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Diese Vorlesung wird im Rahmen der Berlin Mathematical School angeboten und auf 
Englisch gehalten.  

General description 

Polyhedral combinatorics can be viewed as a technique that uses methods from 
polyhedral theory and linear algebra in order to solve combinatorial problems. The 
main idea is to transform a combinatorial problem into a polyhedral problem by, for 
instance, considering the convex hull of the incidence vectors of the feasible 
solutions of the combinatorial problem, and to employ techniques from linear and 
integer programming in order to solve the combinatorial problem. At the end of this 
class the students will be able to handle this methodology, apply it to practically 
relevant cases, and prove important results. The focus will be on the solution of NP-
hard combinatorial optimization problems. 

 

More specific description 

Important combinatorial problems that will be addressed include the travelling 
salesman, the max-cut, the Steiner tree, the matroid optimization, the assignment, 
the linear ordering, the stable set (including perfect graphs and the theta-body), and 
the matching problem. We will, for example, study the facet structure of some of the 
polytopes associated with these problems and show how to employ cutting plane 
techniques for the solution of the corresponding optimization problems. Instances 
from the real-world will illustrate the range of problems that come up and can be 
solved in practice. 

Literature: 

The following list of books contains background material for the class. Specific 
literature will be referenced in the notes below. 

 (ADMII) Martin Grötschel, Lineare und Ganzzahlige Programmierung 
(Algorithmische Diskrete Mathematik II), Skriptum zur Vorlesung im WS 
2009/2010, see  
http://www.zib.de/groetschel/teaching/WS0910/skriptADMII-WS0910.pdf  

These lecture notes provide the basic knowledge expected from students attending 
the course and can be downloaded from the Web site. 

http://www.zib.de/groetschel/teaching/WS0910/skriptADMII-WS0910.pdf�
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 (GLS) Martin Grötschel, László Lovász, Alexander Schrijver, Geometric 
Algorithms and Combinatorial Optimization, Springer, 1988, second edition 
1993. The book can be downloaded from 
http://www.zib.de/groetschel/pubnew/paper/groetschellovaszschrijver1988.pdf  

This book describes the ellipsoid method (and many other algorithms) and the 
consequences of these algorithms for combinatorial optimization. It has a strong 
polyhedral flavor. Various parts of this book will be presented in the class. 

 (ASCO) Alexander Schrijver, Combinatorial Optimization - Polyhedra and 
Efficiency, Springer, 2002.  

This is THE book on (actually I would say the bible of) polyhedral combinatorics. In 
three volumes everything known in this area is covered with extreme detail and 
concise proofs.  

 (ASLP) Alexander Schrijver, Theory of Linear and Integer Programming, 
Wiley, 1986.  

 
This book covers everything on linear and integer programming known up to 1986. 
It is another outstanding and valuable reference. 
 
 (GZ) Günter M. Ziegler, Lectures on Polytopes, Springer-Verlag, Revised 

Edition, 1998.  
 
This book is a general reference on polyhedral theory providing a lot of background 
material on polyhedra not covered in the class. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.zib.de/groetschel/pubnew/paper/groetschellovaszschrijver1988.pdf�
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Chapter 1: Introduction and Examples 

1.1 Based on the lecture notes (ADMII) a brief introduction into polyhedral theory 
(chapters 2, 6-8) and on linear programming is given. Relevant results on polyhedra, 
polytopes, faces, vertices, extreme rays, facets, recession cones, integral polyhedral, 
total unimodularity, etc. will be repeated throughout the course whenever necessary.  

1.2 An overview about questions asked (and answered) in extremal combinatorics is 
given. One of the earliest results in this area is Sperner’s Lemma (sometimes also 
called Sperner’s Theorem). It states that the maximum cardinality of an antichain 
(which is a family  of subsets of a set so that no two elements of  contain each 

other) of a set E of n elements is !:
!( )!
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n . Lubell, see D. Lubell, A short proof of Sperner’s Lemma, Journal of 

Combinatorial Theory 1 (1966) 299. has given a proof of this result that can be 
interpreted as showing the validity of the inequality S
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⊆

≤∑  for the polytope which 

is defined as the convex hull of all incidence vectors of antichains  of E 
( )( ) : { |A P E

ACP n conv χ= ∈   antichain in E}, where P(E) denotes the set of all subsets 
of E (power set of E). 
 

1.3 A brief survey of issues in extremal graph theory is provided, some simple results 
such as “What is the largest number of edges in a planar or a bipartite graph?” are 
proved. A generalization of the last observation is Turán's Theorem, one of the 
“model results” of extremal graph theory. It states that a graph G = (V,E) on n nodes 

without any k-clique has no more than 22
2 2
k n
k
−
−

 edges.  

First, an attempt is shown to prove Turán’s theorem by copying the ideas of Lubell’s 
proof of the Sperner Lemma. My attempt to make this work failed, and I show where 
things go wrong. Thereafter, I present an adaptation of the proof of Motzkin and 
Straus, see T.S. Motzkin and E. G. Straus, Maxima for graphs and a new proof of a 
theorem of Turan, Canadian Journal of Mathematics, 17(1965) 533-540, that 
employs the idea of maximizing the quadratic function 2 i j

ij E
x x

∈
∑  over a simplex.  

1.4 The Galai identities  ( ) ( )G Gα τ+  = | |V  = ( ) ( )G Gν ρ+  

relating the matching ( )Gν  and the edge covering number ( )Gρ and the stability 
( )Gα  and the node covering number ( )Gτ  to the number of nodes of a graph G , are 

introduced as well as König’s matching and edge covering theorems for bipartite 
graphs, see (GLS), pages 229-232.  

Then the question of finding a node cover (also called blocking set) of minimum 
cardinality in a hypergraph is introduced. An analysis of the greedy algorithm for 
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this problem is provided that is based on a linear programming relaxation of the 
hypergraph blocking set problem. The result, independently shown by Johnson 
(1974), Stein (1974) and Lovász (1975), states that the size of a greedy blocking set 
is not larger than (1 ln( ))+ ∆  times the minimum size τ () of a blocking set, where  
is the largest degree of a node in . The “linear programming proof” of this result 
provides an even better bound, namely, the minimum size τ () of a blocking set can 
be replaced by the optimum valueτ *() of its natural LP relaxation, see, e.g. 
(ASCO), p. 1380-1381 or Martin Grötschel, Lászlo Lovász, Combinatorial 
Optimization, in Ronald L. Graham, Martin Grötschel, Lászlo Lovász (eds.), 
Handbook of Combinatorics, Volume II, Elsevier (North-Holland), 1995, 1541-1597, 
which can be downloaded from: 

http://www.zib.de/groetschel/pubnew/paper/groetschellovasz1995.pdf  

1.5 Integer polyhedra 
In this class we will mainly deal with polyhedra that arise as the convex hull of a finite 
number of integral vectors. These are typically the incidence vectors of certain 
combinatorial objects such as spanning trees, Hamiltonian cycles, or stable sets in a 
graph. Let us define such polyhedra in more general terms. 
 
A polyhedron P is called an integer polyhedron if it is the convex hull of the integer 
vectors contained in P. This is equivalent to: P is rational (i.e., P can be described by 
an inequality system with rational coefficients only) and each face of P contains an 
integer vector. This immediately implies that a polytope P is integer if and only if each 
vertex of P is integer. If a polyhedron P = {x | Ax ≤ b} is integer, then the linear 
programming problem 
 

 max{cTx | Ax ≤ b} 
 

has an integer optimum solution, in case it has a finite optimum solution at all. Hence, 
in this case, 
 

max{cTx | Ax ≤ b; x integer} = max{cTx | Ax ≤ b}. 
 

This, in fact, characterizes integer polyhedral. 
 
Theorem. Let P be a rational polyhedron. Then P is integer if and only if, for each 
rational vector c, the linear programming problem max{cTx |Ax ≤ b} has an integer 
optimum solution if it is finite. 
 
A stronger characterization is due to Edmonds and Giles [1977]: 
 
Theorem. A rational polyhedron P is integer if and only if for each integral vector c 
the value of max{cTx | x ∈ P} is an integer if it is finite. 
 
A 0/1-polytope is a polytope with all vertices being 0/1-vectors. 

 

 

http://www.zib.de/groetschel/pubnew/paper/groetschellovasz1995.pdf�
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Chapter 2: The Travelling Salesman Problem: An Introduction into Research in 
Polyhedral Combinatorics  
 
The presentation follows closely the paper: 

Martin Grötschel, Manfred W. Padberg, Polyhedral Theory, in Eugene L. Lawler, Jan 
Karel Lenstra, A. H. G. Rinnooy Kan, David B. Shmoys (eds.), The Traveling 
Salesman Problem. A Guided Tour of Combinatorial Optimization, Wiley, 1985, 
251-306, 
where various polytopes related to the symmetric and asymmetric travelling 
salesman problem are introduced. Several proofs are given (for instance two proofs 
that determine the dimension of the symmetric travelling salesman polytope) with the 
intention to illustrate various proof techniques in polyhedral combinatorics. The 
lectures on this topic also include a survey of the paper: 

Manfred W. Padberg, Martin Grötschel, Polyhedral Computations, in Eugene L. 
Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, David B. Shmoys (eds.), The 
Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization, Wiley, 
1985, 307-360, 
 
where the basics of separation and cutting plane algorithms are described. The two 
papers mentioned can be downloaded from: 
http://www.zib.de/groetschel/pubnew/paper/groetschelpadberg1985.pdf 

http://www.zib.de/groetschel/pubnew/paper/padberggroetschel1985.pdf  

The lecture on polyhedral aspects of the TSP was finished with a Power Point 
presentation summarizing the results and surveying additional material, URL: 

http://www.zib.de/groetschel/teaching/SS2010/100518ADMIII-Vorlesung-TSP-
Survey.ppt 

 

Chapter 3: The Steiner Tree Problem 

This lecture introduces and compares several integer programming formulations for 
the undirected Steiner tree problem in graphs. The presentation starts with the 
classical undirected cut formulation, which can be strengthened by a facet-defining 
class of Steiner partition inequalities. These are NP-hard to separate. Surprisingly, an 
associated directed cut formulation, which is based on directed Steiner cuts w.r.t. 
some arbitrarily chosen root terminal, is stronger than the undirected formulation 
including all Steiner partition inequalities. Since the LP-relaxation of the directed 
formulation can be solved in polynomial time, we have the surprising result that a 
class of inequalities that subsumes the Steiner partition inequalities can be separated 
in polynomial time. The directed cut formulation is equivalent to a third formulation, 
the flow formulation that sends one unit of flow to each non-root terminal. This 
formulation can be strengthened by a simple class of flow balance constraints, that 
foreclose flow rejoins for every commodity. Extending this idea to prevent flow rejoins 
for sets of commodities leads to the common flow formulation, which is currently the  

http://www.zib.de/groetschel/pubnew/paper/groetschelpadberg1985.pdf�
http://www.zib.de/groetschel/pubnew/paper/padberggroetschel1985.pdf�
http://www.zib.de/groetschel/teaching/SS2010/100518ADMIII-Vorlesung-TSP-Survey.ppt�
http://www.zib.de/groetschel/teaching/SS2010/100518ADMIII-Vorlesung-TSP-Survey.ppt�
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strongest known formulation for the undirected Steiner tree problem. In fact, there is 
no instance known, for which this formulation has a duality gap. The lecture covers 
material from the following publications:  

S. Chopra & M. R. Rao, The Steiner tree problem I: Formulations, compositions and 
extension of facets, Mathematical Programming 64(1-3) 209-229, 1994, URL:  

http://www.springerlink.com/content/mt4703015h9j8334/?p=37d4917b629f45a3ac6e
bd8c1a36a7f7&pi=9 

S. Chopra & M. R. Rao, The Steiner tree problem II: Properties and classes of facets, 
Mathematical Programming 64(1-3), 231-246, 1994, 
URL: http://www.springerlink.com/content/j812n3p7793x387x/  

T. Polzin, Algorithms for the Steiner problem in networks, Ph.D. Thesis, U 
Saarbrücken, 2003, URL:  

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.1056&rep=rep1&type=p
df 

 

Chapter 4: Polyhedra Related to Matroids and Independence Systems 

Most of the results presented in this chapter can be found in Chapters 40 and 41 
(pages 688 – 724) of (ASCO) and in a somewhat more condensed form in Section 
7.5 (pages 210 – 218) of (GLS). The Power Point presentation: ”Independence 
Systems, Matroids, the Greedy Algorithm, and related Polyhedra" summarizes the 
material, URL: 

http://www.zib.de/groetschel/teaching/SS2010/100601ADMIII-Vorlesung-
MatroidPolyhedra.ppt  

 

Chapter 5: Path and Flow Polyhedra, Total Unimodularity 

This chapter introduces polyhedra associated with paths and flows in graphs and 
digraphs and characterizes total unimodularity. The content is a concise overview of 
some of the polyhedral results presented in Chapter 13 (pages 198-216) of (ASCO). 

 

Chapter 6: Cardinality Homogeneous Set Systems

A subset   of the power set of a finite set E is called cardinality homogeneous if, 
whenever  contains some set F,  contains all subsets of E of cardinality |F|. 
Examples of such set systems  are the sets of all even or of all odd cardinality 
subsets of E, or, for each uniform matroid, its set of circuits and its set of cycles. With 
each cardinality homogeneous set system , we associate the polytope P(), the 
convex hull of the incidence vectors of all sets in . We provide a complete and non- 
redundant linear description of P(). We show that a greedy algorithm optimizes any 
linear function over P(), we construct, by a dual greedy procedure, an explicit 

http://www.springerlink.com/content/mt4703015h9j8334/?p=37d4917b629f45a3ac6ebd8c1a36a7f7&pi=9�
http://www.springerlink.com/content/mt4703015h9j8334/?p=37d4917b629f45a3ac6ebd8c1a36a7f7&pi=9�
http://www.springerlink.com/content/j812n3p7793x387x/�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.1056&rep=rep1&type=pdf�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.1056&rep=rep1&type=pdf�
http://www.zib.de/groetschel/teaching/SS2010/100601ADMIII-Vorlesung-MatroidPolyhedra.ppt�
http://www.zib.de/groetschel/teaching/SS2010/100601ADMIII-Vorlesung-MatroidPolyhedra.ppt�
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optimum solution of the dual linear program; and we describe a polynomial time 
separation algorithm for the class of polytopes of type P(). 
 
This chapter is based on the paper: Martin Grötschel, Cardinality Homogeneous Set 
Systems, Cycles in Matroids, and Associated Polytopes, in Martin Grötschel (ed.), 
The Sharpest Cut: The Impact of Manfred Padberg and His Work, MPS-SIAM, 2004, 
99-120, which can be downloaded from 
 
http://www.zib.de/groetschel/pubnew/paper/groetschel2004b.pdf  

The results can be generalized in various ways, some of the extensions contained in 
the PhD Thesis: Rüdiger Stephan, Polyhedral Aspects of Cardinality Constrained 
Combinatorial Optimization Problems, TU Berlin, 2009, downloadable from URL: 

http://opus.kobv.de/tuberlin/volltexte/2009/2401/pdf/stephan_ruediger.pdf 

will be surveyed. The Power Point presentation contains some of the material 
discussed, see URL: 

http://www.zib.de/groetschel/teaching/SS2010/100608ADMIII-VorlesungCardHomSet 
Systems.ppt . 

 

Chapter 7: Matching Polyhedra 

The polyhedral theory of the various versions of the matching problem is extensively 
described in Parts II and III of Volume A of (ASCO). In this chapter we give a proof 
that, for a graph ( , )G V E= , the system of equations and inequalities 

( ( )) 1x δ ν =   ∀ v V∈  

( ( )) 1x Wδ ≥  ∀ ,| |W V W odd⊆  

0ex ≥   ∀ e E∈  

provides a complete description of the perfect matching polytope,  

( ) : { |M EP G conv M Eχ= ∈ ⊆  perfect }matching  

i.e., the convex hull of all incidence vectors of perfect matchings in G . We derive 
several consequences by “transformation tricks” providing complete descriptions of 
polyhedra related to c-capacitated b-matchings and other matching problems. 

 

Chapter 8: Acyclic Subgraphs and Linear Ordering 

This chapter introduces the linear ordering and the acyclic subgraph problem and 
some of the applications of these problems as well as the polyhedral theory 
developed for these problems. The polyhedral aspects can be found in the papers: 

Martin Grötschel, Michael Jünger, Gerhard Reinelt, On the acyclic subgraph 
polytopes, Mathematical Programming, 33:1 (1985) 28-42 and Martin Grötschel, 

http://www.zib.de/groetschel/pubnew/paper/groetschel2004b.pdf�
http://opus.kobv.de/tuberlin/volltexte/2009/2401/pdf/stephan_ruediger.pdf�
http://www.zib.de/groetschel/teaching/SS2010/100608ADMIII-VorlesungCardHomSetSystems.ppt�
http://www.zib.de/groetschel/teaching/SS2010/100608ADMIII-VorlesungCardHomSetSystems.ppt�
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Michael Jünger, Gerhard Reinelt, Facets of the linear ordering polytope, 
Mathematical Programming, 33:1 (1985) 43-60, downloadable from 

http://www.zib.de/groetschel/pubnew/paper/groetscheljuengerreinelt1985b.pdf 

http://www.zib.de/groetschel/pubnew/paper/groetscheljuengerreinelt1985c.pdf 

 

Chapter 9: The Max-Cut Problem 

The max-cut problem is the task to find, in a graph with edge weights, a cut of 
maximum weight. This problem has interesting applications and generalizations. We 
describe the polyhedral approach to this problem following the papers: 

F. Barahona and A. R. Mahjoub, On the cut polytope, Mathematical Programming 36 
(1986) 157-173, 

Francisco Barahona, Martin Grötschel, Ali Ridha Mahjoub, Facets of the Bipartite 
Subgraph Polytope, Mathematics of Operations Research, 10 (1985) 340-358 

http://www.zib.de/groetschel/pubnew/paper/barahonagroetschelmahjoub1985.pdf 

Francisco Barahona, Martin Grötschel, Michael Jünger, Gerhard Reinelt, An 
application of combinatorial optimization to statistical physics and circuit layout 
design, Operations Research, 36:3 (1988) 493-513 

http://www.zib.de/groetschel/pubnew/paper/barahonagroetscheljuengeretal1988.pdf 

Chapter 10: Stable Sets, Theta Bodies, and Perfect Graphs 

This chapter is a condensed presentation of chapter 9 of (GLS). 

For the “Strong Perfect Graph Theorem” see the Web page: 

http://users.encs.concordia.ca/~chvatal/perfect/spgt.html 

provided by V. Chvátal. 

 

Chapter 11: Cycles in Binary Matroids 

Cycles are disjoint unions of circuits of a matroid. The Chinese postman problem and 
the max-cut problem are special cases of the task to find a maximum weight cycle in 
a binary matroid. The presentation follows the papers: 

Francisco Barahona, Martin Grötschel, On the Cycle Polytope of a Binary Matroid, 
Journal of Combinatorial Theory, Series B, 40 (1986) 40-62, see: 

http://www.zib.de/groetschel/pubnew/paper/barahonagroetschel1986.pdf  

Martin Grötschel, Klaus Truemper Decomposition and Optimization over Cycles in 
Binary Matroids, Journal of Combinatorial Theory, Series B, 46:3 (1989) 306-337 

http://www.zib.de/groetschel/pubnew/paper/groetscheltruemper1989a.pdf  

http://www.zib.de/groetschel/pubnew/paper/groetscheljuengerreinelt1985b.pdf�
http://www.zib.de/groetschel/pubnew/paper/groetscheljuengerreinelt1985c.pdf�
http://www.zib.de/groetschel/pubnew/paper/barahonagroetschelmahjoub1985.pdf�
http://www.zib.de/groetschel/pubnew/paper/barahonagroetscheljuengeretal1988.pdf�
http://users.encs.concordia.ca/~chvatal/perfect/spgt.html�
http://www.zib.de/groetschel/pubnew/paper/barahonagroetschel1986.pdf�
http://www.zib.de/groetschel/pubnew/paper/groetscheltruemper1989a.pdf�
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Martin Grötschel, Klaus Truemper, Master Polytopes for Cycles of Binary Matroids, 
Linear Algebra and its Applications, 114/115 (1989) 523-540  

http://www.zib.de/groetschel/pubnew/paper/groetscheltruemper1989b.pdf  

 

Chapter 12: Proof Techniques in Polyhedral Combinatorics 

If there is time left we summarize all the proof techniques presented in this class. 

http://www.zib.de/groetschel/pubnew/paper/groetscheltruemper1989b.pdf�

