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Brief overview of topics 
Cuts in graphs, metrics in vector spaces, cycles in matroids are mathematical objects that 
appear in many areas of mathematics and its applications and in quite diverse contexts. 
Students will learn in this class to study and approach these objects from a geometric point of 
view, in particular, via cones and polyhedra. One special aim is to obtain a better 
understanding of these polyhedra in order to be able to solve related optimization problems. 
The applications range from statistical mechanics, via VLSI design and measure theory to 
embeddability problems of finite metric spaces. 
 

 

Contents 

 

Chapter 1. Königsberg bridges, Chinese postmen, T-joins, and the max-cut problem in 
planar graphs 
Review of Euler’s paper of 1736: Solutio Problematis ad Geometriam Situs Pertinentis, 
Commentarii Academiae Scientiarium, Imperialis Petropolitanae, 8(1736)128-140 that solved 
the Königsberg bridges problem and founded the theory of graphs. Some applications of 
Eulerian graphs. 

Introduction of Eulerian graphs, odd joins and T-joins, and the Chinese postman problem. 
Transformation of the minimum weighted T-join problem to the nonnegative case. Solution of 
the weighted T-join problem by reduction to a sequence of shortest paths problems with 
nonnegative weights and a minimum weighted perfect matching problem. Reduction of the 
weighted max-cut problem in planar graphs to the Chinese postman problem in the dual 
planar graph. 

Chapter 2. Minimum Weight Cuts 

Brief review of the well-known max-flow min-cut theorem (with integrality result) and the 
Ford-Fulkerson augmenting path algorithm.  

Literature: Grötschel (2010), and Schrijver (1986, 2003). 
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Chapter 3. Cut Inequalities, Path and Flow Polyhedra and Total Unimodularity 

Introduction of the s-t path polytope of a directed graph and its dominant P↑
s-t path (D), the 

max-potential min-work theorem and the proof of the complete characterization of the 
dominant of the s-t path polytope. Brief review of the theory of blocking polyhedra (see 
Schrijver (1986, Chapter 9)). Introduction of the s-t cut polytope of a directed graph and its 
dominant P↑

s-t cut (D), complete description of the dominant via blocking theory. Total dual 
integrality. Adjacency and facets of the dominants of the s-t path and the s-t cut polytopes. 
The s-t connector polytope. Total unimodularity: various characterizations and examples. 

Literature: Schrijver (2003), Chapter 13. 

Chapter 4. Cut Cones and Polytopes, Correlation Cones and Polytopes 

Definition of the cut cone CUT(G) and the cut polytope CUT□(G) of a general undirected 
graph G=(V,E), the cut cone CUTn and the cut polytope CUT□

n as well as the correlation cone 
CORn and correlation polytope COR□

n of the complete graph Kn = (Vn,En)with n nodes. The 
max-cut problem, the covariance mapping between the cut and the covariance polyhedra, 
quadratic {0,1}-programming and its relation to the max-cut problem. Introduction of the 
triangle inequalities, the semimetric polytope MET□

n , an IP formulation of the max-cut 
problem. Proof that the triangle inequalities define facets of CUT□

n and that the cut polytope 
has diameter 1. 

Literature: Deza, Laurent (1997), pages 8-10, 14-17, 53-58, 421-426.  

Chapter 5. Ground States of Spin Glasses and Via Minimization 

This chapter closely follows the article  
F. Barahona, M. Grötschel, M. Jünger, and G. Reinelt, An Application of Combinatorial 
Optimization to Statistical Physics and Circuit Layout Design, Operations Research 
36(1988)493-513.  
A didactical example (created for high school students) of the via minimization problem can 
be found in the paper  
Martin Grötschel, Thorsten Koch, Nam Dũng Hoàng, Lagenwechsel minimieren - oder das 
Bohren von Löchern in Leiterplatten, in Katja Biermann, Martin Grötschel, Brigitte Lutz-
Westphal (eds.), Besser als Mathe,Vieweg+Teubner, 2010, 161-174. 

At the University of Cologne (M. Jünger’s research group) a server is offered to which 
instances of spin glass problems can be submitted for which exact ground states will be 
computed, see http://www.informatik.uni-koeln.de/spinglass/ . 
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Chapter 6. Approximation Algorithms for Max-Cut Problems 

This chapter was presented by David P. Williamson on May 24, 2011 who reported about his 
research on this topic, in particular about the paper  
Michel X. Goemans and David P. Williamson, Improved Approximation Algorithms for 
Maximum Cut and Satisfiability Problems Using Semidefinite Programming, Journal of the 
ACM, 42, 1115-1145, 1995,  
and subsequent work. 

Chapter 7. Distances, Semimetrics, Metrics and Embeddability 

Definitions and examples of distances, semimetric, and metric spaces are given. In particular 
examples are provided where such metrics appear in the real world (such as in archaeology, 
coding and decoding, path metrics in graphs, hypercube metric, Manhattan or Hamming 
distances, lp-metrics). The triangle inequalities and the semimetric cone METn are introduced. 
(Isometric) lp-embeddability is defined, as well as measure and measure semimetric spaces 
and Lp-spaces and related embeddability issues. It is mentioned that the Lp- and the lp

m-
embeddability of a distance space (X,d) can be reduced to the emdeddability of all finite 
subspaces of (X,d). 

Literature: Chapter 3 of Deza, Laurent (1997). 

Chapter 8. The Cut Cone and l1-Metrics 

The focus of this chapter is the presentation and proof of Propositions 4.2.1, 4.2.2, 4.2.4, and 
4.2.5 of section 4.2 of the Deza-Laurent book which characterize various embeddability 
properties of elements of the cut cone. These results are summarized in Theorem 4.2.6. 
Finally, several complexity results related to cuts and embeddability are mentioned 
(everything is hard). 

Literature: Sections 4.2 and 4.4 of Chapter 4 of Deza, Laurent (1997). 

Chapter 9. Conditions for L1-Embeddability 

The main issue of this chapter is the introduction of hypermetric inequalities, inequalities of 
negative type, and k-gonal inequalities and their relation to the cut cone. The cones HYPn and 

NEGn are introduced and it is shown that CUTn Í HYPn Í NEGn and that HYPn Í METn. 

Literature: Sections 6.1.1, 6.1.2. and Theorems 6.2.2 (relation of negative type distance 
spaces and L2-embeddability) and 6.3.1 (embeddability implication chain) of Chapter 6 of 
Deza, Laurent (1997). 

Chapter 10. Facets of the Cut Cone and Polytope 

The cut polytope CUT□
n is investigated. Operations on valid and facet defining inequalities 

are introduced, such as permutation, switching, lifting, projecting and collapsing. Switching is 
considered for more general polyhedra, e.g., polytopes defined as the convex hull of the 
incidence vectors of sets belonging to a set system that is closed under taking symmetric 
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differences. Various results on the transformation of facet defining inequalities into new facet 
defining inequalities are shown.  

It is shown that, once one has proved that one triangle inequality defines a facet of CUT□
3 , 

then one can derive that triangle inequalities are facet defining for all cut polytopes and cones 
(using permutation, switching and 0-lifting). 

The symmetry group of the cut polytope is mentioned and it is shown that a complete 
description of the cut polytope can be derived from a complete description of the cut cone. 

The IP formulation of the max-cut problem on a complete graph (using just triangle 
inequalities) is introduced. 

The cut polytope CUT(G) on a general graph is re-introduced and the odd cycle inequalities 
which generalize the triangle inequalities and provide an IP formulation of the max-cut 
problem in general graphs. These inequalities yield the metric polytope MET□(G), and it is 
shown that the separation problem for odd cycle inequalities can be solved in polynomial time 
from which one can infer that linear programs over MET□(G) can be solved in polynomial 
time. 

Finally, various other classes of inequalities defining facets of CUT(G) are introduced (e.g., 
hypermetric inequalities), some example proofs are shown and the complexity status of the 
associated separation problem is mentioned. 

Literature: Chapters 26, 27 and 28 of Deza, Laurent (1997), 

Chapter 10 “Cut Problems” generalized to Matroids  

This chapter addresses “more general cut problems”, in particular, cut problems in graphs that 
can be stated in the framework of matroid theory.  

Matroids are introduced in general, and especially, matroids that can be represented as “matrix 
matroids” over some field. The most important class of matroids in this context are binary 
matroids, where a set I is defined as independent if the columns indexed by I of the associated 
matrix are linearly independent over GF(2). Various examples are mentioned, in particular 
graphic and cographic matroids such as the graphic and cographic matroid of the complete 
graph on 5 nodes denoted by M(K5) and M(K5)*, respectively. Further special matroids are 
introduced such as the Fano matroid F7, and its dual F*7, U2,4, as well as R10. Minors are 
introduced and the construction of minors of representable matroids by column deletion and 
pivoting (contraction of an element). 

As important results of matroid theory the characterization of binary, ternary, graphic, 
cographic and regular matroids via forbidden minors is mentioned. Matroids with the “max-
flow min-cut property” as well as matroids with the “sum of circuits property” are introduced, 
their relation to cut problems in graphs is mentioned, and forbidden minor characterizations 
are given. 



5 
 

Circuits, cocircuits, cycles and cocycles of binary matroids are introduced and it is shown that 
these objects naturally generalize Eulerian subgraphs (cycles of a graphic matroid) and cuts of 
a graph (cycles of a cographic matroid). The problem of finding a cycle of maximum weight 
in a binary matroid M is introduced and the associated cycle polytope  CYC□(M). The 
polytope MET□(M), defined by the system of odd cocycle inequalities, is a natural 
generalization of MET□(G) and yields an IP formulation of the weighted cycle problem in 
binary matroids. It is mentioned that CYC□(M) = MET□(M) if and only if the binary matroid 
M does not have F*7, M*(K5), or R10 as a minor (i.e., has the sum of circuits property) and 
that the weighted cycle problem can be solved in polynomial time for such matroids. This 
result implies that, in a general graph, Eulerian subgraphs of maximum weight and, for planar 
graphs, a maximum weight cut can be found in polynomial time.  

A characterization of the odd cycle inequalities which define facets of CYC□(M) is given. 
This result yields complete and non-redundant characterizations of the polytope of Eulerian 
subgraphs for general graphs and of the cut polytope of graphs not contractible to K5.  

Finally, master polytopes for cycles of binary matroids are briefly mentioned. 

Literature:  
Francisco Barahona, Martin Grötschel, On the Cycle Polytope of a Binary Matroid, Journal of 
Combinatorial Theory, Series B, 40 (1986) 40-62, 
Martin Grötschel, Klaus Truemper, Master Polytopes for Cycles of Binary Matroids, Journal 
Linear Algebra and its Applications, 114/115 (1989) 523-540, 
Martin Grötschel, Klaus Truemper, Decomposition and Optimization over Cycles in Binary 
Matroids, Journal of Combinatorial Theory, Series B, 46:3 (1989) 306-337. 

 

General References: 

M. M. Deza, M. Laurent (1997), Geometry of Cuts and Metrics, Algorithms and 
Combinatorics 15, Berlin, Springer. (elektronische Version auf M. Deza’s Homepage 
verfügbar: http://www.liga.ens.fr/~deza/BOOK1/cutbook.pdf) 

Martin Grötschel (2010), Lineare und ganzzahlige Optimierung (ADM II), 
Vorlesungsmanuskript WS 2009/10, 
http://www.zib.de/groetschel/teaching/WS0910/skriptADMII-WS0910neu.pdf  

Martin Grötschel, László Lovász, Alexander Schrijver (1993), Geometric algorithms and 
combinatorial optimization. 2. corr. ed., Algorithms and Combinatorics 2, Berlin, Springer 

Alexander Schrijver (1986), Theory of linear and integer programming, Chichester, Wiley. 

Alexander Schrijver (2003), Combinatorial optimization. Polyhedra and efficiency (3 vol.),  
Algorithms and Combinatorics 24, Berlin, Springer. (CD-ROM-Version verfügbar) 
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All books/articles with M. Grötschel as coauthor are electronically available and 
downloadable from http://www.zib.de/groetschel/research/Musterbiblio.html. Lecture notes 
can be found on http://www.zib.de/groetschel/teaching/materials.html.  


