Technische Universität Berlin Institut für Mathematik

Mathematics of Infrastructure Planning

PD Dr. Ralf Borndörfer Prof. Dr. Martin Grötschel

Exercise sheet 4

Deadline: Thu, May 10, 2012, in the tutorial session

Mobile Phone Network Coverage

Given a set of locations $L = \{r_1, ..., r_s\}$ representing the region to be covered by a system of antennas of a mobile telephone network. Given, moreover, a set $A = \{a_1, ..., a_n\}$ of potential antenna locations and, for each antenna location $a \in A$, a set $T_a = \{t_{1a}, ..., t_{qa}\}$ of feasible "antenna technologies". For each antenna $a \in A$, each associated antenna technology $t \in T_a$, and each location $r \in L$, a non-negative rational number v_{atr} is given, indicating how well location $r \in L$ is covered by antenna $a \in A$ when equipped with technology $t \in T_a$. If $v_{atr} = 0$ then r is not reached from antenna a by technology t.

Exercise 9.

5 points

5 points

Formulate an integer program that chooses at most one technology for each antenna and maximizes the coverage of the locations representing the region.

Exercise 10.

Now assume that the available technologies are the same for all antenna locations, briefly $T = \{1, ..., q\}$, but that for each antenna $a \in A$, a set $F_a \subseteq T$ of technologies is given that are "forbidden" for this antenna. Moreover, for any pair $a, b \in A$ of antenna locations, an interference value c_{ab} is given that indicates the "interference" occurring in the overlap of the "antenna cells" of a and b when in both locations aand b the same antenna technology is installed. The overlap region of two antenna cells is the set of locations $r \in L$ where both antennas simultaneously have positive coverage.

Formulate an integer program that guarantees coverage of every location in L and that minimize total interference.

Exercise 11.

Suppose now that, in addition to the data of Exercise 10, values w_{at} have to be taken into account that indicate the costs occuring when technology $t \in T$ is installed at antenna location $a \in A$. Design an optimization model that produces an assignment of technologies to antenna locations such that the total costs are small as well as the total interference.

5 points

Exercise 12.

5 points

Suppose now that, in addition to the data of Exercise 10, values d_{ab} are given that indicate the "neighbor interference" which occurs when, for the technology $s \in T$ installed at $a \in A$ and the technology $t \in T$ installed at $b \in A$, the following holds: $|s - t| \leq 1$. Incorporate this requirement into your optimization model.

Exercise 13.

10 points

Provide your opinion about the four models explained above. Which looks reasonable, practical, implementable? Which would you suggest to a mobile phone company? Are there additional constraints that should be addressed?