
1 Checking a gas nomination for feasibility
• problem definition

– input: gas network graph G = (V, arcs), balanced nomination ω
(vector of gas in- and outflows)

– task: decide whether gas flow can technically be realized

– most important variables: flow qa along an arc

– flow conservation constraints: Aq = ω

– difference from “linear” flow problems: no capacities on arcs, but qa
at arc (u,v) induced by pressures at nodes u and v
pressure at node u: pu

– important technical constraints: bounds on the pressures

– relationship between qa and pu and pv depends on type of arc (pipe,
compressor, control valve, valve)

– pipe: most accurately modelled by a PDE, good algebraic
approximations known, e. g.,

p2v =

(
p2u − Λa |qa| qa

eSa − 1

Sa

)
e−Sa (1)

with constants

Λa modelling physical properties of the gas, the pipe and
its environment, e. g., length, diameter, roughness, soil
temperature

Sa modelling the height difference

– compressor (increase pressure): feasible set of (qa, pu, pv) is
nonconvex; can be approximated by intersection of 4 quadratic
constraints

– control valve (decrease pressure): nice, feasible set of (qa, pu, pv) is
2-dimensional interval

– valve: two states open or closed ; binary variable za

za = 0 =⇒ qa = 0; pu, pv arbitrary,
za = 1 =⇒ qa arbitrary; pu = pv.

– valves are used to route the gas in the network, resulting in complex
overall behavior

• problem is a nonconvex MINLP which we want to solve globally

• global optimization basically only possible for convex (or even linear)
problems

• ways out:

– use convex underestimators and spatial branching
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– linearize nonlinear functions

– exploit special problem structure

• for checking nomination feasibility, we use two competing approaches

1. construct a MIP approximation to be solved by a standard MIP
solver

2. use a MINLP approximation with special structure to be solved by
a custom-tailored solver (based on SCIP)

2 Constructing MIP approximations of MINLPs
• step 1: convert function to a piecewise linear one

• step 2: use a MIP model for piecewise linear functions to incorporate it
in a MIP

• for simplicity, consider only univariate continuous piecewise linear
functions

• Remark: It is often possible to rewrite multivariate functions as
combinations of univariate functions.

• example: reformulating (1):

p2v =

(
p2u − Λa |qa| qa

eSa − 1

Sa

)
e−Sa

e−Sap2u − p2v = Λa |qa| qa
eSa − 1

Sa
e−Sa

introducing a new variable ∆uv for the pressure drop (lhs) we may write

∆uv = Λa |qa| qa
eSa − 1

Sa
e−Sa

p2v = e−Sap2u −∆uv

• notation:

– f : R→ R: continuous piecewise linear function

– x0, . . . , xn: endpoints of the n intervals in which f is linear

– fi = f(xi), 0 ≤ i ≤ n: function value at xi

2.1 The convex combination method
• idea: in each interval [xi, xi+1], the exact value of f is given by a convex

combination of fi and fi+1

• introduce variables λi ≥ 0, 0 ≤ i ≤ n, to describe convex combinations
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• basic model:

λi ≥ 0 0 ≤ i ≤ n,
n∑
i=0

λi = 1,

x =

n∑
i=0

λixi,

f =

n∑
i=0

λifi.

• missing property:

At most two of the λi may be positive. If two λi are
positive, they need to be adjacent. (SOS2)

• enforce (SOS2) via additional binary variables zi, 1 ≤ i ≤ n, indicating
which interval is used (i. e., zi = 1 iff x ∈ [xi−1, xi]):

zi ∈ {0, 1} 1 ≤ i ≤ n,
n∑
i=1

zi = 1,

λ0 ≤ z1,
λi ≤ zi + zi+1 1 ≤ i < n,

λn ≤ zn.

2.2 The SOS method
• idea: enforce (SOS2) via branching instead of additional binary variables

• model contains no binary variables, but a constraint
“The set {λ0, . . . , λn} is a SOS2 set.”

• special branching rule for this type of constraint:

1. Compute

w =

∑n
i=0 iλi∑n
i=0 λi

.

2. There is a unique pair (k, k + 1) with k ≤ w ≤ k + 1.
3. Branch via

k∑
i=0

λi = 0 and
n∑
i=k

λi = 0

• of course, a scoring mechanism to balance with the “usual” branching is
needed
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2.3 The log method
• Let I = {1, . . . , n} be the index set of the intervals and J = {0, . . . , n} be

the index set for the λ-variables.

• Define the set I(j) by

I(j) =


{1} j = 0,

{j, j + 1} 1 ≤ j < n,

{n} j = n.

• Assume n = 2k for some k ≥ 2 for simplicity.

• We need to decide which of the n intervals to chose. Can we do this
using only k binary variables?

Definition 1 A bijective function B : {1, . . . , 2k} → {0, 1}k is called a Gray
code, if B(j) and B(j + 1) differ in exactly one component.

Theorem 1 Let B : I → {0, 1}k be a Gray code. The constraints∑
j∈J : B(i)l=1 ∀i∈I(j)

λj ≤ xl 1 ≤ l ≤ k, (2)

∑
j∈J : B(i)l=0 ∀i∈I(j)

λj ≤ 1− xl 1 ≤ l ≤ k, (3)

xl ∈ {0, 1} 1 ≤ l ≤ k, (4)

are a MIP model for (SOS2).

Proof • Intuition: λj has to be zero if x = (x1, . . . , xk) is different
from B(i) for any interval i ∈ I(j)

• Let (λ, x) be an integer solution of the model.

• Need to show for j ∈ J : If x 6= B(i) for i ∈ I(j), then λj = 0.

• Case j ∈ {0, n}:

– We have I(0) = {1}, I(n) = {n}. Thus λj appears in the LHS of (2)
or (3) for any l.

– B(j) 6= x implies there is a l with B(j)l 6= xl. Thus there is a
constraint (2) or (3) with RHS 0, where λj appears on the LHS,
thus forcing it to 0.

• Case j ∈ J \ {0, n}:

– We have I(j) = {j, j + 1}, so λj appears on the LHS iff
B(j)l = B(j + 1)l.

– Since B is a Gray code, x /∈ {B(j), B(j + 1)} implies there is a l
with B(j)l = B(j + 1)l 6= xl. Thus there is again a constraint with
RHS 0 and λj on the LHS.
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3 Solving a specially-structured MINLP
approximation
• Consider purely passive gas network, consisting of pipes only (in

particular, there are no valves / discrete decisions).

• Assuming that the height difference of all pipes is negligible, the pressure
drop model further simplifies to

p2u − p2v = Λa |qa| qa.

• Replacing p2u by new variables πu := p2u, the feasibility checking problem
of a nomination ω is then of the form:∑

a∈d+(v)

qa −
∑

a∈d−(v)

qa = du ∀u ∈ V,

πu − πv = Λa |qa| qa ∀a ∈ A.
(5)

Theorem 2 The solution set of (5) has the following properties:

• The flows q = (qa)a∈A are unique.

• The set of feasible pressure squares π = (πu)u∈V is a line: If π0 is
feasible, so is π0 + λ1, where 1 denotes the |V |-dimensional vector of 1s.

• NB: The solution set of (5) is thus convex.

• To take into account the pressure bounds πu, πu at each node u, we
introduce additional slack variables sπu ∈ R≥0 and the constraints

πu + sπu ≥ πu ∀u ∈ V,
πu − sπu ≤ πu ∀u ∈ V.

(6)

• Minimizing ∑
u∈V

sπu

over the flow conservation constraints, (5), and (6) is then a
convex NLP, which can be solved to global optimality. Its objective
value is 0 if and only if the nomination d can be realized by the passive
gas network without violating the pressure bounds.

• Motivates the following approach:

– Reformulate constraints for compressors and control valves in way
compatible to (a generalization of) Theorem 2.

– Resort to above NLP as soon as valves have been decided to check
feasibility.
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