FTTx network planning

Mathematics of Infrastructure Planning (ADM III)

14 May 2012

- \triangleright <u>Fiber To The x</u>
 - Telecommunication access networks: "last mile" of connection between customer homes (or business units) and telecommunication central offices
 - Fiber optic technology: much higher transmission rates, lower energy consumption
- $\,\triangleright\,$ Multitude of choices in the planning of FTTx networks

- \triangleright <u>Fiber To The x</u>
 - Telecommunication access networks: "last mile" of connection between customer homes (or business units) and telecommunication central offices
 - Fiber optic technology: much higher transmission rates, lower energy consumption
- \triangleright Multitude of choices in the planning of FTTx networks

- \triangleright <u>Fiber To The x</u>
 - Telecommunication access networks: "last mile" of connection between customer homes (or business units) and telecommunication central offices
 - Fiber optic technology: much higher transmission rates, lower energy consumption
- > Multitude of choices in the planning of FTTx networks

FTTx terminology

- CO (central office): connection to backbone network
- O BTP ("customer" location): target point of a connection
- \triangle DP (distribution point): passive optical switching elements
 - ➡ splitters, closures with capacities

length restrictions!

- CO (central office): connection to backbone network
- BTP ("customer" location): target point of a connection
- DP (distribution point): passive optical switching elements Δ
 - ➡ splitters, closures with capacities
- Links: fibers in cables (in micro-ducts) (in ducts) in the ground

- > Given a trail network with
 - special locations: potential COs, DPs, and BTPs,
 - trails with trenching costs, possibly with existing infrastructure (empty ducts, dark fibers)
 - catalogue of installable components with cost values
 - further planning parameters (target coverage rate, max. number of residents/fibers per CO/DP, etc)

➡ Find a valid, cost-optimal FTTx network!

Sector Alternation Sector Sect

- ▷ Given: undirected graph with
 - client nodes: fiber demand, number of residents, revenue (for optional clients)
 - concentrator nodes: capacities for components, fibers, cables, ..., cost values
 - edges: capacity in fibers or cables (possibly 0), cost values for trenching
- ▷ Task: compute a cost-optimal network such that
 - each mandatory client is connected to one concentrator
 - various capacities at concentrators and edges are respected
- ➡ Integer program:
 - select paths that connect clients
 - capacity constraints on edges
 - capacity constraints for fibers, cables, closures, (cassette trays), (splitter) ports at concentrators
 - constraints for coverage rate, limit on the number of concentrators

minimize $\sum_{i \in V_D} c_i x_i + \sum_{t \in T} c_t y_t + \sum_{e \in E} c_e y_e$	$\sum_{e} c_e w_e + \sum_{p \in P \cup \hat{P}} c_p f_p - \sum_{v \in V_E} c_p f_p$	$r_v q_v$	
s.t. $\sum_{p \in P_v} f_p = 1$	$\forall v \in V_A$	$\sum_{p \in P_i} d_p^f f_p \leq \sum_{t \in T_i} u_t^f y_t$	$\forall i \in V_D$
$\sum_{p \in P_v} f_p = q_v$	$\forall v \in V_B$	$\sum_{p\in P_i} d_p^c f_p \ \leq \ \sum_{t\in T_i} u_t^c y_t$	$\forall i \in V_D$
$f_p~\leq~f_{p'}$	$\forall p \in P'$	$\sum d_p^r f_p \; \leq \; \sum u_t^r y_t$	$\forall i \in V_D$
$\sum_{p \in P_e \cup \hat{P}_e} f_p \leq P_e \cup \hat{P}_e w_e$	$\forall e \in E_0$	$p \in P_i \qquad t \in T_i$ $\sum_{i=1}^{n} f_i f_i < \sum_{i=1}^{n} f_i$	
$\sum_{p \in r_e \cup r_e} d_p^e f_p \leq u_e + u'_e w_e$	$\forall e \in E_{>0}$	$\sum_{p \in P_e} d_p^* f_p \leq \sum_{l \in L_e} u_l^* z_l$	$\forall e \in E_D$
$p \in P_e \cup \hat{P}_e$		$\sum_{l \in L_i} d_l^c z_l \leq \sum_{t \in T_i} u_t^c y_t$	$\forall i \in V_D$
$x_i \leq \sum_{p \in \hat{P}_i} f_p \leq 1$	$\forall i \in V_D$	$\sum d_l^r z_l \leq \sum u_t^r y_t$	$\forall i \in V_D$
$\sum y_t = x_i$	$\forall i \in V_D$	$\overline{l \in L}_i$ $\overline{t \in T}_i$	
$\sum n_{k v} q_{v} > \lceil \chi_{k} n_{k} \rceil - n_{k}^{A}$	$\forall k \in C$	$\sum_{p \in P_i} d_p^s f_p \leq \sum_{t \in T_i} u_t^s y_t$	$\forall i \in V_D$
$\sum_{v \in V_B \cap V_k} v \in V_B \cap V_k$		$\sum_{-} n_p f_p \ \le \ n_i x_i$	$\forall i \in V_D$
$\sum_{i \in V_D} x_i \leq m$		$p \in P_i$	

 \triangleright

Solution analysis

CATEGORY	COMPONENT	COUNT M	ETER C	COST	PERCENT					
Served residents										
	BUSINESS	60								
	HOUSEHOLDS	803								
Setup cost							CABLE-DRA-Nano-6x12-60	CABLE-DRA-Nano-6x12-60 1	CABLE-DRA-Nano-6x12-60 1 2324	CABLE-DRA-Nano-6x12-60 1 2324 3484
	BTP	225		0.00	0.00		CABLE-DRA-URX-10	CABLE-DRA-URX-10 2	CABLE-DRA-URX-10 2 168	CABLE-DRA-URX-10 2 168 177
	DP	9		10800.00	0.87		CABLE-DRA-URX-12	CABLE-DRA-URX-12 2	CABLE-DRA-URX-12 2 572	CABLE-DRA-URX-12 2 572 651
	co	1		470447.00	37.90		CABLE-DRA-URX-2	CABLE-DRA-URX-2 198	CABLE-DRA-URX-2 198 34192	CABLE-DRA-URX-2 198 34192 35218
	Total	1		481247.00	38.77		CABLE-DRA-URX-4	CABLE-DRA-URX-4 18	CABLE-DRA-URX-4 18 3184	CABLE-DRA-URX-4 18 3184 3347
BTP terminations				-012-11,00	00,0		CABLE-DRA-URX-6	CABLE-DRA-URX-6 6	CABLE-DRA-URX-6 6 1049	CABLE-DRA-URX-6 6 1049 1126
Err terminations							CABLE-DRA-URX-8	CABLE-DRA-URX-8 2	CABLE-DRA-URX-8 2 317	CABLE-DRA-URX-8 2 317 347
RTP en littere		• •					Total	Total 232	Total 232 43903	Total 232 43903 4895
bir spinters						Ducts	Ducts	Ducts	Ducts	Ducts
DTD to see a loss	•	• •					DUCT-110	DUCT-110 1	DUCT-110 1 53	DUCT-110 1 53 108
BTP transcervers							DUCT-50	DUCT-50 262	DUCT-50 262 4925	DUCT-50 262 4925 9219
DED ANN	TRX- 0P ON- Class C +- 2488-1244- ONU	280		44800	3,61		DUCT-MER-2w40-2w32	DUCT MER 2x40.2x32 1	DUCT MER 2:40 2:22 4525	DUCT-MER-2x40-2x22 1 53 108
BTP ONUS							DUCT SP0 1-10-10	DUCT SPA 1/10/10 19	DUCT SPG 1/10/20 19 288	DICT RR0 1/10/10 19 288 1107
	ON U-ALU-GPON-ONT-1	280		44800) 3,61		DUCT SPO 1/10/10 1/2/10	DUCT-SPG-1x10x10 IB	DUCT-SPG-1x10x10 18 200	DUCT-SPG-1x10x10 18 200 1197
DP closures									DUCT-SPG-1x10x10-1x6x10 10 172	DUCT-SPG-1XIUXID-1X8XIU 10 172 1118
	MUFFE TY-0C02-64	7		13666	1,10		DUCI-SPG-1x18x10	DUCT-SPG-1x18x10 7	DUCT-SP0-1x18x10 7 103	DUCT-SP0-1x18x10 7 103 773
	MUFF E-TY-0 C 02-96	2		4036	0,33		DUCT-SPO-1x18x10-1x10x10	DUCT-SPG-1x18x10-1x10x10 4	DUCT-SPG-1x18x10-1x10x10 4 34	DUCT-SP0-1x18x10-1x10x10 4 34 374
	Total cost	9		17701	1,43		DUCT-SP0-1x1x1D	DUCT-SP6-1x1x1D 429	DUCT-SP0-1x1x10 429 6723	DUCT-SP0-1x1x10 429 6723 8404
DP s plitters							DUCT-SP0-1x24x10	DUCT-SP0-1x24x10 7	DUCT-SP0-1x24x10 7 94	DUCT-SP0-1x24x10 7 94 848
	SP-FOC-FIC-32	19		17480	1,41		DUCT-SP0-1x2x10	DUCT-SPG-1x2x10 219	DUCT-SPG-1x2x10 219 3939	DUCT-SP-0-1x2x1D 219 3939 5909
COODF							DUCT-SP0-1x6x10	DUCT-SPG-1x8x10 71	DUCT-SPG-1x8x10 71 1376	DUCT-SP0-1x8x10 71 1376 4128
	TY-FIST-0R2	1		300	0.02		DUCT-SP0-2x10x10	DUCT-SP0-2x10x10 9	DUCT-SPG-2x10x10 9 80	DUCT-SP0-2x10x10 9 80 840
CO switch es		-			-,		DUCT-SPG-2x6x10	DUCT-SP0-2x8x10 20	DUCT-SP0-2x8x10 20 477	DUCT-SPG-2x6x10 20 477 2385
	OLTSW-ALU-7342-ISAM-FTTU-250.0B	1		6025	0.49		Total	Total 1068	Total 1058 17895	Total 1068 17895 34204
CO cards	521011-12010-10-10-10-10-2000B			0020	. 0,40	Fibers	Fibers	Fibers	Fib ers	Fibers
00 00100	CARD-ALU-OLT-4	3		7580	0.61		FIBER-COR-LWP	FIBER-COR-LWP 579	FIBER-COR-LWP 579 128208	FIBER-COR-LWP 579 128208 9284
CO ports	CONFICTION CONFICT	3		1000	. 5,01	Trails	Trails	Trails	Trails	Trails
oo pois	POPT-OPON-2499-4244	44			0.00		Diaging	Digging	Diaging 11235	Diaging 11235 530780
CO trans on here	FUR 1: 97 UR12488: 1244				, 00,0		Digging Drop-Area	Digging Drop-Area	Digging Drop-Area 5287	Digging Drop-Area 5267 205620
CO trans dervers	TRY ODON OLIVER & DIRE 4044 OF T						Dinging Non-Drop-Area	Digging Non-Dron-Area	Digging Non-Dron-Area 5968	Digging Non-Drop-Area 5968 325160
O-bl	TRA- OP ON- Classic #- 2988-1244- OL T	11		110	0,01		Dinging DP. Area, exclusively	Digging DP. Area evolusively	Diaging DP. Area exclusively 3048	Dinging DP. Area exclusively 3048 188540
Cables		-					Dinging CO. Area exclusively	Dinging CO. Area evolutively	Diaging CO-Area evolusively 380	Disging CO. Area evolusively 380 17.480
	CABLE-DRA-Nano-6x12-12	3	360	334	0,03		Disging DB, and CO. Area inter eating	Digging CO-Area exclusivery	Disging CO-Area exclusively 300	Digging CO-Area exclusively 300 in 400
	CABLE-DRA-Nano-6x12-24	1	675	738	0,06		Digging DP+ and CO-Area intersecting	Digging DP+ and CO-Weal Intersecting	Digging DP- and CO-Area Intersecting 2000	Digging Dr- and CO-Area Intersecting 2000 PH 100
	CABLE-DRA-Nano-6x12-48	1	1082	1473	0,12		existing outes	Existing outs	existing outes U	Existing auros
						Total	Total	Total	Total	Total 1241166

Total Cost per resident Cost per building

1439

- ▷ How much trenching cost is unavoidable?
 - ➡ All (mandatory) customer locations have to be connected to a CO
 - More COs have to be opened if the capacities are exceeded
- ▷ Steiner tree approach:
- ➡ Construct a directed graph G with:
 - all trail network locations, BTPs and COs, plus an artificial root node, as node set
 - forward- and backward-arcs for each trail, plus capacitated artificial arcs connecting the root to each CO
- Compute a Steiner tree in G with:
 - all BTPs, plus the artificial root node, as terminals
 - capacity restrictions on the artificial arcs

minimize	$\sum_{a \in F} c_e w_e + \sum_{a \in A_a} c_a x_a$	
s.t.	$\sum_{a \in \delta^{-}(v)} f_a - \sum_{a \in \delta^{+}(v)} f_a = \begin{cases} N_v & \text{if } v \in V_B \\ 0 & \text{otherwise} \end{cases}$	$\forall v \in V$
	$f_a \le N_B x_a$	$\forall a \in A$
	$x_{e^+} + x_{e^-} = w_e$	$\forall e \in E$
	$\sum_{a \in \delta^-(v)} x_a = 1$	$\forall v \in V_B$
	$\sum_{a \in \delta^-(v)} x_a \le 1$	$\forall v \in V \setminus V_B$
	$\sum_{a \in \delta^-(v)} x_a \le \sum_{a \in \delta^+(v)} x_a$	$\forall v \in V \setminus V_B$
	$\sum_{a \in \delta^-(v)} x_a \ge x_{a'}$	$\forall v \in V \setminus V_B, \ a' \in \delta^+(v)$
	$f_a \le k_a x_a$	$\forall a \in A_0$
	$\sum_{a \in A_0} x_a \le N_C$	
	$f_a \ge 0,\; x_a \in \{0,1\}$	$\forall a \in A$
	$w_e \in \{0,1\}$	$\forall e \in E$

- ▷ Instances:
 - a*: artificially generated, based on GIS information from www.openstreetmap.org
 - c*: real-world studies, based on information from industry partners

Instance:	a1	a2	a3	c1	c2	c3	c4
# nodes	637	1229	4110	1051	1151	2264	6532
# edges	826	1356	4350	1079	1199	2380	7350
# BTPs	39	238	1670	345	315	475	1947
# potential COs	4	5	6	4	5	1	1
network trenching cost	235640	598750	2114690	322252	1073784	2788439	4408460
lower bound	224750	575110	2066190	312399	1063896	2743952	4323196
relative gap	4.8%	4.1%	2.3%	3.2%	0.9%	1.6%	2.0%

➡ Trenching costs in the computed FTTx networks are quite close to the lower bound

\triangleright Given

- network topology
- a fiber demand at every connected BTP
- restrictions on cable and duct installations:
 - Example: Micro-ducts
 - Every customer gets their own cable(s), each in a separate micro-duct within a micro-duct bundle

Task: compute cost-optimal cable and duct installations that meet the restrictions such that all fiber demands at customer locations are met

➡ DPs and COs are roots of undirected trees

⊳ Given

- an undirected rooted tree with
 - one concentrator (root)
 - client locations and
 - other locations
- set C of cable installations to embed with
 - path in the tree
 - number of cables

Task: compute cost-optimal duct installations, such that every cable is embedded in a micro-duct on every edge of its path

- (a) Given cable installations
- (b) Cost optimal installations with downgrading at intersections
- (c) Installations used in practice (downgrading in maximal direction not allowed)

minim	nize $\sum_{d \in D} c_d x_d + \sum_{e \in E} c_e z_e$		
s.t.	$k_p^d x_d \ge \sum_{\tilde{d} \in D} x_{\tilde{d},d}^p + \sum_{c \in C} x_{c,d}^p$	$\forall d \in D, p \in P^d$	
	$k_c \leq \sum_{p \in P_c^O} \sum_{\substack{d \in D_p:\\e \in q_d}} x_{c,d}^p + z_e k_c$	$\forall c \in C_G, e \in q_c v$	
	$k_c = \sum_{p \in P_c^O} \sum_{\substack{d \in D_p:\\e \in q_d}} x_{c,d}^p$	$\forall c \in C \setminus C_G, e \in q_c$	either embed
	$x_{\tilde{d}} \leq \sum_{p \in P_{\tilde{d}}^{O}} \sum_{\substack{d \in D_{p}:\\e \in q_{d}}} x_{\tilde{d},d}^{p} + z_{e} M_{\tilde{d}}$	$\forall \tilde{d} \in D_G, e \in q_{\tilde{d}}$	or trench
	$x_{\tilde{d}} = \sum_{\substack{p \in P_{\tilde{d}}^{O}}} \sum_{\substack{d \in D_{p}:\\e \in q_{d}}} x_{\tilde{d},d}^{p}$	$\forall \tilde{d} \in D \setminus D_G, e \in q_{\tilde{d}}$	
	$k_c \ge \sum_{p \in P_c^O} \sum_{\substack{d \in D_p: \\ e \in q_d}} x_{c,d}^p$	$\forall c \in C_G, e \in q_c$	one cable/duct embedded in
	$x_{ ilde{d}} \geq \sum_{p \in P_{ ilde{d}}^O} \sum_{\substack{d \in D_p: \ e \in q_d}} x_{ ilde{d},d}^p$	$\forall \tilde{d} \in D_G, e \in q_{\tilde{d}}$	at most one duct
	$z_e \in \{0,1\}$	g trail e (or not)	

