Mathematics of Infrastructure Planning

PD Dr. Ralf Borndörfer
Prof. Dr. Martin Grötschel

Exercise sheet 9

Deadline: Thu, Jun 14, 2012, 23:59, mailto:borndoerfer@zib.de

Exercise 30.

Consider the following discrete stop location problems in a network $N=(S \cup T, E)$ with demand points V and covering radius r :
(DSL) $\quad p=|U| / S / \operatorname{cov}_{r}(U)=V / \ell_{2} / p \quad$ (planning from scratch)
(DSL1) $\quad p=|U| / T / \operatorname{cov}_{r}(U)=V / \ell_{2} / p \quad$ (closing stops)
(DSL2) $\quad p=|U| / S / \operatorname{cov}_{r}(U \cup T)=V / \ell_{2} / p \quad$ (opening stops)
(DSL3) $\quad p=|U| / S \cup T / \operatorname{cov}_{r}(U)=V / \ell_{2} / p \quad$ (closing and opening stops).
Prove that (DSLi) can be reduced to (DSL), $i=1,2,3$.

Exercise 31.

10 points
Consider a set covering problem (SCP) $\min c^{T} x, A x=1, x \in\{0,1\}^{n}$ with constraint matrix $A \in\{0,1\}^{m \times n}$ and objective $c \in \mathbb{R}_{+}^{n}$. Prove the validiaty of the following preprocessing rules:
a) $A_{i}=e_{j} \Longrightarrow x_{j}=1$ in every solution of (SCP).
b) $A_{\cdot j} \leq A_{\cdot k}$ and $c_{j}<c_{k} \Longrightarrow x_{j}=0$ in every optimal solution of (SCP).
c) $A_{i} \leq A_{k} \Longrightarrow A_{k} \cdot x \geq 1$ is redundant.
d) Find, formulate, and prove another preprocessing rule.

Exercise 32.

Let $w^{1} \geq \cdots \geq w^{s}>w^{s+1}=0$ be integers and denote by $H(n):=\sum_{i=1}^{n} \frac{1}{i}$ the n-th harmonic number, $n \in \mathbb{N}$. Prove that

$$
\sum_{i=1}^{s}\left(w^{i}-w^{i+1}\right) / w^{i} \leq \sum_{i=1}^{s}\left(H\left(w^{i}\right)-H\left(w^{i+1}\right)\right) \leq H\left(w^{1}\right)
$$

Exercise 33.

(Tutorial session)
Consider the bus stop location problem on the left of Fig. 1 with unit costs, potential stops $S=\left\{s_{1}, \ldots, s_{7}\right\}$, demand points $V=\left\{v_{1}, \ldots, v_{5}\right\}$ and covering radius r with
associated covering matrix

$$
A_{r}^{\text {cov }}=\left(\begin{array}{lllllll|l}
s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7} & \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & p_{1} \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & p_{2} \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & p_{3} \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & p_{4} \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & p_{5}
\end{array}\right)
$$

(cf. Schöbel [2003]). Solve this problem using set covering techniques, illustrating your reasoning in the figure.

Figure 1: Bus stop location problem.

Exercise 34.

(Tutorial session)
Consider a discrete stop location problem on a line, i.e., in a network $N=(S, E)$ of collinear nodes. Prove:
a) The covering matrix $A_{r}^{\text {cov }}$ associated with a discrete stop location problem on a line has the consecutive ones property, i.e., the columns and rows of $A_{r}^{\text {cov }}$ can be permuted in such a way that $a_{r i}=1=a_{r k}$ implies $a_{r j}=1, i \leq j \leq k$, for all $r \in V, i, k \in S$.
b) A $0 / 1$ matrix with the consecutive ones property is totally unimodular.
c) The set covering problem associated with a discrete stop location problem on a line can be solved by linear programming.

Exercise 35.

Consider a continuos stop location problem in a network $N=(S, E)$ with demand points V and covering radius r :

$$
(\mathrm{CSL}) \quad p=|U| / N / \operatorname{cov}_{r}(U)=V / \ell_{2} / p .
$$

Prove: If (CSL) is feasible, the optimum is finite.

Exercise 36.

Consider a continuos stop location problem in a network $N=(S, E)$ with demand points V and covering radius r

$$
(\mathrm{CSL}) \quad p=|U| / N / \operatorname{cov}_{r}(U)=V / \ell_{2} / p
$$

and denote

$$
S_{r}:=S \cup\left\{x \in N: \exists v \in V:\|x-v\|_{2}=r\right\}
$$

Prove that (CSL) can be reduced to (DSL):
a) S_{r} is finite.
b) Consider an edge $e=u v \in E$ and let $S_{r}^{e}:=S_{r} \cap e=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$. Order $\left\{s_{1}, \ldots, s_{k}\right\}$ as $u=s_{1}<_{e} \cdots<_{e} s_{n}=v$ with respect to the natural order along the edge $e=u v$, starting from u. Let s be a point on $u v$ between s_{i} and s_{i+1}, i.e., $s_{i}<_{e} s<_{e} s_{i+1}$. Then $\operatorname{cov}_{r}\left(s_{i}\right) \supseteq \operatorname{cov}_{r}(s)$ and $\operatorname{cov}_{r}\left(s_{i+1}\right) \supseteq \operatorname{cov}_{r}(s)$.
c) (CSL) has an optimal solution $S^{*} \subseteq S_{r}$.

