ON HYPOHAMILTONIAN GRAPHS

Carsten THOMASSEN*
Mathematisk Institut, Universitetsparken, Ny Munkegade, 8000 Aarhus C, Denmark

Received 22 January 1974

Abstract

Herz, Duby and Vigué [9] conjectured that every hypohamiltonian graph has girth $\geqslant 5$. In the present note hypohamiltonian graphs of girth 3 and 4 are described. Also twe conjectures on hypohamiltonian graphs made by Bondy and Cheital, respectively, are disproved.

1. Introduction and terminology

We adopt the notation and terminology of Harary [8] with the modifications that the terms vertices and edges are here used instead of the terms points and lines, respectively, in [8]. The set of vertices, respectively edges, of the graph G is denoted by $V(G)$, respectively $E(G)$. The edge joining the vertices x and y is denoted by (x, y) and (y, x) and the degree of x in G is denoted by $d(x, G)$.

A graph G is hypohamiltonian if and only if G is not Hamiltonian but every vertex-deleted subgraph $G-v$ is Hamiltonian. Hypohamiltonian graphs were first studied by Sousselier (see [1, 2]) who among other things proved that the Petersen graph is the smallest one. Herz, Duby and Vigué [9] proved that there exists no hypohamiltonian graph with 11 or 12 vertices. Infinite families of hypohamiltonian graphs have been constructed by Sousselier (see [91), Lindgren [11], Bondy [3], Chvátal [4], Doyen and Van Diest [7] and by the author [12]. In [12] it was shown that for every $p \geqslant 13$, except possibly for $p=14,17,19$, there exists a hypohamiltonian graph with p vertices. This improved on the result of Chvatal [4] for $p=20,25$. Doyen and Van Diest have constructed hypohamiltonian graphs with $3 k+1$ vertices for all $k \geqslant 3$ so the question of the existence of a hypohamiltonian graph with p vertices is left open for $p=14,17$.

[^0]The following three conjectures have been made concerning the structure of hypohamiltonian graphs.
(1) Every hypohamiltonian graph h girth $\geqslant 5$. (Herz, Duby and Vigué [9]. See also [4, 5, 6].)
(2) If the deletion of an edge efrom i hypohamiltonian graph G does not create a vertex of degree two, inen $G-\theta$ is hypohamiltonicn (Chivatal [4]).
(3) If the addition of a new edse to a hypr,hamiltonian graph of girth >5 does not create a cycle of length -5 , then it does not create a Humiltonian cycle (Bondy, see [4]).

This note gives examples of hypohoriltonian graphs for which (1) and (2) are false and one for wilich (2) and (3) are faise.

2. Construction of lyypohamiltoniaan gmphs

Let G_{1}, G_{2} be disjoint grapis. Ass mes G_{1}, respectively G_{2}, contains a vertex x_{0}, respectively y_{0}, of degree ${ }^{*}$, and lit x_{1}, x_{2}, x_{3}, respectively y_{1}, y_{2}, y_{3}, denote the verices adjacent $t t_{1} x_{i}$, respectively y_{0}. Assume that \bar{G}_{2} is icypohamiltonian. Bonaj (see $[4,1,39]$) pointed out that G_{2} contains none of the edges $\left(y_{1}, y_{2}\right),\left(1, y_{3}\right),\left(y_{2}, y_{3}\right)$. We assume that the graph G_{1} has at least six vertices. Let G denote the graph obtained from $H_{1}=G_{1}-x_{0}$ and $H_{2}=G_{2},-y_{5}$,y identifying the vertices x_{1}, y_{1} into a vertex z_{1}, the vertices x_{2}, y_{2} into a vertex z_{2} and the vertices $y_{3} . y_{3}$ into a vertex z_{3}. This construction is illustrated in [12, Fig. 1]. The special case in which G_{2} is the Petersen graph is shicwn in Fig. 1. In this case we say that x_{0} is replaced by a vertex-deleted subgraph of the Petersen graph We consider H_{1} and H_{2} as subgraphs of G. In [12] it was shown that G is hypohamiltonian provided G_{1} is hypohamiltonian. By the same type of arguments we obtain the following stronger result.

Lemma 1. (a) \mathcal{v} is Hamiltonian if and only if G_{1} is Hamiltonian.
(b) For every $z \in V\left(H_{1}\right), G-z$ is Hamiltonian if and only if $G_{1}-z$ is Hamiltonian.
(c) If $G_{1}-x_{i}$ is तramiltonian for $i=1,2,3$, then for every $z \in V\left(H_{2}\right)$, $G-z$ is Hamilionian.

Fig. 1. Replacement of x_{0} by a vertex-deleted subgraph of the Petersen graph.
Proof. Suppose first that G_{1} is Hamiltonian. Let C be a Hamiltonian cycle of G_{1}. Then $P_{1}=C-x_{0}$ is a Hamiltonian path of H_{1} connecting two of the vertices $x_{1}, x_{2}, x_{3}\left(x_{1}\right.$ and x_{2}, say). Since $G_{2}-y_{3}$ is Hamiltonian, $G_{2}-y_{3}-y_{0}=H_{2}-y_{3}$ contains a Hamiltonian path P_{2} connecting y_{1} and y_{2}. Then $P_{1} \cup P_{2}$ is a Hamiltonian cycle of G. Suppose next that G is Hamiltonian and let C be a Hamiltonian cycle of G. $C=P_{1} \cup P_{2} \cup P_{3}$, where P_{1} is a $z_{1}-z_{2}$ path, P_{2} is a $z_{2}-z_{3}$ path and P_{3} is a $z_{3}-z_{1}$ path. Each of the paths P_{i} is a path of either H_{1} or H_{2} for $i=1,2,3$. Two of these paths are contained in H_{j}, where $j=1$ or $j=2$. Then H_{j} has a Hamiltonian path connecting two of the vertices z_{1}, z_{2}, z_{3} and clearly G_{j} is Hamiltonian. Since G_{2} is assumed to be nonHamiltonian, we have proved that G_{1} is Hamiltonian and we have proved (a). If $: \in V\left(H_{1}\right)-\left\{z_{1}, z_{2}, z_{3}\right\}$, then, by (a), $G-z$ is Hamiltonian if and only if $G_{1}-z$ is Hamiltonian since $G-z$ is obtained from $G_{1}-z$ and G_{2} in the same way as G is obtained from G_{1} and G_{2}. Since $H_{2}-y_{i}$ ($i=1,2,3$) has a Hamiltonian path connecting the two vertices of $\left\{y_{1}, y_{2}, y_{3}\right\}-\left\{y_{i}\right\}$, clearly $G-z_{i}$ is Hamiltonian if and only if $G_{1}-x_{i}$ is Hamiltonian. This proves (b). If $z \in V\left(H_{2}\right)$, then $H_{2}-z$ has a Hamiltonian path P_{2} connecting two of the vertices y_{1}, y_{2}, y_{3} (y_{1} and y_{2}, say). If $G_{1}-x_{3}$ is Hamiltonian, then $H_{1}-x_{3}$ conrains a Hamiltonian path P_{1} connecting x_{1} and x_{2} and $P_{i} \cup P_{2}$ is a Hamiltonian cycle of $G-2$, so (c) holds.

Theorem 1. Let G be a non-Hamiltonian graph and let $A \subseteq V(G)$. Suppose that the vertices of A are mutually non-adjacent and that they all have degree 3 . If for sery vertex $z \in V(G)-A, G-z$ is Hamiltonian, then there exists a hypc hamiltonian graph G G' containing $G-A$ as a subgraph. If furthermcie for every edge $e \in E(G-A)$ there is a vertes: $z_{e} \equiv V(G)-A$ such that $G-e-z_{e}$ is non-Hamiltonian, then we can construct G^{\prime} such that for every edge $e \in E\left(G^{\prime}\right), G^{\prime}-e$ is nol hyponamiltonian.

Proof. Let x_{0} be any vertex of A. Replace x_{0} by a vertex-deleted subgraph of the Petersen graph. Denote the resulting graph by G_{1} and put $A_{i}=A-\left\{x_{0}\right\}$. Then for every vertex $z \in V\left(G_{1}\right)-A_{1}, G_{1}-z$ is Hamiltonian by Lemma 1. The vertices of A_{1} are mutually non-adjacent and they all have degree 3 in G_{1}. If $e \in E(G-A), z_{e} \in V(G)-A$ and $G-e-z_{e}$ is non-Hamiltonian, then alst: $;_{1}-e-z_{c}$ is non-Hamiltonian by Lemma 1 . If e is any edge of G_{1} not mained in G, then $G_{1}-e$ contains a vertex of degree 2 . So it is esy to see that G_{1} contains a vertex $z_{c} \in V\left(G_{1}\right)-A_{1}$ such that $G_{1} \cdots \cdots$ is non-Hamiltonian. If $A_{1}=\emptyset, G_{1}$ has the desired properties. $I B, I_{1}: \pm$, we replace any vertex x_{1} of A : $b y$ a yertex-deleted subgraph o the I tersen graph and we put $A_{2}=A_{1} \cdots\left\{z_{i}\right\}$,etc. Since $|A|>\left|A_{1}\right|>A_{2} \mid>\ldots$, we obtain in a finite number of steps a graph G^{\prime} which satisfic: the assertion of the theorem.

3. Disproof of the conjectures (1), (2). ©;

Using Theorem 1, it is easy to see $t \mathrm{~d}$ st there exists a hypohamiltonian graph containing a cycle of length 4 . Lei for $k \geqslant 2, R_{k}$ denote the graph consisting of he vertices

$$
\left\{x_{1}, x_{2}, \ldots, x_{2 k+1}, y_{1} y_{z} \ldots, 2 k+z_{1}, z_{2}\right\}
$$

and the edges

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right),\left(\varepsilon_{2}, x_{3}\right), \ldots,\left(x_{2 k}, x_{2 k+1}\right),\left(x_{2,+1}, x_{1}\right),\left(y_{1}, y_{2}\right),\left(y_{2}, y_{3}\right), \ldots \\
& \left(y_{2 k+1}, y_{1}\right),\left(x_{1}, z_{1}\right),\left(z_{1}, y_{1}\right), \ddots_{2}, y_{n},\left(x_{3}, z_{2}\right),\left(z_{2}, y_{3}\right),\left(x_{4}, y_{4}\right) \\
& \left.\left(x_{5}, y_{5}\right), \ldots,\left(x_{2 k+1}, y_{2 k+1}\right)\right\}
\end{aligned}
$$

Tg. 2 Tregnan R_{2}.

Fig. 3. A hypohamiltonian graph of girth 4.
R_{2} is obianed from a pentagonal prism by subdividing two edges through the insertion of two new vertices of degree 2 (see Fig. 2). Put $A_{k}=\left\{x_{1}, y_{1}, x_{3}, y_{3}\right\} \subseteq V\left(R_{k}\right)$. Tutte [13] pointed out that R_{2} is nonHamiltonian. More gers rally, it is easy to see that R_{k} is non-Hamiltonian for all $k \geqslant 2$ and that $R_{k}-z$ is Hamiltonian whentever $z \in V\left(R_{k}\right)-A_{k}$. Alss it is easy to see that for every edge $e \in E\left(R_{k}-A_{k}\right)$ there is a $z_{e} \in V\left(R_{k}\right) \cdots A_{k}$ such that $R_{k}-e-z_{e}$ is non Hamiltonian. By Tin orem 1 there exists a hypohamiltonian graph $R_{k}^{\prime} \supseteq R_{k}-A_{k}$ such that for any edge $e \in E\left(R_{k}^{\prime}\right), R_{k}^{\prime}-e$ is net hypohamiltonian. R_{2}^{\prime} is shown in Fig .3.

Fig. 4. The graph of.

Clearly, $F_{k}^{\prime \prime}$ contains a cycle of length 4 and it contains edges whose removal do:s not create vertices of degree 2 . So for every $k \geqslant 2, R_{k}^{\prime}$ is a counteresample to (1) and (2).

We shall go a step further and show that a bypohamiltonian graph may contain a cycle of length 3. Let M die ate the graph in Fig. 4. $V(M)=\{1,2, \ldots, 30\} . \mathrm{P}^{+} A=\{3,5,17,24,26\}$. We shall show by reductio ad absurium that M is mornanilionian. Suppose C is a Hamitonian cycle of M. Then C conta 1 'hs the edges $(3,4),(4,5),(17,18)$, (18,19), 124, 25), (25,26). Suppose firw that C contains the edges (1,5), (3, 7). Then C contains the dges $i, 2),(2,23),(7,6),(6,9)$, (9.8), (8.11). Also C contains (21,20), 10,19$),(17,16),(16,15)$, $(15,14),(14,13),(13,12)$. The two edg s of C which are incident with 10 are then $(10,12)$ and $(10,11) . C$ musi cortain the edge $(21,22)$ and if C contains $(22,23)$ also then C cont $/ \mathrm{B}$ is a cycle as a proper subgraph. So C does not contain $(22,23)$. But ther $ک$ contains $(22,26)$ and $(23,24)$ ard again we see that C contains a cyste as a proper subgraph, which is a contraciction. By symmetry, C cannct contain the edges (2,3) (5,6). Sc C contains either none of both of the edges (1,5), (2,3), or, in other wirds, C either contains the path $20,2,23$ or the path $20,1,5,4,3$, 2,23. Because of the symratry, C coltains either none of both of the edees $(19,20),(17,21)$ and either nos of both of the edges $(22,26)$, $(23,24)$. it is, however, easy to see the: this teads to a contradiction and we have proved that M is non-Hamiterniart.

Next ve show that $M-z$ is Hamiltc rian whenever $z \in V(M)-A$. Because of the symmetry, it is sufficien to consider the cases $z=1,4,6,8,10$. In the case $z=4$, , $n=z$ has the following Hamiltonian cycle: $1,5,6,9,3,7,3,2,23,22,26,25,24,28,27,30,29,11,12,10$, $14,13,16,15,19,18,17,21,20$, 1. Let P denote the path $11,29,28$, $24,25.26,27,30,12,13,14,15,16,17,18,19,20,21,22,23,2$ and le: $P_{1}, P_{6}, P_{9},{ }^{2}{ }_{10}$ be the paths defined as follows:

$$
\begin{aligned}
& P_{1}: 2,3,4,3,6,7,8,7,10,11, \\
& P_{6}: 2,1,5,4,3,7,8,9,10,11 \\
& P_{8}: 2,1,5,4,3,7,6,9,10,11, \\
& P_{10}: 2,1,5,4,3,7,6,9,8,11 .
\end{aligned}
$$

Then $P \cup P_{z}$ is a Hamiltonian cycle of $M-z$ for $z=1,6,8,10$. Furthermore we can show that for svery tage $e \in E(M-A)$ there exists a $z_{e} \in V(M)-A$ such that $M-e-z_{e}$ is non-Hamitonian. If e is incident with a vertex of degree 3 , then this vertex in $M-c$ is adiacemt to a vertex $z_{e} \notin A$. Clearly, $M-p-z_{e}$ is no - Hamiltonian. If, on the other hand, e joins two vertices of degree $\geqslant t$, thane is one of the edges (10,11),

Fig. S. A hypohan:ifioniar graph of girth 3.
$(11,12),(12,10)$. If $e=(10,11)$, we put $z_{e}=1$ and it is easy to prove that $M-c-z_{c}$ is non-Hamiltonian (we leave this to the reader). By Theorem I there (xists a hypohasmitonian graph M^{\prime} (Fig. 5) such that M^{\prime} contains $M-A$ as a subgraph and for any edge e of $M^{\prime}, M^{\prime}-e$ is not hypohamiltorian. Clearly, M^{\prime} is another counterexample to the conjectures (1) and (2).

We shall finally give a counterexample to the conjectures (2) and (3).
Let G denote the betersen graph and let A be a set consisting of two non-adjacent vertices of G. For every $z \in V(G)-A, G-z$ is Hamiltonian and for every $e \in E(G-A)$ there exists a $z_{e} \in V(G)-A$ such that $G-e-z_{\epsilon}$ is non Hamiltonian. Let G^{\prime} denote the graph obtaine from G by replacing each vertex of A by a vertex-deleted subgraph of the Petersen graph (Fig. 6). Then G^{\prime} is hypohamiltonian and the delesion of

Fig. 5. A connterexample to conjentures (2), (3).
any edge of G^{\prime} results in a graph which not hy poharniltonian. So G^{\prime} is clearly a counterexample $\hat{\text { an }}(2)$. A Hamitorian pash of G^{\prime} is drawn with thick lines in Fig. 6. If we add the edge joining the endvertices of this path we create a Hariltonian cycle of f bat we do not create a cycle of length <5. So G^{\prime} is a counterexample to conjecture (3).

References

f31 J. A. Bondy, Variations on the hamitonath tiverse. Can. Math. Bull. 15 (1972) 57-62.
|ti V. Chvital, Flip-foops in hypohamiltonian crapl:, Can Math, Bull. 16 (1973) 33-41.
pel V. Chvátal, New directions in hamiltonias grap the ory, in: F. Harary, ed., New Directions in Gesph Theory (Acedanic Press, Nev York, シi3) 81.
169 V. Cwaital, D.A. Klaner afid D.E. Kruth, seine, ed combinatorial research problems, Stanfote University, Stantord (1972) Prookern 1%.

(1) F. Harary, Gteph Theory (Addison-Wesley, "utimg, Mass., 1969).

19| I.C. Hezz. J.J. Duby and F. Vigiee, Recherdis...stématique des graphes hypohamiltonien,䡕: Posentiehl, ed., Theoris des graphes :"Mod, Paris, 1967) 153-160.
1101 J.C. Herf, T. Gaudin and P. Rossi, Snl tios in Problème No. 29, Rev, Françase Informat. Recherche Opérationnelle 8(1964) 214-21\%.
III W.F. Lindgrn, An infinite class of hypohas witorian graphs, Am, Math. Monthly 74 (1969) 1087-1089.
$112 \mid \mathrm{C}$ Thumasseris typohamiltonian and h; movaceabl. graphs, Discrete Math. 9 (1974) 91-96.

[^0]: * Present address: Department of Combinatorics and Optimizaion, Faculty of Mathematics, University of Waterioo, Waterloc, Ont., Canada.

