Mathematics of Infrastructure Planning

PD Dr. Ralf Borndörfer
Prof. Dr. Martin Grötschel

Exercise sheet 8

Deadline: Thursday, June 7, 2012, 23:59 (please submit your solution by email to: borndoerfer@zib.de)

Exercise 26.

10 points
Prove the following:
Theorem. For a graph $G=(V, E)$, the following are equivalent:
(A) G is 2-edge-connected.
(B) For any pair of nodes, there are two edge-disjoint paths connecting them.
(C) G is connected and cyclic (where cyclic means that every edge is contained in a circuit).
(D) There is a sequence $G_{0}, G_{1}, \ldots, G_{q}=G$ of subgraphs of G, to be called an ear decomposition of G, where G_{0} consists of one node and no edge, and each G_{i} arises from G_{i-1} by adding a path P_{i} (called an ear) for which the (not-necessarily-distinct) endnodes belong to G_{i-1} while the (possibly empty) set of inner nodes of P_{i} do not.
(E) G can be built up from a node by sequentially adding edges (allowing loops) connecting two existing nodes and subdividing edges.

Exercise 27.

10 points
For a given graph $G=(V, E)$ with weights $c(e), e \in E$, the problem of finding a smallest spanning 2 -edge-connected subgraph means that one has to find a subset $F \subseteq E$ of smallest weight $c(F)$ such that (V, F) is 2-edge connected.
Prove the following:
Theorem. The problem of finding a smallest spanning 2-edge-connected subgraph of a graph G is $N P$-hard.

Exercise 28.

Let $G=(V, E)$ be a graph with nodes s and $t, s \neq t$. Let \mathcal{P} be the collection of all subsets of E that contain an $s-t$-path and let $P_{s-t}(G)$ be the convex hull of the incidence vectors of the elements of \mathcal{P}. Find a complete description of $P_{s-t}(G)$ by means of linear inequalities and equations.

Exercise 29.

Compute (numerically) a complete linear description of the convex hull of the incidence vectors of the spanning 2-edge-connected subsets of the complete graph K_{5}.

