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14. The bandwidth of G is defined to be

min maxl'(u) -1(v)1
I uvEE

where the minimum is taken over all labellings·· I of V in distinct
integers. Find. bounds f()r the bandwidth of a graph (L. H. Harper,
1964). The bandwidth of the k-cube has been determined by Harper
(1966).

Chvatalova, J. (1975). OptImal labelling of a product of two p·aths.
Discrete Math., 11, 249-53

Harper, L. H. (1966). Optimal numberings and is~perimetric problems
on graphs. J. Combinatorial· Theory, 1,385-93

15. A simple graph G is graceful if there is a·labelling I of its vertices with
distinct integers from the set {a, 1, .... , e}, so that the induced edge
labelling I' defined by

l'(uv) = 1·1(14) -l(v)1

assigns each" edge a different label. Chara.ct~rise the graceful graphs (S.
.. Golomb, 1972). It has been conjectured that, in particular, every tree is

graceful (A. Rosa, 1966)..
. . .

Golomb, S. (1972). How to number a gra·ph, i~ Graph Theory and
Comp·uting (ed. R. C. Read), Acad·emic Press, New York, pp. 23-37

t 16. The 3-connecte~planar graph on 2m edges with the least possible number of
spanning trees is the wheel with m spokes (W.. T. Tutte, 1940).

. .

K~lmans, A. K. and Chelnokov,-V. M. (1974).. A certain polynomial of
. a graph and graphs with an extremal number.of trees. J. Combinatorial

Theory (B), 16, 197--214

17. Let u and v be two vertices in a graph G. Denote the minimum number
of vertices whose deletion destroys all (u. v )~paths of length at ~ost n by
an, and the maximum number of ·internally disjoint (u, v)-paths of
length at most n by.bn • Let f(n). denote the maximum possible·value of
an/bne Determine f(n) (V. Neumann, 1974). L. Lovasz has conjectured
that Ifn) < JR. it is known that .. ..

[In/2]< f(n) < [n/2]

18. Every 3-regular 3-connected bipartite planar graph is hamiltonian (D.
Barnette, 1970). P. Goodey has verified this co.njecturefor plane graphs
whose faces- are all of degree four or six. N~te that if the planarity
condition -is dropped, the conjecture is no longer valid (see appendix
III).

19. A graphic sequence d is forcibly hamiltonia·n if ev~ry ·simple graph with
degree sequence d .is hamiltonian. Characterise the. forcibly hamiltonian
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sequences (C. St. J. A. Nash-Williams, 1970). (Theorem 4.5 gives a
partial solution.)

Nash-Williams, C. St. J. A. (1970). Valency sequences which force
graphs to have Hamiltonian circuits: interim report, University of
Waterloo preprint

20. Every connected vertex-transitive graph has a Hamilton path (L.
Lovasz, 1968). L. Babai has verified this conjecture for graphs with a
prime number of vertices. .

21. A graph G is t-tough if, for every vertex cut S, w(G-S)<ISIIt. (Thus
theorem 4.2 says that every hamiltonian graph is I-tough.)

(a) If G is 2-tough, then G is hamiltonian (V. Chvatal, 1971). C.
Thomassen has obtained an example of a nonhamiltonian t-tough graph
with t >" 3/2 .

(b) If G is 3/2-tough, then G has a 2-factor (V. Chvatal, 1971).

Chvatal. V. (1973). Tough graphs and ha~iltonian circuits. Discrete
Math., S, 215-28

22. The binding number of G is defined by

bind G = min IN(S)I/ISI-
BllfSs;v
.~(s,~ v

(a ) If bind G:> 3/2, then G contains a triangle- (D. R. Woodall,
1973).

(b) If bind G :> 3/2, then G is pancycUc (contains cycles of all lengths
I, 3:s I <: v) (D. R. Woodall, 1973). -

Woodall (1973) has shown that G'is hamiltonian if bind G ~3/2, and
- that G contains atrian"gle if bind G:> to + J5). "

Woodall. D. R. (1973). The binding number of a graph and its Ander­
son number. J. Combinatorial Theory (B), 15, 225-55

23., Every nonempty regular simple graph contains two di$joint maximal
independent sets (C. Payan, 1973)

24. Find the Ramsey number r(3, 3, 3, 3). It j~ known that

51 <: r(3, 3, 3, 3) -< 65

Chung. F.. R. K. (1973). On the Ramsey numbers N(3, 3, ... , 3; 2),
Disctete Math., S, 317-21

Folkman, J. (1974). Notes on the Ramsey number N(3, 3, 3,3). J.
Combinatorial Theory (A), 16, 371-79

25. For m < n, let f(m, n) denote the least possible number of vertices in a
graph which contains no K n but has the property that in every 2-edge
colouring there is a monochromatic K m • (Folkman, 1970 has estab­
lished the existence of such graphs.) Determine bounds for f(m, n).It is
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known that
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f(3,n)=6 for n>7

f(3, 6) = 8 (see exercise 7.2.5)

lO<f(3, 5)< 18

Folkman, J. (1970). Graphs with monochromatic complete subgraphs in
every edge coloring. SIAM J. Appl. Math., 18, 19-24

Irving, R. W. (1973). On a bound of Graham and Spencer for a
graph-colouring constant. J. Combinatorial Theory (B), 15, 200-203

Lin, S. On Ramsey numbers and Kr-coloring of graphs. J. Combinatorial
Theory (B), 12, 82-92

26. If.G is n-chromatic, then r(G, G) > r(n, n) (P. Erdos, 1973). (r(G, G) is
defined in exercise 7.2.6.)

27. What is the maximum possible chromatic number of a graph which can
be drawn in the plane so that each edge is a straight line segment of unit
length? (L. Moser, 1958).
Erdos. P., Harary, F. and Tutte, W. T. (1965). On the dimension of a

graph. Mathematika, 12, 118-22

28. The abso~ute ·values of the coefficients of any chromatic polynomial form
a unimodal sequence (that is, no term is flanked by terms of greater
value) (R. C. Read, 1968).

Chvatal, V. (1970). A note on coefficients of chromatic polynomials. J.
Combinatorial Theory, 9, .95-96

29. If G is not complete and X = m + n -1, where m:> 2· and n:> 2, then
there exist disjoint subgraphs G 1 and G z of G such that x(G I ) = m.and

.X(G2) =n (L. Lovasz, 1968).
30. A simple graph G is perfect if, for every induced subgraph H of G, the

number of vertices in a maximum clique is X(H). G is perfect if and
only if no induced subgraph of GorGe is an odd cycle of length greater
than three (C. Berge. 1961). This is the strong perfect graph conjecture.
Lovas~ (1972) has shown that the complement of any perfect graph is

.perfect.

Lovasz, L. (1972). Normal hypergraphs and the perfect graph conjec­
ture. Discrete Math., 2, 253-67

Parthasarathy, K. R. and Ravindra, G. (to be published). The strong
perfect-graph conjecture is true for K1,3-free graphs. J. Combina-
torial Theory

31. If G is a 3-regular simple block and H is obtained from G by
doplicatingeach edge, then X'(H) =6 (D. R. Fulkerson, 1971).

32. If G is simple, with" even ~d X'(G) = 4(G)+1, then X'(G·-- v) = X'(G)
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for some v eV (I. T. Jakobsen, L. W. Beineke and R. J.Wilson, 1973).
This has been verified for all graphs G with v < 10 and all 3-regular
graphs G with v = 12.

Beineke, L. W. and Wilson, R. J. (1973). On the edge-chrom·atic
number of a graph. Discrete Math., S, 15-20 .

33. For any simple graph G, the elements of VUE can be coloured in ~+2
colours so that no two adjacent or incident eleme~ts receive the same
colour (M. Behzad, 1965). This is known as the total colouring conjecture.
M. Rosenfeld and N. Vijayaditya have verified it for all graphs G with
~<3.

Vijayaditya, N. (1971). On total chromatic number of a graph. J.
London Math. Soc., 3, 405-408

34. If G is simple and E > 311- 6, then G contains a subdivision ofK5 (G. A.
Dirac, 1964). Thomassen (1975) has shown that G contains a subdivi­
sion of K s if E ~4v-l0.

Dirac, G. A. (1964). Homo·mo·rphism t'heorems for graphs. Math. Ann.,
153, 69~80

Thomassen, C. (1974). Some homeomorphism properties Qf graphs,
Math. Nachr., 64, 119-33

35 ..A sequence d of non-negative integer's 'is potentially planar if there is a
simple planar graph with degree sequence d. Characterise the poten­
tially planar sequences (S. L. Hakimi, 1963).

Owens, A.· B. (1971). On the planarity of regular 'incidence sequences.
J. Combinatorial Theory (B), 11, 201-12'

t36. If G is a loopless planar grap.h, then 01. 2; v/4 (P. Erd'os, 1968). Albertson
(1974) has shown that every such graph satisfies a > 2,,/9.

Albertson, M. O. (1974). Finding an independent set in a planar graph,
in Graphs and Combinatorics (eds. ·R. A. Bari and F. Harary),
Springer-Verlag, New York, pp. 173-79

t 37. Every planar graph is 4-colourable (F. Guthrie, 1852).

Ore, O. (1969).. T~e Four-Color Problem, A~ademic Press, New York

38. Every k -chromatic graph contains a subgrapb contractible to K k (H.
Hadwiger, 1943). Dirac (1964) has .proved that every 6-chromatic graph
contains a subgraph contr~ctible. to K6 less one edge.·

Dirac, G. A. (1964). Generalizations of the five colour theorem, in
Theory of Graphs and its Applications (ed. M. Fiedler), Academic
Press, New York, pp. 21-27

39. Every k-chromaticgraph contains a subdivision of K k (G. Haj6s, 1961).
Pelikan (1969) has shown that every 5-chromatic graph contains a
subdivision of Ksless one edge.
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Pelikan, J. (1969). Valency conditions for the existence of certain
subgraphs, in Theory of Graphs (eds. P. Erdos and G. Katona),
Academic Press, New York, pp. 251-58

40. Every 2-edge-connected 3-regular simple graph which has no Tait
colouring contains a subgraph contractible to the Petersen graph (W. T.
Tutte, 1966).
Isaacs, R. (1975). Infinite families of nontrivial trivalent graphs which

are not Tait colourable. Arner. Math. Monthly, 82, 221-39
Tutte, W. T. (1966). On the algebraic theory of graph colorings. J.

Combinatorial Theory, 1, 15-50
41. For every sudace S, there· exists a finite number of graphs which have

mini",UDl degree at least three and are minimally Donembeddable on S.
t 42. U D is dicODDected, then D has a directed cycle of length at least X (M.

Las Vergnas, 1974).
43.U D is a toumamentwith " odd and every indegree and outde.gree

equal to (.-1)/2, then D is the union of (.-1)/2 arc-disjoint directed
Hamilton cycles (P. Kelly, 1966).

44. U D is a tournament with 11 even, then D is the union of
L max{O, d+(v)-d-(v)} arc-disjoint directed paths (R. O'llrien, 1974).

•ev .

This wo~ld imply the truth of conjecture 43.
45. Characterise the tournaments D with the property that all subtourna­
. ments D - v are isomorphic (A. Kotzig, 1973).

46. IfD is a digraph which contains a directed cycle, then there is some arc
whose reversal decreases the Dumber of directed cycles in D (A. Adam,
1963).

47. Given a positive integer n, there exists a least integer f(n) such that in
any digraph with at most n arc-disjoint directed cycles there are f (n)
ara whose deletion destroys all directed cydes (T. Gallai, 1964; D.
H. Younger, 1968).

Erdos. P. and P6sa, L. (1962). On the maximal number of disjoint
circuits of a graph. Publ. Math. Debrecen, 9, 3-12

Younger, D. H. (1973). Graphs with interlinked directed circuits, in
Proceedings of Midwest Symposium on Circuit Theory

48. An (m + n)-regular graph is (m, n)-orientable if it can be oriented so'
that each indegree is either m or n. Every S-regular simple graph with
no I-edge cut or 3-edge cut is (4,1)-orientable (W. T. Tutte, 1972).
Tutle has shown that this would imply Grotzsch's theorem

49. Obtain an algorithm to find a maximum ftow in a network with two
sources Xl and %2, two sinks yl and·· y2, and two commodities, the
requirement being to ship commodity 1 from Xl to yl and commodity 2
from X2 to }'2 (L. R. Ford and D. R. Fulkerson, 1962).
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Rothschild, B. and WhinstoD, A. (1966). On two commodity network
flows. Operations Res., 14, 377-87

50. Every 2-edge-connected dignph D has a circulation f over the field of
integers modulo 5 in which 1(0) ~ 0 for aU arcs 4 (W. T. Tutte, 1949).
Tutte "has shown that this would imply the five-colour theorem.

References for problems solved since first printing:

16. Gobel, F. and Jagers, A. A. (1976). On a conjecture of Tutte concerning
minimal tree numbers. J. Combinatorial Theory (B), to be published"

36 and 37. Appel, K. and Haken, W. (1976). ·Every planar map is four
colorable. Bull. Arner. Math. Soc., 82, 711-2

42. Bondy, J. A. (1976). Diconnected o~ient~tions ~nd a conJecture of Las
Vergnas. J. London Math. Soc., to be published"
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BOOKS OF A GENERAL NATURE, LIS1'ED ACCORDING TO LEVEL OF TREATMENT

Ore, O. (1963). Graphs and Their Uses, Random House, New York
Rouse Ball, W. W. and Coxeter, H. S. M. {1974). Mathematical Recreations

and Essays, University of Toronto Press, Toronto
Liu, C. L. (1968). Introduction to Combinatorial Mathematics, McGraw-Hill,

New York
Wilson, R. J .. (1972). Introduction to Graph Theory, Oliver and Boyd,

Edinburgh
Deo, N. (1974). Graph Theory with Applications to Engineering and Compu­

ter Science, Prentice-Hall, Englewood Cliffs, N.J.
Behzad, M. and Chartrand, G. (1971). Introduction,to the Theory of Graphs,

Allyn and Bacon, Boston
Harary, F. (cd.) (1967). A Seminar on Graph Theory, Holt, Rinehart and

Winston, New York
Ore, O. (1962). Theory of Graphs, American Mathematical Society, Provi­

dence, R.I.
Konig, D. (1950). Theorie der Endlichen und Unendlichen Graphen,

Chelsea, New York
Sachs, H. (1970). Einfuhrung in die Theorie der Endlichen Graphen, Te~bner

Verlagsgesellsch.aft, Leipzig
Harary, F. (1969). Graph Theory, Addison-Wesley, Reading, Mass.
Berge, C. (1973). Graphs and Hypergraphs, North Holland, Amsterdam

SPECIAL TOPICS

Biggs, N. (1974). Algebraic Graph Theory, Cambridge University Press,
Cambridge

Tutte, W. T. (1966). Connectivity in Graphs, University of Toronto Press,
Toronto

Ore, O. (1967). The Four-Color Problem, Academic Press, New York
Ringel, G. (1974) . Map Color Theorem, Springer-Verlag, Berlin
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Moon, J. W. (1968). Topics on Tournaments, Holt, Rinehart and Winston,
New York

Ford, L. R. Jr. and Fulkerson, D. R. (1962). Flows in Networks, Princeton
University Press, Princeton

Berge, C. and Ghouila-Houri, A. (1965). Programming, Games, and
Transportation Network~, John Wiley, New York

Seshu, S. and Reed, M. B. (1961). Linear Graphs and Electrical Networks,
Addison-Wesley, Reading, Mass.

Tutte, W. T. (1971). Introduction to the Theory of Matroids, American
Elsevier, New York •

Harary, F. and Palmer, E. (1973). Graphical Enumeration, Academic Press,
New York

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974). The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.

Welsh, D. J. A. (1976). Matroid Theory, Academic Press, New York
Biggs, N., Lloyd, E. K. and Wilson, R. J. (1976). Graph Theory 1736-/936,

Clarendon Press, Oxford



Glossary of Symbols
GENERAL MATHEMATICAL SYMBOLS

u
n

\
A
[xl
{x}
Ilfll
RIS
R'

union
intersection
subset
proper subset
set-theoretic difference
symmetric difference
greatest integer s x
least integer:> x.
support of f
restriction of R to S
transpose of R

Page

·215
215

GRAPH-THEORETIC· SYMBOLS

A
A
A
b(f)
!I
c(G)
capK
((6

do(v)
do(f)
do(v)
d~(v)

do(u,v)
D
D(G)
ext]
Ext]
E ..
/-(5)
f+(S)
F
F(B, H)

arc set
adjacency matrix of a graph
adjacency matrix of a digraph
boundary of f
bond space
closure of G
capacity of cut K
cycle space
degree of vertex v in G
degree of face f in G
indegree of V in D
outdegree of v in D
distance between u and v in G
directed graph
associated digraph of G
exterior of J
closure of ext J
edge set
flow into S
flow out of S
face' set
set of faces of H in which B is drawable

1.71
7

.173
140
213

56
194.
212

10
.140'
~72

172
14

171
17'9
135
135

1
191
191
139'
164
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Page
1
9

135
135

4
5
7

214
191

72
175
175
103
108
108'

; 192
1

146
101
102
101
102

10·
172
172
10

172
172

3
·42

42
3

76
125
32

139
117

91
158

13
173
173

graph
subgraph of G induced by S
interior of J
closure of int J
complete graph
complete bipartite graph
incidence matrix of a graph
incidence matrix of a digraph
network
neighbour set of S in G
in-neigh~our set of v in D
out-neighbour set of v in D
Ramsey o1.Jmber
Ramsey number
r(3, 3, ... , 3)
value of flow f
vertex set
set of vertices of attachment of B to H

. independence number
edge independence number
covering number
edge covering number
minimum degree
minimum indegree
m~nimum outdegree
maximum degree
maximum indegree
maximum outdegree
number of edges
connectivity
edge connectivity
number of vertices
number of odd components
chromatic polynomial
number of spanning trees
number of faces
chromatic number
edge chromatic number
face chromatic number
number of components
converse of D
condensation of D

258

1Tk

T

c/>
X
X'
x*
Cd

fJ
D

valf
V
V(B, H)
a
a'

,
·K

V

o

G
G[8]
int J
IntI
Kn

. Km,n

M
M
N
Na(S)
Nn(v)
N~(v)

r(k, I)
r(k t , k2 , ••• , km )



Glossary of Symbols

GC
G*
G
w- t

G -e
G-e
G+e
G-v
G+E'
G-S
G~H

HeG
ReG
GUH
GnH
G+H
GxH
GvH
H(G)
[5, T]
(5, T)
WW'

complement of G
dual of G
planar embedding of G
reverse of walk W
contraction of e
deletion of e
addition of e
deletion of v
addition of E'
deletion of S
isomorphism
subgraph
proper subgraph
union
intersection
disjoint union
product
join.
complement of H in G
set of edges between Sand T
set of arcs from S to T
concatenation of walks

259

Page
6

140
135
12
32

9
9
9
9
9
4
8
8
9

10
10
96
58
29
29

176
12



Index
This index is arranged strictly in alphabetical order according to the first
significant word'. Thus, 'edge connectivity' is listed under'E and 'k-chromatic
graph' under C.

Acyclic graph, 25
Adjacency matrix

of a digraph, 173
of a graph, 7

Adjacent vertices, edges, 3
M -alternating path, 70
M -alternating tree, 81
Arc, 171
k-arc-connected digraph, 179
Associated, digraph, 179
M-augmenting path, 70
Automorphism, 6
Automorphism group, 7
Avoiding bridges, 146

,Bandwidth, 248
Basis matri~, 215
Basis matrix corresponding to a tree, 216
Berge"s theorem, 80 .
Binding' number, 249
Bipartite graph, 4
Bipartition, 5
Block, :44
'Block Q,f a graph, 44
Bond, 29
Bond space, 213

. Breakthrough, 199
Bridge, 146
k -bridge, 146
Brooks.' theorem, 122
Brouwer's fixed-point theorem, 21

Cage, 236
Capacity

. of a cut, 194
of an are, 191

·Capa.city function, 191
,-Cayley's formula, 32
Centre, 27
Chinese .postman problem, 62
k-chromatic g~aph, 117
Chromatic number, 117
Chromatic number of a surface, 243

Chromatic polynomial, 126
Chvatal graph, 241 '
Circulation, 212
Clique, 103
Closed walk, 14
Closure., 56
k -colourable graph, 117
k-colouring, 117
Complement

of a graph, 6
of a subgr~ph, 29

Complete bipartite graph, 5
Complete graph, 4
Compl~te k -partite graph, 6
Component, 13,
S-component, 119
Composition of. two graphs, 108 .
Condensation, 173
Conductance matrix, 220
Connected graph, 13
k-connected graph, 42
Connected vertices, 13
Connectivity, 42
Connector problem, 36
Conservation condition, 191
,Contraction of an edge, 32
Converse, 173
Cotree, 29
Covering, 73

. Covering number, 101
Coxeter graph, 241
Critical graph, 117
k.-critical graph, 117
a-critical gra·ph, 103'
l3-critical graph, 103

, K -critical graph, 47
Cube,234 .
k-cube,6
Cut, 194
Cut edge, 27
Cut vertex, 31
Cycle, 14
~_-cycle, 14
Cycle space, 212



262
Degree

of a face, 140
of a vertex, 10

Degree-majorised, 58
Degree sequence, 11
Demand,206
Diameter, 14
Diameter of a plane set, 113
Dicomponent, 172
Diconnected digraph, 172
Digraph, 171
Dijkstra's algorithm, 19
Dirac's theorem, 54
Directed cycle, 172
Directed diameter, 186
Directed Euler tour, 179
Directed graph, 171
Directed Hamilton cycle, 177
Directed- Hamilton path, 174
Directed path, 172
Directed tour, 172
Directed trail, 172
Directed walk, 171
Disconnected graph, 13
Disjoint subgraphs, 9
Distance

in a digraph, 186
in a graph, 14
in a weighted graph, 16

Dodecahedron, 234
Dual, 140
Duplication of an edge, 63

Edge, 1
Edge chromatic number, 91
k-edge-chromatic graph, 91
k-edge-colourable graph, 91
k -edge colouring, 91
k -edge-connected graph, 42
Edge connectivity, 42
Edge covering, 102
Edge covering number, 102
Edge cut, 29
k -edge cut, 42
Edge-disjoint subgraphs, 9
Edge graph, 11
Edge independence number, 102
Edge-induced subgraph,_ 9
Edge-transitive graph, 7
Embeddable on a surface,' 136
E-mbedding, 137
Empty graph, 4
End, 1
Equivalent k~bridges, 146
Eulerian graph, 51
Euler's formula, 143
Euler's theorem, 51

Index
Euler tour, 51
Euler trail, 51'
Even component, 76
Even cycle, 14
Exterior of a Jordan ciI've, 135
Exterior face, 139
Extremal graph theory, 109

Face, 139
Face chromatic number, 158
k-face-colourable plane graph, 158
k-face colouring, 158
k-factor, 71
k-factorable graph, 71
Fary's theorem, 139
Feasible flow 1 206
Finite graph, 3
Five-colour theorem, 156
Fleury's algorithm, 62
Flow, 191
Folkman graph, 235
Forcibly hamiltonian sequence, 248
Forest, 26
Four-colour conjecture, 157
Four-colour problem, 158
Franklin graph, 244
Frucht's theorem, 7

Generalised Ramsey numbers, 109
Girth, 15
Good algorithm, 19
Graceful graph, 248
Graph, 1-
Graphic sequence, 11
Gray graph, 235
Greenwood-Gleason graph, 242
Grinberg graph, 162
Grotzsch graph, 118
Grotzsch's theorem, 159
Griinbaum graph, 242

Hadwiger's conjecture, 124
Hajos' conjecture, 123
Hall's theorem, 72
Hamilton cycle; 53
Hamilton path, 53
Hamilton-connected graph, 61
Hamiltonian graph, 53
Head, 171
Heawood graph, 236
Herschel graph, 53
Hoffman-Singleton graph, 2.39
Horton graph, 240
Hungarian method, 82
Hypohamiltonian graph, 61
Hypotraceable graph, 61



·Index
Icosahedron, 234
Identical graphs, 4
Improvement of an edge colouring, 92
Incidence function

of a di"graph, 17)1
of ·a graph, 1

Incidence matrix
of a digraph, 214
of a graph, 7

Incident
edge with vertex, 3
face with edge or vertex, 140

{-incrementing path, 196
Indegree, 172
Independence number, 101
Independent set, 101 .
Induced subgraph, 9
In-neighbour, 175
Inner bridge, 148
Interior of a Jordan curve, 135
Intermediate vertices, 191
Internal vertices, 12
Internally-disjoint paths, 44
Intersection of graphs, 10
Isomorphic graphs, 4
Isomorphism, 4

Join of two graphs, 58
Joined vertices

in a digraph, 171
in a graph, 1

Jordan curve, 135
Jordan curve theorem, 135

Kirchhoff's current law, 223
Konig's theorem, 74
Kruskal's algorithm, 37
Kuhn-Munkres algorithm, 87
K~ratowski's theorem, 153

Labelling method, 198
Labelling procedure, 198
Length of' walk, 12
Link, 3
Loop, 3

Map ,colour theorem., 244
Marriage theorem, 73 .
Matching, 70
Matrix-tree theorem, 219
Max-flow min-cut theorem, 198
Maximum flow, 192
Maximum independent set, 101
Maximum matching, 70
~cGee graph, 237
Menger's .theorems, 46

.' Meredith graph, 239
Minimum covering, 73

lvlinirnum cut, 195
Multiplicity, 95

Neighbour set, 72
Network, 191
Nontrivial graph, 3

Octahedron~ 234
Odd component, 76
Odd cycle, 14
Optimal assignment problem, 86 .
Optimal cycle, 65
Optimal k -edge colouring, 92
Optimal matching, 86
Optimal tour, 62
Optimal tree, 3'6
Order of a squared rectangle, 220
Order of magnitude of a function, 19
Orientation, 171
Origin of a walk, 12
Outdegree, 172
Out.er bridge, 148
Out-neighbour, 175
Overlapping bridges, 146'

k -partite graph, 6
Path, 12
Perfect graph, 250
Perfect matching, 70
Perfect rectal1g1e, 220
Personnel assignment problem, 80
Petersen graph, 55
Petersen's theorem, 79
Planar embedding, 135
Planar graph, 135
Plane graph, 135 .
Plane triangulation, 143
Platonic graphs, 234
{-positive arc, 195
Potential difference,. 212
Potentially planar sequence, 251
Probabilistic method, 107

. Product of 'graphs, 96
Proper colouring, 117
Proper edge colouring, 91
Proper face colouring, 158
Proper subgraph, 8

Ramsey graphs, 106
Ramsey numbers,104
Ramsey's theorem, 103
Reachable vertex, 172
Reconstruction conjecture, 246'
Redei's theorem, 175
Regular graph, 11
k -regular graph, 11.

263
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Represented (colour at a vertex), 91
-Resultant flow, 192
Revised flow, 197
Robbins' theorem, 184
Robertson graph, 237
R.obertson--Wegner graph, 238

Saturated (vertex by a matching),' 70
[-saturated arc, 195
f -saturated path, 196
M-saturated vertex, 70
Schur~s theoret:n, 112
Section of a walk, 12
Self-complementary graph, 6
Self-.du~l plane ,graph, 142
Separated (faces by an edg-e), 140
Shortest path 'problem, 16
Simple graph, 3
Simple squared rectangle, 220
Sink, 191
Ske.w bridges, 146
Source, 191
Spanning subgraph, 8
Spanning supergraph, 8
Spanning tree, 28 -
Sperller's lernma, '22

- Squared rectangle, 220
Stereographic projection, 138
Strict digraph, 172
Str<Jng perfect graph ,conjecture; 25,0 '
Subdigraph, 171 : .
Subdivision

of a graph, 123
of an ~dge, 45

Subgraph, 8
Supergraph, 8

-Supply, 206
Surface, 136

Tail, 171
T~it colouring, 159 '
Tait's conjecture, ~60

Terminus of a walk,'12
Tetrahedron, 234
Thickness"145
Thomassen graph, 240
Tietze gr~ph, 243'
Timetabling problenl, 96
Total colouring conjecture, 25 1
Totally lJilimod.ular Rlatrix, ~20",

t-tough grap~, 249

Index
Tour, 51
Tournament, 174
Trail, 12 '
Transfer of a bridge, 149
Traveliing salesman problem, 65
'Tree, 25
Tr~e graph, 41
Triangle, 14
Trivial graph, 3
Turan'ls theoreJn. 109
Tutte-Coxeter graph~ 237
Tutte graph .. 161
Tutte's theorem, 76
Type 1 {u,v}-component, 119
Type 2 {u, u}-component, 119

Underlying digraph, 191
Underlying graph, 171
Underlying simple graph, 8
Unilateral·digraph, 176
Unimodular matrix, 218
Union of graphs, 9' ,
Uniquely k-colourable graph, 121
Uniquely k-edge-colourable graph, 96
f-unsaturated are, 195
f -unsaturated path, 196

.f ...unsaturated tree, 198
J.JVf-unsaturatedvertex,70

Value of a flow, 192
Vertex, 1
k-vertex-colourable graph, 117
k -vertex colouring, 117 .
Vertex cut, 42 .
k -verte'x cut, 42 ,
Vertex-transitive graph, 7
Vertices of attachm¢nt; 146
Vizing's theqrem, 93

'Walk, 12
V/eight

of a s~bgraph, 16
. of an edge, 15

Weighted graph, 15­
\\'heel, 36

{-zero arc, 195
Zero flow, 192




