1 Checking a gas nomination for feasibility

e problem definition
— input: gas network graph G = (V,arcs), balanced nomination w
(vector of gas in- and outflows)
— task: decide whether gas flow can technically be realized
— most important variables: flow g, along an arc
— flow conservation constraints: Ag = w

— difference from “linear” flow problems: no capacities on arcs, but g,
at arc (u,v) induced by pressures at nodes u and v
pressure at node u: p,

— important technical constraints: bounds on the pressures

— relationship between ¢, and p, and p, depends on type of arc (pipe,
compressor, control valve, valve)

— pipe: most accurately modelled by a PDE, good algebraic
approximations known, e. g.,
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with constants

A, modelling physical properties of the gas, the pipe and
its environment, e. g., length, diameter, roughness, soil
temperature

S,  modelling the height difference

— compressor (increase pressure): feasible set of (¢q, pu, pv) 1S
nonconvex; can be approximated by intersection of 4 quadratic
constraints

— control valve (decrease pressure): nice, feasible set of (qq, Pu,Pv) is
2-dimensional interval

— valve: two states open or closed ~» binary variable z,

2 =0= q.=0; Du, Dy arbitrary,
zZo =1 = ¢q, arbitrary; p, = py.

— valves are used to route the gas in the network, resulting in complex
overall behavior

e problem is a nonconvex MINLP which we want to solve globally

e global optimization basically only possible for convex (or even linear)
problems

e ways out:

— use convex underestimators and spatial branching



— linearize nonlinear functions

— exploit special problem structure
e for checking nomination feasibility, we use two competing approaches

1. construct a MIP approximation to be solved by a standard MIP
solver

2. use a MINLP approximation with special structure to be solved by
a custom-tailored solver (based on SCIP)

2 Constructing MIP approximations of MINLPs

e step 1: convert function to a piecewise linear one

step 2: use a MIP model for piecewise linear functions to incorporate it
in a MIP

for simplicity, consider only univariate continuous piecewise linear
functions

e Remark: It is often possible to rewrite multivariate functions as
combinations of univariate functions.

e example: reformulating (1):
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introducing a new variable A, for the pressure drop (lhs) we may write

e notation:

— f: R — R: continuous piecewise linear function
— Zg,...,Ty: endpoints of the n intervals in which f is linear

— fi = f(x;), 0 <i < n: function value at z;

2.1 The convex combination method

e idea: in each interval [z;, z;41], the exact value of f is given by a convex
combination of f; and f; 1

e introduce variables \; > 0, 0 < i < n, to describe convex combinations



e basic model:

1=0
f= Z Ai fi
i=0
e missing property:
At most two of the A\; may be positive. If two \; are (SOS2)

positive, they need to be adjacent.

e enforce (SOS2) via additional binary variables z;, 1 <14 < n, indicating
which interval is used (i.e., z; = 1 iff & € [x;-1, 24]):

ziG{O,l} 1<i<n,
n
=1
)\O S 21,
i <2+ i 1<i<n,
An < Zp.

2.2 The SOS method
e idea: enforce (SOS2) via branching instead of additional binary variables

e model contains no binary variables, but a constraint
“The set {Ag, ..., An} is a SOS2 set.”

e special branching rule for this type of constraint:

1. Compute
Z?:o iAi
Z?:o Ai

2. There is a unique pair (k,k+ 1) with k <w <k + 1.

w =

3. Branch via

k n
> Ai=0 and > Ai=0
=0 i=k

e of course, a scoring mechanism to balance with the “usual” branching is
needed



2.3 The log method

e Let I ={1,...,n} be the index set of the intervals and J = {0,

the index set for the A-variables.

e Define the set I(j) by

{1} j=0,
1) =q{5,7+1} 1<j<n,
{n} j=n.

e Assume n = 2" for some k > 2 for simplicity.

...,n} be

e We need to decide which of the n intervals to chose. Can we do this

using only % binary variables?

Definition 1 A bijective function B: {1,...,2*} — {0,1}* is called a Gray

code, if B(j) and B(j + 1) differ in exactly one component.

Theorem 1 Let B: I — {0,1}* be a Gray code. The constraints

Z /\j S Iy 1 S l S k,

JE€J: B(i);=1Vi€I(j)
> A <1—m 1<1<k,

jeJ: B(i);=0Viel(j)
z; € {0,1} 1<1<k,

are a MIP model for (SOS2).

PROOF e Intuition: A; has to be zero if x = (1,. .., zy) is different

from B(i) for any interval i € I(j)

Let (A, x) be an integer solution of the model.

Need to show for j € J: If  # B(i) for ¢ € I(j), then A\; = 0.

Case j € {0,n}:

— We have I(0) = {1}, I(n) = {n}. Thus \; appears in the LHS of (2)

or (3) for any [.

— B(j) # « implies there is a | with B(j); # 2;. Thus there is a
constraint (2) or (3) with RHS 0, where A; appears on the LHS,

thus forcing it to 0.

Case j € J\ {0,n}:

— We have I(j) = {j,j+ 1}, so \; appears on the LHS iff
B(j)i=B(j + 1)

— Since B is a Gray code, = ¢ {B(j), B(j + 1)} implies there is a [
with B(j); = B(j + 1); # x;. Thus there is again a constraint with

RHS 0 and A; on the LHS.



3 Solving a specially-structured MINLP
approximation

e Consider purely passive gas network, consisting of pipes only (in
particular, there are no valves / discrete decisions).

e Assuming that the height difference of all pipes is negligible, the pressure
drop model further simplifies to

p12;, _p?; =A, |Qa| qa-

e Replacing p2 by new variables 7, := p2, the feasibility checking problem
of a nomination w is then of the form:

Z qa — Z qa = dy Yu eV,

aedt (v) aed— (v) (5)
Tuw — T = Na |qa] Ga Ya € A.
Theorem 2 The solution set of (5) has the following properties:
e The flows ¢ = (qa)aca are unique.

o The set of feasible pressure squares w = (7, )uey 18 a line: If g is
feasible, so is wo + AL, where 1 denotes the |V |-dimensional vector of 1s.

e NB: The solution set of (5) is thus convex.

e To take into account the pressure bounds «,,, 7, at each node u, we
introduce additional slack variables s}, € R>o and the constraints
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over the flow conservation constraints, (5), and (6) is then a

convex NLP, which can be solved to global optimality. Its objective
value is 0 if and only if the nomination d can be realized by the passive
gas network without violating the pressure bounds.

e Motivates the following approach:

— Reformulate constraints for compressors and control valves in way
compatible to (a generalization of) Theorem 2.

— Resort to above NLP as soon as valves have been decided to check
feasibility.



