Mathematics of Infrastructure Planning

PD Dr. Ralf Borndörfer

Prof. Dr. Martin Grötschel

Exercise sheet 3

Deadline: Thu, Mai 03, 2012, 23:59, mailto:borndoerfer@zib.de

Exercise 3.

10 points
Consider a set of points $V \subseteq \mathbb{R}^{2}$ in the plane and let $p^{*}=\operatorname{argmin} 1 / \mathbb{R}^{2} / \cdot / \ell_{2}^{2} / \sum$ be their median w.r.t. squared Euclidean distances. Prove that $p^{*} \in \operatorname{conv} V$.

Exercise 4.

10 points
Consider a triangle $\Delta=\operatorname{conv}\left\{v_{1}, v_{2}, p\right\}$ in \mathbb{R}^{2} and let $c=\left(v_{1}+v_{2}\right) / 2$ be the median of v_{1} and v_{2}. Prove that $\|p-c\|_{2} \leq\left(\left\|p-v_{1}\right\|_{2}+\left\|p-v_{2}\right\|_{2}\right) / 2$.

Exercise 5.

10 points
Weiszfeld's algorithm iterates the operator T defined as

$$
p_{j+1}:=T\left(p_{j}\right):=\frac{1}{\sum_{i=1}^{m} \frac{1}{\left\|p_{j}-v_{i}\right\|_{2}}} \sum_{i=1}^{m} \frac{v_{i}}{\left\|p_{j}-v_{i}\right\|_{2}}, \quad j=1,2, \ldots
$$

to determine the median $p^{*}=\operatorname{argmin} 1 / \mathbb{R}^{2} / \cdot / \ell_{2} / \sum$ of a given set of points $V=$ $\left\{v_{i}\right\}_{i=1}^{m}$ in \mathbb{R}^{2} w.r.t. Euclidean distances. Consider $V=\{(-1,3),(0,0),(9,9),(10,0)\}$ and compute the median p^{*} numerically. Try $p_{0}=(8,-1)$ and two other starting points of your choice.

Exercise 6.

(Tutorial session)
Consider the 1-median problem $1 / \mathbb{R}^{2} / \cdot / \ell_{1} / \sum$ w.r.t. Manhattan distances for a set of points $V \subseteq \mathbb{Z}^{2}$ with integer coordinates. Use Fig. 1 to construct an instance of this problem with at least 6 different points s.t.

1. the set of medians is a line segment.
2. the set of medians is a single point.

Exercise 7.

(Tutorial session)
Consider the 1 -center problem $1 / \mathbb{R}^{2} / \cdot / \ell_{2} /$ max w.r.t. Euclidean distances for a set of points $V=\left\{v_{i}\right\}_{i=1}^{m} \subseteq \mathbb{R}^{2}$ in the plane.
a) What is the median for $m=2$?
b) What is the median for $m=3$ if $\operatorname{conv}\left\{v_{1}, v_{2}, v_{3}\right\}$ has an obtuse or right angle?
c) What is the median for $m=3$ if $\operatorname{conv}\left\{v_{1}, v_{2}, v_{3}\right\}$ has all acute angles?

Figure 1: 1-median ℓ_{1}-problem.
d) The case $m>3$ can be reduced to a)-c) by considering all 2 - and 3 -tuples of points. Using this fact and Fig. 2, solve the 4 -point instance given by $V=$ $\{(2,0),(2,8),(6,3),(8,2)\}$ graphically.

Exercise 8.

Consider the 6 -node graph $N=(V, E)$ in Fig. 3 with distances $d_{i j}$ and demands w_{i} as drawn next to the edges and nodes.

1. Solve the warehouse location problem $1 / V / \cdot / d_{i j} / \sum w_{i}$.
2. Solve the warehouse location problem $2 / V / \cdot / d_{i j} / \sum w_{i}$ by fixing the solution of a) and adding a second warehouse in a best possible way.
3. Develop an IP formulation for $2 / V / \cdot /$ shortest path $/ \sum w_{i}$.
4. Solve your formulation from c).

5 . Did b) produce the optimum?

Figure 2: 1-center ℓ_{2}-problem.

Figure 3: Warehouse location problem.

