FTTx network planning

Mathematics of Infrastructure Planning (ADM III)

14 May 2012
$\triangleright \quad$ Fiber To The \underline{x}
\Rightarrow Telecommunication access networks: "last mile" of connection between customer homes (or business units) and telecommunication central offices
\Rightarrow Fiber optic technology: much higher transmission rates, lower energy consumption
\triangleright Multitude of choices in the planning of FTTx networks

$\triangleright \quad$ Fiber To The \underline{x}
\Rightarrow Telecommunication access networks: "last mile" of connection between customer homes (or business units) and telecommunication central offices

- Fiber optic technology: much higher transmission rates, lower energy consumption
\triangleright Multitude of choices in the planning of FTTx networks

Architecture:

PON

Point-to-point
$\triangleright \quad$ Fiber To The \underline{x}
\Rightarrow Telecommunication access networks: "last mile" of connection between customer homes (or business units) and telecommunication central offices
\Rightarrow Fiber optic technology: much higher transmission rates, lower energy consumption
\triangleright Multitude of choices in the planning of FTTx networks

Target coverage rate:

$$
80 \%
$$

capacity restrictions!
\diamond
CO (central office): connection to backbone networkBTP ("customer" location): target point of a connection
\triangle DP (distribution point): passive optical switching elements
\Rightarrow splitters, closures with capacities

capacity restrictions!
length restrictions!

\diamond
CO (central office): connection to backbone networkBTP ("customer" location): target point of a connection
\triangle DP (distribution point): passive optical switching elements
\Rightarrow splitters, closures with capacities

- Links: fibers in cables (in micro-ducts) (in ducts) in the ground

- Given a trail network with
- special locations: potential $\mathrm{COs}, \mathrm{DPs}$, and BTPs,
- trails with trenching costs, possibly with existing infrastructure (empty ducts, dark fibers)
- catalogue of installable components with cost values
- further planning parameters (target coverage rate, max. number of residents/fibers per CO/DP, etc)

\Rightarrow Find a valid, cost-optimal FTTx network!
\triangleright BMBF funded project 2009-2011

- Partners:
- Industry Partners: R•KOM Draka

Breitband Kompetenz Zentrum Niedersachsen
\triangleright Compute FTTx network in several steps:

1. step: network topology
a) connect BTPs to DPs
b) connect DPs to COs
\Rightarrow integer linear program: concentrator-location
2. step: cable \& component installation
3. step: duct installation \Rightarrow integer linear program: cable-duct-installation
\triangleright Given: undirected graph with

- client nodes: fiber demand, number of residents, revenue (for optional clients)
- concentrator nodes: capacities for components, fibers, cables, ..., cost values
- edges: capacity in fibers or cables (possibly 0), cost values for trenching
\triangleright Task: compute a cost-optimal network such that
- each mandatory client is connected to one concentrator
- various capacities at concentrators and edges are respected
- Integer program:
- select paths that connect clients
- capacity constraints on edges
- capacity constraints for fibers, cables, closures, (cassette trays), (splitter) ports at concentrators
- constraints for coverage rate, limit on the number of concentrators
minimize $\sum_{i \in V_{D}} c_{i} x_{i}+\sum_{t \in T} c_{t} y_{t}+\sum_{e \in E} c_{e} w_{e}+\sum_{p \in P \cup \hat{P}} c_{p} f_{p}-\sum_{v \in V_{B}} r_{v} q_{v}$
s.t.

$$
\begin{aligned}
& \sum_{p \in P_{v}} f_{p}=1 \quad \forall v \in V_{A} \\
& \sum_{p \in P_{v}} f_{p}=q_{v} \quad \forall v \in V_{B} \\
& f_{p} \leq f_{p^{\prime}} \quad \forall p \in P^{\prime} \\
& \sum_{p \in P_{e} \cup \hat{P}_{e}} f_{p} \leq\left|P_{e} \cup \hat{P}_{e}\right| w_{e} \quad \forall e \in E_{0} \\
& \sum_{p \in P_{e} \cup \hat{P}_{e}} d_{p}^{e} f_{p} \leq u_{e}+u_{e}^{\prime} w_{e} \quad \forall e \in E_{>0} \\
& x_{i} \leq \sum_{p \in \hat{P}_{i}} f_{p} \leq 1 \quad \forall i \in \hat{V}_{D} \\
& \sum_{t \in T_{i}} y_{t}=x_{i} \quad \forall i \in V_{D} \\
& \sum_{v \in V_{B} \cap V_{k}} n_{k, v} q_{v} \geq\left\lceil\chi_{k} n_{k}\right\rceil-n_{k}^{A} \quad \forall k \in C \\
& \sum_{i \in V_{D}} x_{i} \leq m \\
& \sum_{p \in P_{i}} d_{p}^{f} f_{p} \leq \sum_{t \in T_{i}} u_{t}^{f} y_{t} \quad \forall i \in V_{D} \\
& \sum_{p \in P_{i}} d_{p}^{c} f_{p} \leq \sum_{t \in T_{i}} u_{t}^{c} y_{t} \quad \forall i \in V_{D} \\
& \sum_{p \in P_{i}} d_{p}^{r} f_{p} \leq \sum_{t \in T_{i}} u_{t}^{r} y_{t} \quad \forall i \in V_{D} \\
& \sum_{p \in P_{e}} d_{p}^{f} f_{p} \leq \sum_{l \in L_{e}} u_{l}^{f} z_{l} \quad \forall e \in E_{D} \\
& \sum_{l \in L_{i}} d_{l}^{c} z_{l} \leq \sum_{t \in T_{i}} u_{t}^{c} y_{t} \quad \forall i \in V_{D} \\
& \sum_{l \in L_{i}} d_{l}^{r} z_{l} \leq \sum_{t \in T_{i}} u_{t}^{r} y_{t} \quad \forall i \in V_{D} \\
& \sum_{p \in P_{i}} d_{p}^{s} f_{p} \leq \sum_{t \in T_{i}} u_{t}^{s} y_{t} \quad \forall i \in V_{D} \\
& \sum_{p \in P_{i}} n_{p} f_{p} \leq n_{i} x_{i} \quad \forall i \in V_{D}
\end{aligned}
$$

CATEGORY
Served residents

Served residents	BUSINESS
Setup cost	HOUSEHO
	BTP
	DP
	CO
	Total

BTP terminations
BTP splitters BTP ONUs

DP closures

DP splitters
CO ODF

CO switches
CO eards

CO ports
CO trans ceivers
Cables
COMPONENT

DP

Total

Total oost
SP-FOC-FIC-32
TYFIST-OR2

OUSEHOLDS
-

TRX-OPON-ClassC +-2488-1244 ONU ONU-ALU-OPON-ONT-1

MUFF ETY-OCOR-64 MUFFE TY-OCO2-9E

OLTSW-ALU-7342-ISAMFTTU-2500B
CARD-ALU-OLT-4
PORT-OPON-2488-1244

TRX OPON-ClassC +-2488-1244 OLT
CABLE-DRA-Nano-6×12. 12
CABLE-DRA-Nano-6×12-24
CABLE-DRA-Nano-6x12-4B

COUNT METER COST
PERCENT

60					
803					
					CABLE-DRA-Nano-6x12-60
225		0,00	0.00		CABLE-DRA-URX-10
θ		10800,00	0,87		CABLE-DRA-URX 12
1		470447,00	37,90		CABLE-DRA-URX-2
1		481247,00	38,77		CABLE-DRA-URX 4
					CABLE-DRA-URX 6
					CABLE-DRA-URX-8
-					Total
				Ducts	
			3,61		DUCT-110
280		44800			DUCT-60
					DUCT-MF R-2 $\times 40-2 \times 30$
280		44800	3,81		DUCT-SPQ-1×10×10
					DUCT-SP O-1×10 $\times 10-1 \times 6 \times 10$
7		13868	1,10		DUCT-SPO- $1 \times 18 \times 10$
2		4036	0,33		DUCT-SP Q $1 \times 18 \times 10-1 \times 10 \times 10$
θ		17701	1,43		DUCT-SPQ-1×1× 10
					DUCT-SP0-1.24×10
10		17480	1,41		DUCT-SPQ-1 2×10
					DUCT-SPQ-1x6x 10
1		300	0,02		DUCT-SPO- $2 \times 10 \times 10$
					DUCT-SP $0.2 \times 6 \times 10$
1		6025	0,40	Fibers	Total
3		7660	0,81	Trails	FIBER-COR-LWP
11		0	0.00		Digging
					Digging Drop-Area
11		110	0.01		Digging Non-Drop-Area
					Digging DP.Area ex clusively
3	360	334	0.03		Digging CO-Area exolusively
1	675	738	0.06		Digging DP. and CO-Area inters eoting
1	1082	1473	0,12		Existing ducts
				Total	
				Cost per resident	
				Cost per building	

\triangleright How much trenching cost is unavoidable?

- All (mandatory) customer locations have to be connected to a CO
\Rightarrow More COs have to be opened if the capacities are exceeded
\triangleright Steiner tree approach:
- Construct a directed graph G with:
- all trail network locations, BTPs and COs, plus an artificial root node, as node set
- forward- and backward-arcs for each trail, plus capacitated artificial arcs connecting the root to each CO

\Rightarrow Compute a Steiner tree in G with:
- all BTPs, plus the artificial root node, as terminals
- capacity restrictions on the artificial arcs

$$
\begin{array}{rlrl}
\operatorname{minimize} & \sum_{e \in E} c_{e} w_{e}+\sum_{a \in A_{0}} c_{a} x_{a} & \\
\text { s.t. } \quad \sum_{a \in \delta^{-}(v)} f_{a}-\sum_{a \in \delta^{+}(v)} f_{a} & =\left\{\begin{array}{cc}
N_{v} & \text { if } v \in V_{B} \\
0 & \text { otherwise }
\end{array}\right. & & \forall v \in V \\
f_{a} & \leq\left|N_{B}\right| x_{a} & & \forall a \in A \\
x_{e^{+}}+x_{e^{-}} & =w_{e} & & \forall e \in E \\
\sum_{a \in \delta^{-}(v)} x_{a} & =1 & \forall v \in V_{B} \\
\sum_{a \in \delta^{-}(v)} x_{a} & \leq 1 & \forall v \in V \backslash V_{B} \\
\sum_{a \in \delta^{-}(v)} x_{a} & \leq \sum_{a \in \delta^{+}(v)} x_{a} & \forall v \in V \backslash V_{B} \\
\sum_{a \in \delta^{-}(v)} x_{a} & \geq x_{a^{\prime}} & \forall v \in V \backslash V_{B}, a^{\prime} \in \delta^{+}(v) \\
f_{a} & \leq k_{a} x_{a} & \forall a \in A_{0} \\
\sum_{a \in A_{0}} x_{a} & \leq N_{C} & & \\
f_{a} \geq 0, x_{a} & \in\{0,1\} & & \forall a \in A \\
w_{e} & \in\{0,1\} & \forall e \in E
\end{array}
$$

- Instances:
- a*: artificially generated, based on GIS information from www.openstreetmap.org
- $\mathrm{c} *$: real-world studies, based on information from industry partners

Instance:	a1	a2	a3	c1	c2	c3	c4
\# nodes	637	1229	4110	1051	1151	2264	6532
\# edges	826	1356	4350	1079	1199	2380	7350
\# BTPs	39	238	1670	345	315	475	1947
\# potential COs	4	5	6	4	5	1	1
network trenching cost	235640	598750	2114690	322252	1073784	2788439	4408460
lower bound	224750	575110	2066190	312399	1063896	2743952	4323196
relative gap	4.8%	4.1%	2.3%	3.2%	0.9%	1.6%	2.0%

\Rightarrow Trenching costs in the computed FTTx networks are quite close to the lower bound
\triangleright BMBF funded project 2009-2011

- Partners:

Fraunhofer
Heinrich-Hertz-Institut

Partners:

- Industry Partners: R•KOM: Draka

Breitband Kompetenz Zentrum Niedersachsen
\triangleright Compute FTTx network in several steps:

1. step: network topology
a) connect BTPs to DPs
b) connect DPs to COs
\Rightarrow integer linear program: concentrator-location
2. step: cable \& component installation
3. step: duct installation
\Rightarrow integer linear program: cable-duct-installation

- Given
- network topology
- a fiber demand at every connected BTP
- restrictions on cable and duct installations:

Example: Micro-ducts
Every customer gets their own cable(s), each in a separate micro-duct within a micro-duct bundle

\triangleright Task: compute cost-optimal cable and duct installations that meet the restrictions such that all fiber demands at customer locations are met

\Rightarrow DPs and COs are roots of undirected trees

- Given
- an undirected rooted tree with
- one concentrator (root)
- client locations and
- other locations
- set C of cable installations to embed with
- path in the tree
- number of cables

- Task: compute cost-optimal duct installations, such that every cable is embedded in a micro-duct on every edge of its path

s.t.
\# pipes of type p provided
by duct installation d
\# cables in installation $c \quad k_{c}=\sum_{p \in P_{c}^{O}} \sum_{\substack{d \in D_{p}: \\ e \in q_{d}}} x_{c, d}^{p} \quad \forall c \in C, e \in q_{c}$

$$
\begin{array}{cc}
x_{d} \in \mathbb{Z}_{\geq 0} & \longleftarrow \quad \# \text { ducts of duct installation } d \text { used } \\
x_{c, d}^{p} \in \mathbb{Z}_{\geq 0} & \longleftarrow \quad \# \text { cables for } c \text { embedded in pipes of type } p \\
\text { provided by duct installation } d
\end{array}
$$

(a)

(b)

(c)

Possible duct sizes 6, 12 and 24

- Trail network
- Client
- Cable installation
- Duct installation

1 Number of cables/ducts used in installation
maximal direction:
downward direction at an intersection with maximal number of cables on it
(a) Given cable installations
(b) Cost optimal installations with downgrading at intersections
(c) Installations used in practice (downgrading in maximal direction not allowed)
minimize $\sum_{d \in D} c_{d} x_{d}+\sum_{e \in E} c_{e} z_{e}$
s.t. $\quad k_{p}^{d} x_{d} \geq \sum_{\tilde{d} \in D} x_{\tilde{d}, d}^{p}+\sum_{c \in C} x_{c, d}^{p} \quad \forall d \in D, p \in P^{d}$

$$
\begin{array}{ll}
k_{c} \leq \sum_{p \in P_{c}^{O}} \sum_{\substack{d \in D_{p}: \\
e \in q_{d}}} x_{c, d}^{p}+z_{e} k_{c} & \forall c \in C_{G}, e \in q_{c} \bar{v} \\
k_{c}=\sum_{p \in P_{c}^{O}} \sum_{\substack{d \in D_{p}: \\
e \in q_{d}}} x_{c, d}^{p} & \forall c \in C \backslash C_{G}, e \in q_{c}
\end{array}
$$

$\forall \tilde{d} \in D_{G}, e \in q_{\tilde{d}}$ either embed

$$
x_{\tilde{d}} \leq \sum_{p \in P_{\tilde{d}}^{O}} \sum_{\substack{d \in D_{p}: \\ e \in q_{d}}} x_{\tilde{d}, d}^{p}+z_{e} M_{\tilde{d}} \quad \forall \tilde{d} \in D_{G}, e \in q_{\tilde{d}}
$$ or trench

$$
x_{\tilde{d}}=\sum_{p \in P_{\tilde{d}}^{O}} \sum_{\substack{d \in D_{p}: \\ e \in q_{d}}} x_{\tilde{d}, d}^{p}
$$

$$
\forall \tilde{d} \in D \backslash D_{G}, e \in q_{\tilde{d}}
$$

$$
k_{c} \geq \sum_{p \in P_{c}^{O}} \sum_{\substack{d \in D_{p}: \\ e \in q_{d}}} x_{c, d}^{p} \quad \forall c \in C_{G}, e \in q_{c}
$$

$$
x_{\tilde{d}} \geq \sum_{p \in P_{\tilde{d}}^{O}} \sum_{\substack{d \in D_{p}: \\ e \in q_{d}}} x_{\tilde{d}, d}^{p}
$$

one cable/duct embedded in at most one duct
$z_{e} \in\{0,1\} \quad \longleftarrow$ trenching trail e (or not)

