Mathematics of Infrastructure Planning

PD Dr. Benjamin Hiller

Prof. Dr. Martin Grötschel

Exercise sheet 12

Deadline: Thu, July 5, 2012, 23:59, mailto:hiller@zib.de

Exercise 43.

A pipe in a gas network can be modelled as an $\operatorname{arc}(u, v)$ from node u to node v in a directed graph. The direction of the arc determines the flow direction of the gas in the pipe: If the flow $q_{u v}$ is non-negative, the gas flows from u to v and in the opposite direction otherwise. The pressures at the end nodes of the pipe are denoted by p_{u} and p_{v}, respectively; the pressure difference or more precisely the difference of the squared pressures determines (under suitable simplifying assumptions) the flow $q_{u v}$ according to the equation

$$
\begin{equation*}
p_{u}^{2}-p_{v}^{2}=\alpha q_{u v}\left|q_{u v}\right| \tag{1}
\end{equation*}
$$

To handle the solution set of this nonlinear equation in a (linear) mixed-integer global solver, it has to be linearized. One possibility to do this is to approximate the solution set by a "tight" approximation of its convex hull. To this end, it is sufficient to find approximations for the function

$$
\begin{equation*}
y=f(x)=\alpha x|x| . \tag{2}
\end{equation*}
$$

Derive formulas for a "good" linear approximation of the convex hull of the graph $F=$ $\{(x, f(x)) \mid \underline{x} \leq x \leq \bar{x}\}$ of $f(x)$ in the interval $[\underline{x}, \bar{x}]$ using at most four faces (see picture)!

To improve the linear approximation of the solution set F of Equation (2), one can add cutting planes. In this way, the convex hull of F may be approximated to any degree of precision. To refine the approximation further, one eventually has to resort to "branching". It is reasonable to branch on $x=0$ first, since then we have a concave function in one branch $(x \leq 0)$, whereas the function in the other branch $(x>0)$ is convex. Let us assume that the convex domain of $f(x)$ has already been reduced to the interval $[\underline{x}, \bar{x}]$ with $\underline{x} \geq 0$. How should the branching process proceed in order to achieve a "good" resulting approximation?
Exercise 45.
2 points for each of $(a), \ldots,(e), 10$ total points
We consider a compressor station of a gas pipeline system. This station consists of many devices (such as pumps, switches, valves,...) which have to satisfy various side constraints. Let us consider four such devices, named $1,2,3$, and 4 , and let the $0 / 1$-variable x_{i} indicate whether device i is switched on $\left(x_{i}=1\right)$ or off $\left(x_{i}=0\right)$. The devices have to satisfy the following conditions:
(1) If device 1 is switched on, then device 2 must be switched off.
(2) If devices 3 and 4 are switched on, then device 2 must be switched on as well.
(3) If devices 2 and 3 are switched on, then one of the devices 1 or 4 must be switched on.
(a) Formulate an integer program so that every feasible $0 / 1$-solution of this IP corresponds to a feasible on/off-setting of the four devices by "turning" the requirements (1)-(3) into "natural inequalities".
(b) Determine all feasible 0/1-solutions of the IP of (a).

Let P be the convex hull of the feasible solutions determined in (b).
(c) Determine a system of linear inequalities that defines P.
(d) Find, for each facet of P, a linear inequality defining it.
(e) Which of the inequalities that you came up with in (a) define facets of P ? What is the dimension of the faces determined by the inequalities you provided in (a)?

Exercise 46.

We consider a mixed-integer program (MIP) in just two variables x and y. The real variable x is required to be nonnegative, the integral variable y is unbounded. Consider, for some real number b, the set

$$
P_{I}:=\{(x, y) \in \mathbb{R} \times \mathbb{Z} \mid x+y \geq b, x \geq 0\}
$$

of feasible MIP-solutions and its convex hull

$$
P:=\operatorname{conv}\left(P_{I}\right) .
$$

Let $\lfloor b\rfloor$ denote the largest integer not larger than b, and set

$$
r:=r(b):=b-\lfloor b\rfloor .
$$

Prove that

$$
x+r y \geq r(\lfloor b\rfloor+1)
$$

defines a facet of P and that

$$
P:=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y \geq b, x \geq 0, x+r y \geq r(\lfloor b\rfloor+1)\right\} .
$$

