. The callback may add djotsalid inequalities to the initial
formulation, that are violated by. These inequalities remain part of all subsequent sublgmuh
and apply throughout the Branch & Bound tree. There is no elgtidn @3 2005)).

Modifications and improvements of the separation heuristic In a first attempt Algorithm 7.6 was
implemented as a callback without any modifications andiallted inequalities were added to the
formulation. We were interested in the behaviour of the ssfmn heuristic within CPLEX’s Branch
& Cut framework. The results of the initial experiments wdigappointing. We will not state them
in detail but will summarise the main drawbacks of a naivelenmentation of Algorithm 7.6 in the
following:

e Although cut inequalities form a subclass of all three coeed classes of inequalities they are
seldomly added to th€utPool. Given a cut of the network and one of the sat$ or K,
cut inequalities almost never belong to the most violatedjiralities calculated by Algorithm
'7.6. The absence of strong cut inequalities really redunepérformance. Figure 7.1 shows
a usual distribution of the most violated inequalities amelinequalities that are most violated
and in fact violated by considered by Algorithm 716.

4,48% 0,69%

[ cut inequalities

[ other ine-
qualities

[ cut inequalities

[ other ine-
qualities

95,52% 99,31%

() |T| > 1: 4915712 most violated inequalities (i) |7 > 1: 500373 of 4915712 inequalities violated by

Figure 7.1: Distributions of (most) violated inequalitesdculated bySEPARATIONHEURISTICFLOWCUT
The statistics were made by testing Algorithm 7.6 as a celdlzayainst 10 instances all modelled Bldirected
and a time limit of30 minutes.

e The violation of an inequality seems not to be a good measurigsfquality, i. e., its ability to
increase the lower bound.

e The number of violated inequalities found by the separatagriormous for most of the in-
stances. Adding them all leads to large LP-relaxations aageeptable computation times for
solving them.
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e The same inequality might be added to thet Pool several times and many inequalities in the
pool are almost parallel (with an orthogonality close tazer

As a first improvement it was decided to implement a secondraéipn heuristic that solely com-
putes cut inequalities. Given a cdfy and a facilitys € T, we consider the two (strengthened) cut
inequalities

S min (I 3 G () ' (AF) 2 K T and 7.6
teT
D_min (s Gaes () 2 (A5) = 7m0 (7.7)
teT

) dK+ _ _ _ dK7
for Directed problems with " n " = r(a ™, ¢*)[4-] andr® pE = r(jdk |, ¢*)[E]. For
Bldirected and UNdirected problems, a dut and a facilitys € T we consider the (strengthened)

cut inequality

> min (r(d, ¢*)[ 4], Gaes (') a'(Es) > r(d, ¢ [ 2], (7.8)

teT

whered := max(d§+, |d5 " |). Algorithm[7.7 uses the same contraction procedure as Atgoi7.6
and checks all cut inequalities corresponding to the cutseshrunken graph for violation.

Input : pointp = (f,z), PSize>2, G = (V,E)orG = (V,A),
net demanddf, i€ V,ke K facilitiesT, capacities!,tc T
Output : a poolCutPool of cut inequalities all violated by
1: Initialise Cut Pool := 0.
2. Ls = NODESETSBYCONTRACTION(p, PSize G)
3: for S e Lgdo
4:  CalculateK+ and K~ with respect toS.

5:  For UNdirected problems ensure that = () (by swapping flow variables).
6: forseTdo

7 Dlrected: If (7.6) is violated by add it to theCut Pool.

8: Dlrected: If (7.7) is violated by add it to theCut Pool.

9: Bldirected, UNdirected: If (7.8) is violated kyadd it to theC'ut Pool.

10:  end for

11: end for

12: return CutPool

Algorithm 7.7:  SEPARATIONHEURISTICCUT(p, PSize G, d, T, ¢)

We are now faced with two different separation heuristieg tan be used independently from
each other. To further improve the overall performance sadgitional modifications have been
implemented. To determine the standard settings for lofsachmeters, a series of tests has been
done for all instances. We cannot give a detailed parameteuskion here. We only sketch some of
the improvements and motivate some settings:
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e Only add violated inequalities to theéut Pool if they are not too parallel to inequalities already
in the pool and to inequalities already in the formulation.

¢ Introduce a measure for the efficiency of a violated inedyialive used a linear combination
of the distance to the fractional poiptand the parallelism with respect to the hyperplane given
by the objective function.

Add a violated inequality to the pool only if its efficiencygseater than a certain minimum. The
minimal efficiency should be changed dynamically. Incregi$éhere are too many inequalities
added and decrease it if the pool is (almost) empty.

After the termination of the separation heuristics the ik sorted with respect to the effi-
ciency and only a small number of the best inequalities (Wtge distance t@ and almost
parallel to the objective) in the pool is added to the forrtiata

e Limit the total number of separated inequalities. nifis the number of rows of the initial
formulation, we not allowed the callbacks to add more thaautting planes during the whole
optimisation process.

e Do not apply the separation heuristics at every node of tem@r & Bound tree but only in
certain depths.

e The separation of (simple) flow cut inequalities and cutsetjualities of type (7.5) should be
done carefully. It turned out that it is useful to apply theduales Algorithm 7.7 and Algorithm
7.6 in a hierarchical manner. We only executed the modulertlyn/ 7.6 if in a certain number
of iterations there were no violated cut inequalities.

e The size of the shrunken graph calculated by Algorithm 7dukhbe small,2 < PSize<
5. We fixed PSize:= 3 and the module Algorithm 7.7 additionally checked all mugitit
inequalities[(6.1) of (6.3) and added them to the pool ifatied.

With these modifications we are now prepared for the finaktekthe efficiency of our separation
heuristics.

7.4 Computational results

7.4.1 Data sets

For our tests we selected instances frorHSINaDIib 1.0 — Survivable Network Design Data Library
@], which has been launched recently by R. Wessaly andibto and contains realistic data sets
for (survivable) telecommunication network design. Tahle states all used problems.

Each instance is given by a supply graph (notleand links E), a set of (directed) demands3
and a set of installable link desigfis Demands were aggregated to obtain a set of commodities
as described in Section 2.2.1. It holds for all selectechimets that every technology is installable on
all links of the network. To model Bldirected and UNdirecfmdblems as considered in this thesis,
every link was interpreted as being undirected. For Dlctgimblems it was assumed that for every
link between nodes andwv there is an directed ara:, v) and an directed art, «), such that the
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problem 4 |E| D] K| 7|
di-yuan 11 42 22 8 7
newyork 16 49 240 16 2
zib16 16 51 7 15 5
nobel-germany 17 26 121 15 40
france 25 45 300 25 1
norway 27 51 702 27

sun 27 102 67 18 1
nobel-eu 28 41 378 27 40
pioro40 40 89 780 39

zib54 54 81 1501 42 1
ta2 65 108 1869 42 11

Table 7.1: Data set frof8NDIib 1.0 — Survivable Network Design Data Libﬂéﬂﬁ‘ﬁoé]

total number of arc&4| equal2| E|. Every given pre-installed capacity was removed. We ceneitl
modular link capacities as well as explicit link capaciti&#gere is no flow cost.

All calculations were done on2x 3 GHz machine witht MB of memory. The computational
results are presented in Appendix A in detail. Table|A.1,|I§a%2 and Table A.3 report results
for modular link capacities and the problem types DirecBddjrected and UNdirected respectively.
Tablg A.4, Table A.5 and Table A.6 show the efficiency of thesidered separation heuristics in the
presence of additional GUB constraints and hence modelfsaxilicit link capacities.

Every problem was tested with CPLEX and no callbacks, with EXRand the separation of cut
as well as multi cut inequalities and eventually with an iempéntation that used both separation
heuristics Algorithm 7.7 and Algorithm 7.6.

In the following we will analyse these results and state setatstics. First note that comparing
the performance of different test cycles is difficult andthade done carefully. Every single violated
inequality we add to the initial formulation influences wars sub-algorithms that are used by CPLEX
within the Branch & Cut framework such as heuristics, genpuapose separators and branching
rules. Note that we do not test our separation heuristidsinvit pure Branch & Bound algorithm but
within (and against) a sophisticated state- of-the-art8ibRer. Nevertheless, the results may serve
as an indicator of the efficiency of our separation heusstic

7.4.2 Results for modular link capacities

After the implementation of all mentioned modifications ke tfirst approach, the distribution of
inequalities that are added to the initial formulation hharged drastically. Since the separation of
cut inequalities is now considered separately, these adiigs now dominate the overall separation
process. This can be seen in Figure 7.2 when compared toeFiglur This change of the distribution
has made the solution process much faster and robust andecsgeh as the major reason for the
excellent results that have been obtained.

Before giving an overall statistic we briefly summarise thsults reported by Table A.1, Table
'A.2 and Table A.B for modular link capacities. The most int@ot observations are the following:
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7,34%

[ cut inequalities

M multi cut in-
equalities

M other ine-
qualities

A cut inequalities
[l multi cut in-
equalities

92,66%

(i) Algorithm[7.7 only (i) Both separation heuristics

Figure 7.2: Distribution of separated inequalities — madabpacities

e For all data sets and all problem types we could reduce thgutation time or the final gap.

e By only applying the separation heuristic Algorithm [7.7 @egharating cut as well as multi cut
inequality the acceleration of the optimisation procesnisrmous.

e Additionally separating (simple) flow cut inequalities bygarithm|[7.6 still results in an im-
provement of the overall performance but this improvemghiall.

e The separation heuristics behave robust and stable. Tieeladelqualities have integer coeffi-
cients that are small with respect to the given capacitiés;twfollows from Corollary 3.8. We
reported numerical problems only for a single test instahaeto ill posed data (see below).

The behaviour of the separation heuristics was indeperidantthe problem type. This is due to
the fact that the heuristics pay regard to the differentcstine of the models. In the following we will
not distinguish them anymore but consider all instancesie¢.0

I cplex

I cplex + ci + mci

[l cplex + ci + mci + fci
]

I cplex

I cplex + ci + mci

[l cplex + ci + mci + fci

CPU time B & B nodes

Figure 7.3: Easy to solve test instances and improvemerds fima adding separation heuristics to CPLEX'’s
default MIP-solver — modular link capacities

There arell data sets and problem types. From th&3 resulting instance8 could be solved
within the time limit of 1 hour by CPLEX independently from adding separators or nair &
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3 instances we reduced the computation time as well as thiediSiranch & Bound nodes when
adding our separation heuristics. For anothi@nstances CPLEX ended up with a gap betwgén
and 8% but the problems were solved when applying our separatong sblution time was even
under10 minutes for most of them.

We were obviously able to add all the necessary strong gustames for thesél small to medium
sized examples. Figure 7.3 provides a statistic for thempemimg the solution time and the visited
nodes during Branch & Bound for adding cut and multi cut ireiies (ci + mci), for adding all
considered cutting planes (ci + mci + fci) in ratio to the \edwbtained by CPLEX without callbacks
(cplex). If CPLEX ended up with a gap we considered a soluiiime of 1 hour and the nodes so far
visited. Hence the actual improvement is even greater thawrs by Figure 7.3.

For the remainin@2 instances that could not be solved to optimality the endgagre signifi-
cantly better when applying the separators an@fasf them we improved the best solution. The final
gap could be reduced fdB of those22 instances by more thaiv%. Even large instances as zib54
ended up with a gap undeb%. Figure 7.4 reports the improvements made in the lower apeémup
bound, the final gap and the number of nodes in the searchdede ia ratio to the values obtained
by CPLEX'’s default MIP-solver. We can provide better sant and better quality certificates and
need to explore less Branch & Bound nodes for it.

I cplex

1.2 [ cplex + ci + mci

H cplex + ci + mci + fci
]

I cplex

I cplex + ci + mci

B cplex + ci + mci + fci
]

B cplex

I cplex + ci + mci

M cplex + ci + mci + fci
]

I cplex

I cplex + ci + mci

B cplex + ci + mci + feci

lower upper gap B & B nodes

Figure 7.4: Hard to solve test instances and improvementterbg adding separation heuristics to CPLEX’s
default MIP-solver — modular link capacities

Both charts show that there is a great progress when oniy@adudit and multi cut inequalities.
The performance is still perceivable better when additigrszparating (simple) flow cut inequalities
but it is only a small improvement.

We had some problems with three of the instances. AlthoughCAU time consumed by the
separation heuristics can be neglected for the rest ofrioeta for nobel-germany and nobel-eu it is
simply too large. These two examples have a large numbercditiss. Our separation heuristics
try to detect violated cutting planes for every given bageacdy in each iteration. More research is
needed to exploit the structure of the given capacity valldsvertheless, even here we reduce the
overall gap or solve these instances within the time limteveas CPLEX runs into problems. In
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the Dlrected case (the most difficult of the three problemesysince we doubled links and hence
design variables) CPLEX terminates because of a reachedmdimit for both nobel-germany and
nobel-eu. The results for the largest problem, ta2 with &&é capacity usage, might be incorrect.
The simplex algorithm terminated late in the optimisatioogess because of a singular basis, which
indicates numerical problems. Note that the capacitielr ta2 are given in a magnitude @b’
while the default precision of CPLEX ig0~¢ and all ourMIR inequalities are obtained by dividing
base inequalities by the values One has to rescale the data or to increase the precisioreof th
calculations.

Let us finally try to answer the question why applying Alglnit 7.6 in addition to the separation of
cut and multi cut inequalities results only in slight impeowents of the performance and how this
can be fixed.

First the number of added inequalities by Algorithm 7.6 isaBiout tests showed that increasing
the number of (simple) flow cut inequalities leads to unatai@p overall computation times. Flow
cut inequalities seem to be somewhat weaker than cut and ocatilinequalities and it is rather a
problem to find strong valid inequalities than to find viothienes. It was already mentioned that
except for nobel-eu and nobel-germany the computation ¢tiomsumed by our separation heuristics
is very small. Hence one could spend more time to solve tharagpn problem.

The author believes that the biggest drawback of Algorithénig'the simple heuristic Algorithm
to find promising commodity subsets. Important strorigl ¥eow cut inequalities might be missed
when largely concentrating on single commodities. Butahgmno better heuristic known so far.

Our approach of finding promising cuts is based on contmaatfothe network, which is a very
fast heuristic. But especially for sparse networks we mégttt up with cutsFs (or Ag) that do not
give strong valid flow cut inequalities. Again remember fr&mction 4.1 that a cut set inequality is
facet defining for a network design polyhedron if it definea@et for the corresponding cut set and if
G[S] andG[V'\S] are connected (undirected graphs) or strongly connectest{eld graphs). Initially
calculating cuts with this property was successfully use‘Bienstock et al.‘ [1995] and Bienstock &
Gunluk [1996]. A second possible approach is to explatdtructure of the components@fS| and
G[V'\S] in order to strengthen cut set inequalities. For sparsearksamore research has to be done
(see Section 6.6).

Eventually the author conjectures that flow cut inequalitbtehave better in the presence of flow
cost because then they are in some sense more parallel tbjdutivee function.

7.4.3 Results for explicit link capacities

The separation heuristics were implemented and testedsigdifferent parameter settings with re-
spect to the models considered in this thesis. These ara bivenodular link capacities. Without
changing the algorithms and without doing new parametés tgs were interested in the behaviour
of the investigated inequalities in the presence of GUB taitds

inﬁlVaeA, ZxéﬁlVeEE.
teT teT

Notice that GUB constraints imply the bound constraitffs< 1 foralla € A,t € T (or zt < 1 for
alle € E;t € T). It follows that the unbounded and bounded network desigblpms defined in
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Chapter 2 and studied throughout the thesis are relaxabibpsoblems with explicit link capacities
and hence all developed inequalities are still valid andsansed to tighten the initial formulation.
One would expect them to be weak but as the following restitsvsthey are of significant
practical usefulness even for models with GUB constraints.
Not all of the data sets can be used to model explicit cagacitl he limitation of the possible
amount of capacity that can be installed does not allow feaaible routing for some of the instances.
The corresponding polyhedra are empty. This is the casédéoddta sets

e france, norway, newyork and pioro40

A first observation is, that with a total number of separateehjualities that is almost the same,
the distribution changes slightly compared to the testaxfodular link capacities (see Figure 7.5
compared to Figure 7.2). There are less cut inequalitiesvareé multi cut inequalities and (simple)

8,39%

7,44%

[ cut inequalities

B multi cut in-
equalities

M cut inequalities

B multi cut in-
equalities

M flow cut in-
equalities

91,61%

(i) Algorithm[7.7 only (i) Both separation heuristics

Figure 7.5: Distribution of separated inequalities — exiplink capacities

flow cut inequalities added to the initial formulation. Diégd results can be found in Table A.4, Table
'A.5 and Table A.6.

From the left21 problems, di-yuan and zib16 in the Bldirected case are daivere quickly with
CPLEX and no callbacks. For another two examples CPLEX epdsith a better gap. These are
nobel-eu in the Directed and nobel-eu in the Bldirected.cilsée that this is not due to a better lower
bound but because of better solutions. For the rest of tharines adding the separation heuristics
to CPLEX'’s default Branch & Cut algorithm results in overiafiprovements of the performance, in
some cases enormous. So fdrinstances CPLEX ends up with a gap and by adding the heuwristic
we solve these instances to optimality or reduce the gaplglleamore thars0%.

Figure/ 7.6 and Figure 7.7 again report overall statisticsefsy (solved to optimality within
hour of computation time) and hard to solve instances. Theesaare given in ration to the values
obtained by CPLEX without any callbacks. When comparingéheharts to Figure 7.3 and Figure 7.4
it can be seen that the reduction of computation time and gamédels with explicit link capacities
is still significant but smaller than for models with moduliak capacities.

It is interesting and unexpected that the effect of addimg{e) flow cut inequalities and cut set
inequalities of type (7.5) in addition to cut and multi cuéqualities is much greater for models with
explicit capacities. This might be due to the change of te&ibution of the separated inequalities. It
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happens more often that the Algorithm [7.7 fails to find viethtut inequalities such that Algorithm
7.6 is applied more often and seems to help out.

M cplex

[ cplex + ci + mci

M cplex + ci + mci + fci
L]

M cplex

M cplex + ci + mci

M cplex + ci + mci + fci

CPU time B & B nodes

Figure 7.6: Easy to solve test instances and improvemende imaadding separation heuristics to CPLEX'’s
default MIP-solver — explicit link capacities

M cplex + ci + mci

[ cplex + ci + mci + fci
[ |

UJ

M cplex

I cplex + ci + mci

0.8 M cplex + ci + mci + fci
UJ

M cplex

I cplex + ci + mci

M cplex + ci + mci + fci
]

M cplex

M cplex + ci + mci

0,6 |

0,4 4

0,2

Il cplex + ci + mci + fci

lower upper gap B & B nodes

Figure 7.7: Hard to solve test instances and improvementterbg adding separation heuristics to CPLEX’s
default MIP-solver — explicit link capacities

7.5 Summary

We considered the separation problem for the strong vatidetinequalities of Chapter 4 and devel-
oped separation heuristics that can be used within a stabte-@rt Branch & Cut MIP-solver such as
CPLEX. These algorithms were tested against real-worlo/ors.

It turned out that it is useful to separately apply a heuri8tat concentrates on cut inequalities
and multi cut inequalities as considered in this thesis ariyl to add (simple) flow cut inequalities if
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no such cutting planes can be found. The improvements invbialh solution time and the final gap
that could be made are enormous compared to CPLEX’s resattitned without any callbacks.

This is even true for models with explicit link capacitiethaugh GUB or upper bound con-
straints were not considered when developing the ineigmtihat were integrated into the separation
modules. It can be conjectured that the optimisation pocan still be accelerated when additionally
separating inequalities that explicitly exploit bound dd&constraints as for instance the flow cover
inequalities of Chapter 5. Moreover, the stated algoritieans be extended easily for the separation
of flow cover inequalities. We can use the basic framework aatditionally find flow covers and
complement variables (see Chapter 5).
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Chapter 8

Conclusion

Telecommunication network design problems with bifurdateuting and a finite set of installable
base capacities have been studied. We have considereddubdedign variables as well as un-
bounded design variables and distinguished three comnp@s tyf capacity usage, Dlrected, Bldi-
rected and UNdirected. The corresponding models arisertssgral sub-problems of larger and more
complex problems containing additional requirements stscdurvivability of the network, hop limits
or costs for hardware installation at the nodes of the nétwéH problems have been formulated as
mixed integer programs. A successful approach to solve guatilems is the use of Branch & Bound
methods in combination with cutting plane algorithms (Bta& Cut). For the effectiveness of these
algorithms it is crucial to understand the facial structofréhe considered polyhedra.

We focused on the use bfixed-Integer Roundintp develop strong valid inequalities for network
design polyhedra. It was shown that by exploiting the stnegcof the given parameters such as under-
lying graphs, capacities and bound constraints and apgplygeneraMIR procedure consisting of the
stepsAggregating Substituting ComplementingndScaling it is possible to derive different classes
of strong valid or even facet-defining inequalities. Moregihe use oMIR as a valid superadditive
lifting function was emphasised.

In Chapter 4 and Chapter 5 it has been concentrated on smtcatl setsor single node flow sets
relaxations of network design polyhedra that are definetl véspect to cuts of the network. As a
central result we stated sufficient conditions for facdirileg inequalities of cut sets to define facets
for network design polyhedra. A general class of facet-d@fiinequalities obtained bMIR, so-
called flow cut inequalities, has been introduced and it legs finvestigated in detail. In the presence
of bound constraints we could even generalise this clagsetavell-known flow cover inequalities.

These cutting planes have been considered for the threéeprdipes Directed, Bldirected and
UNdirected and structural differences of the correspanpgiolyhedra have been elaborated on.

As an extension, Chapter 6 motivates some extemMdiitechniques and provides a survey of
several classes of strong valid inequalities for networsigte polyhedra that can be obtained by the
developedVIR procedure.

Eventually we sketched the separation problem for someefrivestigated inequalities. Sep-
aration heuristics have been implemented in a Branch & Guméwork and they have been tested
against a bunch of realistic network design problems. Wedademonstrate the efficency of the con-
sidered cutting planes and hence the usefulned4li&fin the context of telecommunication network
design.
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Appendix A

Results

The tables that can be found on the following pages repodilddtresults of our final tests. For all
instances these tables compare test cycles done with CPh&Kaadditional callbacksi6ng, with
Algorithm[7.7 implemented as a callbackimci) calculating cut inequalities as well as multi cut
inequalities and with both separation heuristics Algaonith.7 and Algorithm 7.64]l).

The first two columnsgroblem) and &ep state the problem and the applied separators (in addition
to the general purpose separators of CPLEX). In the follgvtimee columns we report the objective
value of the LP relaxationf), the final dual bound@wer) and the objective value of the best (mixed)
integer solution foundupper). Note that for clarity we only state the first(or 5) leading digits. The
next column {ime/gap provides the final gap or it reports the CPU time (given in mss) elapsed
if the instance could be solved to optimality within a timmiti of 1 hour. Columnnodesreports the
total number of nodes explored in the search tree duringdr& Cut and columrtime sepgives
the total CPU time needed by the separation heuristics. d$tethiree columns report the number
of cut inequalities rfof ci), the number of multi cut inequalitiesdf mc) and finally the number of
(simple) flow cut inequalities and cut set inequalities qfety(7.5) (of fci) that were added to the
initial formulation.
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Results

A.1 Modular capacities

problem sep Ip  lower upper time/ nodes time nof nof nof
gap % sep ci mci fci

di-yuan none 3161 7314 7776 5.93 426382

ci+mci 3161 7621 7621 11:11 28482 00:00 175 0

all 3161 7621 7621 07:11 28482 00:01 175 0 0
france none 1887 2059 2200 6.40 401526

ci+mci 1887 2130 2200 3.14 159923 24 138 0

all 1887 2128 2180 2.36 134846 00:51 128 0 166
newyork none 6385 7093 7485 5.24 199550

ci+mci 6385 7239 7446 278 78309 00:12 193 1

all 6385 7241 7446 274 63531 00:29 196 1 143
nobel-eu none 8588 8863 12266 2M.7 247385

ci+mci 8588 9149 11371 19.5 115595 07:32 402 2

all 8588 9062 11315 19.9 82747 26:48 363 2 83
nobel-germany none 1474 1589 2172 3.8 956134

ci+mci 1474 1815 1843 1.48 367965 20:23 246 3

all 1474 1815 1894 4.16 256191 37:14 215 3 77
norway none 1627 1635 1676 2.44 640842

ci+mci 1627 1647 1673 1.53 254499 00:57 205 0

all 1627 1647 1672 1.52 251512 02:27 200 0 15
pioro40 none 4120 4137 4203 1.57 80157

ci+mci 4120 4142 4205 1.50 63877 00:20 119 0

all 4120 4142 4205 1.50 57087 00:54 106 0 8
sun none 7448 831.6 1054 21.0 69475

ci+mci 744.8 933.7 1050 11.0 24175 00:06 234 3

all 744.8 9329 1050 11.1 25319 00:14 241 3 102
ta2 none 1064 1382 3613 61.7 6548

ci+mci 1064 1454 3592 59.5 2995 00:02 480 25

all 1064 1454 3592 59.5 2955 00:04 460 21 0
zib16 none 2097 2954 3397 13.0 264511

ci+mci 2097 3011 3408 11.6 75224 00:02 343 0

all 2097 3013 3321 9.2 72515 00:08 329 0 14
zib54 none 3813 10703 15994 33.1 7338

ci+mci 3813 13693 14697 6.83 4282 00:01 257 20

all 3813 13695 14697 6.82 4341 00:02 258 20 9

Table A.1: Results Directed modular link capacities

128



A.1 Modular capacities

problem sep Ip lower upper time/ nodes time nof nof nof
gap sep ci mci fci

di-yuan none 2746 5537 5537 02:26 23880

ci+mci 2746 5537 5537 02:35 10187 00:00 141 31

all 2746 5537 5537 02:28 10187 00:00 141 31 0
france none 1096 1181 1240 4.689 391378

ci+mci 1096 1240 1240 02:06 3279 00:00 53 6

all 1096 1240 1240 02:05 3316 00:00 53 6 5
newyork none 3312 3697 3796 2.593 188325

ci+mci 3312 3780 3780 29:42 42029 00:03 274 19

all 3312 3780 3780 27:28 36872 00:04 245 18 91
nobel-eu none 6019 6120 6697 8.626 856138

ci+mci 6019 6317 6461 2.233 349235 07:50 222 12

all 6019 6318 6435 1.823 258124 28:.09 273 11 38
nobel-germany none 1154 1241 1336  7.083 2809373

ci+mci 1154 1325 1325 05:55 91242 01:52 158 13

all 1154 1325 1325 05:08 49161 04:40 140 11 37
norway none 8483 8531 8627 1.110 410441

ci+mci 8483 8573 8606 0.384 335596 00:41 69 0

all 8483 8574 8605 0.366 331433 01:44 63 0 13
pioro40 none 2540 2545 2559 0.562 105351

ci+mci 2540 2545 2559 0.529 100843 00:20 22 0

all 2540 2545 2559 0.523 104105 00:53 21 0 7
sun none 570.2 604.4 700.8 13.758 75456

ci+mci 570.2 648.7 697.4 6.987 14845 00:02 340 43

all 570.2 648.7 6955 6.739 14292 00:05 339 47 79
ta2 none 6724 8548 17144 50.138 6796

ci+mci 6724 8546 16437 48.002 2341 00:03 1713 391

all 6724 8546 16437 48.002 2415 00:05 1713 391 0
zib16 none 1582 2182 2182 21:25 199260

ci+mci 1582 2182 2182 07:09 16886 00:01 201 19

all 1582 2182 2182 07:16 14242 00:04 187 19 198
zib54 none 2018 7719 9788 21.136 10603

ci+mci 2018 8697 10216 14.863 7335 00:02 1406 629

all 2018 8699 10216 14.847 7358 00:04 1406 629 0

Table A.2: Results Bldirected modular link capacities
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problem sep Ip lower upper time/ nodes time nof nof nof
gap sep ci  mci fci

di-yuan none 3161 6557 6557 15:20 223903

ci+mci 3161 6557 6557 02:09 14877 00:00 117 13

all 3161 6557 6557 02:07 14877 00:00 117 13 0
france none 1887 1979 2020 1.99 964435

ci+mci 1887 2020 2020 00:02 284 00:00 27 2

all 1887 2020 2020 00:02 284 00:00 27 2 0
newyork none 6386 6716 6820 1.53 817467

ci+mci 6386 6790 6790 06:45 23160 00:01 234 7

all 6386 6790 6790 05:25 18343 00:04 221 11 35
nobel-eu none 8588 8686 9190 5.49 1057431

ci+mci 8588 8962 8985 0.26 293300 07:09 295 18

all 8588 8958 9000 0.47 247342 30:14 279 20 6
nobel-germany none 1474 1530 1664 8.05 2835350

ci+mci 1474 1619 1619 00:42 6467 00:12 142 22

all 1474 1619 1619 00:59 7060 00:54 150 22 2
norway none 1627 1631 1644  0.78 1090799

ci+mci 1627 1638 1643 0.30 496723 01:17 105 0

all 1627 1638 1643 0.30 493550 03:21 113 0 11
pioro40 none 4120 4125 4145 0.49 177311

ci+mci 4120 4127 4144 0.41 140488 00:30 35 0

all 4120 4127 4144 0.41 139770 01:31 37 0 5
sun none 744.8 776.0 867.3 10.5 204753

ci+mci 744.8 851.4 863.7 1.43 40902 00:05 229 20

all 744.8 851.4 863.7 1.43 33975 00:11 223 20 151
ta2 none 1064 1218 2183 442 15600

ci+mci 1064 1233 1970 37.4 2754 00:04 2047 441

all 1064 1233 1970 37.4 2754 00:08 2047 441 0
zib16 none 2097 2703 2786 2.98 784484

ci+mci 2097 2757 2757 23:16 63778 00:00 273 18

all 2097 2757 2757 21:55 63778 00:01 273 18 0
zib54 none 3813 7193 10687 32.7 23693

ci+mci 3813 9228 10334 10.7 7442 00:02 1298 539

all 3813 9228 10334 10.7 7491 00:04 1300 540 0

Table A.3: Results UNdirected modular link capacities
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A.2 Explicit capacities

problem sep Ip lower upper time/ nodes time nof nof nof
gap % sep Ci fci

di-yuan none 3161 7391 7767 484 473766

ci+mci 3161 7621 7621 06:27 18707 00:06 259 0

all 3161 7621 7621 06:48 20017 00:04 252 0 6
nobel-eu none 8588 8890 11192 20.6 1179254

ci+mci 8588 9062 14196 36.2 123530 32:49 507 2

all 8588 9063 12271 26.2 114033 43:22 455 2 140
nobel-germany none 1474 1613 2115 23.7 2240597

ci+mci 1474 1796 1931 7.02 140206 31:50 271 1

all 1474 1802 2026 111 125403 39:11 272 1 70
sun none 7454 832.4 1038 19.8 63030

ci+mci 7454 935.1 1067 12.4 30080 00:17 241 1

all 745.4 934.8 1066 12.3 29386 00:17 236 1 117
ta2 none 1064 1380 4605 70.0 12680

ci+mci 1064 1474 4188 64.8 5521 00:11 605 18

all 1064 1474 4188 64.8 5518 00:11 605 18 0
zib16 none 2097 2934 3315 11.5 343400

ci+mci 2097 2987 3314 9.88 84516 01:15 417 0

all 2097 2997 3261 8.11 70766 00:24 314 0 148
zib54 none 3813 11205 16333 31.4 9314

ci+mci 3813 13878 14830 6.42 5134 00:03 225 16

all 3813 13875 14903 6.90 5112 00:03 224 17 38

Table A.4: Results Directed explicit link capacities
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problem sep Ip lower upper time/ nodes time nof nof nof
gap sep ci mci fci

di-yuan none 2746 5537 5537 02:02 18653

ci+mci 2746 5537 5537 04:25 19088 00:02 182 32

all 2746 5537 5537 02:59 12127 00:02 177 32 5
nobel-eu none 6019 6149 6739 8.75 1098305

ci+mci 6019 6301 7738 18.6 184018 29:35 540 18

all 6019 6321 6803 7.08 146661 38:36 398 13 131
nobel-germany none 1154 1226 1346 8.91 2970487

ci+mci 1154 1325 1325 17:38 140365 13:28 197 13

all 1154 1325 1325 12:02 79266 09:06 192 10 63
sun none 571.6 614.3 699.9 12.22 80106

ci+mci 571.6 663.6 693.0 4.24 12119 00:04 273 32

all 571.6 6634 693.0 4.26 11771 00:04 269 33 74
ta2 none 6724 9745 21375 544 31277

ci+mci 6724 9204 17675 47.9 678 00:02 734 152

all 6724 9204 17675 47.9 678 00:02 734 152 0
zib16 none 1582 2182 2182 09:44 60630

ci+mci 1582 2182 2182 10:25 23034 00:07 167 16

all 1582 2182 2182 10:54 19793 00:07 164 17 215
zib54 none 2018 7557 9950 24.0 16085

ci+mci 2018 8563 9994 14.3 5340 00:03 1116 469

all 2018 8563 9994 14.3 5340 00:03 1116 469 0

Table A.5: Results Bldirected explicit link capacities
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problem sep Ip lower upper time/ nodes time nof nof nof
gap sep ci  mci fci

di-yuan none 3161 6566 6566 12:24 247328

ci+mci 3161 6566 6566 02:46 17471 00:00 163 10

all 3161 6566 6566 02:44 17471 00:00 163 10 0
nobel-eu none 8588 8749 9532 8.214 1884632

ci+mci 8588 8968 9349  4.083 158449 32:47 577 17

all 8588 8962 9160 2.158 163275 32:22 515 14 25
nobel-germany none 1474 1550 1674 7.365 2881728

ci+mci 1474 1619 1619 00:25 2976 00:24 93 14

all 1474 1619 1619 01:25 8212 01:19 159 19 4
sun none 749.6 779.7 880.1 11.411 176617

ci+mci 749.6 858.7 863.7 0.579 27470 00:09 142 9

all 749.6 859.5 863.7 0.485 24395 00:08 141 8 115
ta2 none 1075 1232 2127 42.0 36103

ci+mci 1075 1310 1938 32.4 2662 00:07 1347 295

all 1075 1310 1938 32.4 2577 00:07 1325 287 0
zib16 none 2097 2708 2805 3.453 719285

ci+mci 2097 2800 2800 21:03 58292 00:09 322 20

all 2097 2800 2800 19:28 52523 00:05 273 19 52
zib54 none 3875 7671 10422 26.4 38733

ci+mci 3875 9383 10422 9.972 5952 00:03 1055 404

all 3875 9382 10422 9.980 5868 00:03 1053 403 0

Table A.6: Results UNdirected explicit link capacities

133



Results

134



Appendix B

Proofs

The following definition and lemma is crucial for the undarsting of the proofs of Theorem 423,
4.25 and 4.29.

Definition and Lemma B.1. Consider the cut sef’S?! in the single-facility case and suppose a
feasible pointyg is given such that all demand is routed

Po- gk oneo = w with capacity exactlyn™ ", more precisely all flow for
co <=L ———y | positive commodities is routed am and all flow for negative com-
<—d{ | modities is routed omu (see Figuré B.1). Assume thaf ™ > a5 |
andr" < ¢, which is equivalent taX "~ < enX".
Hence the capacity o, is not saturated. LdtEs| > 2. To con-
struct a second feasible poipt one unit of capacity is deleted ag.

Note thate(n®" — 1) = d§" — rX" (see Lemma 3.11).

Figure B.1: All flow is routed
Ooneyg.

1. If d{f — K" > 0 there is still capacity omy. We decrease the flow amw (with respect to
K1) by exactlyr® - by changing flow for every positive commodity. Hence the citgeon
wov is saturated. The flow onu (with respect tokX ~) is decreased by® | whereé® =

A5 | — (5 — KTy if |dE T = (dET =K7Y > 0and0 < 65 < min(|dE |, 7K7) else.
To do so we change the flow of every negative commodity. Noaedh < 5" since
d§" > [df|.
The missing flow is now routed on a second edge ij with one unit of capacity (see Figure
B.1).

2. IFdE" =rK" «— " —1 = 0we just copy the flow froneg toe. Sets” = 3, ;- d&
in this case.

This way we ensure that the new point is feasible, that thaaBpone is not saturated in both
directions, that flows are positive éjfor k € KT and that flows are positive gji for k ¢ K.

In both cases we will denote by* the amount of flow that has been rerouted foe K. It
follows that0 < ¢ < d&forallk € K, Y, pr ¢F =" andY", o o = 65
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e If moreoverds " — K" > 0, thenpl < d forall k € K,
e < > flows are positive omv for £ € K+ and flows are positive on
—df =" wuforke K-

There is another way to construct a feasible pgitfitom
po if Bldirected capacity constraints are given. We delete flow
. and capacity the same way as above, but we construct a vector

«— o8 ¢ such that the total flow ofyj is >, x+ ¢* = ¢. Onji we
Figure B.2: e is used to reroute therOUteZ’fEK*(tplg —r) + Z’fEK__ ¢y such that the capacity
flow. on ji is not saturated ifls "~ > |dX " | (see Figure B/1).
Notice thaty™ ™ = X" if |5 | = d& .

These constructions are used in the proofs of Thebe -
rem(4.25 and Theorem 4.29. In the proof of the followirlge, < »
theorem (Theorem 4.23) a subggt of the positive com- «— af -0
modities is considered initially routed eg. All the flow
for K*\Q* and K~ U K is routed on a second edgep
and is not touched by the construction of points as aboyve,
the vectorsp,. andy, are defined with respect d§+ and <+«—Cc—7T
r@" then and there is only flow om andij.

AD
<

e

(' —1) —df ="

Q - C

<

>

Kt + 5K_

Figure B.3:¢e is used to reroute the flow in a
different way.

B.1 Proof of Theorem 4.23

Proof. We will show that the related face
Fpr={(f,z) e CSBL . (f,z) satisfies[(4.18) with equality

is nontrivial and then by contradiction, we will show thadéfines a facet (approach 2 for facet proofs
Wolsei/ , chap 9.2.3)).

Givene = ij € Eg, letb, denote the unit vector iRl #sI+2/K1Es| for the integer design variable
of e and Ietgfj,gfi be the unit vectors for the continuous flow variablesiofj: for commodity
ke K.

We setd = d?", 5 := 1@, r := 19" < cande > 0 small enough. LeQ* := K+\Q*.
Choosery = uv € E1\E> andey = uv € E1\Eo. We construct a point on the fadé;; by sending
all flow for Q™ on ey and the flow for all other commodities @p:

Uey = nbeg + Y digh, + Mbey + Y digis+ Y dgiy
ket keQ+ keK—

where M ¢ 7, is large enough.u,, is a feasible point of>S?! since all demands are satisfied
and the flow does not exceed the installed capacity. It is erfabe Fz; becauser(E;) = n and
x(Ey) = fe7(Ef) = fQ7(E;) = 0. HenceFp; is not empty.u,, + b, is a point that is iC'S 5’
but not on the facd's;.

We have shown thdt # F; # CSPL. It remains to show thakz; is inclusionwise maximal.
We do this by contradiction. Suppose there is facef C'S?! with Fz; C F and letF be defined by

Yo Beaet > g+ S Afu=n (B.1)
e=ijels “=iePs e=HEPs
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where 3., v}, 7%, 7 € R. We will show that((B.1) is[(4.18) up to a scalar multiple antinear
combination of flow conservation constraints, contradigtio F'z; C F.
Adding multiples of the K| flow conservation constraints to (B.1) gives, = 0 for all k € Q*,
k =0forallk € Q* andyt, = 0forallk ¢ K~ U K°.
Sets := f3,, and := 3,. Sinceu,, lies on the hyperplane, we conclude tivat+ 5M = .
Now we modifyu,., by installing a capacity of/ 4+ 1 onéy. This is another point on the face and
thus3 = 0. It follows that

On=m (B.1a)

The capacity omr is not saturated sincn‘;\g2+ < cn. Modifying u,, by simultaneously increasing
flow onuv andvu by € for k € QT gives new points on the face and thus

Ak ok, =0 VkeQT.
The same can be done am, va for k € K~ U K°U Q™, hence
Yew Ve =0 Vke KTUK°UQT

Now consider the disjoint partitiodrs := (E; N Ey) U (E1\Es) U (Ey N Ey) U (E1\Es). We
compute the coefficients., 5;;, 3;; for e = ij in each of the four sets by constructing new points.
They obviously fulfil the flow conservation constraint andisfg inequality (4.18) with equality. To
see that they meet the Bldirected capacity constradintd)(4ukt use that < ¢ and remember the
equations

en=d+c—r and c¢(np—1)=d—r (Lemma3.1ll)

Note that all the points defined with edgesiinn E», E1\ E; and E1\ B> additionally satisfy the
UNdirected capacity constraints (4112) Hence withn E» = () the theorem holds fa@' SU¥.
Ei1NEy # 0: Fore=1ij € E; N Ey andk € Q* define:

Uey + be + (¢ —1)gh, + (c = 7)g}; — B+ B+ (c—r)ji=n (B.1b)
Ueo + bey + Cghy + be + cgh; = B+ B+Betcri=n (B.1c)
Ueo + (€ = 1)ghy +be + 595+ (c = 5)ghi = B+ Be+ 55+ (c— 5=  (B.1d)

Comparison of|(B.1b) and (B.lL.c) shows thahfi = Bforale € By N Ey, forallk € QF.
From (B.1b) it follows similarly that3, = é(c — 1) Ve € E1 N E,. From (B.1d) we find that

B(c—r) = (c = 5)2 + 54k = 0, which implies that% = g for all e € Ey N By, forall k € Q*

T s

To conclude that/]’?i = 0forall k € K~ U K" just modify the point in(B.1b) by increasing flow
for k € K~ U K° onav by somee and routing this-flow back onji. Simultaneously increasing
flow oniyj, ji giveswfj =0forall k € K~ UKP". Since the same can be done foe Q* on the arcs
uv, ij, ji, we gety); = y% = Oforall k € Q.
EiNE5 # 0: Fore =1ij € E1 N Ey andk € Q™ define:

OF = ey +be + gl +egli = B+ B+l teri=7 (B.1e)

We can still increase flow omv by a small amount for every commodity @ . Decreasing flow on
17 at the same time gives another point on the face andﬂifjus 0 for all £ € Q™. When having
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changed/” this way, some flow fok ¢ K~ U K° U Q* can be routed oij while the same amount
of flow increases omi. Hencefyfj =0forallke K-UK°UQ™.
Forky, ks € QT,e =ij € Ey N Ey consider the point

k
Uel EgU/U + Eg Eg]Z + Eg

It is well defined and feasible because flow @n is positive for everyk € @ and flow onij is
positive fork;. It follows tha'wjZ = 7]2 = yf forall ki, ks € Q.

For the construction of the following vector see Definitiordd.emma B.1. We modify:., by
deleting one unit of capacity fef, and rerouting flow or € E1 N Es:

D i AT A e N (A

keQt keQt keQt
— = B+Be+(c—r)fi=m (B.1f)

Note thatZkEQ+( —oF)y=c—r and%j = 0. Comparing/(B.1e) and (B.1f) gives
—T”}/;»g = —rwﬁ- =pBVkeQt.
From (B.1e) and (B.1a) follows then
Oe :Cg Ve € E1 N Es.

The total flow onyi in is ¢ — r, thus the capacity oy is not saturated. Increasing flow on
uv and;ji for commodities i)™ U K~ U K* gives+¥; = 0 forall k € Q" UK~ U K°.
E\E, # 0: Fore = ij € Ey\E, define:

Uy +be = OBn+Be=m (B.19)

The point can be modified by simultaneously increasing floworand j:. This can be done for
every commodity inQ ™, thuswﬁ- = 0forall k € Q*. Comparing|(B.10g) with (B.1a) gives. = 0
forall e € Eq\ Es.

For the construction of the following vector see Definitiovdd.emma B.1. We modify:., by
deleting one unit of capacity fer, and rerouting flow or € E;\ Es:

= > gk, b+ Y orgl
keQt ket

— Bn—B+ > o= (B.1h)
keQ+t

Modifying this point by simultaneously increasing flow énhandva for k € K~ U K° U QT
giveswfj =0forallk € K~ UK°UQT. If e # &, then simultaneously increasing flow o ji
givesys;, = 0forallke K- UK°UQ™.

It remains to show that!, = 2 for & in Q*.

Assume first thattl, = . If |QF| = 1, it follows that 8y — 3 + ), = = andryf; = S,
If |Q*| > 1 and d§+ > ¢ flows are positive both omv andij for every commodity inQ* (see
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Definition and Lemma B.1). We choosg, k; € Q* and modify the point in_(B.1h) by adding the
flow egl? — gkt + eglt — gi2. This way we conclude that’} = 4/?. From {B.1h) follows % = 3
forall k € Q" sinced ;co+ ¢f =7

Now let us assume that there is an edge- ij in E; N E,. Modify the point in [(B.1h) by
installing one unit of capacity o&, and sending a flow of onij andji for a commodityk; € Q.
Now addingeg;? — egi! + egii — gi? givesy}? = ~1? andryf, = g for all k € Q* again since

ki _ ko _

Yij = Yij = 0. -

Finally assume that there és= ij in £y N E5. For a commoditys € QT ande = ij € £y N Es
consider the following vector:

ueo+(c—r)g§v+be+be+cgfi+rgfj — ﬂn—i—ﬁe—kﬂe—kcvfi—kmfj:ﬂ
— ﬁn%—(c—r)g—cg%—rwfj:w

= B:r*yfj VkeQt

E\E; # 0: Fore = ij € E1\FE> we construct the following vector as in Definition and Lemma
B.1:

Uey — bey — Z ‘Pylfgz]jv + be + Z Spvlfgzkj"i‘
keK+ keK+

— B —B+0c+ > o= (B.1i)
keK+
Fork € K add are-flow to 75 andji to conclude thatyfj = —yﬁ- forall k € K. If we can show that
’yfj = 0 forall k € K we are done because it follows thg"g =0forall k € K andj, = g for all
(S El\EQ.
For this modify the point/ (B.1i) by simultaneously incraagiflow onij andvu for ak in K.
Hencey); = —v}, = 0.

Plugging in all coefficients we arrive at:

Br(E1\Ey) + Zf(Ef\EF)
+ Ye—me(EinE) + 2fEfNE) - 2f(ErNEy)
+ cZz(BEyNEy) — Z2f(By NEy)
= fBn

FET) + ca(By) — f(Ey) +r(z(E) — x(Ea)) =

We have shown that the hyperplane (B.1) is a multiple of (4d8s a linear combination of flow
conservation constraints. It follows thals; and I’ induce the same face. This is a contradiction.
HenceFp; is inclusionwise maximal and together with# Fz; # C SP! it defines a facet of SB/.
proper. This concludes the proof. [ |
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B.2 Proof of Theorem 4.25

Proof. We will show that the related face
Fpr = {(f,x) e CSB! . (f,z) satisfies[(4.18) at equalily

is nontrivial and then by contradiction, we will show thadifines a facets (approach 2 for facet
proof@s, chap 9.2.3)).

Givene = ij € Eg, letb, denote the unit vector iRl #sI+2/K1Es| for the integer design variable
of e and Ietgfj,gfi be the unit vectors for the continuous flow variablesiofj: for commodity
ke K.

We setdg := d5 ", n:=n",r:=rK" < cande > 0 small enough. Choosg = uv € E;\E;
and consider a point as in Definition and Lemma B.1. All demiarsatisfied by using only, to send
flow. In terms of the unit vectors this is:

k k k K
Ueg = nbeo + Z nguv + Z dS.gvu'
keK+ keK—

ue, is a feasible point of” S5 since all demands are satisfied and the flow does not exceed the
installed capacity. It is on the fadés; becausex(E;) = rn. HenceFpg; is not empty.ue, + be, iS
a point that is inC'S®! but not on the facés;.

We have shown thdt £ Fg; # C'SPL. We still have to show thalis; is inclusionwise maximal.
We do this by contradiction. Suppose that there is a faad C'SP! with Fg; ¢ F and letF be
defined by the hyperplane

Z Bex, + Z 'ijfij‘i‘ Z 'Yfz’sz’:W (B.2)

whereﬁe,yfj,yﬁ,w € R. We will show that/(B.2) is completely described by (4.18)tam scalar
multiple and a linear combination of flow conservation caaists, contradictingg; C F.

Adding multiples of the i | flow conservation constraints to (B.2) gives, = 0 vk € K+ and
vk, =0Vke K- UK°w.l.o.g.

Setf = fe,. Sinceu,, lies on the hyperplane, we conclude that

pn=m (B.2a)

Modifying u., by simultaneously increasing flow arv andvu by e for every commodity gives
new points on the face and thy§,, 7%, = 0 Vk € K.

Now consider the disjoint partitioRls := (E1N Es)U(E1NEy)U(E;\Ey). (Note thatF \ By =
(). We calculate the coefficients, 5;;, 5;; for e = ij in each of the three sets by constructing new
points. The fact that all the points are on the fagg will not be mentioned anymore. They obviously
fulfil the flow conservation constraint and satisfy ineqtyalit.18) with equality. To see that they meet
the Bldirected capacity constraints (4.11) just use #gt+ 1) = dg + 2c —r,cn = dg + ¢ —,
c(n—1) =dg —r (see Lemma 3.11) and< c.

Note that all the points defined with edgesiin N F» and E;\ > additionally satisfy the UNdi-
rected capacity constraints (4.12) when no negative contiesdre given. Hence withy N Ey = ()
and K~ = () the theorem holds fof' S
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E,NE5 #0: Fore=ij € B, N Eyandk € K7 define:

Uey + be + (¢ — r)gﬁv + (¢ — r)gfi = O+ 0+ (c— r)’y]]% = (B.2b)
Ueq + beg + ¢Giy + be + cg; = B+ B+Petcri=m (B.2c)
Ueo + (¢ = T)ghy + e + 5985 + (¢ = 5)gfi = B+ B+ 59f + (c = 5i=n  (B.2d)

Comparing/(B.2b) and (B.2c) shows thamfi = 3 Ve € BN Ey, Vk € K*. From (B.2b) it
follows similarly that3. = 2(c —r) Ve € Ey N E,. From (B.2d) we find thaf (c — ) — (c — 5)2 +
=0 <= mfi=pVec EINEy, Vke KT,

To conclude thab/“ = 0 Vk € K~ U K just modify the point in[(B.2b) by increasing flow for
ke K-UK°onvu andzg by somee. Finally modify the point by simultaneously increasing flow
ij and;ji by a small amount for everly € K. This givesys; =0 Ve € Ey N Ey, Vke K~ UK".
E, N E5 # 0: We can assum&" = () here. Fore = ij € E, N B, andk € K define:

vF = g, + be + Cgfj + Cgfz‘ = OBn+ B+ C’szj + C’Yfi =7 (B.2e)

We can still increase flow omv by a small amount for every commodity i+ . Decreasing flow on
17 at the same time gives another point on the face anohtj?us 0 Vk € K*. When having changed
v* this way, some flow fok € K~ can be routed oj while the same amount of flow increases on
vu. Henceyl; = 0 Vk € K.

Forky, ke € KT,e = ij € By N Ey consider the point

Ufl - Eguv + Eguv - Eg]z + Eg
It is well defined and feasible because flow i is positive for everyk € K+ and flow onij is
positive fork;. It follows thatfyjZ = 'yﬂ = 7]2 Vki, ko € KT.
For the construction of the following vector see Definitioxdd.emma B.1. We modify:., by
deleting one unit of capacity feg and rerouting flow o € E1 N Es:

€0 _beo - Z (prguv Z (prgvu—i_b + Z SchZ] Z Spr g]z+ Z (‘prg]z

keK+ keK— keK+ keK+ keK—

— =B+ Bt (c—rvi+ D eivi=7 (B.2f)

keK—

If |[K~| = 0, we compare (B.2e) and (B.2f) and concludeyj’?l- = 3 Vk € K™ From (B.2¢) and
(B.2a) follows thens, = 2 Ve € Ey N Es.

Else if [K~| > 0, dg = d&™ > |d5 | andd5 ™ > ¢ there is still capacity om = v and the
vector p¥ can be constructed such that arcis not saturated (see Definition and Lemma/B.1). We
can increase flow omu and decrease it of which giveswj’?i =0 Vk € K~ and thus—mfi =
B Vke Ktandg, = c Ve € E1 N Ey as above.

E\E; # 0: Fore = zg € E1\ E> we construct the following vector as in Definition and Lemma
B.1:

= > kgh, = > gk b+ Y whahi+ Y ol

keK+ keK— keK+ keK—

= ﬂ77 B+B€+ Z Sprf}/z_] + Z Sprf}/jz - (BZI)

keK+ keK—
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Fork € K add ane-flow to ij and ji to conclude that; = —+% Vk € K. If we can show that
fyfj =0V fy]’?i =0 Vk € K we are done because it follows that= 3 Ve € E1\ Es.

All conditions imply thatEs # (). First suppose that theredg = uv in Ey N E>. Modify the
point in (B.2i) by installing one unit of capacity afiy and sending a flow of on wv andvu for a
commodityk € K, which gives a point on the face. Now decrease flowiorand increase it oiy
by e. Hencequ =0 Vk € Kt sinceyt, = 0 Vk € K. Having done so simultaneously increasing
flow onuo andji givesy¥, = 0 vk € K~ U K°.

Finally suppose that there ég = wv in E; N Ey. Fork € K+ consider the vector

Uey + (¢ = 1)gh, + bas + be + cghy + 1l

Simultaneously increasing flow an: and onij givesvfj =0VkeK.
Plugging in all coefficients we arrive at:

Br(E\E2) + Zf(Ef\Ey)
+ g(C—T)SU(ElﬂEz) + ?f(EfﬂErj) - gf(EfﬂEE)
+ Zx (BN Ey) — Bp(ErnEy)

Bn

F(EF) + cx(Ba) — f(Ey) +r(x(Er) — z(Ey)) =y

We have shown that the hyperplane (B.2) is a multiple of (4d8s a linear combination of flow
conservation constraints. It follows thAk; and F' induce the same face, which is a contradiction.
HenceFp; is inclusionwise maximal and with # Fz; # CSP! it defines a facet ofS?!. This
concludes the proof. [ |

B.3 Proof of Theorem 4.29

Proof. Sufficiencyif (E, = 0 anddlg+ < ¢), then (4.21) reduces to the cut inequality (4.23) which
is facet-defining foilC' SB! if |Eg| = 1. The same happens whéh = (), (4.21) reduces to the cut
inequality (4.23), which is facet-defining |iZs| = 1 or d§+ > c (see Theorem 4.21).

For the rest of the proof we can assume thatE, # (.

We use the same technique as in the proof of Theorem 4.230@gpe for facet proo{s Wolsey

[1998, chap 9.2.3)).
We will show that the related face

Fpr = {(f,z) € 0SP!: (f, ) satisfies(4.21) with equality

is nontrivial and then by contradiction, we will show thatléfines a facets.
Givene = ij € Eg letb, denote the unit vector iR|#sI+2K[Es| for the design variable af and
let gfj, gfi be the unit vectors for the flow variables for commodit¢ K of e in both directions.
Suppose’®" < candEy, By # 0. We setdg := d5 ", n:=nf",r .= K" < cande > 0
small enough.
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B.3 Proof of Theorem|4.29

Choosezy = uv € E1\F> andey = uv € E;. Consider a point as in Definition and LemmaB.1,
all demand is satisfied by using ondy to send flow. In terms of the unit vectors this is:

Uegy —775@0+ Z nguv+ Z ngvu
keK+ keK—

ue, is a feasible point o’ S?! (see proof of Theorem 4.25). It is on the faEg; becausex (E;) —
dg = cn—dg = ¢ —r (see Lemma 3.11). Hendeég; is not empty.u,, + b, is a point that is in
CSBI put not on the facés;.

We have shown thdt £ Fg; # C'SPL. It remains to show thaFz; is inclusionwise maximal.
We do this by contradiction. Suppose that there is a faad C'SP! with Fg; ¢ F and letF be
defined by the hyperplane

Y Bewet Y AWifyt D Mifi=w (B.3)
e=ijeBs ey SsEs

whereﬁe,%j,yﬂ,w € R. We will show that|(B.38) is/(4.21) up to a scalar multiple andinear
combination of flow conservation constraints, contradigtt’s; C F.

We may add multiples of thig<| flow conservation constraint to (B.3). Therefore we assurae t
Ak =0forallk € Kw.l.o.g.

Setf := 3, andf := 3;,. Sinceu,, lies on the hyperplane, we conclude that

pn + Z d§ve, + Z A5y, = (B.3a)
keK+ keK—

Modifying ., by simultaneously increasing flow an andvu by e for every commodity gives
new points on the facef — dg + € — e = ¢ — r) and thusy¥, = —~* forall k € K.

Now consider the disjoint partitiois := E; U E;. We calculate the coefficients, 3;;, 3;; for
e = ij in each of the two sets by constructing new points. It will alstays be mentioned that all the
points are on the facEg;. In most of the cases they obviously fulfil the flow consevattonstraint
and satisfy inequality (4.21) with equality. To see thattheeet the Bldirected capacity constraints
(4.11) just use thaty = dg + ¢ — 7, ¢(n — 1) = dg — r (See Lemma 3.11) and< c.

If K— = (, then all the points additionally satisfy UNdirected capaconstraints. Withi = = ()
the theorem holds fof'SY™.

First we define a vectai, for all e € Eg, see Definition and Lemmna B.1 for this construction.
We modify u., by deleting one unit of capacity fep and rerouting flow or € Eg:

Ue 1= Uey — Z Sprguv Z gorgvu+b + Z 907*9@]_{' Z 907’.9]@

keKt keK— keEKT keK—
—
Bn—B+ > (dE =k, + D (di— bk + 8+ D ek + D ok =
keK+ keK— keK+ keK—

(B.3b)
Modifying u. by simultaneously increasing flow @y andji by e for every commodity gives

ij:_%’.@. Ve=1ij € Eg,k € K.
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E, # 0: Fore = ij € Ey; andk* € K consider:

Ve i= Ue + (€ — r)gfj* + by + (¢ — 1)k

-
577—ﬁ+ Z (dk - 907“ r)/uv + Z dS - Sor)ryvu +ﬁe + Z Sor’%] + Z Sorlyjz
keK+ keK— keK+ keK—
+ B+ (c— T)vfj* =T. (B.3c)

Remember that¥; = 0 and note that in the total flow onij equalsc, sinced", o+ ¢~ = r (see
Definition and Lemma B.1). With:(E,) = 1, (E;) = 1 and fX7 (E,) = dg — r + ¢, the point is
on the face. By comparing (B.3b) and (B.3c) we conclude that

iy

Ve=ij € B,ke KT.

k — Nk —
’Y]z 72] c—r

Fork € K~ U K°we modifyv, by increasing flow oryi andas. With v5, = —~%. = 0 as assumed,
we get
V= =0Ve=ij€ Ei,k€ K~ UK".

(B.3a) and[(B.3b) (witke € F1) now reduce to

on—ds 2 =7 and pn—p-ds2+p. =7 (B.3d)

It follows
8. = Ve € Ej.

E, # 0: Fore = ij € E; andk* € K+ define:

e = ey + (e~ 1)y bt (e - gl
-

B+ Y diyk, + (e — )k + Be+ (e — )l = (B.3e)
keK+

Fork € K~ U K increasing flow onvu andij gives
V= =9k, =0Ve=ije Ey,ke K~ UK’

Fork € K+ we modify w, by simultaneously increasing flow an, ji by ¢ and at the same time
decreasing flow fok* onuw, ji by the same amount. Hence

_%kj — fy]’:fi — ’Yﬁ* _ _'szj* Ve =1ij € Ey,k € K.
(B.3b) withe € E; now reduces to

p

Bn— 5 —(dg — r)c + e + r'yw = . (B.3f)
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B.3 Proof of Theorem|4.29

(B.3€) can be written as
3

cC—T

Bn—(ds+c—r) + B —(c—r)y = (B.39)

Evaluating|(B.3f) fore = ey = uv and comparing with (B.3a) gives

cf

cC—r

6=

sincez, = B andyk; = 0forallk € K. Then from|(B.3f) and (B.3g) follows thatyfj* = (r—c)yfj*
Butc > r > 0 and thus
V= 4k =0Ve=ije B keK.

Now comparing|(B.3g) with (B.3a) results in

ﬁe:BVGGEl.

Plugging in all coefficients we arrive at:

D om) - L pEh +

cC—rT cC—T cC—T

O f(B]) + fa(Ey) = B

ca(Er) = f(Ef) + f(Ey) + (c =)z (Er) = (¢ — 7).

We have shown that the hyperplane (B.3) is a multiple of (4#ds a linear combination of flow
conservation constraints. It follows thak; and F induce the same face, which is a contradiction.
Hence Fg; is inclusionwise maximal and together with# Fg; # CSP! it defines a facet of
CSBI, [ |
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Appendix C

Notation

(i,4), j
G=(V,A)
G=(V,E)
S

CSDI, CSBI, CSUN
G[S
A[S], E[S]
As, Es
Ag Ag
Al Ay

Ey, Eo
K,Q

Kt K-, K°

—=

M,N,L,R,U,C
(C*, ). (Ph,P)

real, rational, integer numbers

nonnegative real, rational, integer numbers

nodes

arcs, edges

arc, edge

arc with source and targetj, edge with endnodeisand;;
directed graph

undirected graph

node set

Dlrected, Bldirected, UNdirected cut set polyhedron
subgraph induced by

arcs, edges with both endnodesSin

directed, undirected cut defined By

arcs fromS to V\ 'S, arcs fromV'\S to S

subset ofd!;, subset ofA

subsets ofF g

set of all commodities, subset of all commodities

positive, negative, zero commodities w. r.t. a nodeSset

set of technologies (facilities, link designs)

continuous variable — often denotes flow

integer variable — often denotes the number of installdddiesigns
capacity, demand, cost

a— |al

smallest integer greater than or equakto

greatest integer smaller than or equakto

d—c([g]1-1)

r(d,c)[2¢] — (r(d,c) — r(a, c))" — subadditiveMIR-function
r(=d,c)[ %]+ (r(—=d,c) — r(—a,c))™ — superadditiveMIR-function
often denote index sets

flow cover, flow pack
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