

Mathematics of Infrastructure Planning

The thirty-six officers problem

Stefan Heinz
Zuse Institute Berlin (ZIB)

DFG Research Center Matheon
 Mathematics for key technologies

ZIB Optimization Suite $=$ SCIP + SoPlex + ZIMPL

Toolbox for generating and solving constraint integer programs

ZIMPL

\triangleright a mixed integer programming modeling language
\triangleright easily generate LPs, MIPs, and ...

SCIP

\triangleright a MIP and CP solver, branch-cut-and-price framework
\triangleright ZIMPL models can directly be loaded into SCIP and solved

SoPlex

\triangleright a linear programming solver
\triangleright SCIP uses SoPlex as underlying LP solver

The thirty-six officers problem

Problem description

This problem asks for an arrangement of 36 officers of 6 ranks and from 6 regiments in a square formation of size 6 by 6 . Each vertical and each horizontal line of this formation is to contain one and only one officer of each rank and one and only one officer from each regiment.

Reference

Leonhard Euler, "Recherches sur une nouvelle espce de quarrs magiques" Verhandelingen uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen 9, Middelburg 1782, pp. 85-239
http://www.math.dartmouth.edu/~euler/pages/E530.html
Translation
http://www.math.dartmouth.edu/~euler/docs/translations/E530.pdf

36 Cube

Towers must fit to form a level cube.

Input data

ZIMPL Model (Parsing)

```
# board size
param size := read "36cube.dat" as "1n" use 1;
do print "sizeப=ப", size;
# create sets
# we have 6 different heights
set Heights := {1..size};
# we have 6 different colors
set Colors := {1..size};
# there are 6 rows and 6 columns
set Rows := {1..size};
set Columns := {1..size};
# parse heights
param heights[\langler,c\rangle in Rows * Columns] :=
    read "36cube.dat" as "<1n,2n>ь3n" skip 1;
#do forall <r,c> in Rows * Columns do print heights[r,c];
```


ZIMPL Model (Decision variables)

```
# binary variables to define the setup
# z defines in which color goes on which position
var z[Rows * Columns * Colors] binary;
```


ZIMPL Model (Constraints)

```
# each position gets one color
subto color :
    forall <r> in Rows:
    forall <c> in Columns :
            sum <i> in Colors : z[r,c,i] == 1;
# each row has each color exactly once
subto column :
    forall <r> in Rows:
    forall <i> in Colors :
        sum <c> in Columns : z[r,c,i] == 1;
    # each column has each color exactly once
    subto row :
            forall <i> in Colors:
            forall <c> in Columns :
            sum <r> in Rows : z[r,c,i] == 1;
# each height has each color exactly once
subto height :
    forall <h> in Heights :
    forall <i> in Colors :
        sum <r,c> in Rows * Columns with heights[r,c] == h :
            z[r,c,i] == 1;
```


ZIMPL Model (Objective function)

```
# try to find as many feasible positions as possible
maximize obj :
    sum <r,c,i> in Rows * Columns * Colors : z[r,c,i];
```

\# each position gets one color
subto color :
sum <i> in Colors : $z[r, c, i]<=1$;
\# each row has each color exactly once
subto column :
sum <c> in Columns : $z[r, c, i]<=1$;
\# each column has each color exactly once
subto row :

```
    sum <r> in Rows : z[r,c,i] <= 1;
```

\# each height has each color exactly once
subto height :

$$
\begin{aligned}
& \text { sum }\langle r, c\rangle \text { in Rows * Columns with heights }[r, c]==h: \\
& z[r, c, i]<=1 ;
\end{aligned}
$$

A solution for the 36 cube

36 Cube

Towers must fit to form a level cube.

A solution for the 36 cube

How many solutions exist for the 36 cube?

Mathematics of Infrastructure Planning

The thirty-six officers problem

Stefan Heinz
Zuse Institute Berlin (ZIB)

DFG Research Center Matheon
 Mathematics for key technologies

