
GRAPH THEORY
WITH APPLICATIONS

J. A. Bondy and U. S. R. Murty

Depart,nent· of Combinatorics and Optimization,
University of Waterloo,
Ontario, Canada'

NORfH-HOLLAND
New York • Amsterdam • Oxford



®J.A. Bondy and V.S.R. Muny 1976

First published in Great Britain 1976 by
The· Macmillan Press Ltd.

First published in the U.S.A. 1976 by
Elseyier Science Publishing Co., Inc.
52 Vanderbilt Avenue, New York, N.Y 10017

Fifth Printing, 1982.

Sole Distributor in the U.S.A:
Elsevier Science Publishing Co. ., Inc.

Library of Congress Cataloging in Publication Data

Bondy, John Adrian.
Graph theory with,applications.

Bibliography: p.
Includes index.
1. Graph theory. I. Murty, U. S. R. ,joint author. II. Title.

QA166.B67 1979 511 '.5 75-29826·
ISBN O~444-19451-7

All rights ~eserv~d. No part of this publication may be reproduced or transmitted, in any
form or by any means, without permission.

Printed in the United States of America



· To our parents



Preface

This book is intended as an introduction to graph theory. Our aim has been
to present what we consider to be the basic material, together with a wide
variety of applications, 'both to other branches of mathematics and to
real-world problems. Included are simple new proofs of theorems of Brooks,
Chvatal, Tutte and Vizing. The applications have been carefully selected,
and are treated in some depth. We have chosen to omit all so-called
'applications' that employ just the language of graphs and no theory. The
applications appearing at· the end of each chapter actually make use· of
theory develope'd earlier in the same chapter. We have also stressed .the
importance of efficient methods of s~lving problems. Several good al
gorithms are in~luded and their efficiencies are analysed. We do not,
however, go into the computer implementation of these algorithms.

The exercises at the e"nd· of each section are of varying difficulty. The
harder ones are starred (*) and, for these, hints are provided in appendix I.
In some exercises, new. definitions .are introduced. The reader is recom
mended to acquaint himself with these definitions. Other exercises., whose
nu~bers are indicated by bold type, "are used .in subsequent sections; these
should all be attempted.

Appendix II consists .of a table in "which basic properties of four graphs
are listed. When new definitions are introduced,' the reader may find it
helpful to check his understanding by referring to this table. Appendix III
includes a sele-ction of interesting graphs with special properties. These may
prove '~o be useful in testing new conjectures. In appendix IV, we collect
together a number of unsolved problems, some known to be very difficult,
and others more hopeful. Suggestions for further reading are given in
appendix V.

Many people have contributed, either directly or indirectly, to this book.
·We are particularly indebted t9 C. Berge and D. J. ~. Welsh for introducing
us to graph theory, to G. A. Dirac, J. Edmo~ds, L. Lovasz and W. T. Tutte,
whose works have influenced oUf treatment of the subject, to V.
Chungphaisan and C. St. J. A. Nash-Williams for their careful reading of the
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manuscript and valuable suggestions, and to the ubiquitous G. O. M. for his
kindness and constant encouragement.

We also wish to thank S. B. Maurer, P. J. O'Halloran, C. Thomassen,
B. Toft and our colleagues at the University of Waterloo for many
helpful comments, and the National Research Council of Canada for its
financial support. Finally, we would like to express our appreciation to Joan
Selwood for her excellent typing and Diana Rajnovich for her beautiful
artwork. .

J. A. Bondy
U. S. R. Murty
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1 Graphs and Subgraphs
1.1 GRAPHS AND SIMPLE GRAPHS

Many real-world situations can conveniently be described by means of a
diagraln consisting of a set of points together with lines joining certain pairs
of these points. For example, the points could represent people, with lines
joining pairs of friends; or the points might be communication centres, with
lines representing communication links. Notice that in SllCh diagrams on~ is
mailll).T interested ill whether or not two given points are joined by a line;
the manner in which they are joined is immaterial. A mathematical abstrac
tion of situations of this type gives rise to the concept of a graph.
. A graph G is an ordered triple (V(G), E(G), t/!G) consisting of a
nonempty set V( G) of vert~ces, a set E(G), disjoint from V( G), of edges,
and an incidence function t/Ja that associates with each edge of G an
unordered pair of (not necessarily distinct) vertices of G. If e is an edge and
u and t' are vertices such that t/!G(e) - UV, then e is said to join u and v; the
'/ertices Ii and 'v 'are called the ends of e.

Two examples of graphs should serve to clarify the definition.

Exarttple 1
G = (\l(G), E(O), t/!G)

where
V( G)-= {Vt, V2, V3, V4, vs}

E(G) = {el,e2' e3, e4, es, e6, e" es}

and t/JCi is defined by

t/!G(el) =Vl V2, t/!O(e2) = V2 V 3, t/!G(e3) = V3V3, t/!G(e4) = V3V4

t/!G(es) = V2 V4, t/!G(e6) = V4V S, t/!G(e7) = V2VS, t/!G(es) = V2VS

Example 2
H = (V(H), E(H), t/!H)

where
V(H) = {u, v, w, x, y}

E (H) = {a, b, C, d, e, f, g, h}

and t/!H is defined by

t/!H(a) = UV, t/!H(b) = UU, t/!H(C) = VW,

t/!H(e) = vx, t/!H(f) = wx, t/!H(g) = ux,

t/!H(d) = wx

t/!H(h) = xy
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b

h
Vu-------~----<)y

w

H

Figure 1.1. Diagrams of graphs G and H

Graphs are so named because they can be represented graphically, and it
is this -graphical representation which helps us understand many of their
properties. Each vertex is indicated by a point, and each edge by a line
joining the points which represent its ends. t Diagrams of G and Hare
shown in figure 1.1. (For clarity, vertices are depicted here as small 'circles.)

There is no unique way of drawing a graph; the relative positions of points
representing vertices and lines representing edges have no significance.
Another diagram of G, for example, is given in figure 1.2. A diagram of a
graph merely depicts the incidence relation holding between its vertices and
edges. We shall, however, often draw a diagram of a graph and refer to it as
the graph itself; in the same spirit, we shall call its points 'vertices' and its
lines 'edges'.

Note that two edges in a diagram of a graph may intersect at a point that

8,
V4u----------~-----uV,

V2

Figure 1.2. Another diagram of G

t. In such a drawing it is understood that no line intersects itself or passes through a point
representing a vertex which is not an end of the corresponding. edge-this is clearly always

.possible.
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is not a vertex (for ..example el and e6 of graph G in figure 1.1). Those graphs
that have a diagram whose edges intersect only at their ends are called
plartar, since such graphs can be represented in the plane in a simple
manner. The graph of figure 1.3a is planar, even though this is not
immediately clear from the particular representation shown (see exercise
1.1.2). The graph of figure 1.3b, on the other hand, is nonplanar. (This will
be proved in chapter 9.)

Most of the definitions and concepts in graph theory are suggested by the
graphical representation. The ends of an edge are said to be incident with
the edge, and vice versa. Two vertices which are incident with a common
edge are adjacent, as are two edges which .are incident with a common
vertex. An edge with identical ends is called a loop, and an edge with
distinct ends a link. For example, the edge e3 of G (figure 1.2) is a loop; all
other edges of G are links.

u

(0)

x

(b)

Figure 1.3. Planar andnonplanar graphs

A graph is finite if both its vertex set and edge set are. finite. In this book
we study only finite graphs, and so the term 'graph' always means 'finite
graph'. We call a graph with just one vertex trivial and all other graphs
nontrivial.

A graph is simple if it has no loops and no two of its links join the same
pair of vertices. The graphs of figure 1.1 are not simple, whereas the graphs
of figure 1.3 are. Much of graph theory is concerned with the study of simple
graphs.

We use the symbols v(G) and £(G) to denote the numbers of vertices and
edges in graph G. Throughout the book the letter G denotes a graph.
Moreover, when just one graph is under discussion, we usually denote this
graph by G. We then omit the letter G from graph-theoretic symbols and
write, for instance, V, E, v and € instead of V(G), E(G), v(G) and e(G).
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Exercises

1.1.1 List five situations from everyday life in which graphs arise naturally.
1.1.2 Draw· a different diagram of the graph of figure 1.3a to sh.ow that it

is indeed planar.

1.1.3 Show that if G is simple, then E < (;).

1.. 2. GRAPH ISOMORPHISM

Two graphs G and H are identical (written G = H) if V(G) =V(H),
E(G) = E(H), and t/JG = t/JH. If two graphs are identical then they can clearly
be represented by identical diagrams. However, it is also possible for graphs
that are not identical to have essentially the same diagram. For example, the
diagrams of G in figure 1.2 and H in figure 1.1 look exactly the same, with
the exception that their vertices and edges have different labels. The graphs
G and H are not identical, but isomorphic. In general, two graphs G and H
are said to be isomorphic (written G::: H) if there are bijections (J : V(G)~
V(H) and </>: E(G)~ E(H) such th.at t/JG(e) = uv if and only if t/JH(</>(e)) =
8(u)8(v); such a pair (6, </» of mappings is called an isomorphi-sm between G
and H.

To show that two graphs are isomorphic, one must indicate an isomorph
ism between them. The pair of mappings (6, </» defined by

6(Vl) = y, 6(V2) = x, O(V3) = U, O(V4) = v, 8(v's) = w

and
</>(et) = h,

</>(es) = e,

</>(e2) = g,

</>(e6)=c,

</>(e3) = b,

</>(e7) =d,

</>(e4) = a

</>(es) = f

is an isomorphism between the graphs G and H of examples 1 and 2; G a~d

H clearly have the same structure, and differ only in the names of vertices
and edges. -Since it is in structural properties that we shall primarily be
interested, we shall .often omit l~bels when drawing graphs; an unlabelled
graph can be thought· of as a representative of an equivalence class of
isomorphic graphs. We assign labels to vertices. and edges in a graph mainly
for the purpose of referring to them. For instance, when dealing with simple
graphs, it is often convenient to refer to the edge with ends u and v. as 'the
edge uv'. (This convention results in no ambiguity since, in. a simple graph,
at ~ost one edge joins any pair of vertices.)

We conclude this section by introducing some special classes of graphs. A
simple graph in which each pair of distinct vertices is joined by an edge is
called a complete graph. Up to isomorphism, there is just one complete
graph on n vertices; it is denoted by K n • A drawing of K s is shown in figure
1.4a. An empty graph,on the other hand, is one with no edges. A bipartite
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(0 ) (b)

5

(c)

Figure 1.4. (a) K 5 ; (b) the cube; (c) K 3 •3

graph is one whose vertex set can be partitioned into two subsets X and Y,
so that each edge has one end in X and one end in Y; such a partition
(X, Y) is called a bipartition of the graph. A complete bipartite graph is a
simple bipartite graph with bipartition (X, Y) in which each vertex of X is
joined to each vertex of Y; if IXI == m andlY t == n, such a graph is denoted
by Km,n. The gr.aph defined by the vertices and edges of a cube (figu-re 1.4b)
is bipartite; the graph in figl:lre 1.4c is the complete bipartite graph K 3 ,3.

There are many other graphs whose structures .are of special interest.
Appendix III includes a selection of such graphs.

Exercises

1.2.1 Find an isomorphism between the graphs ·G and H of examples 1
and 2 different from the one given.

1.2.2 -(a) Show that if G =:=H, then v(G) = v(H) and e(G)·= e(H).
(b) Give an example to show that the converse is false.

1.2.3 Show that the following graphs are not isomorphic:

1.2.4 Show that there are eleven nonisomorphic simple graphs on four
vertices.

1.2.5 Show that two simple graphs G and H are is~morphic if and only if
th·ere is a-bijection 8:V(G)~V(H) such that.uveE(G) if and
only if 6(u)6(v) E E(H).
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Show that the following graphs are isomorphic:

1.2.7

1.2.8

1.2~9

1.2.10

1.2.11

1.2.12

Let G be simple. Show that e = (;) if and only if G is complete.

Show that

(a) e(Km,n) = mn;
(b) if G is simple and bipartite, then E <: v 2 /4.
A k -partite graph is one whose vertex set c,an be partitioned into k
subsets so that no edge has both ends in anyone subset; a complete
k -partite graph is one that is simple and in which each vertex is
joined to every vertex that is not in the same subset. The complete
m-partite graph on n vertices in which each part has either [n/m] or
{n/m} vertices is denoted by Tm •n • Show that

(a) e(Tm •n) = (n 2 k)+ (m _l)(k; 1), where k= [n/m];

(b)* if G is a complete m-partite graph on n vertices, then e(G)<
e (Tm,n), with equality only if G - Tm,n.

The k -cube is the graph whose vertices are the ordered k -tuples of
O's and 1's, two vertices being joined if and only if they differ in
exactly one coordinate. (The graph shown in figure 1..4b is just the
3-cube.) Show that the k-cube has 2k vertices, k2k

-
1 edges and is

bipartite.
(a) The complement GC of a simple graph G is the simple graph

with vertex set V, two vertices being adjacent in GC if and only
if they are not adjacent in G. Describe the graphs K~ and K~.n.

(b) A simple graph G is self-complementary ifG:::: GC. Show that if
G is self-complementary, then v =0, 1 (mod 4).

An automorphism of a graph is an isomorphism of the graph onto
itself.

(a) Show, using exercise 1.2.5, that an automorphism of a simple
graph G can be regarded as a permutation on V which pre
serves adjacency, and that the set of such permutations form a
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group f(G) (the automorphism group of G) under the usual
operation of composition.

(b) Find f(Kn) and f(Km,n).
(c) Find a nontrivial simple graph whose automorphism group is

the identity.
(d) Show that for any simple graph G, f(G) = f(GC).
(e) Consider the permutation group A with elements (1)(2)(3),

(1, 2,3) and (1, 3, 2). Show that there is no simple graph G with
vertex set {I, 2, 3} such that f(G) = A.

(f) Find a simple graph G such that f(G) ::::::A. (Frucht, 1939 has
shown that every abstract group is isomorphic to the auto
morphism group of some graph.)

1.2.13 A simple graph G is vertex-transitive if, for any two vertices u and
v, there is an element g in f(G) such that g(u)=g(v); G is
edge-transitive if, for any two edges UIVI and U2V2, there. is an
element h in f( G) such that h({ut, VI}) = {U2, V2}. Find

(a) a graph which is vertex-transitive but not edge-transitive;
(b) a graph which is edge-transitive but not vertex-transitive.

1.3 THE INCIDENCE AND ADJACENCY MATRICES

To any graph G there corresponds a v X e matrix called the incidence matrix
of G. Let us denote the vertices of G by VI, V2, ... ,Vv and the edges by
e., e2, · · · ,eE • Then the incidence matrix of G is the matrix M(G) = [mia,
where mij is the number of times (0, 1 or 2) that Vi and ej are incident. The
incidence matrix of a graph is just a different way of specifying the graph.

Another matrix associated with G is the adjacency matrix; this is the v x v
matrix A(G) = [aij], in which aij is the number of edges joining Vi and Vj. A
graph, its inc~dence matrix, and its adjacency matrix are shown in figure 1.5.

e1

e1 e2 e3 e4 es e6 e, VI V2 V3 v.

V1 1 1 0 0 1 0 1 VI 0 2 1 1

V2 1 1 1 0 0 0 0 V 2 2 0 1 0

V3 0 0 1 1 0 0 1 V3 1 1 0 1

V4 0 0 0 1 1 2 0 V4 1 0- 1 1
M(G) A(G)

V4 84 V3

G

Figure 1.5
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The adjacency matrix of a graph is generally considerably smaller than its
incidence matrix, and it is in thi~ form that graphs are commonly stored in
computers.

Exercises
1.3.1 Let M be the incidence matrix and A the adjacency matrix of a

graph G.

(a) Show that every column sum of M is 2.'
(b) What are the column sums of A?

1.3.2 Let G be bipattite. Show that the vertices of G can be enumerated
so that the adjacency matrix of G has the form

where A 21 is the transpose of 'A 12 •

1.3.3* Show that ifG- is simple and the eigenvalues of A are distinct, then
the automorphism group of G is abelian

1.4 SUBGRAPHS

, A graph H is a subgraph of G (written He G) ifV(H) c V(G), E(H) c
E(G), and t/!H is th~ restriction of t/!G to E(H). Wh~n H c G but H~ G, we
write He G and call H a 'proper. subgraph .of G. If H is a subgraph of G, G
is a supergraph of H.A spanning subgraph (or spanning supergraph) of G is
a subgrap-h (or supergraph) H with V(H) = V(G),.

By deleting from G all loops and, for every pair ofadjacenf vertices, all
but one link joining them, we obt.ain a simple spanning subgraph of G, .
called the underlY'ing sim'ple graph of G.Figure 1.6 shows a graph a·nd its

. underly.ing simple graph.

Figure 1.6. A graph and its underlying simple graph
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u - u

f
y v y v y v

9 9

d b d

x w x w x
c c

G A spanning G-{u, w}
subgraph of G

u u u

y v ~v y v
g

G- {a, b, f} The induced
subgraph
G[{u, v, x}]

The edge-induced
5ubgraph
G[{a, C, e, g}]

Figure 1.7

Suppose that V' is a nonempty subset of V. The s-ubgraph of G whose
vertex set is V' and whose edge set is the set of those edges of G that have
both ends in V' is called the subgraph of G induced by V' and is denoted by
G[V']; we say that G[V'] is an induced subgraph of G. The induced
subgraph G[V\V'] is denoted by G - V'; it is the subgraph obtained from G
by deleting -the vertices in V' together with their incident edges. If
V'={v} we writeG-v for G-{v}.

Now suppose that E' is a nonempty subset of E. The subgraph of G
whose vertex set is the set of ends of edges jn E' and whose edge set is E' is
called the subgraph of G induc-ed by E'and is denote-d by G[E']; ~[E'] is
an edge-induced subgraph of G.'The spanningsubgraph- of G with edge set

, E\E' is written simply as G - E'; it is the subgraph obtained from G by
deleting the edges in E'. Similarly, the -graph obtained from G by adding a
set of edges E'· is denoted by -G + E'~ If E' = {e} we write G - e and G + e
instead of 0 -{e} and G +{e}.

Subgraphs of these various types are depicted in figure 1.7.
Let G 1 and G 2 be subgraphs of G. We say thatGt and G 2 are disjoint if

they have no vertex in common, and edge-disjoint if they have no edge in
common. The union G t U G 2 of G t and G 2 is the- subgraph with vertex set
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V(GI)U V(Gz) and edge set E(GI)UE(Gz); if G1 and G z are disjoint, we
sometimes denote their union by G t + G 2 • The intersection G 1 n G2 of G 1

and G 2 is defined similarly, but in this case G 1 and G 2 must have at least one
vertex in common.

Exercises

1.4.1 Show that every simple graph on n vertices IS isomorphic to a
subgraph of Kn •

1.4.2 Show that

(a) every induced subgraph of a complete graph is complete;
(b) every subgraph of a bipartite graph is bipartite.

1.4.3 Describe how M(G - E') and M(G - V') can be obtained from
M(G), and how A(G - V') can be obtained from A(G).

1.4.4 Find a bipartite graph that is not isomorphic to a subgraph of any
k-cube.

1.4.5* Let G be simple and let n be an integer with 1< n < v-I. Show that
if v >- 4 and all induced subgraphs of G on n vertices have the same
number of edges, then either G:::::. K II or G::: K~.

1.5 VERTEX DEGREES

The degree dG ( v) of a vertex v in G is the number of edges of G incident
with v, each loop counting as two edges. We denote by 5(G) and a(G) the
minimum and maximum degrees, respectively, of vertices of G.

Theorem 1.1

Ld(v)=2€ .
veV

Proof Consider the incidence matrix M. The sum of the entries in the
row corresponding to vertex v is precisely d(v), and therefore L d(v) is just

. veV

the sum of all entries in M. But this sum is also 2£, since (exercise 1.3.1a)
each of the e column sums of M is 2 0

Corollary 1.1 In any graph, the number of vertices of odd degree is even.

Proof Let VI and Vz be the sets of vertices of odd and even degree iIi G,
respectively. Then

L d(v)+ L d(v) = L d(v)
veV l veV2 veV

is even, by theorem 1.1. Since L d (v) is also even, it follows that L d (v) is
veV2 veV t

even. Thus IVII is even 0 ·
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A graph G is k - regular if d (v) = k for all v E V; a regular graph' is one that
is k -regular for some k. Complete graphs and complete bipartite graphs Kn,n
are regular; so, also, are the k -cubes.

Exercises

1.5.1 Show that 8<2e/v<t:..
1.5.2 Show that if G is simple, the entries on the. diagonals of both MM'

and A 2 are the degrees of the vertices of G.
1.5.3 Show that if a k-regular bipartite graph with k >0 has bipartition

(X, Y), then IXI = IYI·
1.5.4 Show that, in any group of two or more people, there are always two

with exactly the same number of friends inside the group.
1.5.5 If G has ve"rtices VI, V2, .•. , v"' the sequence (d(Vl), d(V2)' ... , d(v,,)

is called a degree sequence of G. Show that a sequence
(d t , d2 , ••• , do) of non-negative integers is a degree sequence of some

n

graph if and only if. L d i is even.
i= 1

1.5.6 A sequence d = (d 1, d2 , ••• , dn) is graphic if there is a simple graph
with degree sequence d. Show that

(a) the sequences (7, 6, 5,4, 3, 3, 2) and (6, 6, 5,4, 3, 3, 1) are not
graphic; ..~,-,/

n

(b) if d is graphic and d1 >d2 > . .. ~ dn, then L d i is even and
i=l

k n

i~ d i <: k(k -1) +i-~l min{k, di} for 1 <: k <: n

(Erdos and Gallai, 1960 have shown that this necessary condition is
also sufficient for d to be graphic.)

1.5.7 Let d = (dt , d2 , ••• , dn) be a nonine,reasing sequence of non-neg'ative
integers, and denote the sequence (d2 -1, d3 -1, ... , dd1+l -1,
ddJ+2, •• • , dn) by d/.

(a)* Show that d is graphic if arid only if d' is graphic.
(b) Using (a), describe an algorithm for constructing a simple graph

with de'gree sequence d, if such a graph exists.
(V. Havel, S. Hakimi)

1.5.8* Show that a loopless graph G contains a bipartite spanning subgraph
H such that dH ( v) > !do (v) for all v E V.

1.5.9* Let S = tXt, X2, ••• , xn } be a set of points in the plane such that the
distance between any two points is at least one. Sho~ that there are
at most 3n pairs of points at distance exactly one. -

1.5.10 The edge graph of a graph G is the graph with vertex set. E(G) in
which two vertices are joined if and only if they are adjacent edges in
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G. Show that, if G is simple

(a) the edge graph of G has e(G) vertices and L (dG

2
(V)) edges;

vEVlG) .

(b) the edge graph of Ks is isomorphic to the complement of the
graph featured in exercise 1.2.6.

1.6 PATHS AND CONNECTION

A walk in G is a finite non-null sequence W - lJoel vle;v2 ... ekVk, whose
terms are alternately vertices and edges, such that, for 1 $ i <: k, the ends of
ej are Vi-l and Vi. We say that W is a walk from Vo to Vk, or a (Vo, vkJ-walk.
The vertices Vo and Vk are called the origin and terminus of W, respectively,
and VI, V2, · · · , Vk-l its internal nertices. The integer k is the length of W.

If W = VOel VI • • · ekVk and W' = Vkek+l Vk+l ••. e,v, are walks, the walk
VkekVk-1 · · · eIVO, obtained by reversing W, is denoted by W- I and the walk
VOel VI · · • e,v" obtained by concatenating Wand W' at Vk, is denoted by
WW'. A section of a walk W = VOelVI ... ekVk is a walk that is a subsequence
Vjei+l Vi+l · • • ejvj of consecutive terms of W; we refer to this subsequence as
the (Vi, vj)-section of W.

In a simple graph, a walk VOel VI •.. ek.Vk is determined by the sequence
VOVI. · · Vk of its vertices; hence a walk in a simple graph can be specified
simply by its vertex sequence. Moreover, even in gr~phs that are not simple,
We shall sometimes refer to a sequence of vertices in which consecutive
terms are adjacent as a 'walk'. In such cases it. shou.ld be understood that the'
discussion is valid for every walk with that vertex sequence.

If the edges eI, e2, ... , ek of a walk Ware distinct, W is called a trail; in
this case the length of W is just e(W); If, in addition, the vertices
Vo, VI, • · • , Vk are distinct, W is called a path. Figure 1.8 illustrates a walk, a
trail and a path in a graph. We shall also use the word 'path' to denote a
graph or subgraph whose vertices and edges are the terms ofa .path.

u

Walk: uDvfyfvgyhwbv

Trail: wcxdyhwbvgy

Path: xcwhyeuav

Figure 1.8



Graphs and Subgraphs 13

(0)

o

tb)

Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

Two vertices u and v of G are said to be connected if there is a (14, v)-path
in G. Connection is an equivalence relation on the vertex set V. Thus there
is a partition of V into nonempty subsets Vt, V2 , ••• , VCIJ such that two
vertices u and v are connected if and only if both u and v belong to the
same s~t ~. The subgraphs G[YI ],. G[V2], ••• , G[VCIt] are called the com
ponents ,of G. If G has exactly one component, G is connected; otherwise G
is disconnected. We denote the number of components of G by ro(G).
Connected and disconnected graphs are depicted in figure 1.9.

Exercises

1.6.1 Show that if there is a (u, v)-walk in G, then there is also a
(u, v)-path in G.

1.6.2 Show that the number of (Vi, vj)-walks of length k in G is the (i, j)th
,entry of .Ak.

1.6.3 Show that if G is simple and 8 > k, then G has a path of length k.
1.6.4 Show that G is connected if and only if, for every partition of V

into two nonempty sets VI and V2 , there is an edge' with one end in
VI and one end in V2 •

1.6.5 (a) Show that if G is simple and e >(v 2 1), then G is connected.

(b) For v> 1, find a disconnected simple graph Gwith e = (v 2 1).
1.6.6 (a) Show that if G is simple and 8 >[v/2]-1, then G is connected.

. (b) Find a disconnected ([v/2]-1)-regular simple graph for v even,
1.6.7 Show that if G is disconnected, then GC is connected.
1.6.8 (a) Show that if e E E, then w(G) <.oo(G - e) <: w(G)+ 1.

(b) Let v E V. Show that G - e cannot, in peneral, be replaced by
G - v in the above inequality.

1.6.9 Show that if G is connected and each degree in (; is even, then, for
any v E V, 'w(G - v) <:!d(v)~
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1.6.10 Show that any two longest paths in a conn·ected graph have a vertex
in common.

1.6.11 If vertices u and v are connected in G, the distance between u and
v in G, denoted by do(u, v), is the length of a -shortest (u, v)-p.ath in
G; if there is no path connecting u and v we define do ( u, v) to be
infinite. Show that, for any three _vertices u, v and w, d(u, v) +
d(v, w) > d'(u, w).

1.6.12 The diameter of G is the maximum· distance between two vertices
of G. Show that if G has diameter greater than three, then GC has
-diameter less than three.

1.6.13 Show that if G is simple with diameter two and ~ = v - 2, then
£ >2v-4.

1.6.14 Show that if G is simple and connected but not complete, then G
has three vertices u, v and w such that UV, vw E E and uw e E.

1.7 CYCLES

A walk is closed if it has positive length and its origin and terminus are the
same. A closed trail whose origin and internal vertices are distinct is a eye·'e.
Just as with paths we sometimes use the term 'cycle' to denote a graph'
corresponding to a cycle.. A cycle of length k is called ao k -cycle; a k -cycle is
odd or even according as k is odd or even. A 3-cycle i~ often called a
triangle. Examples of a closed trail and a cycle are given in figure 1.10.

Using the concept of a cycle, we can now present a characterisation of
bipartite graph-s.

Theorem 1.2 A graph is bipartite if· and only if it~ontains rio odd cycle.

Proof Suppose that G is bipartite with bipartition (X, V), and let C =
VoVt ••• VkVO be a cycle of G. Without loss of generality we may assume that
Vo E~. Then, since VoVt E E and G is bipartite, VI E Y. Similarly V2E X ~ j,

in general, V2i E X and V2i+l E Y. Since VO EX, Vic E Y. Thus k= 2i + 1, for
some i, and it follows that C is even.

e

w

c Closed trail: ucvhxgwfwdvbu

Cycle: xaubvhx

Figure 1.10
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It clearly suffices to prove the converse for connected graphs. Let G be a
connected graph that c90tains no odd cycles. We choose an arbitrary vertex
u and define a partition (X, Y) of V by setting

X ={x E V Id(u, x) is even}

Y = {y E V Id(u, y) is odd}

We _shall show that (X, Y) is a bipartition of G. Suppose that v and ware
two' vertices of X. Let P be a shortest (u, v.)-path and 0 be a shortest
(u, w)-path. Denote by Ut the last vertex common to P and O. Since P and
Q are shortest paths, the (u, uI)-sections of both P and 0 are shortest
(u, Ut)-paths and, therefore, have the same length. Now, since the lengths of
both P and 0 are even, the lengths of the (UI, v)-section PI of P and the
(Ut, w)-section 01 of 0 must have the same parity. It follows that the
(v, w)-path PIlOt is of even length. If v were joined to w, p 110 twv would
be a cycle of odd length, contrary to the hypothesis. Therefore no two
vertices in X are adjacent; similarly, no two vertices in Yare adjacent 0

Exercises
1.7'.1 Show that if an edge e is in a closed, trail of G, then e is in a 'cycle of

G.
1.7.2 Show that if 8 >2, then G contains a :cycle.
1.7.3* Show that if'G is simple and 8~2, then G contains a cycle of length

at least 8 + 1. '
1.7.4 The girth of G is' the length of a shortest cycle in G; if G has no

cycles we define the girth of G to be infinite. Show that

(a) ak-regular graph of girth four has at least 2k vertices, and (up to
iso~orphism) there exists exactly one such graph on 2k vertices;

(b). a k-regular graph of girth five has at least k 2 + 1 vertices.

1.7.5 Show that a k-regular graph of girth five and diameter two has
exactly k 2 + 1 vertices, and find such a graph for· k =2, 3. (Hoffman
and Singleton, 1960 have shown. that suchag,raph .can exist only if
k =2, 3, 7 and, possibly, 57.)

1.7.6 Show that

(a) if e ~ v, G contains a cycle;
(b)* if e ~ v +4, G contains two edge-disjoint cycles. (L. Posa)

APPLICATIONS

1.8 THE SHORTEST PATH PROBLEM

With each edge e -of G let there be associated a real number w(e), called its
weight. Then G, together with these weights on its edges, is called a weighted
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2

UoCE---.:::...---Ql-----o--------4:..--..--it>Vo

9

Figure 1.11. A (uo, vol-path of ~inimunl weight.

graph. Weighted graphs occur frequently in applications of graph theory. In
the friendship·,·· graph, for. ex'amp'le, weights might indicate intensity of
friendship; in the com,munications graph, they could represent the· construc
tion or maintenance costs of the various communication links.

If H is a subgraph of a weighted. gr~ph, the weight w(H) of H is the sum

of the weights eE~H) w(e) on its edges. Many optimisation problems amount

to finding, in. a weighted graph, a su.bgraph of a certain type with minimum
(or maximum) weight. One such is t~: sh9rtest path problem: given a. railway
net-work connecting various towns, determine a shortest route 'between two
specified towns in the network. . _ .

Here. one must find, in a weighted graph, a path of minimum weight
c'onnecting two specified vertices u~ an·d Vo; the weights'represent distances
b'y ·rail between d·irectly-linked towns, and are therefore nOil-negative. The
path indicated in the. graph of figure' 1.11 is il (uo, vo)-path of minimum
weight (exercise l c.8.1). "

We now present an algorithm for solving the shortest path problem. For·
clarity of exposition, we shall refer to the we.ight of a path' in a. weighted
graph as its leng·th; similarly th-e minimum weight.' of a (u, v)-path will be
called the distance between u and v' and, den.oted by d(u,. v). These defini
tions coincide with the usual notions 'of length and distance, as defined in
section 1.6, when all the weights are equal toone.

It clearly s'l:lffices to deal with the shortest path problem for simple graphs;
so we shall assume here that Gis simple. We shall also assume. that all the
weights are positive. This, -again, is not a serious restriction because, if the
w~ight .of an ,edge is .zero, then· its ends ca·n· be id·entified. W·e adopt the
convention that w(uv). , cx) if uv~ E.
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The algorithm to be described was discQveredby Dijkstra (1959) and,
independently, by Whiting and Hillier (1960). It finds not only a shortest
(uo, vo)-path, but shortest paths from Uo to all other vertices of G·. The basic
idea is as .follows., -

Suppose that S is a proper subset of 'V such that Uo E S, and let S denote
V\S. If P = Uo • • • iii) is a shortest· path from Uo to 5 then clearly ii E Sand
the (uo, u)-section of P must be a shortest (uo, u)-path. Therefore

d(uo, i3) = d(uo, u) + w(uv)

and the distance from Uo to 5 is given by the formula

d(uo, S) = min{d(uo, u) + w(uv)}
ueS
veS

This formula is the basis of Dijkstra's algorithm. Starting with the set
So = {uo}, an increasing sequence So, 51, ... ,511 - 1 of subsets of V is con
structed, in such a way that, at the end of stage i, shortest paths from Uo to
all vertices in Si are known.

The first step is to determine a vertex nearest to uo. This is achieved by
computing d(uo, So) and selecting a vertex Ul ESo such that d(uo, Ul)=

d(uo, So); by (1.1)

d(uo, So) = min{d(uo, u) + w(uv)} = min{w(uov)}
ueSo veSo
~ESo

and so d(uo, 50) is easily computed. We now set SI = ruG, Ul} and let PI
denote the path Uo.Ut; this is clearly a shortest (uo,.u1)-path. In general, if the
set Sk = {uo, Ul, · • ., Uk} and corresponding shortest paths PI, P2 , ••• , Pk have
,already been detennined, we compute d(uo, Sk) using (1.1) and select a
vertex Uk+l E 5k such that d(uo, Uk+l}= d(uo, Sk)' By (1.1), d(uo, Uk+l) =
d(uo,Uj)+W(UjUk+l) for some j<k; we get a shortest (uo,uk+l)-path by
adjoining the edge UjUk+1 to the path Pj.

We illustrate this procedure by considering the weighted graph depicted in
figure 1.12a. Shortest paths from Uo to the remaining vertices are deter
mined in seven stages. At each stage, the vertices to which shortest paths
have been found are indicated by solid dots, and each is labelled by its
distance from uo; initially Uo is labelled O. THe actual shortest paths are
indicated by solid lines. Notice that, at each stag'e, these sh.9rtest paths
together form a COftnected graph without cycles; SllCh a graph is called a tree,
and we can think of the :algorithm as a 'tree-growing' procedure. The final
tree, in figure 1.12h, has the property that, for each vertex v, the path
conIlecting Uo and v is a shortest' (uo, v)-path.

Dijkstra's algorithm is a refinement of the above procedure. This refine
ment is motivated by the consideration that, if the minimum in (1.1) were to
be computed frorrt scratch ·at each stage, many comparisons would be
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Figure 1.12. Shortest path. algorithm
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repeated unnecessarily. To avoid such repetitions,. and to retain computa
tional information from one stage to the next, we adopt the following
labelling procedure. Throughout the algorithm, each vertex v carries a label
l(v) which is an upper bound on d(uo, v). Initially l(uo)=O and l(v)=oo for
v~ UOc (In actual computations 00 is replaced by any sufficiently large
number.) As the algorithm proceeds, these labels are modified so that, at the
end of stage i,

l(u) = d(uo, u) for U E Si
and

l(v) = min{d(uo, u)+ w(uv)} for v E Si
ueSi-l

Dijkstra's Algorithm

1. Set l(uo) =0, l(v)=oo for v¥uo, So={uo} and i=O.
2. For each v E Si' replace l(v) by min{l(v),~ l(Ui) +W(UiV)}. Compute

min{l(v)} and let Ui+l denote a vertex for which this minimum is attained.
veSi .

Set Si+l = Si U{Ui+l}.

3. If i = v-I, stop. If i < v-I, replace i by i + 1 and go to step 2.

When the algorithm terminates, the distance from Uo to v is given by the
final value of the label I(v). (If our interest is in deterolining the distance to
one specific vertex vo, we stop as soon as some Uj equals vo.) A flow diagram
summarising this algorithm is· shown in figure 1.13.

As described above, Dijkstra's algorithm determines only the distances
from Uo to all the other vertices, and not the actual shortest paths. These
shortest paths can, however, be ·easily determined by keeping track of the
predec.essors of vertices in the tree (exercise 1.8.2).

Dijkstra's algorithm is an example of what Edmonds (1965) calls a good
algorithm. A graph-theoretic algorithm is good if the number of computa
tional steps required for its implementation on any graph' G is· bounded
above by a polynomial in vande (such as 3V2 B). An algorith;m whose
implementation may require an exponential number of steps (such as 2V

)

might be very inefficient for some large graphs.
To see that Dijkstra's algorithm, is good, note that the computations

involved in boxes 2 and 3 of the flow diagram, totalled over all iterations,
require v(v - 1)/2 additions 'and v(v - 1) comparisons. One of the questions
that is not elaborated upon in the flow diagram is the matter of deciding
whether a vertex belongs to Sor not (box!). Dreyfus (1969) reports a
technique for doing this that requires a total of (v -1)2 comparisons. Hence,
if we regard either a comparison or an addition ,as a basic computational
unit, the total number of computations required for this algorithm is
approximately 5v 2/2, and thus of order v 2

• (A function f(v, e) is of order
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START:

L(uo) = a
l(V)=CD, V7tUO

5 = {uol
i= 0

SU{Ui+1}+SI--_.......--e
;+1-+;

(2)

min {L (v), L(Ui) + w(Uj v)}_·.. l(v) 1I-; -i additions

\/VE 5 v - i -1 comparisons

(3)

Compute min. {( (v)}
ve5

3Ui+1 S. f.

l (Ui +1) = min {l (v)} ""'-----------...,.j
v~S

II - ; - 1comparisons

~ig\lre 1.13. Dijkstra's algorithm

g(v, B) if there exists a positive constant c such that !(v, s)/g(v, B) <c for all
v and £.)

Although the shortest path problem can be solved by a good algorithm,
there are many problems in graph theory for which no good algorithm is
known. We refer ·the reader to Aho, Hopcroft and Ullman (1974) for
further details.

Exercises

1.8.1. Find shortest paths from Uo to all other vertices in the weighted
graph of figure 1.11.

1.8.2 What additional instructions are needed in order that Dijkstra's
. algorithm determine shortest paths rather than merely distances?

1.8.3 A company has branches in each of six cities Ct, C2, ••• , C6 • The fare
for a direct flight from Ci to Cj is given by the (Cj)th entry in the
following matrix (00 indicates. that there is no· direct flight):
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0 50 00 40 25 10
50 0 15 20 co 25
00 15 0 10 20 00

40 20 10 0 10 25
25 00 20 10 0 55
10 25 00 25 55 0

The company is interested in computing a table of cheapest· routes
between pairs of cities. Prepare such a table.

1.8.4 A wolf, a goat and a cabbage are on one bank of a river. A ferryman
wants to take them across, but, since his boat is small, he can take
only one of them at a time. For obvious reasons, neither the wolf and
the goat nor the goat and the cabbage can be left unguarded. How is
the ferryman going to get them across the river?

1.8.5 Two men have a full eight-gallon jug of wine, and also two empty
jugs of five and three gallons capacity, respectively. What is the
simplest way for them to divide the wine equally?

1.8.6 Describe a good algorithm for determining

(a) the components of a graph;
(b) the girth of a graph.
How good are your algorithms?

1.9 SPERNER'S LEMMA

Every ·continuous mapping f of a closed n-disc to itself has a fixed point
(that is, a point x such that .f(x) = x). This powerful theorem, known as
Brouwer's fixed-point theorem,has a wide range of applicatio.ns in modern
mathematics. Somewhat surprisingly, it is an easy consequence of a simple
combinatorial lemma due to Sperner (1928). And, as we shall see in this
section, Sperner's lemnia is, in turo, an immediate consequence of corollary
1.1.

Sperner's lemma concerns the decomposition of a simplex (line segment,
triangle, tetrahedron and so on) into' smaller simplices. For the sake of
simplicity we shall deal with the two-dimensional case.

Let T be a closed triangle in the plane. A subdivision of T into a finite
number 'ofsmaller triangles is said to be simplicial if any two intersecting
triangles have either' a vertex or a whole side in common (see figure 1.14a).

Suppose that a simplicial subdivision of T is given. Then a labelling of the
vertices of tria-ogles in the- subdivision in three symbols 0, 1 and 2 is said to
be proper if

(i) the three vertices of T are labelled 0, 1 an-d 2 (in any order), and
(ii) for 0 -< i < j -< 2, each vertex on the side of T joining vertices labelled i

and j is labelled either i or j.
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Figure 1.14. (a) A simplicial subdivision of a triangle; (b) a proper labelling of the
subdivision

We call a triangle in the sub'division whose vertices receive all three labels a
distinguished triangle. The proper labelling in figure 1.1'4b has three distin
guished triangles.

Theorem 1.3 (Sperner's lemma) Every properly labelled simplicial subdivi
sion of a triangle has an odd number of distinguish'ed triangles.. .

Proof Let To denote the region outside T, and let Tt , T 2 , ••• , Tn be the
triangles of the subdivision. Construct a graph on the vertex set
{vo, VI, ••• , vn} by joining Vi and Vj whenever the common boundary' of T i

and T j is an edge'with labels 0 and 1 (see figure 1.15).
In' this' graph, Vo is cle'arly of odd degree (exercise 1.9.1). It follows from

corollary 1.1 that 'an odd number of the vertices VI, 1>2, • '•• , Un are of odd
degree~ Now it is easily seen that none of these vertices can have degree

o

~o

V1'o

Vg

Figure 1.15
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three, and so those with odd degree must have degree one. But a vertex Vi is
of degree one if and only if the triangle Ti is distinguished 0

We shall now briefly indicate how Sperner's lemma can be used to deduce
Brouwer's fixed-point theorem. Again, for simplicity, we shall only deal with
the two-dimensional case. Since a closed 2-disc is homeomorphic to a closed
triangle, it suffices to prove that a continuous mapping of a closed triangle to
itself has a fixed point.

Let T be a given closed triangle with vertices xo, Xl and X2. Then each
point X of T can be written uniquely as x = aoxo + a1 X1+ a2X2, where each
ai > 0 and I ai = 1, and we can represent x by the vector (ao, a1, a2); the real
number~ ao, a1 and a2 are called the barycentric coordinates of x.

Now let f be any continuous mapping of T to itself, and suppose that

Define 5 i as the set of points (ao, at, a2) in T for which a[ <: ai. To show that
f has a fixed point, it is enough to show that 50 n 51 n 52 #- 0. For suppose
that (ao, at, a2) E 50 n 51 n 52.. Then, by the definition· of 5i, we have that
af <: ai for each i, and this, coupled with the fact that I af = I ai, yields

In other words, (ao, at, a2) is a fixed point of f.
So consider an arbitrary subdivision of T and a proper labelling such that

each vertex labelled i belongs to 5 i ; the existence of such a labelling is easily
seen (exercise 1.9.2a). It follows from Sperner's lemma that there is a
triangle in the subdivision whose three vertices belong to 50, 51 and 52. Now
this holds for any subdivision of T and, since it is possible to choose
subdivisions in which each of the smaller triangles are of arbitrarily small
diameter, we conclude that there exist three points of 50, 51 and 52 which
are arbitrarily close to one another. Because the sets 5 i are closed (exercise
1.9.2b), one may deduce that SOnSlnS2~0.

For details of the above proof and other applications of Sperner's lemma,
the reader isreferred to Tompkins (1964).

Exercises

1.9.1 In the proof of Sperner's lemma, show that the vertex vo is of odd
degree.

1.9.2 In the proof of Brouwer's fixed-point theorem, show that

(a) there exists a proper labelling such that each vertex labelled I

belongs to Si;
(b) the sets Si are closed.

1.9.3 State and prove Sperner's lemma for higher dimensional simplices.
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2 Trees
2.1 TREES

An acyclic graph is one that contains no cycles. A tree is a connected acyclic
graph. The trees o"n six vertices are shown in figure 2.1.

Theorem 2.1 In a tree, any two vertices are connected by a unique path.

Proof By contradiction. Let G be a tree, and assume that there are two
distinct (u,v)-paths PI and P2 in G. Since PI ¢ P 2 , there is an edge e = xy of
P t that is not an edge of P2 • Clearly the graph (PI U P2) - e is connected. It
therefore contains an (x, y)-path P. But then P + e is a cycle in the. acyclic
graph G, a contradiction 0

The converse of this theorem holds for graphs without loops (exercise
2.1.1).

Observe that all the trees on six vertices (figure 2.1) have five edges. In
general we have:

Theorem 2.2 If G is a tree, then e = v - 1.

Proof By indu~tion on v. When v = 1, G:::: K 1 and e = 0 = v-I.

Figure 2.1. The trees on six vertices
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Suppose the theorem true for all trees on fewer than v vertices, and let G
be a tree on v:> 2 vertices. Let uv E E. Then G - uv contains no (u, v)-path,
since uv is the unique (u, v)-path in G. Thus G ~ Ut' is disconnected and so
(exercise 1,6.8a) w(G - uv) = 2. The components G t and G 2 of G - uv,
being acyclic, are tre.es. Moreover, each has fewer than v vertices. Therefore,
by the induction hypothesis

B ( Oi) = v(Oi) -1 for i = 1, 2
Thus

It now follows that d(~) = 1 for at least two vertices v 0

Another, perhaps more illuminating, way of proving corollary 2.2 is to
show that the origin and terminus of a longest path in a nontrivial tree both
have degree one (see exercise 2..1.2).

Exercises

2.1.1 Show that if any two vertices of a loopless graph G are connected
by a unique path, then G is a tree. -

2.1.2 Prove corollary 2.2 by showing that the origin and terminus of a
longest path in a nontrivial tree both have degree one.

2.1.3 Prove corollary' 2.2 by using exercise 1.7.2.
2.1.4 Show that every tree with exactly two vertices of degree one is a

p~h. '
2.1.5 Let 0 be a graph with v-I edges. Show that the following three

statements are eq"uivalent:

(a) G is connected;
(b) G is acyclic;
(c) G is a tree.

2.1.6 Show that if G is a tree with A> k, then G has at least k vertices of
degree one.

2.1.7 An acyclicgr~ph is also called °a forest. Show that

(a) each component of a forest is a tree;
(b) G is a forest if and only if e = v - w.
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2.1.8 A centre of G is a vertex u such that max d (u, v) is as small as
vev

possible. Show that a tree has either exactly one centre or two,
adjacent, centres.

2.1.9 Show that if G is a forest with exactly 2k vertices of odd degree,
then there are k edge-disjoint paths PI, P2 , ••• , Pk in G such that
E(G) = E(P1) u E(P2) u ... U E(Pk).

2.1.10* Show that a sequence (dt, d2, ••• , d.,) of positive integers is a degree
..,

sequence of a tree if and only if k d i = 2(v -1).
•=-1

2.1.11 Let T be an arbitrary tree on k + 1 vertices. Show that if G is
simple and 8::> k then G has a subgraph isomorphic to T.

2.1.12 A saturated hydrocarbon is a molecule Cm;Hn in which every carbon
atom has four bonds, every hydrogen atom has one bond, and no
sequence of bonds forms a cycle. Show that, for every positive
integer m, CmHn can exist only if n =2m +2.

2.2 CUT EDGES AND BONDS

A cut edge of G is an edge e such that w(G - e) > w(G). The graph of figure
2.2 has the three cut edges indicated.

Theorem 2.3 An edge e of G is a cut edge of G if and only if e is
contained in no cycle of G.

Proof Let e· be a cut edge of G. Since CI) ( G - e) > Cd ( G), there exist
vertices u and v of G that are connected in G but· not in G - e. There is
therefore some (u, v)-path P in G which,. necessarily, traverses e. Suppose
that x and yare -the ends of e, and that' x precedes y on P. In G - e, U is
connected to x by a section of P and y is connected to v by a section of P. If
e were in a cycle C, x and y would be .connected in G - e by the path C - e.
Thus, u and v would be connected in G - e, a contradiction.

Figure 2.2. The cut edges of a graph
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Conversely, suppose that e = xy is not a cut edge of G; thus, w(G - e) =
w(G). Since there is an (x, y)-path (namely xy) in G, x and yare in the
same component of G. It follows that x and yare in the same component of
G - e, and hence that there is an (x, y)-path P in G - e. But then e is in the
cycle~P+e of G . 0

Theorem·2.4 A connected graph is a tree if and only if every edge is a cut
edge. .

Proof Let G be a tree and let e bean edge of G. Since G is acyclic, e is
contained in no cycle of G and is therefore, by theorem 2.3, a cut edge of G.

Conversely, suppose that G is cO.i1nected but is not a tree. Then G
contains a cycle C. By theorem 2.3, no edge of C can be a cut edge of G 0

A spanning tree of G is a spanning subgraph of G that is a tree.

Corollary 2.4.1 Every connected graph contains a spanning tree. .

Proof Let Gbe connected and let T be a minimal connected spanning
subgraph of G. By definition w(T)= 1 and w(T-e»1 for each edge e of T.
It follows that each edge of Tis a cut edge and therefore, by theorem 2.4,
that T, being connected, is a tree 0

Figure 2.3 depicts a connected graph and one of its spanning trees.
. .

Corollary2.4.2 If G is connected, then e :> v-I ~

Proof Let G be connected. By corollary 2.4.1, G contains a spanning
tree T. Therefore' ..

£(G)~ e(T)= .v(T)-l = v(O)-l 0

Figtire2.3. A spa~ning tree· in a connected graph
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(b)

.Figure 2.4. (a) An edge cut; (b) a bond

Theorem 2.5 Let Tbe··a spanning tree of a connected graph a and let e be
an edge of a not in T. Then T + e contains a unique cycle.

Proof Since T is acyclic, each cycle of T + e contains e. Moreover, C is a
cycle of T + e if and only· if C - e is a path in T connecting the' ends of e. By
theorem 2.1, T has a unique such path; therefore T + e contains a unique
cycle 0

For subsets Sand S' of V, we denote by [5, S'] the set of edges with one
end in S and the other in S'. An edge cut of a is a subset of E of the form
[5, S], where 5 is a nonempty proper subset of V and S = V\S. A minimal
nonempty edge cut of a is called a bond; each cut edge e, fo·r instance, gives
rise toa 'bond {e}. If G is co·nnected, then a bond B ofa is a minimal subs·et
of E such that a - B is disconnected. Figure 2.4 indicates an edge cut and a
bond in a graph.

If H is a subgraph of a, the complement of H in a, denoted by H(a), is
the subgraph a - E(H). If a is connected, a subgraph of the form f, where
T is a spanning tree, is called a cotree of a.

Theorem 2.6· Let T be a spanning tree of a connected graph G, and let e be
any edge of T. Then

(i) thecotree f contains no bond of .G;
(ii) f + e contains a unique bond of a.

Proof (i) Let B be a bond of a. Then a - B is disconnected, a~d so
cannot co.ntain the spanning tree T. Therefore B -is not contained in T. (ii)
Denote by S the vertex set of one of the two components of T - e. The edge
cut B = [S, S] is clearly a bond of a, and is contained in f + e. Now, for any
be B, T - e + b is a spanning tree of a. Therefore every bond of a
contained in f +e must include every such element b. It follows that B is
the only bond of a contained in f + e 0

The relationshi_p between bon.ds and ·cotrees is· analogous to that between
cycles and spanning trees. Statement (i) of theorem 2.6 is the analogue for
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bonds of the simple fact that a spanning tree is acyclic, and (ii) is the
analogue of theorem 2.5. This 'duality' between cycles and bonds will be
further explored in chapter 12 (see also exercise 2.2.10).

Exercises

2.2.1 Show that G is a forest if and only if every edge of G is a cut edge.
2.2.2 Let G be connected and let e E E. Show that

(a) e is in every spanning tree of G if and only if e is a cut edge of
G;

(b) e is in no spanning tree of G if and only if e is a loop of G.

2.2.3 Show that if G is loopless and has exactly one spanning tree T, then
G=T.

2.2.4 Let F be a maximal forest of G. Show that

(a) for every component H of G, F n H is a spanning tree of H;
(b) e(F) = v( G) - w( G).

2.2.5 Show that G contains at least E - V + w distinct cycles.
2.2.6 Show that

(a) if each degree in G is even, then G has no cut edge;
(b) if G is a k -regular bipartite graph with k > 2, then G has no cut

edge. .

2.2.7 Find the number of nonisomorphic spanni!lg trees in the following
graphs:

2.2.8 Let Gbe connected and let 5 be a nonempty proper subset of V.
Show that the edge· cut [5, 5] is a bond of G if and only if both
G[S] and G[5] are connected.

2.2.9 Show that every edge cut is a disjoint union of bonds.
- 2.2.10 Let B t and B 2 be bonds and let C1 and C2 be cycles (regarded as
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sets of edges) in a graph. Show that

(a) B 1 ~B2 is a disjoint union of bonds;
(b) C 1 ~C2 is a disjoint union of cycles,

where ~ denotes symmetric difference;

(c) for -any edge e, (B 1 UB 2)\{e} contains a bond;
(d) for any edge e, (C1 U C 2)\{e} contains a cycle.

2.2.11 Show that if a graph Gcontains k edge-disjoint spanning trees
then, for each partition (VI, V 2 , ••• , Vo ) .of V, the number of ~dges

which have ends in different parts of the partition is at least
k(n -1).

(Tutte, 1961 and Nash-Williams, 1961 have shown that this
necessary condition for G to contain k edge-disjoint spanning trees
is also sufficient.)

2.2.12* Let S be an n-element set, and let sfJ = {AI, A 2 , ••• , An} be a family
of n distinct subsets of S. Show that there is an element XES such
that the sets A1U{x}, A 2 U{X}, ... , AnU{x} are- all distinct.

2.3 CUT VERTICES

A vertex v of G is a cut vertex if E can be partitioned into two nonempty
subsets E 1 and E 2 such that G[EJ ] and G[E2] have just the vertex v in
common. If G is loopless and nontrivial, then v is a cut vertex of G if and
only if w(G-v»w(G). The graph of figure 2.5 has the five cut vertices
indicated.

Theorem 2. 7 A. vertex v of a tree G ~s a cut vertex of G if and only if
d(v»l.

Proof If (l(v) = 0, G::: K 1 and, clearly, v is not a cut vertex..

Figure 2.5. The cut vertices of a graph
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If d(v) = 1, G - v is an acyclic graph with v( G - v) -1 edges, and thus
(exercise 2.1.5) a tree. Hence w(G-v) = 1= w(G), and v is not a cut vertex
of G.

If d(v) > 1, tllere are distinct vertices u and w adjacent to v. The path uvw
is a (u, w)-path in G. By theorem 2.1 uvw is the unique (u, w)-path in G. It
follows that there is no (u, w)-path in G - v, and therefore that cO (G - v ) >
1 = w(G). Thus v is a cut vertex of G 0

Corollary 2. 7 Every nontrivial loopless connected graph has at least two
vertices that are not cut vertices.

Proof Let G be a nontrivial loopless connected graph. By corollary
2.4.1, G contains a spanning tree T. By corollary 2.2 and theorem 2.7, T
has at least two vertices that are not cut vertices. Let v be any such vertex.
Then

w(T-v)=l

Since T is a spanning subgraph of G, T - v is a spanning subgraph of G - v
and therefore

w(G - v) <: w(T- v)

It follows that w(G ~ v) = 1, and hence that v is not a cut vertex of G. Since
there are at least two such vertices v, the proof is complete 0

Exercises

2.3.1 Let G be connected with v::> 3. Show that

(a) if G has a cut edge, then G has a vertex v such that w( G - v) >
w(G);

(b) the con·verse of (a) is not necessarily true.

2.3.2 Show that a simple connected graph that has exactly two vertices
which are not cut vertices is a path.

2.4 CAYLEY'S FORMULA

There is a simple and elegant recursive formula for the number of spanning
trees in a graph. It involves the, operation of contraction of an edge, which
we now introduce. An edge e of G is said to be contracted if it is deleted
and its ends are identified; the .resulting graph is denoted by G · e. Figure
2.6 illustrates the effect of contracting an edge.

It is clear that if e is a link of G, then

v( G · e) = v( G) -1 e(G·e)=e(G)-t and w(Gee)=w(G)"

There'fore, if T is a tree, so too is T· e.
We. denote the number of spanning trees of G by T(G).
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Figure 2.6. Contraction of an edge

Theorem 2.8 If e is a link of G, then T(G)=T(G-e)+T(G·e).

Proof Since every spanning tree of G that does not contain e is also a
spanning tree of G - e, and conversely, T(G - e) is the number of spanning
trees of G that do not contain e.

Now to each spanning tree T of G that contains e, there corresponds a
spanning tree T· e ofG· e. This correspondence is dearly a bijection (see
figure 2.7). Therefore T(G ·e) is precisely the number of spanning trees of G
that contain e. It follows that T(G)=T(G-e)+T(G-e) 0

Figure 2.8 illustrates the recursive calculation of T(G) by means of
theorem 2.8; the number of spanning trees in a graph is represented
symbolically by the graph itself.

Although theorem 2.8 provides a method of calculating the number of
spanning trees in a graph, this method is not suitable for large graphs.
Fortunately, and rather surprisingly, there is a closed formula for T(G) which
expresses T(G) as a determinant; we shall present this result in chapter 12.
In the special case when G is complete, a simple formula for T(G) was
discovered by Cayley (1889). The proof we give is due to Priifer (1918).

G

Figure 2.7

·G-e
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Figure 2.8. Recursive calculation of T(G)
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Theorem 2.9 T(Kn ) = nn-2.

Proof Let the vertex set of Kn be N ={I, 2, ... , n}. We note that n o
-

2 is
the number of sequences of length n - 2 that can be formed from N. Thus,
to prove the theorem, it suffices to establish a one-one correspondence
between t.he set of spanning trees of K n and the set of such sequences.

With each spanning tree T of K n , we associate a unique sequence
(t 1, t2, • • ., tn - 2) as follows. Regarding N as an ordered set, let 81 be the first
vertex of degree one in T; the vertex adjacent to SI is taken as tt. We now
delete SI from T, denote by S2 the first vertex of degree one in T - 81, and
take the vertex adjacent to 82 as t2. This operation is repeated until to - 2 has
been defined and a tree with just two vertices remains; the tree in figure 2.9,
for instance, gives rise to the sequence (4, 3, 5, 3, 4, 5). It can be seen that
different spanning trees of Kn determine difference sequences.

2 3

7 8

Figure 2.9

...(--»~ (4,3,5,3,4,5)

The reverse procedure is equally straightforward. Observe, first, that any
vertex v of .T occurs dT~V) - 1 time~ in (t 1, t2 , ••• , tn - 2). Thus the vertices of
degree one in T are. precisely those that do not appear j.n this 'sequence. To
reconstruct T from (t1, t2, ... , tn-2), we therefore proceed as follows. Let SI

be the first v~rtex of N not in (t 1, t2 ,_ • •• , tn - 2); join 81 to tt. Next, let 82 be the
first vertex of N\{SI} not in (t2 , ••• , to - 2), and join 82 to t2. Continue in this
way until the n - 2 edges S l t 1, 82 t2 , ••• , Sn-2 tn- 2 have been determined. T is
now obtained by adding the edge joining the two remaining vertices of
N\{SI, S2, ••• ,Sn-2}. It is easily verified that different sequences give rise to
different spanning trees of Kn.We have thus established the de.sired one
one correspondence 0

Note that nn-2 is not the number of nonisomorphicspanning trees of Kn ,

but the number of distinct spanning trees of Kn ; there are just six
nonisomorphic spanning trees of K6 (see figure 2.1), whereas fhere are
64

= 1296 distinct spanning trees of K 6 •
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Exercises

2.4.1 Using the recursion formula of theorem 2.8, evaluate the numb'er of
spanning trees in K3 ,3.

2.4.2* A wheel is a graph obtained from a cycle by adding a new vertex and
edges joining it to all the vertices of the cycle; the new edges are
called the spokes of the wheel. Obtain an expression for the number
of spanning trees in a wheel with n spokes'.

2.4.3 Draw all sixteen spanning trees. of K 4 •

2.4.4 Show that if e is an edge of K n , then T(Kn -e)=(n-2)nn-3.
2.4.5 (a) Let H be a graph in which every two adjacent vertices are joined

by k edges and let G be the unde.rlying simple graph of H. Show
that T(H) = kV-1T(G).

(b) Let H be the graph obtained. from aO graph G when each edge of
G is replaced by a path of length k. Show that T(H) =
k E

-
v + 1T(G).

(c) Deduce from (b) that T(K2 ,n) = n2o- 1
•

APPLICATIONS

2.5 THE CONNECfOR PROBLEM

A railway network connecting a number of towns is to be set up. Given the
cost .Cij of constructing a direct link between ll>WnS Vi and Vj, design such a
network to mininlise the total cost of construction. This is known as the
connector problem.

By regarding each town as a vertex in a weighted graph with weights
W(ViVj) = Cij, it is clear that this problem is just that of finding, in a weighted
graph G, a connected spanning s~bgraph of minimum weight. Moreover,
since the weights represent costs, they are certainly non-negative, and we
may the·refore assume that such- a minimum-weight spanning .subgraph is a
spanning tree T of G.A minimum-weight spanning tree of a weighte~ graph
will be called· an optimal tree; the spanning tree indicated in the weighted
graph of figure 2.10 is an optimal tree (exercis.e 2.5.1).

We shall now present a good algorithm for finding' an optimal tree in a
nontrivial weighted connected graph, thereby solving the connector
pro·blem.

Consider, first, the case when each weig.ht w(e) = 1. An optimal tree is
then.a spanning tree with as few edges as possible. ~ince each spanning tree
of a grap·h has the same number of edges (theorem 2.2), in this special case
we merely need to construct some spanning ·tree of the graph. A simple
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Figure 2.10. An optimal tree in a weighted graph
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inductive algorithm for finding such a tree is the following:

1. Choose a link et.
2. If edges el, e2, ... ,ej have been chosen, then choose ei+l from

E\{et, e2, ... , ei} in such a way that G[{el, e2, ... , ei+l}] is acyclic.
3. Stop when step 2 cannot be implemented further.

This algorithm works because a maximal acyclic subgraph of a connected
graph is necessarily a spanning tree. It was extended by Kruskal (1956) to
solve the general problem; his algorithm is valid for arbitrary real weights.

Kruskal's Algorithm

1. Choose a link el such that w(el) is as small as possible.
2. If edges et, e2, ... , ej have been chosen, then choose an edge ei+l from

E\{et, e2, . -.. , ei} in such a way that

(i) G[{et, e2, ... , ei+l}] is acyclic;
(ii) w(ei+l) is as small as possible subject to (i).

3. Stop when step/2 cannot be implemented further.

~s an example, consider the table of airline distances in miles between six
of the largest cities in the world, London, Mexico City, New York, Paris,
Peking and Tokyo:

L MC NY Pa Pe T

L '5558 3469 214- 5074 5959
Me 555'8 - 2090 5725 7753 7035
NY 3469 2090 3636 6844 6757
Pa 214 5725 3636 5120 6053
Pe 5074 7753 6844 5120 1307
T 5959 7035 6757 6053 1307
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This table dete,rmines a weighted complete graph with vertices L, Me, NY,
Pa, Pe and T. The construction of an optimal tree in this graph is shown in
figure 2.11 (where, for convenience, distances are given in hundreds of miles).

Kruskal's algorithm clearly produces a spanning tree (for the same reason
that the simpler algorithm above does). The following theorem ensures that
such a tree will always be optimal.

Theorem 2.10 Any spanning tree T* = G[{el' e2, ... ,.ev-l}] constructed by
Kruskal's algorithm is an optimal tree.

Proof By contradiction. For any spanning tree T of G other than T*,
denote by f(T) the smallest value of i such that ei is not in T. Now assume that
T* is not an optimal tree, and let T be an optimal tree such that f(T) is as
large as possible.

Suppose that f(T) = k; this means that el, e2, ... , ek-l are in both T and T*,
.but that ek is not in T. By theorem 2.5, T + ek contains a unique cycle C. Let e~

be an edge of C that is in Tbut not in T*. By theorem 2.3, e~ is not a cut edge
of T + eke Hence T' = (T + ek) -e~ is a connected graph with v- 1 edges, and
therefore (exercise 2.1.5) is another spanning tree of G. Clearly

w(T') = w(T) + week) - w(e~)

and so T', too, is an optimal tree. However

f(T') > k = f(T)

(2.1)

,
contradicting the choice of T. Therefore "T = T*, and T* is indeed an optimal
tree 0

A flow diagram for Kruskal's algorithm is shown in figure 2.12. The edges
are first sorted in order of increasing weight (box 1); this takes about B log e
computations (see Knuth, 1973). Box 2 just checks to see how many edges
have been chosen. (5 is the set of' edges already chosen and i is their
number.) When i=v-l, S={el,e2, ... ,ev-l} is the edge set of an optim,al
tree T* of G. In box 3, to check if G[S U {aj}] is acyclic, one must ascertain
whether the ends of aj are in different components of the forest G[S] or not..
This can be achieved in the foJlowing way. The vertices are labeJled so that,
at any stage. two vertices belong to the same component of G[S] if and only
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(1 )

Sort edges in order of increasing
weight

0,. 021 • • • 1 0E

Su{ei+1}---'S
i + 1-.. i
j+l-+j

YES
>---.-.-~ j +1----. j

Figure 2.12. Kruskal's algorithm

if they have the same label; initially, vertex VI is assigned the label I,
1 <: I <: v. With this labelling scheme, G[S U{aj}] is acyclic if and only if the
ends of aj have different labels. If this is the case, aj is take~ as ei+l;

. otherwise, aj is discarded and aj+t, the next candidate for ei+l, is tested. Once
ei+l has been added to 5, the vertices in the two components of G[S] that
contain the ends of ei+l are relabelled with the smaller of their two labels. For
each edge, one comparison suffices to check whe'~her its ends have the same or
different labels; this takes e computations. After edge ei+l has been added to
5, the relabelling of vertices takes at most v comparisons; hence, for all v - 1
edges et, e2, .. · ,ev-l we need v(v - 1) computations. Kruskal's algorithm is
therefore a good alg,orithm.

Exercises

2.5.1 Show, by applying Kruskal's algorithm, that the tree indicated In
figure 2.10 is indeed optimal.
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2.5.2 Adapt Kruskal's algorithm to solve the connector problem with preas
signments: construct, at minimum cost, a network linking a number
of towns, with the additional requirement that certain selected pairs
of towns be directly linked.

-2.5.3 Can Kruskal's algorithm be adapted to find
(a) a maximum -weight tree in a weighted connected graph?
(b) a minimum-weight maximal forest in a weighted graph?

If so., how?
2.5.4 Show that the following Kruskal-type algorithm does not necessarily

yield a minimum-weight spanning path in a weighted complete
graph:
1. Choose a link et such that w(el) is as small as possible.
2. If edges et, e2, , ei have been chosen, then choose an edge ei+l

from E\{et, e2, , ei} in such a way that
(i) G[{et, e2, , ei+l}] is a union of disjoint paths;

(ii) w(ei+l) is as small as possible subject to (i).

3. Stop when step 2 cannot be implemented further.

2.5.5 The tree graph of a connected graph G is the graph whose vertices
are the spanning trees T1, T 2 , ••• , TT ofG, with Ti and T j joined if
and only if they have exactly v - 2 edges in common. Show that the
tree graph of any connected graph is connected.
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3 Connectivity
3.1 CONNECTIVITY

In section 1.6 we introduced the ·concept of connection in graphs. Consider,
now, the four connected graphs of figure 3.1.

G t is a tree, a minimal connected graph;. deleting any edge disconnects it.
G 2 cannot be disconnected by the deletion of a single edge, but can be
disconnected by the deletion of one vertex, its cut vertex. There are no cut
edges or cut vertices in G 3 , but even so G 3 is clearly not as well connected as
G 4 , the complete graph on five vertices. Thus, intuitively, each successive
graph is more strongly connected than the previous one. We shall now
define two parameters of a graph~ its connectivity and edge connectivity,
which measure the extent to which it is connected.

A vertex cut of G is a subset V' of V such that G - V' is disconnected. A
k-vertex cut is a vertex cut of k elements. A complete graph has no vertex
cut; in fact, the only graphs which do not have vertex· cuts are those that
contain complete graphs as spanning subgraphs. If G has at Ie.ast one pair of
distinct nonadjacent vertices, the connectivity K(G) of G is the minimum k
for which G has a k-vertex cut; otherwise, we define K(G) to be v-·I. Thus
K (G) = 0 if' G is either trivial or disconnected. G is said to be k -connected if
K(G) >- k. All nontrivial connected graphs are I-connected.

Recall that an edge cut of G is a subset of E of the form [5, S], where 5 is
a nonempty proper subset of V. A k-edge cut is an edge cut of k elements.
If G is nontrivial and E' is an edge cut of G, then G - E' is disconnected; we
then define the edge connectivity K'(G)ofG to be the minimum k for which
G has a k-edge cut. If G is trivial, K'(G)is'defined to be zero. Thus K'(G) = 0
if G is either trivial or disconnected, and K '(G) = I ifG is a connected graph
with a cut edge. G is said to be k-edge-connected if K'(G) >- k. All nontrivial
connected graphs are l-edge-connected.

G,

Figure 3.1
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Figure 3.2

Theorem 3.1 K <: K' <8.
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Proof If G is trivial, then K' =0 <e>. Otherwise, the set of links incident
with a vertex of degree e> constitute a e>-edge cut of G. It follows that K' < e>.

We prove that K <K' by induction on K'. The result is true if K' = 0, since
then G must be either trivial or disconnected. Suppose that it holds for all
graphs, with edge connectivity less than k, let G be a graph with K'(G)= k >
0, and Jet e be an edge ina k-edge cut of G. Setting H = G - e, we have
K '(H) = k - 1 and so, by the induction hypothesis, K (H) < k - 1.

If H contains a complete graph as a spanning subgraph, then so does G
and

I( (G) = K (H) <: k - 1

Otherwise, let S be a vertex cut of H with K (H) elements. Since H - S is
disconnected, either G - S is disconnected, and then

K(G)< K(H)< k-1

or else G - S is connected and e is a cut edge of G -:- S. In this latter case,
either v(G - S) = 2 and

K(G)< v(G)-1 =K(H)+ 1<k

or (exercise 2.3.1a) G-S has a I-vertex cut {v}, implying that SU{v} is a
vertex cut of G and

K(G) <: K(H)+ 1 <: k

Thus in each case we have K(G) < k = K'(G). The result follows by. the
principle of induction 0

The inequalities in theorem 3.1 are often strict. For example, the graph G
of figure 3.2 has K = 2, K' = 3 and e> = 4.
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Exercises
3.1.1 (a) Show that if G is k-edge-connected, with k >0, and if E' is a set

of k. edges of G, then w( G - E') < 2.
(b) .For k > 0, find a k -connected graph G and a set V' of kvertices

of G such that w( G - V') > 2.
3.1.2 Show that if G -is k-edge-connected,.then B >·kv/2.
3.1.3 (a) Show that if. G is simple and 8 >v·- 2, then K = 8.

(b) Find a simple graph G with 8 = v - 3 and K < o.
3.1.4 (a) Show that if G is silnple and 8 >vf2, then K' = s.

(b) Find a simple graphG with 5 = [(vj2) - 1] and K' < 8.
3.1.5 Show that if G is simple and 5>(v+k-2)j2, then G IS k

connected.
3.1.6 Show that if G is simple' and 3-regular, then'K = K'.

3.1.7 Show that if I, rn. and n are integers" such that 0 < I <: m <: n, then
there exists a simple graph G with K = I, K' = m, and 5 = n.

(G. Chartrand and F. Harary)

3.2 BLOCKS

A connected grc;lph that has no 'cut vertice's is called a' block. Every block
with at least three v·ertices is 2-connecteq. A block .of a grapft is a subgraph
that is a block and is maximal with respect to this property. Every graph is
the union of its blocks; this is illustrated in figure· .3.3.

oo

(a)

o
.~

o
Figure 3.3. (a) G; ,(b) the blocks of-G

(b)

A family of paths in G is said to be internally-disjoint if no vertex of G is
an internal vertex of more than one path of the family. The.. following
theorem is due to Whitne}' (1932).

Theorem 3.2 A graph G with v :> 3 is. 2-connected if and only if any two
vertices of G are connected by at least two int~rnally-disjointpaths..
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Proof If any two vertices of G are connected by at least two internally
disjoint paths then, clearly, G is connected and has no 1-vertex cut. Hence
G is 2-connected.

Conversely, let G be a 2-connectedgraph. We shall prove, by induction
on the distance d (u, v) between u and v, that any two vertices u and v are
connected by at least two internally-disjoint paths.

Suppose, first, that d(u, v) = 1. Then, since G is 2-connected, the edge uv
is not a cut edge and therefore, by theorem 2.3, it is contained in a cycle. It
follo~s that u andu are connected. by two internally-disjoint paths in G.

Now assume that the theorem holds for any two vertices at distance less
than k, and let d(u, v) = k :> 2. Consider a (u, v)-path of length k, and let w
be the vertex that precedes v on this path. Since d(u, w) = k -:-1, it follows
from the induction hypothesis that there are two internally-disjoint (u, w)
paths P and 0 in G. Also, since G is 2-connected, G - w is connected and
so contains a (u, v)-path P'. Let x be the last vertex of P' that is also in
P U 0 (see figure 3.4). Since u is in P U 0, there is such an x; we do not
exclude the possibility that x =v. .. .

We may assume, without loss of generality, that x is in P. Then G has two
internally-disjoint (u, v)-paths, one composed of the section of P from u to
x together with the section of P' from x to v, and the other composed of Q
together with the path wv D

Corollary 3.2.1 If G is 2-connected, then any two vertices of G lie on a
common cycle.

Proof This follows immediately from theorem 3.2 since two vertices lie
on a common cycle if and only if they are connected by two internc~~V

disjoint paths 0

It is convenient, now, to introduce the operation of subdivision of an
edge. An edge e is said to be subdivided when it is deleted and replaced by a
path of length two connecting its ends, the internal vertex of this path being
a new vertex. This is illustrate:d in figure 3.5.
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Figure 3.5. Subdivision of an edge

"It can be seen that the class of blocks with at least three vertices is closed
under the operation of subdivision. The proof of the next corollary uses this
fact.

Corollary 3.2.2 If G is a block with v >- 3, then any two edges of G lie on a
common cycle.

Proof Let G be a block with v>- 3, and let e1 and e2 be two edges of G.
Form ~ new graphG' by subdividing el and e2, and denote the new vertices
by VI and V~. Clearly, G' is a block with at least five vertices, and hence is
2-connected. It follows from corollary 3.2.1 that V1 and V2 lie on a common
cycle of a'. Thus e1 and e2 lie on a common cycle of a (see figure 3.6) 0

Theorem 3.2 has a generalisation to k-connected. graphs, known as
Menger's theorem: a graph a with v >- k + 1 is k -connected if and only if any
two distinct vertices of a are connected by at least k internally-disjoint
paths. There is also an edge analogue of this· theorem: a graph a is
k-edge-connectedif and only if any two distinct vertices of G are connected

""".. ......
/ "I ...... - .....

I
I

I

(0)

Figure 3.6. (a) G'; (b) G

(b)
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by at least k edge-disjoint paths. Proofs of these theorems will be given in
chapter 11.

Exercises

3.2.1 Show that a graph is 2-edge-connected if and only if any two vertices
are connected by at least two edge-disjoint paths.

3.2.2 Give an example to show that if P is a (u, v)-path in a 2-connected
graph 0, then 0 does not necessarily contain a (u, v)-path Q
internally-disjoint from P.

3.2.3 Show that if 0 has no even cycles, then each block of G is either K
1

or
K 2, or an odd cycle.

3.2.4 Show that a connected graph which is not a block has at least two
blocks that each contain exactly one cut vertex.

3.2.5 Show that the number of blocks in 0 is equal to CIJ+ L(b(v)-l),
vEV

where b(v) denotes the number of blocks of 0 containing v.
3.2.6* Let 0 be a 2-connected graph and let X and Y be disjoint subsets of

V, each containing at least two vertices. Show that 0 contains
disjoint paths Rand Q such that

(i) the origins of P and Q belong to X,
(ii) the termini of P and Q belong to Y, and

(iii) no internal vertex of P or Q belongs to X U Y.
3.2.7* A nonempty graph 0 is K-critical if, for every edge e, K(G-e)<

K(G).

(a) Show that every K-critical 2-connected graph has a vertex of
degree two.
(HaHn, 1969 has shown that, in general, every K-critical k
connected graph has a vertex of degree k.)

(b) Show that if G is a K-critical'2-connected graph with v:> 4, then
E <2v-4. (G. A. Dirac)

3.2.8 Describe a good algorithm for finding the blocks of a graph.

APPLICATIONS

3.3 . CONSTRUCTION OF RELIABLE COMMUNICATION NETWORKS

If we think of a graph as representing a communication network, the
connectivity (or edge connectivity) becomes the smallest number of com
munication stations (or communication links) whose breakdown would
jeopardise communication in the system. The higher the connectivity and
edge connectivity, the more reliable the network. From this point of view, a
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tree network,. such as the one obtained by Kruskal's algorithm, is not very
reliable, and one is led to consider the following generalisation of the
connector problem.

Let k be a given positive integer and let G be a weighted graph.
Determine a minimum-weight k-connected spanning subgraph of G.

For k = 1, this problem reduces to the connector problem, which can be
solved by Kruskal's algorithm. For values of k greater' than' one, the
problem'is unsolved and is known to be difficult.· However, if G is a
complete graph in which each edge is assigned unit weight, then the problem
has a simple solution which we now present. '

Observe that, for a weighted complete graph on n vertices in which each
edge is assigned unit weight, a mi.nimum-weight m-con'nected spanning
subgraph is simply an m-connected gra.phon n vertices with as few edges as
possible. We .shall- denote by f(m, n) the" least number of edges· "that an
m -connected graph on n vertices can have. (It is, of course, assumed that
m < n.) By theorems 3.1 and 1.1.

f(m, n) > {mn/2} (3.1)

We shall show that equality holds in (3.1) by con~tructing an m-connected
graph Hm,n on, n vertices that has exactly {mn/2} edges. l'he'structure of Hm,n
depends on the parities of m and n'; there are three'cases.

Case 1 m even. Let m = 2'r. Then H 2r,n is constructed as follows. It has
vertices 0, 1, '... , n -1 and two vertices i and j are joined if i - r < j< i + r
(where additi~n i& tak~n ~odulo n). H4 ,8 is shown in figure 3.7a.,

Case 2 m odd, n even. Let m = 2r + 1. Then H 2r+ 1,n "is constructed by
'first 'drawing H 2r,n and then adding edges' joining 'vertex i to vertex i + (n/2) 
for 1 <: i <: n/2. HS,8 is show'o .in figure 3.7b.

6

o

4

(0)

2 6~-+---......--+--u

4
. (b)

F'igure 3.7. (a) H•.a; (b) HS~8; (c) HS•9

o

(c)
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Case 3 m odd, n odd. Let m = 2r + 1. ThenH2r+ 1,n is constructed by first
drawing H 2r,n and then adding edges joining vertex 0 to vertices (n - 1)/?
and (n + 1)/2 and vertex i to vertex i + (n + 1)/2 for 1 < i< (n - 1)/2. H S,9 is
shown in figure 3.7c.

Theorem 3.3 (Harary, 1962) The graph Hm,n is m-connected.

Proof Consider the case m = 2r. We shall show that H 2r,n has no vertex
cut of fewer than 2r vertices. If possible, let V' be a vertex cut with IV'I < 2r.
Let i and j be vertices belonging to different components of H 2r,n- V'.
Consider the two ·sets of vertices

and
s = {i, i + 1, , i-I, j}'

T = {j, j + 1, , i -1, i}

where addition is taken modulo n. Since IV'I <2r, we may ass.ume, without
loss of generality, that IVI n 51 < r. Then there is clearly a· sequence of
distinct vertices in S\V' which starts with i, ends with j, and is such that the
difference between any two consecutive terms is at most r. But such a
sequence is an (i, j)-path in H 2r,n - V', a contradiction. Hence H 2r,n is
2r-connected.

The case m = 2r + 1 is left as an exercise (exercise 3.3.1) 0

It is easy to see that e(Hm,n) = {mn/2}. Thus, by theorem 3.3,

f(m, n) <: {mnI2}

It now follows from (3.1) and (3.2) th,at

f(m, n) = {mn/2}

(3.2)

and that Hm,n is an m-connected graph. on n vertices with as few edges as
possible.

We n~te that since, for any graph G,- K <: K' (theorem 3.1), Hm,n is also m
edge-connected. Thus, denoting by g(m,n) the least possible number of
edges in an m -edge-connected graph on n vertices, we have, for 1 < m < n

g(m, n) = {mn/2} (3.3)

Exercises

3.3.1 Show that H 2r+ 1,n is (2r + I)-connected.
3.3.2 Show that K(Hm,,,) = K'(Hm,n) = m.
3.3.3 Find a ·graph with nine vertices and 23 edges that is 5-connected but

not isomorphic to the graph H S,9 of figure 3.7c.
3.3.4 Show that (3.3) holds for all values of m and n with m > 1 and n > 1.
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3.3.5 Find, for all v >5, a 2-connected graph G of diameter two with
e=2v-5.

(Murty, 1969 has shown that every such graph has at least this
number of edges.)
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4 Euler Tours and Hamilton
Cycles

4.1 EULER TOURS

A trail that traverses every edge of G is called an Euler trail of G because
Euler was the first to investigate the existence of such trails in graphs. In the
earliest known paper on graph theory (Euler, 1736), he showed that it was
impossible to cross each of the seven bridges of Konigsberg once and only
once during a walk through the town. A plan of KOlligsberg "and the river
Pregel is shown in figure 4.1 a. As can be seen, proving that such a walk is
impossible amounts to showing that the graph" of figure 4.1 b contains no
Euler trail.

A tour of G is a ~losed walk that traverses each edge of G at least once.
An Euler tour is a tour which traverses each edge exactly once (in other
words, a closed Euler trail). A graph is eulerian if it contains an Euler tour.

l-'heorem 4.1 A nonempty connected· graph is eulerian if and only if it has
no vertices of odd degree.

Proof Let G be eulerian, and let C be an Euler tour ~f G with origin
(and terminus) u. Each time a vertex v ~ccurs as an internal vertex of C, two
of the edges incident with v are accounted for~ Since an Euler tour contains

c

ALJ---------~iilUB

(0)

o
( b)

Figure 4.1. The bridges of Konigsberg and their graph
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every edge of G, d(v) is even for all v ¢ u. Similarly, since C starts and ends
at U, d (u) is also even. Thus G has no vertices of odd degree.
, Conversely, suppose that G is a noneulerian connected graph with.
at least one edge and no vertices of odd degree. ~hoose ,such a graph G with
as few edges as possible. Since each vertex of G has degree at least t~o, G
contains a closed trail (exercise 1.7.2). Let C be a closed trail of maximum
possible length in G. By assumption, C is not an Euler tour of. G and so
G - E(C) has some componentG' with £ (G'),> O. Since C is itself eulerian,
it has no vertices of odd degree; thus the connected grap.h G' also has no
vertices of odd degree. Since € (G') <. £ (G), it follows from the choice of G
that G' has an Eule·r tour C'. Now, becau-se G is connected, there is a vertex
v in V(C) n V(C'), and we may assume, without loss of generality, that v is
the origin and terminus of bot~ C and C'. But then CC' is a closed trail of Go
with e(CC') > e(C), contradicting the choice of C 0

Corollary 4.1 A connected graph has' an 'Euler trail if and only if it has at
most two vertices of odd-degree.

Proof If G has an Euler trail then, as in the proof of theorem 4.1, each
verte~ other than the origin and terminus of this trail has '. even degree.

Conversely, suppose that G is a nontrivial connected graph with at most
two vertices of odd degree. If G has no 'stich·. vertices then, by theorem 4.1,
G has a closed Eule~ trail. Otherwise, G has exactly two vertices, u and v,
of odd degree. In this case, let G + e denote the graph obtai~ed from G by.
the addition of a new edge e joining uand v. Clearly, each vertex of G + e
has even 'degree and so, by theorem 4.1, G + e has an Euler tour C = .
voelVt ... e'e+lVe+l, where el = e. The trail Vle2V2 • •• ee'+lVt:+l is' an Euler trail
of G 0

Exercises J

4.1.1 .W~ich' of the following figures can 'be drawn without lifting one's pen
. from the paper or covering a line more, than once?

I I

4.1.2 If possible, draw an eulerian graph G with v even and € odd;
otherwise, explain 'why' there is no such graph.

4.1.3 ,Show ,that if G is e·ulerian,: ,t.hen every block of G is eulerian.
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4.1.4 Show that if G has no vertices of odd degree, then there are
edge-disjoint. cycles C 1, C2, ••• , C m such that E(G) =
E(Ct ) U E(C2 ) u ... U E(Cm).

4.1.5 Show that if a connected graph G has 2k > 0 vertices of odd degree,
then there are k edge-disjoint trails 01, 02, .. '. , Ole in G such that
E(G) = E(Ol) U E(Q2) U · · · u E(Ok)·

4.1.6* Let G be nontrivial and eulerian, and let v E V. Show that every trail
of G with origin v can be extended to an Euler tour of G if and only
if G - v is a forest. (0. Ore)

4.2 HAMILTON CYCLES

A path that contains every vertex of G is called a Hamilton path of G;
similarly, a Hamilton. cycle of. G is a cycle that contains every vertex of G.
Such paths and cycles are named after Hamilton (1856), who described, in a
letter to his friend Graves, a mathematical game on the dodecahedron

'(figure 4.2a) in which one person sticks five pins in any five consecutive
vertices and the other is required to complete the path so formed to a

(0) (b)

Figure 4.2: (a) The dodecahedron; (b) the Herschel graph

spanning cycle. A_ graph is hamiltonian if it contains a Hamilton cycle. The
dodecahedron is hamiltonian (see figure 4.2a); the Herschel graph (figure
4.2b) is nonhamiltonian, because it is bipartite and has an odd number of
vertices.

In contrast with the case of eulerian graphs, no nontrivial necessary and
sufficient condition for a graph to be hamiltonian is known; in fact, the
problem of finding such a condition· is one of the main unsolved problems of
graph theory.

We shall first present a simple, but useful, necessary condition.

Theorem4.2 If G is hamiltonian then, for every nonempty proper subst:t S
of V

w(G-S)<ISI (4.1)



54 Graph Theory with Applications

Proof Let C be a Hamilton cycle of G. Then, for every nonempty
proper subset S of V

w(C-S)<ISI

Also, C - S is a spanning subgraph of G - S and so

w(G-S)<w(C-S)

The theorem follows 0

As an illustration of the above theorem, consider the graph of figure 4.3.
This graph has nine vertices; on deleting the three indicated in black, four
components remain. Therefore (4.1) is not satisfied and it follows from
theore~ 4.2 that the graph is nonhamiltonian..

We thus see. that· theorem 4.2 can sometimes be applied to show that a
particular graph is nonhamiltonian. However, this method does not always

Figure 4.3

work; for instance, the Petersen graph (figure 4.4) is nonhamiltonian, but
one cannot deduce this by using theorem 4.2.

We now discuss sufficient conditions for a graph G to be hamiltonian;
since a graph is hamiltonian if and only if its underlying simple graph is
hamiltonian, it suffices to limit our discussion to simple graphs. We start with
a result due to Dirac (1952).

Theorem 4.3 If G isa simple graph with v> 3 and 8 >v/2, then G is
hamiltonian.

Proof By contradiction. Suppose that the theorem is false, and let G be
a maximal nonhamiltonian simple graph with v >- 3 and 5 >- v/2. Since v >- 3,
G cannot be complete. Let u and v be nonadjacent vertices in G. By the
choice of G, G + uv is hamiltonian. Moreover, since G is nonhamiltonian,
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Figure 4.4. The Petersen graph

each Hamilton cycle of G + uv must contai~ the edge uv. Thus there is a
Hamilton path VI V2 ••• Vv in G with origin U = Vt and terminus v = Vv • Set

S = {Vi IUVi+l E E} and T = {Vi IViV E E}

Since Vv ~ S U T we have

Furthermore
Is U TI< v

IS n TI = 0

(4.2)

(4.3)

since if S n T contained some vertex Vi, then G would have the Hamilton
cycle VtV2. • • VjV.,V.,-t ••• Vj+tVl, contrary to assumption (see figure 4.5).

Using (4.2) an9 (4.3) we obtain

-d(u)+ d(v) =ISI+ITI =IS UTI +IS n TI < v (4.4)

But this contradicts the hypothesis that 8:> v/2 0

c-.---o--IIIII(~__ - ---~-~- - - -III()I--IIIO
V3 Vi Vi+ 1 Vl'-1

Figure 4.5

Bondy and Chvatal (1974) observed that the proof of theorem 4.3 can be
modified to yield stronger sufficient conditions than that obtained by Dirac.
The basis of their approach is the following lemma.

Lemma 4.4.1 Let G be a simple graph and let u and v be nonadjacent
vertices in G such that

d(u)+d(v»~ (4.5)
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Then G is hamiltonian if and only if G + uv is hamiltonian.

Proof If G is hamiltonian then, trivially, so too is G + uv. Conversely,
suppose that G +uv is hamiltonian but G is not. Then, as in the proof of
theorem 4.3, we obtain (4.4). But,this contradicts hypothesis (4.5) 0

Lemma 4.4.1 motivates the following definition. The closure of G is the
graph obtained from G by recursively joining pairs of nonadjacent vertices
whose degree sum is at least v until no such pair remains. We denote the
closure of G by c(G).

Lemma 4.4.2 c(G) is well defined.

Proof Let G 1 and G 2 be two graphs obtai';led from G by recursively
joining pairs of -nonadjacent vertices whose degree sum is at least v until no
such pair remains. Denote by el, e2, - .. , em and [1, [2, ... ,tn the sequences
of edges added to G ,in obtaining G 1 and G2 , respectively. We shall show
that each ei is an edge of G 2 and each fj is an edge of G t •

If possible, let ek+l = uv be the first edge in the sequence el, e2, ... , en that
is not an edge of G2. Set H = G + {el' e2, _.. ,ek}. It follows from the
definition of G 1 that

By thee'hoice of ek+l, H is a subgraph of G2 - Therefore

dGlu) + dG2(v) >- v

This is a contradiction, since u and v are nonadjacent in G2 - Therefore each
ei is an edge of O2 and, similarly, each fj is an edge of G t • Hence G t = G~,

and c(G) is well defined 0 .

figure 4.6 illustrates the construction of the closure of a graph G on six
vertices. It so happens that in this example c(G) is complete; note, however,
that this is _by no means always the case.

G-

Figure ~.6. The closure of a graph
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Figure 4.7. A, hamiltonian graph

57

Theorem 4.4 A s~mple graph is hamiltonian if and pnly jf its closure is
·hamiltonian. .

Proof Apply lemma 4.4.1 each time an edge is added in the formation of
the closure 0

Theorem 4.4· has.. a number· of interesting consequences. First, upon
making the trivial observation that all complete grap~s on at least three
vertices are hamiltonian, we obtain the following result.

Corollary 4.4' . Let G be a· simple graph with v >3. If c~(G) is complete,
then G is. hamiltonian. '

Consider, for example, the graph of figure 4.7. One readily checks that its
.closure is complete. Therefore, by corollary 4.4, it ~is hamiltonian. It is
perhaps interesting to note that the graph of figure 4.7,can be obtained from
the graph of figure 4.3 by altering just one end of one edge, and yet we have
results (corollary 4.4 and theorem 4..2) which tell us· that· this one is
hamiltonian whereas the other is not.

Corollary 4.4 can be used to deduce various sufficient conditions for a
graph to be hamiltonian in terms of its vertex: degrees. For. exainple,sitice
c(G) is clearly complete· when 8> v/2, Dirac's condition (theorem 4.3) is an
immed~ate corollary. A more general condition. than that of Dirac was

. obtained by Chvatal (1972).
. .

Theorem 4.5 LetG bea simple graph with· degree ... sequence
(dl, d2, • •• ,dv), where d 1 -< d2 -< ... -< dv and v>3. Suppose that there is no
value of m less than v/2 for which dm-<m an~ d,,-m < v - m. Then G is
hamiltonian.
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Proof Let G satisfy the hypothesis of the theorem. We shall show that its
closure c (G) is complete, and the conclusion will then follow from corollary
4.4. We denote the degree of a vertex v in c(G) by d'(v).

Assume that c(G) is not complete, and let u and v be two nonadjacent
vertices in c(G) with

d '(u) <: d'(v ) (4.6)

and d'(u) + d'(v) as large as possible; since no two ndnadjacent vertices in
c(G) can have degree sum v or more, we have

d'(u)+d'(v)<v (4.7)

Now denote by S the set of vertices in V\{v} which are nonadjacent to v
in c(G), and by T the set of vertices in V\{u} which are nonadjacent to u in
c(G). Clearly

ISI=v-l-d'(v) and ITI=v-l-d'(u) (4.8)

Furthermore., by the choice of u and v, eac·h vertex in S has degree at most
d'(u) and each vertex in TU{u} has degree at most d'(~). Setting"d'(u)= m
and using (4.7) and (4.8), we find that·c(G) has at least m vertices.,of degree
at most·, m and at least v - m vertices of degree less than v - m. Because G
is a spanning subgraph of c(G), the same is true of G; therefore d m < m and
dv-m< v- m. But this is contrary to hypothesis since, by (4.6) and (4.7), .
m < v/2. We conclude that c(G) is indeed complete and hence, by corollary
4.4, that G is hamiltonian 0 .

One can often deduce that a given graph is hamiltonian simply by
computing its degree sequence and applying theorem 4.5. This method
\yorks with the graph of figure 4.7 but not with the graph G of figure
4.6, even though the closure of the latter. graph .is complete. From these
examples,· we see that theorem 4.5 is stronger than theorem 4.3 but not as
strong as corollary 4.4..

A sequence of real numbers (pI, P2, ... ,.pn) is said to be majorised b)
another such sequence (q., q2, ... ,qn) if Pi <: qi for 1 <: i <: n. A graph G i~

degree-majorised by a graph H if v(G) = v(H) and the nondecreasin~

degree sequence of G is majorised by that of H. For instance, the 5-cycle h
degree-majorised by K 2•3 because (2, 2, 2, 2, 2) is majorised by (2, 2, 2, 3:
3). The family of degree-maximal nonhamiltonian graphs (those that are
degree-majorised by no others) admits of a simple description. We firsl
introduce the notion of the join of two graphs. The join G v H of disjoin1
graphs G and H is the graph obtained from G + H by joining each vertex oj
Gtoeachvertexof H; it is.represented diagrammatically as in figure 4.8.

Now, for 1 <: m < n/2, let Cm.n denote the graph Kmv (K~+Kn-2m), de·
picted in figure 4.9a; two specific examples, C1•S and C 2•S , are shown ir
figures 4.9band 4.9c.
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Figure 4..8. The join of G and H

That Cm,n is nonhamiltonian follows immediately from theorem 4.2; for if
S denotes the set of m vertices of degree n - 1 in Cm,n, we have
W(Cm,n- S) = m + 1>ISI.

Theorem 4.6 (Chvatal, 1972) If G is a nonhamiltonian simple graph with
v 2: 3, then G is degree-majorised by some Cm,v e

Proof Let G be a nonhamiltonian simple graph with degree sequence.
(dh d2 , • • • ,d.,), where d1 -< d2 :s ... -< dv and v >3. Then, by theorem 4.5,
there exists .m < v/2 such that dm <: m and dll - m < V - m. Therefore
(d t , dz, ••• ,dv) is majorised by the sequence

(m, . e • , m, v - m - 1, ... , J) - m - 1, J) - 1, ... , v - 1)

with m terms ·equal to m, v-2m terms equal to v-m-l and m· terms
equal to v -1, and this latter sequence is the ~egree sequence of Cm... 0

(0)
(c)
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From theorem 4.6 ·we can deduce a result due to Ore (,1961) and Bondy
(1972).

Corollary 4.6 If G is a simple graph with v>3' and E > (v 2 1) + 1, then G

is hamiltonian. Moreover, the only nonhamiltonian simple graphs with v

vertices and (v 2 1) + 1 edges are C t ,.. and, for v= 5, C2,s.

Proof Let G be a nonhamiltonian simple graph with v ~ 3. By theorem
4.6, G is degree~majorised by Cm,., for some positive integer m < v/2.
Therefore, by theorem 1.1,

E ( G) <: e (Cm,,,)

=.!(m 2 + (v - 2m)(v - m -1) + m(v-1)

=(v 2 1)+1-i(m-l)(m-2)-(m-l)(v-2m-l)

(4.9)

(4.10)

Furthermore, equality can only hold in (4.9) if G has the same "degree
sequenc~ as Cm,,,; and equality can only hold in (4.10) if either 'm = 2 and

(V-I)v =5, or m = 1. Hence' £(G) can equal 2, + 1 only if G has the same

degree sequence as C I ,.. or C2•S , which is easily seen to imply that G == Ct,v or
G :::: "C2,s 0

Exercises
4.2.1 Show that if either

(a) G is not 2-connected, or ,
(b) G is bipartite with bipartition (X, Y) where IXI ¢ lVI,
then" G is nonhamiltonian.

4.2.2 A mouse eats "his way through a 3 x 3 x 3 cube" of cheese by
tunnelling through all ,of the" 27 1 x 1 x lsubcubes. If he starts at
one corner and always moves on to an uneaten subcube, can he
finish at the centre of the cube?

4.2..3 Show that if G has a Hamilton path then, for every proper subset S
of V, w(G-S)<ISI+l.

4.2.4* Let G be a nontrivial simple graph with degree sequence
(d 1, d2 , • • • ,d,,), where d1 <: d 2 <: ••• <: d.,. "Show that, if there is no



Euler Tours and Hamilton Cycles 61

value of m less than (v + 1)/2 for which dm < m and dl1 - m+ 1 < V - m,
then G has a Hamilton path. (V. Chvatal)

4.2.5 (a) Let G be a simple graph with degree sequence (dl, d2 , ••• , d,,)
and let GC have degree sequence (d~, d~, ... , d~) where d1 <: d2 <:

, .. .<d., and d~<di<... <d:. Show that if dm~d:n for· all
m <: v/2, then G has a Hamilton .path.

(b) Deduce that if G is self-complementary, then G has a Hamil-
ton path., . (C. R. J. Clapham)

4.2.6* Let G be a simple bipartite graph with bipartition (X, Y), where
IXI = IYI > 2, and let G have degree sequence (d 1, d2 , ••• , dv),
where d 1 < d2 <: ••• <: dv • Show that if there is no value of m less
than ·or equ'al to v/4 for which dm <: m and d.,/2 <: v/2 - m, then G is
hamiltonian. - (V. Chvatal)

4.2.7 Prove corollary 4.6 directly from corollary 4.4.

4.2.8 Show that if G is simple with v~68 and e >(v 2 8) +82
, then

G is hamiltonian. . (P. Erdos)
4.2.9* Show that if G is a connected graph with v > 28, then G has a path

of length at least 28. (G. A.Dirac)
(Dirac, 1952 has also shown that if G is a 2-connected simple graph
with v >28, then G has a cycle of length at least 28.)

4.2.10 Using. the remark to exercise 4.2.9, show that .every 2k-regular
simple graph on 4k + 1 vertices is hamiltonian (k .~ 1).

(C. St. J. A. Nash-Williams)
4.2.11 G is Hamilton-connected if every two vertices of 0 are connected

by a Ha.miltqn path.

(a) Show that if G is Hamilton-connected and v ~4, then. e >-

[~(3v·+ 1)]. . .
(b)* For v >4, construct a Hamilton-connected graph G with

e . [!(3v + 1)]. . (J. W. Moon)
4.2.12 G is hypohamilt.onian if G is not hamiltonian .but G - v ·is :hamilto

nian for every v E V.Show that the Petersen graph (figure 4.4) is
hypo.hamiltonian.
(Herz, Dubyand Vigue, 1967 have shown that· it is, in fact, the
smallest· su.ch graph.)

4.2.13* .G is hypotraceable if G. has no Hamilton path but G:- v has a
Hamilton path for every v E V. Show that the Thomassen graph (p.
240) i~ hypotraceable..

4.2.14 (a) Show that there is no Hamilton cycle in the graph 0 1 below
which contains exactly- one of the edges et and e2.

(b) Using (a), show that every Hamilton cycle in 02includes the
edge ,e. .

(c) Deduce that the Horton graph (p. 240) isnonhamiltonian.
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4.2.15 Describe a good algorithm for

(a) constructing the closure of a graph;
(b) finding a Hamilton cycle if the closure is complete.

APPLICATIONS

4.3 THE CHINESE POSTMAN PROBLEM

In his job, a postman picks up mail at the post office, delivers it, and then
returns to the post office. He must, of course, cover-each street in his area at
least once. Subject to this condition, he wishes to choose his route in such a
way that he walks as little as possible. This problem is known as the Chinese
postman problem, since it was first considered by a Chinese mathematician,
Kuan (1962).

In a weighted graph, we define the weight of a tour·VOetVt ... envo to be
n

L w(ei). Clearly, the Chinese postman problem is just that of finding a
i== 1

minimum-weight tour in a weighted connected graph with non-negative
.weights. We shall refer to such.a tour as an optimal tour.

If G is eulerian, then any Euler tour· of G is an optimal tour because an
Eule~ tour is a tour that traverses each edge exactly once. The Chinese
postman problem is easily solved in this case, since there exists a good
algorithm for determining an Euler tour in an euleri.an graph. The al
gorithm, due to Fleury (see Lucas, 1921), constructs an· Euler tour by
tracing out a trail, subject to the one cqndition that, at any stage, a cut edge
of the untraced subgraph is taken only if there is no alternative.

Fleury's Algorithm

1. Choose ·an arbitrary vertex Vo, and set Wo = Vo.

2. Suppose that the trail Wi = VOerVl ••• eiVi has been chosen.
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Then choose an edge ei+l from E\{el' e2, ... , ei} in such a way that

(i) ei+l is incident with Vi; .

(ii) unless there is no alternative, ei+l is not a cut edge of

G i = G-{el, e2, ... , ei}

3. Stop when step 2 can no longer b.e implemented.

By its definition, Fleury's algorithm constructs a trail in G.
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The6·rem 4.7 If G is eulerian, then any trail in G constructed by Fleury's
algorith~ is an Euler tour of G.

Proof Let G be eulerian, and let Wn =VOelVl ••• enVn be a. trail in G
constructed by Fleury's algorithm. Clearly, the terminus V n must be of degree
zero in G n • It follows that Vn = Vo; in other words, Wn is a closed trail.

Suppose, now, that Wn is not an Euler tour of G, and let S be the set of
vertices of positive degree in G n • Then S is nonempty and Vn E 5, where
S= V\S. Let m be the largest integer such that VmE Sand V m+l E 5. Since
Wn terminates in 5, em+l is the only edge of [S, 5] in G m, and hence is· a cut
edge of Gm (see figure 4.10).

Lete be any other edge of G m incident with Vm • It follows (step 2) that e
must also b.e a cut edge of G m , and hence of Gm[S]. But since Gm[S] =
Gn[S], every vertex in Gm[S] is of even degree. However, this implies
(exercise 2.2.6a) that Gm[S] 'has no c~t edge, a contradiction 0

The proof that Fleury's algorithm is·a go.od algorithm is left as an exercise
(exercise 4.3.2).

If G is not· eulerian, th~n any tour in G and, in particular, an optimal tour
in G, traverses some edges more than once. For example, in the graph of
figure 4.11a xuywvzwyxuwvxzyx is an optimal tour (exercise 4.3.1). Notice
that the four· edges ux, xy, yw and wv ~re traversed twice by this tour.

It is convenient, at this stage, to introd'uce the operation of duplication of
an edge. An edge. e is said to be duplicated when its ends are joined by a

Figure 4'.10
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new edge of weight w(e). By duplicating the edges ux, xy, yw and wv in the
graph of figure 4.11a, we obtain 'the graph shown in figure 4.11b.

We may now rephrase the Chinese postman problem as follows: given a
weighted graph ,G with non-negative weights,

(i) find, by duplicating edges, an eulerian weighted supergraph G* of G

such that '} w(e) is as small as possible;
eEE(~\E(G)

(ii) find an Euler tour in G*.

That this is equivalent to the Chinese postman problem follows from the
observation that a tour ofG in which edge e is traversedm(e) times'
corresponds to an Euler tour in the graph obtained from G by duplicating e .
m (e ) - 1 times, and vice versa.

We have already presented a good algorithm .for solving (ii), namely
Fleury's algorithm. A good algorithm for solving (i) has been given by
Edmonds and Johnson (1973). Unfortunately, it is too involved to ,be
presented here. However, we shall consider one special case which affords.
an easy solution. This is the case where G has exactly two vertices of odd
degree.

Suppose that G has exactly two vertices u and v of odd degree; let G* be
an eulerian spanning supergraph of G obtained by duplicating edges,. and
write E*for E(G*). Clearly the subgraph G*[E*\E] of G* (induced by the
edges of G * that are not in G) also has only the two vertices u and v of odd
degree. It follows from corollary 1.1 that u and v are in the same compo
nent of G*[E*\E] and hence that they are connected by a (u, v)-path p*.
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Clearly

~ w(e) === w(P*) :> w(P)
eeE \E
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where P is a minimum-weight (u, v)-path in G. Thus ~ w(e) is a minimum
eeE \E

when G* is obtained from G by duplicating each of the edges on a
minimum-weight (u, v)-path. A good algorithm for finding such a path was
given in section 1.8.

Exercises

4.3.1 Show that xuywvzwyxuwvxzyx is an optimal tour in the weighted
graph of figure 4.11a.

4.3.2 Draw a flow diagram summarising Fleury's algorithm, and show that
it is a good algorithm.

4.·4 THE TRAVELLING SALESMAN PROBLEM

A travelling salesman wishes to visit a number of towns and then return ~o

his starting point. Given th·e travelling times between towns, how sho~ld he
plan his itinerary so that he visits each town exactly once and travels in all
for as short a time as possible? This is known as the travelling salesman
problem. In graphical terms, the aim is to find a' minimum-weight Hamilton
cycle in a weighted complete graph..,.. We" shall call such a cycle an optimal
cycle. In contrast with·· the sf}ortestpath problem and th.e connector problem,
no efficient. algorithm for solving the travelling salesman problem is known.
It is therefore· desirable to have a method for obtaining a reasonably good'
(but not necessarily optimal) solution. We.· shall show how some of our
previous theory can be employed to this end.

One possible approach is to first find a Hamilton cycle C,. and then search
for another of smaller weight by suitably modifying C. Perhaps the simplest
such' modification is as follows. . .

Let C = V1V2 • •• V.,Vl. Then, for all i ·and j such that 1 < i + 1 <j< v, we
can obtain a new Hamilton cycle

Cij = VI V2 ••• ViVjVj-1 ••• Vi+l Vj+l Vj+2 ••• VI'VI

by deleting the edges ViVi+1 and VjVj+1 and adding the edges ViVj and Vi+l Vj+h .

as shown in figure 4.12..
If, for some i and j

W(ViVj) + w(Vi+l Vj+l)'< w(ViVi+l) + w(VjVj+l)

the cycle Cij will be an improvement 0·0 C.
After performing a sequence of the above modifications, one is left with a

cycl~ that can be improved 'no more by these methods. This final cycle will
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. Figure 4.12

almost certainly not be optimal, but it is a reasonable assumption that it will
often be fairly good; for greater accuracy, the procedure can be repeated
several tim~s, starting with a different cycle each time.

As an example, consider the weighted graph shown in figure 4.13; it is the
same graph as was used in our illustratioJ'l of Kruskal's algorithm in section
2.5. .

Starting with the cycle L MC NY Pa Pe T L, we can apply a sequence of
three modifications, as illustrated in figure 4.14, arid end up with the cycle
L NY MC T Pe Pa L of weight 192.

An indication of how good our solution is can sometimes be obtained by
applying Kruskal's algorithm. Suppose that C is an optimal cycle in G.
Then, for any vertex v, C - v is.a Hamilton path in G - v, and is therefore. a

L

T~----#---+--"""'--~MC

Pe~----"'-""""--#------..JNY

Po

Figure 4.13.
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spanning tree of G - v. It follows that if T is an optimal tree in G - v, and if
e and I are two edges incident with v such that w(e) +w(f) is as small as
possible, then w(T) +w(e) + w(f) will be a lower bound on w(C). In our
example, taking NY as the vertex v, we find (see figure 4.15) that

w(T) = 122 wee) = 21 and w(l) = 35

L·

T

13

Pe

2

Po

,
\ .

. \
\

35\
\

\ 121
\ I
\1
'b
NY

Figure 4.15



Exercise

4.4.1* Let G be a _weighted complete' graph. in which the weights satisfy the
triangle inequality: w(xy) + w(yz):> w{xz) for all x, y, z e V. Show
that an optimal cycle in G has weight at most2w(T), where T is an
optimal tree in G.

(D..J. Rosencrantz, R. E. Stearns, P. M. Lewis)

REFERENCES

Bellmore, M. and Nemhauser; G. L. (1968). The traveling salesman prob
lent: a survey. Operations Res.-, 16, ,538-58

Bondy, J. A. (1972). Variations on the hamiltonian theme. Canad. Math.
Bull., 15, 57-6·2 .

Bondy, J. A. and Chvatal, V. (1974). A method in graph theory (in press)
Chvatal, V~ (1972)., On HaDlilton's ideals. 1. Combinatorial Theory B, 12,

163-68
Dirac, G. A. (1952).. Some theorems on abstract graphs. Proc. London Math.

Soc., 2, 69-81
Edmonds, J. an.d Johnson, E. L. (1973). -Matching, Euler tours and the

Chinese postman. Math. Prog-ramming, S, 88-124
Euler, L. (1736).. Solutio problematis ad geometriam situs pertinentis.
. Comment. Academiae Sci. I. Petropolitanae, 8, 128-40
Hamilton, W. R. (1856). Letter to John T. Graves on the Icosian, 17 Oct.,

1856, in The Mathematical Papers of: Sir William Rowan Hamilton (eds.
H. Halberstam and R. E. Ingram), vol. 3 (Algebra), Cambridge University
Press, 1931, P.P. 612-25. .

-Held, M. and Karp, R. M. (1970). The traveling-salesman problem and
- minimum spanning, trees. Operations Res., 18, 1138-62

Held, M. and Karp,R. M. (1971). The traveling-salesman problem and
minimum spanning trees: part II, Math. Progra-mming, 1, 6-25

Herz, J. C., D'uby, J. J. and Vigue, F. (1967). Recherche systematique des



Euler Tours and Hamilton Cycles 69 .

graphes hypohamiltoniens, in Theorie des Graphes (ed. P. Rosens
tiehl), Dunod-Gordon and Breach, pp. 153-59

Kuan, M-K. (1962). Graphic programming using odd or even points. Chi
nes~ Math., 1, 273-77

Lin, S. (1965). Computer solutions of the traveling salesman problem, Bell
System Tech. J., 44, 2245-69

Lucas, E. (1921). Recreations Mathematiques N, Paris
Ore, O. (1961). Arc coverings of graphs. Ann. Mat. Pura Appl., 55, 315-21



5 Matchings
5.1 MATCHINGS

A subset M of E is called a matching in G if its elements are links and no
two are adjacent in G; the two ends of an ed·ge in M are said to be matched
under M. A matching M saturates a vertex v, and v is said to be M
saturated, if some edge of M is incident with v; otherwise, v is M
unsaturated. If every vertex of G is M -saturated, the matching M is perfect.
Mis a maximum matching if G has no matching M' with IM'I> IMI; clearly,
every perfect matching is maximum. Maximum and perfect matchings in
graphs are indicated in·' figure 5.1.

Let M be a matching in G.An M-alternating path in G is a.path whose
edges are alternately in E\M andM. For example, the path VsVSVtV,V6 in the
graph of figure 5.1 a is an M-alternating path. An' M -augmenting path is an
M-alternating path whose origin and terminus are M -unsaturated.

(0)

Figure 5.1. (a) A maximum matching; (b) a perfect matching
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Figure 5.2. (a) G, with M heavy and M' broken; (b) G[M 4M']

Each vertex of H has degree either one or two in H, since it can be
incident with at most one edge of M and one edge of M'. Thus each
component of H is either an even cycle with edges alternately in M and M',
or else a path with edges alternately in M and M'. By (5.1), H contains
more edges of M' than of M, and therefore some path component P of H
must start and end with edges of M'. The origin and terminus of P, being
M'-saturated in H, are M -unsaturated in G. Thus P is an lvI-augmenting
path in G 0

Exercises

5.1.1 (a) Show that every k-cube has a perfect matching (k >2).
(b) Find the number of different perfect matchingsin K2n and Kn•n •

5.1.2 Show that a tree has at most one perfect matching.
5.1.3 For each k > 1, find an example of a k-regular simple graph that has

no perfect matching.
5.1.4 Two people play a game on a graph G by alternately selecting

distinct vertices Va, VI, V2, ••• such that, for i > 0, Vi is adjacent to Vi-I.

The last player able to select a vertex wins. Show that the first player
has a winn,ing strategy if and only if G has no perfect matching.

5.1.5 A k-factor of G is a k-regular spanning subgraph of G, and G is
k-factorable if there are edge-disjoint k-factors HI, H 2, ••• , H n such
that G = HI U H 2 "U •.. "U Hne

(a)* Show that
(i) Kn•n and K2n are I-factorable;

(ii) the Petersen graph is not I-factorable.
(b) Which of the following graphs have 2-factors?
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(c) Using Dirac's theorem (4.3), show that if G. is simple, with v
even and a2: (v/2) + 1, then G has a 3-factor.

5.1.6* Show that K 2n+ 1 can be expressed as the union of n connected
2-factors (n:> 1).

5.2 MATCHINGS AND COVERINGS IN BIPARTITE GRAPHS

For any set S of vertices in G, we define the neighbour set of S in G to be
the set of all vertices adjacent to vertices in S; this set is denoted by No(S).
Suppose, now, that G is a bipartite graph with bipartition (X, Y). In many
applicatio.ns one wishes to find a matching of G that saturates every vertex
in X; an example is the personnel assignment problem, to be discussed in
section 5.4. Necessary and sufficient conditions for the existence of such a
matching were first given by Hall (1935).

Theorem 5.2 Let G be a bipartite graph with bipartition (X, Y). Then I G
contains a matching that saturates every vertex in X if and only .if

IN(S)I:> lSI fora-II SeX (5.2)

Proof Suppose that G contains a matching M· which saturates every
vertex in X, and letS be a subset of X. Since the vertices in S .are matched
under M with distinct vertices in N(S), we clearly have IN(S)I > IS·I·
. Conversely, suppose that G is a bipartite graph satisfying (5.2), but that G .
contains no matching saturating all the vertices in X. We shall obtain· a
contradiction. Let M* bea maximum m~tching in G. ijy our supposition,
M* does not satur·ate all vertices inX. Let u be an M*-unsaturated vertex
in X, and let Z denote· the set of all vertices connected to u by M*
alternating paths. Since M* is a maximum matching, it follows from theorem
5.1 that u is the only M*~unsaturated vertex in Z. Set S ..-:- Z n X. and
·T = zn Y (see figure 5.3). .

, Clearly, the vertices in S\{u} are matched under M*with the verticesin
T. Therefore . . -

and N(S);2 'r..In fact,we have

ITI=ISI-l

N(S) = T

(5.3)

(~.4)

since every vertex' inN(S) isconnected to u by an M*-alternatingpath. But



Matchings

S
r"....--------.-iA---------..~

U

'--------.. .,.... ~I
V
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Figure 5.3

(5.3) and (5.4) imply that
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IN(S)I = ISI-1 < lSI
contradicting assumption (5.2) 0

The above proof provides the basis of a good algorithm for finding a
maximum matching in a bipartite graph. This algorithm will be presented in
section 5.4.

Corollary 5.2 If G is a k -regular bipartite graph with k >0, then G has a
perfect matching.

Proof Let G be a k-regular bipartite graph with bipartition (X, Y). Since
G is k-regular, k IXI = lEI = k IYI and so, since ok >0, IXI = IYI. Now let S
be a subset of X and denote by E I and E 2 the sets of edges incident with
vertices in ~ and N(S), respectively. By definition of N(S), E I C E 2 and
therefore

k IN(S)I = IE21:> IEII = k lSI
It follows that IN(S)I::> lSI and hence, by theorem 5.2, that G has a matching
M saturating every vertex in X. Since IXI = IYI, M is a perfect m~tching 0

Corollary 5.'2 is sometimes known as the marriage theorem, since it can be
more colourfully restated as follows: if every girl in a village knows ~xactly k
boys, and every boy knows exactly k girls, then each girl can marry a boy
she knows, and each boy can marry a girl he knows.

A covering of a graph G is a subset K of V such that every edge "of G has
at least one end" in K. A covering K is a minimum covering if G has no
covering K' with IK'I < IKI (see figure 5.4).

If K is a covering of G, and M is a matching of G, then K contains at
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(b)

Figure 5.4. (a) A covering; (b) a minimum covering

least one end of each of, the edges in M. Thus, for any matching M and any
covering K, IMI <: \KI. Indeed, if M* is a maximum matching and K is a
minimum covering, then

(5.5)

In general, equality does not hold in (5.5) (see, for ~xample, figure 5.4).
However, if G is bipartite we do have IM*I ~ IK\. This result, due to Konig
(1931), is closely related to Hall's theorem. Before presenting its proof, we
make a simple, but important,observation.

Lemma 5.3 Let M be a matching and K be a covering such that IMI = IKI.
Then M is a maximum matching and K is a minimum covering.

Theorem 5.3 In a bipartite graph, the number of edges in a maximum
matching is equal to the number of vertices in a minimum covering.

Proof Let G be a bipartite graph with bipartition (X, Y), and let M* be
a maximum matching of G. Denote by U the set of M*-unsaturated vertices
in X, and by Z the set of all vertices connected by M*-alternating paths to
vertices of U. Set S =z n X and T = zn Y. Then, as in the proof of
theorem 5.2, we have that every vertex in T is M*-saturated and N(S) =T.
Define K = (X\S) U T (see figure 5.5). Every edge of G must have at least
one of its ends in K. For, otherwise, there would be an edge with one end in
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S and one end in Y\T, contradicting N(S) = T. Thus K is a covering of G
and clearly

IM*I=IKI
By lemma 5.3 f K is a minimum covering, and the theorem follows 0

Exercises

5.2.1 Show that it is impossible, using 1 x 2 rectangles, to exactly cover an
8 x 8 square from which two opposite 1 x 1 corner squares have been
removed.

5.2.2 (a) Show that a bipartite graph G has a perfect matching if and only
if IN(S)I > lSI for all S c v.

(b) Give an example to show that the above statement does not
remain valid if the condition that G be bipartite is dropped.

5.2.3 For k > 0, show that

(a) every k-regular bipartite graph is I-factorable;
(b)* every 2k-regular graph is 2-factorable. (J. Petersen)

5.2.4 Let At, A 2 , • • • ,Am be subsets of a set S. A system of distinct
representatives. for the family (At, A 2, ••• , Am) is a ~ubset

{at, a2, · · · , am} of S such that ai E Ai, 1<i:5 m, and ai # aj for i # j.
Show that (At, A 2 , ••• , Am) has a system of distinct representatives if

and only if Ii~ Ail > III for all subsets 1 of {I, 2, ... ,m}. (P. Hall)

5.2.5 A line of a matrix is a row or a column of the matrix. Show that the
minimum number of lines containing all the 1's of a (0, I)-matrix is
equal to the maximum number of 1'8, no two of which are in the
same line.
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5.2.6 (a) Prove the following gene;ralisation of Hall's theorem (5.~): if G
is a bipartite graph with bipartition (X, V), the number· of edges
in a maximum matching of 0 is

IXI- max {ISI-IN(S)I}
$s;X

(D. Konig, O. Ore)
(b) Deduce that if G is simple" with IXI-IYI = nand e > (k -l)n,

then. G has a matching of cardinality k.
5.2.7 Deduce Hall's theorem (5.2) from Konig's theorem (5.3).
5.2.8* A non-negative real matrix Q is doubly stochastic if -the sum of the

entries in each row of Q is 1 and the sum of the entries in each
column of Q is 1. A permutation matrix is a (0, I)-matrix which has
exactly one 1 in each row and each column. (Thus every permutation
matrix is doubly stochastic.) Show that

(a) every doubly stochastic matrix is necessarily square;
(b) every doubly stochastic matrix Q can be expressed as a convex

line;ir combination of permutation matrices; that is

Q = C·IP I + C2P2 + ... + CkPk

where each Pi is a permutation matrix, each Ci is a non-negative real
k

number, and L Ci = 1. (G. Birkhoff, J. von Neumann)
1

5.2.9 Let H be· a finite group and let K be a subgroup of H. S~ow that
there exist elements hi, h2 , ••• , hn E H such that htK, h2K, ... , hnK
are the left eosets of. K and Kh t , Kh2 , ••• ,Khn are the right cosets
of K. (P. Hall)

5.3 PERFECT MATCHINGS

A necessary and suffic~ent condition for a graph to have a perfect matching
was obtained by Tutte (l947). The proof given here is due to Lovasz (1973).

A component of a graph is odd or even according as it has an odd or even
rtumber of vertices. We denote by o(G) the number of odd components 0·£ G.

Theorem 5.4 G has a perfect matching if and only if

o(G - S) <: lSI· for all S c V (5.6)

Proof It clearly suffi~es to prove the theorem for simple graphs.
Suppos.e first that G has a perfect matching M. Let S be a proper subset

of V, and let G 1, O2, ••• , Gnbe. the odd components of"G - S. Because G i is
odd,some vertex Ui. ot"Gi must be ·matched under M· with a vertex Vi of S
(see figure 5.6). Therefore, since {VI, V2, ••• , V n} C S

0(0 - S) = n = l{vI; V2, •.•.• , vn}l< lSI
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Figure 5.6
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Conversely, suppose that G satisfies (5.6) but has no perfect matching.
Then G is a spanning subgraph of a maximal graph G* having no perfect
matching. Since G - 5 is a spanning subgraph of G* - 5 we have
0(G*-5)<0(G-5) and so, by (5.6),

0(G*-5)<151 forall 5 c V(G*) (5.7)

In particular, setting S =0, we see that o(G*) = 0, and so v( G*) is even.
Denote by U the set of vertices of degree v - 1 in G*. Since G* clearly

has a perfect matching if U· = V, we may assume that U ¢ V. We shall show
that G* - U is a disjoint union of complete graphs. Suppose, to the contrary,
that some component of G*- U is not complete. Then, in this component,
there are vertices x, y and z such that xy E E(G*), yz E E(G*) and
xzft E(G*) (exercise 1.6.14). Moreover, since yft U, there is a vertex w in
G*- U such that ywft E(G*). The situation is illustrated in figure 5.7.

Since G* is a maximal graph containing no perfect matching, G*+ e has a
perfect matching for all eft E(G*). Let M1 and M2 be perfect matchings in
G*+xz and G*+yw, respectively, and denote by H the subgraph of

Y W-----------0

x z

Figure 5.7
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M, heavy

M2 wavy

(0) (b)

Figure 5.8

G* U {xz, yw} induced by M 1 JiM2 • Since each vertex of H has degree two,
H is a disjoint union of cycles. Furthermore, all of these cycles are even,
since edges of M 1 alternate with edges of M2 around them. We distinguish
two cases:

Case 1 xz and yw are in different components of H (figure 5.8a). Then,
if y·w is in the cycle C of H, the edges of M 1 in C, together with the edges of
M2 not in C, constitute a perfect matching in G*, contradicting the defini
tionof G*.

Case 2 xz and yw are in the same component C of H. By symmetry of x
and Z, we may assume that. the vertices x, y, wand z occur in that order on
C (figure 5.8b). Then the edges of Mi in the section yw ... z of C, together
with the edge yz· and the edges of M 2 not iO· the section· yw ... z of C,

*Odd components of G - U.,..--__--~A~_--_ ___..
f ,

Figure 5.9

Even components of G*- U
_--....",A------.01!~f . ,

~~g ••••~.~}.~~O .0--0
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constitute a perfect matching in G*, again contradicting the definition of
G*.

Since both case 1 and case 2 lead to contradictions, it follows that G* - U
is indeed a disjoint union of complete graphs.

Now, by (5.7), o(G*-U)<IUI. Thus at most lUI of the components of
G* - U are odd. But then G* clearly has a perfect matching: one vertex in
each odd component of G *- U is matched with a vertex of U; the
remaining vertices in U, and in components of G* - U, are then matched as
indicated in figure 5.9.

Since G * was assumed to have no perfect matching we have obtained the
desired contradiction. Thus G does indeed have a perfect matching 0

The above theorem can also be proved with the aid of Hall's theorem (see
Anderson, 1971).

From Tutte's theorem, we now deduce a result first obtained by Petersen
(1891).

Corollary 5.4 Every 3-regular graph without cut edges has a perfect
matching.

Proof Let G be a 3-regular graph without cut edges, and let S be a
. proper subset of V. Denote by G 1, G2 , ••• ,Gn the odd components of

G - S, and let mj be the number of edges with one end in G i and one end in
S, 1<i < n. Since G is 3-regular

and

Ld(v)=3IS1
yes

(5.8.)

(5.9)

By (5.8), mj = > d(v) - 2e(Gi) is odd. Now mi # 1 since G has no cut
vetrfot>

edge. Thus

mj :> 3 for 1<: i <: n

It follows from (5.10) and (5.9) that

1 n 1
o(G "-S) = n <- L mi<- L d(v) = lSI

3 i=-l 3 yes

(5.10)

Therefore, by theorem 504, G has a perfect matching 0

A 3-regular graph with cut edges need not have a perfect matching. F9r
example, it follows from theorem 5.4 that the graph G of figure 5.10 has no
perfect matching, since 0 ( G - v) = 3.
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Figure 5.10

Exercises

5.3.1* Derive Hall's theorem (5.2) from Tutte's theorem (5.4). .
5.3:2 .Prove the following generalisation of corollary 5.4: if G is a (k-1)

edge~connected.k -regular graph with v even, then G has a perfect
m.atching. . '

5.3.3 Show that a tree G has a perfect matching if and only if o(G - v) = 1
for all v E V. . (V. Chungphaisan)

5.3.4*. Prove the following generalisation of Tutte's theorem (5.4): the
number of edges in a maximum matching of G is !(v - d), where

. d = max{o(G-s)-ISll. (C. Berge)
scv

5.3.5 (a) Using Tutte's theorem (5.4), characterise the maximal simple
graphs which have no perfect Inatching.

.(b) Let G be simple, with v even and 8 < v/2. Show that if e >

(g)+ (v - 22
8 -1) + 8(v - 8), then G has a perfect matching.

APPLICATIONS

5.4 THE PERSONNEL ASSIGNMENT PROBLEM

In a certain company,n workers Xt,X2, ••• , Xn are available for n jobs
YI, Y2,.. · · , Yn, each worker being qualified for one or more of these jobs.
Can. all the men be assigned, one man per job,· to jobs for which they are
qualified? This is the personnel assignment problem.
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We construct a bipartite graph G with bipartition (X, Y), \yhere X =
{Xl, X2, • • • ,xn}, Y = {Yl, y2, · .. ,Yn}, and Xi is joined to Yj if and only if
worker Xi is qualified for job Yj • The problem becomes one of determining
whether or notG has a perfect matching. According to Hall's theorem (5.2),
either G has such a matching or there is a subset S of X such that
IN(S)I < 151· In the sequel, we shall present an algorithm to solve the
personnel assignment problem. Given any bipartite graph G with bipartition
(X, Y), the algorithm either finds a matching of G that saturates every
vertex in X or, failing this, finds a subset S of X such that IN(S)I <lSI.

The basic idea behind the algorithm is very simple. We start with an
arbitrary matching M. If M saturates every vertex in X, then it is a matching
of the required type. If not, we choose an M -unsaturated vertex u in X and
systematically search for an M -augmenting path with origin u. OUf method
of search, to be described in detail below, finds such a path P if one exists;
in this case M=M aE(p) is a larger matching than M, and hence saturates
more vertices in X. We then repeat the procedure with M instead of M. If
such a path does not exist, the set Z of all vertices which are connected to u
by M-alternating paths is found. Then (as in the proof of theorem 5.2)
S=Z nX satisfies IN(S)I < lSI.

Let M be a matching in G, and let u be an M -unsaturated vertex in X. A
tree H eGis called an M-alternating tree rooted at u if (i) U E V(H), and (ii)
for every vertex v of H, the unique (u, v)-path in H is an 'M-alternating
path. An M -alternating tree in a graph is shown in figure 5.11.

(0)

x, =u

(b)

Figure 5.11. (a) A matching M in G; (b) an M-alternating tree in G
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(0)
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(b)

Figure 5.12. (a) Case (i); (b) case (ii)

The search for an.M -augmenting path with origin u involves 'growing' an
M -alternating tree H rooted at u. This procedure was first suggested by
Edmonds (1965). Initially, H consists of. just· the· sin'gle vertex u. It is then
grown in such a way that, at any stage, either

(i) all vertices of H except u are M -saturated and matched under M (as in
figure 5.12a), or

(ii) H contains an M -unsaturated vertex different from u (as in figure
5.12b).

If (i) is the case (as it is initially) then, setting S = V(H) n X and T =
V(H) n Y, we have N(S)::::> T; thus either N(S) = T or N(S) => T.

(a) If N(S) = T then, since the vertices in S\{u} are matched with the
vertices in T, IN(S)I = ISI- 1, indicating that G has no matchingsaturat
ing all vertices in X. '

(b) If N(S) :::> T, there is a vertex y in Y\T adjacent to a vertex x in S. Since
all vertices of H except u are matched under M,either x = u or else x is
matched with a vertex of H. Therefore xye M. If y is M-saturated, with
yz EM, we grow Hby adding the vertices·y and z and the edges xy and
yz.We are then back in case (i). If Y is M-unsaturated, we grow H by'
adding the vertex y and the edge xy, resulting in case (ii). The (u, y)
path of H is then an M -augmenting path with origin u,as required.

Figure 5.13 illustrates the above tree-growing procedure.
The algorithm described above is known as the Hunga·rian method, and
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or

Case (i)

:>

u

Case (i i)

M- unsaturated

Figure 5.13. The tree-~rowingprocedure

can be summarised as follows:

Start with an arbitrary matching M.
1. If M saturates every vertex in X, stop. Otherwise, let u be an M

unsaturated vertex in X. Set S = {u} and T =0.
2. If N(S) - T then IN(S)I < lSi, since. ITI = lSi-I. Stop, since by Hall's

theorem there is no matching that saturates every vertex in X. Other
wise, let y E N(S)\T.

3. If Y is M-saturated, let yz EM. Replace S by S U{z} and T by TU{y}
and go to step 2. (Observe that ITI = IS1- 1 is maintained after this
replacement.) Otherwise, let P be an M -augmenting (u, y)-path. Replace
M by M = M J1E(P) and go to step 1. .

Consider, for example, the graph G in figure 5.14a, with initial matching
M = {X2Y2, X3Y3, xsYs}. In figure 5.14b an M-alternating tree is grown, start
ing with Xl, and the M-augmenting path XlY2X2Yl found. This results in a
new matching M ={XlY2, X2yl, X3Y3, xsYs}, and an M-alternating tree is now
grown from X4 (figures 5.14c and 5.14d) Since there is no M-augmenting
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x,

Y2 Y3

(0 )

X2 X2 X2

Y2\ Y2 Y2 Y2

X, x, X1 x, X1

(b).

Y, Y2 Y:; Y4 Y5

(c)

X, X1

Y2 Y2 Y2

X4 X4 . X4

(d)

Figure 5.14. (a) Matching M; (b) an M-alternating tree; (c) matching Nt; (d) an
Nt-alternating tree

path with origin X4, the algorithm terminates: The set S = {Xl, X3, X4}, with
. neighbour set N(S) ={Y2' Y3}, shows that G has no perfect matching.

'A flow diagram of the Hungarian metho·d is given in figure.: 5.15'. Since the
algorithm can cycle through the tree-growing procedure, I, at most IXI times
'before finding eithe"r an SeX such that- IN(S)I < lSI or an" M-augmentin'g

. path, and since the initial matching can be aug.mented at most IXI times
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Figure 5.15. The Hungarian method
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before a matching of the required type is found, it IS .clear that the
Hungarian method is a good algorithm..

One can find a maximum matching in a bipartite graph by slightly
modifying the above procedure (exercise 5.4.1). A good algorithm that
determines such a matching in any graph has been given by Edmonds
(1965).

Exercise

5.4.1 Describe how the Hungarian method can be used to find a maximum
matching in a bipartite graph.
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,5.5 THE OPTIMAL ASSIGNMENT PROBLEM

Graph Theory with Applications

The Hungarian method, described in section 5.4, is an efficient way of
determining a fe,asible assignment of workers to jobs, if one exists. However
one may, in addition, wish to take into account the effectiveness of the
workers in their various jobs (measured, perhaps, by the profit to the
company). In this case, one is interested in an assignment that maximises the
total effectiveness of the workers. The problem of finding such an assign
ment is known as the optimal assignment problem.

Consider a weighted complete bipartite graph with bipartition (X, Y),
where X ={Xl, X2, ••• ,Xn}, Y ={YI, Y2, ... , yo} -and edge XiYj has weight
Wij = W(XiYi), the effectiveness of worker Xi iri job Yj • The optimal assign
ment problem is clearly equivalent to that of finding a maximum-weight'
perfect matching in this weighted graph. We shall refer to such a matching
as an optimal matching.

To solve the optimal assignment problem it is, of course, possible to
enumerate all n! perfect matchings and find an optimal one among them.
However, for large n, such a procedure would clearly be most inefficient. In
this section we shall present a good algorithm for finding an optimal
matching in a weighted complete bipartite .graph.

We define a feasible vertex labelling as a real-valued function I on the
vertex set X U Y such that, for all x E X and y E Y

l(x)+ l(y» w(xy) (5.11)

(5.12)

(The real number l(v) is called 'the label of the vertex v.) A feasible vertex
labelling is thus a labelling of the vertices such that the sum of the labels of
the two ends of an edge is at least as large as the weigllt of the edge. No
matter what the edge weights are, there always exists a feasible vertex
labelling; one such is the function I given by .

l(x) = max w(xy) if X.E X.}yey
. ,

I(y ) = 0 if YE Y

If I is a feasible vertex labelling, we denote by E , the set of those edges for
which equality holds in (5.1-1); that is

, E,= {xy E E I'(x) + l(y) = w(xy)}

The spanning sUbgraph of G with edge set E 1 is referred to as the equality
, subgraph corresponding to the feasible vertex labelling' I, and is denoted by
G,. The connection between 'equality subgraphs and '·optimal matchings is
provided by the following theorem.

Theorem 5.5 Let -, be a feasible vertex labelling of G. If G, contains a
perfect m~tching M*, then M* is an optimal matching of G.



Matchings 87

Proof Suppose that G, contains a perfect matching M*. Since G, is a
spanning subgraph of G, M* is also a perfect matching of G. Now

w(M*) = L w(e) = L l(v) (5.13)
eEM* vEV

since each e E M* belongs to the equality subgraph and the ends of edges of
M* cover each vertex exactly once. On the other hand, if M is any perfect
matching ofG, then

w(M) = e~ w(e) <: v~ l(v) (5.14)

It follows from (5.13) and (5.14) that w(M*):> w(M). Thus M* is an optimal
matchin-g 0

The above theorem is the basis of an algorithm, due to Kuhn (1955) and
Munkres (1957), for finding an optimal matching in a weighted complete
bipartite graph. Our treatment closely follows Edmonds (1967).

Starting with an arbitrary feasible vertex labelling I (for example, the one
given in (5.12», we determineGI, choose an arbitrary matching M in G1 and
apply the Hungarian .method. If a perfect nlatching is found in G, then, by
theorem 5.5, this matching is optimal. Otherwise, the Hungarian method
terminates in a matchin.g M' that is not perfect, and an M'-.alternating tree
H that contains no M'-augmenting path and cannot be grown further (in
G,). We then modify I to a feasible vertex labelling f with the property that
both M' and H are contained in Gr and H can be extended in Gr. Such
modifications in the feasible vertex labelling are made whenever necessary,
until a perfect matching is found in. spme equality subgraph.

The Kuhn-.Munkres Algorithm

Start with an' arbitrary feasible vertex labelling I, determine G" and
choose an arbitrary matching M in G I •

1~ If X is M -saturated, then M is a perfect matching (since IXI = IYI) and
hence, by theorem 5.5, an 9Ptimal. matching; in this case, stop. Other
wise, let u be an M-un~aturatedvertex. Set S = {u} and T = 0.

2. If No.(S):::> T, go to step 3. OtherWise, NolS) = T. Compute

at =min{l(x) + l(y) - w(xy)}
xES
yET

and the feasible vertex labelling f given by

l(v) - a, if V E S

l(v) = l(V ) + (l, if vET

l(v) otherwise

(Note that (l, > 0 and that No~S):::>T.) Replace I by f and G, by Gr.
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o 1 1 0 0

(d)
Figure 5.16

3. Choose a vertex y in No,(S)\T. As in the tree-growing ..procedure of'
sectioq, ~ .4, consider whether or not y' is M -saturated. If Y is M
saturated, with yz E M, replace S by S U {z} and T by T U {y}, and go to
step 2. Otherwise, let P be an M-augmenting "(u, y)-path in G

"
replace M

by At = M I1E(P), and go to step 1. . ,

In illustrating the Kuhn-M~"nkresalgorithm, it is conv'enient to represent
a weighted complete bipartite: graph G by a matrix W : [Wij], where Wij is
the weight of edge XiYi in G. We shall start with the matrix of figure 5.16a.
In figure 5.16b, the feasible vertex labelling (5.12) is shown (by placing the
label of Xi to the right of' row i" of the matrix and the label of Yi below
columnj) anct. the ~ntries c~rrespondingtoe4g~s of the"associated equality
subgraph are indicated; the equality subgraph itself is depicted (without
weight~) in figure '5.16c. It was shown in the previous section that th~s. graph
has no perfect matching (the set S ={Xl, X3, X4} has neighbour set {Y2' Y3}).
We therefore modify our initial feasible vertex labelling to the one given in
figure 5.16d. An application o'f the Hungarian method now shows that the
associated equality subgraph (figure 5.16e) has the. perfect matching
{Xl y4, X2Y., X3Y3, X4y2, xsys}. This is therefore an optimal matching of G.
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A flow diagram for the Kuhn-Munkres algorithm is given ·in figure 5.17.
In cycle II, the number of computations required to compute Or is clearly of
order v 2

• Since the algorithm can cycle through I and II at most IXI times
before finding an M-augmenting p.ath, .and since the initial matching can be
augmente~ at most IXI times before an optimal matching is found, we see
that the Kuhn-Munkres algorithm is a good algorithm.

Exercise

5.5.1 A diagonal o.f ann ?< n matrix is a_set of n entries no two of which
belong to the same row or the same column. The weight of a
diagonal is the sum of the entries in it. Find a minimum-weight
diagonal in the following matrix:

4 5 8 10 11.
7 6 5 7 4
8 -5 12 9 6

··6 6 13 10 7-
4 5 7 9 8
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6 Edge Colourings
6.1 EDGE CHROMATIC NUMBER

A k-edge colouring ~ of a loopless graph G is an assignment o( k colours,
1, 2, ... , k, to the edges of G. The colouring ~ is proper if no two adjacent
edges have the same colour.

Alternatively, a k -edge colouring can be thought .of as a partition
(E t , E 2 , ••• ,Ek ) of E, where E denotes the (possibly empty) subset of E
assigned colour i. A proper k -edge colouring is then a k -edge colouring
(E 1, E 2 , • ,••. , E k ) in which each subset E i is ~ matching. The graph of figure
6.1 has the proper 4-edge colouring ({a, g},. {b, e}, {c, f}, {d}).

G is k-edge c%urable -if G has a proper k-ed'ge-colouring. Trivially, every
loopless graph G is e-edge-colourable; and if G is k-edge-coiourable, then
G is also l-edge-colourable for ev~ry I > k. The edge chromatic number
X'(G), of' a 'loopless graph G, is the minimum k for which G is k-edge
colo'urable. G is k-edge-chromatic if X'(G) = k. It can be readily verified
that the graph of figure 6.1 has no proper 3'-edge colouring. This graph is'
therefore 4-edge-chromatic.

Clearly, in any proper edge colouring, the edges incident. with anyone
vertex must be assigned ,different colours. It follows that

(6.1)

Referring to the example of figure 6.1, .we see that inequality (6.1) may be
strict. However, we shall show that, in the case when G '-jsbipartite, x.' =b..
The following s~mple lemma is basic to our proof. We say that colou'r i is
represented at vertex v if some edge incident with v has colour i.

Lemma 6.1.1 Let G be a connected graph that is not an odd· cycle. Then

Figure '6.1
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G has a 2-edge colouring in which both colours are represented at each
vertex of degree at least two.

Proof We may clearly assutn.e that G is nontrivial. Suppose, first, that G
is eulerian. If G is an even cycle, the proper 2-edge colouring· of G has the
required property. Otherwise, G has a vertex Va of degree at least four. Let
VOelVt ••• eeVO be an Euler tour of G, and set

E 1 ={ei Ii ·odd} and E 2 ={ei Ii even} (6.2)

Then the 2-edge colouring (E t , E 2) of G has the required property, since
each vertex ofG is an internal vertex of vOel VI ••• ee·VO.

If G is not eulerian, construct a new grap.h G* by adding a new vertex vo
and joining it to each vertex of odd degree in G. Clearly G* is eulerian. Let
VoetVI ••• ee* Vo be an Euler tour of G* and define E 1 and E 2 as in (6.2). It is
then easily verified that the 2-edge colouring (E1 nE, E 2 n E) of G has the
required property 0

Given a k-edge colouring C€ of G we sh·all denote by c(v) the number of
distinct colours represented at v. Clearly, we always have

c(v)<d(v) (6.3)

Moreover, C€ is a proper k-edge colouring .if and only if equality holds in
(6.3) for all vertices v of G. We shall call a k-edge colouring C€' an
improvement on C€ if

L c'(v) > L c(v)
vev vEV

where c'(v) is the number of distinct colours represented at v in the
colouring C€'. An optimal k-edge colouring ~s on·e which cannot be im
proved.

Lemma 6.1.2 Let~ =(E t , E 2 , ••• , E t ) bean optimal k-edge colouring of
G·. If there is a vertex u:. in G and colours i and j such th.at i is· not
represented at u and j is repre.sented at. least twice at u, then the component '..
of G[Ei UBj] that contains u is an odd cycle.

Proof Let u be a vertex that satisfies the hypothesis of the lemma, and
denote by H the component of G[EiU E j ] containing u. Suppose that H is
not an odd cycle. Then, by lemma 6.1.1, H has a 2-edge colouring in which
both colours are represented ·ateach vertex of degree at least two inH.
When we recolour the edges of H with colours i and .i in this way, we obtain
a new k-edge colouring C€'=(E~,E~,... ,E~) of G. Denoting by c'(v) the
number of distinct colours at v in the colouring C€', we have

c'(u) = c(u) + 1 .
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since, now, both i and j are represented at u, and also

c'(v) > c(v) for v¢ u

Thus L c'(v) > L c(v), contradicting the choice of eg. It follows that H is
vEV vEV

indeed an odd cycle 0

Theorem 6.1 If G is bipartite, then X' = ~.

Proof Let G be a graph with X' >~, let eg = (E 1, E 2 , ••• ,EA) be an
optimal ~-edge colouring of G, and let u be a vertex such that c(u) < d(u).
Clearly, u satisfies the hypothesis of lemma 6.1.2. Therefore G contains an
odd cycle and so is not bipartite. It follows from (6.1) that if G is bipartite,
then X' =~ 0

An alternative proof of theorem 6.1, using exercise 5.2.3a, is outlined in
exercise 6.1.3.

Exercises

6.1.1 Show, by finding an appropriate edge colouring, that X'(Km,n) =
~(Km,n).

6.1.2 Show that the Petersen graph is 4-edge-chromatic.
6.1.3 (a) Show that if G is bipartite, then G has a ~-regular bipartite

supergraph.
(b) Using (a) and exercise 5.2.3a, give an alternative proof of

theorem 6.1.
6.1.4 Describe a good algorithm for finding a proper ~-edge colouring of a

bipartite graph G.
6.1.5 Using exercise 1.5.8 and theorem 6.1, show that if G is loopless with

~ = 3, then X' <: 4.
6.1.6 Show that if G is bipartite with 8 > 0, then G has a 8-edge colouring

such that all 5 colours are represented at each vertex.
(R. P. Gupta)

6.2 VIZING'S THEOREM

As has already been noted, if G is not bipartite then we cannot necessarily
conclude that X' =~. An important theorem due to Vizing (1964) and,
independently, Gupta (1966), asserts that, for any simple graph G,either
X' = ~ or X'= ~+ 1. The proof given here is by Fournier (1973).

Theorem 6.2 If G is simple, then either X' =~ or X' = ~+ 1.

Proof Let G be a simple graph. By virtue of (6.1) we need only show
that X' -< ~+ 1. Suppose, then, that X' > ~+ 1. Let eg = (Et , E 2 , ••• , E~+l) be
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( b )

v
(a )

Figure 6.2

v
( c )

an optimal (A + I)-edge colouring of G and let u be a vertex such that
c(u) <d(u). Then there exist colours io and i l such th~t io is not represented
at u, and i l is represented at least twic'e at u. Let UVl have colour il, as in
figure. 6.2a.

Since d(Vl) < A+ 1, some colour i2 is not represented at Vl. Now h must be
represented atu since otherwise, by rec,?louring UVt with i2 , we would
obtain an improvement on <:(6. Thus some edge UV2 has colour ;2. Again,
since d('V2) < A+ 1, some colour i 3 is not represented at V2; and i 3 _must be
represented ·at u since otherwise, by recolouring UVtwith i2 and UV2 with' i3 ,

.we would obtain an improved (A+ l)~edge colouring. Thus ,.some edge' UV3

has colour i 3,·. 'Continuing this procedure we. construct a sequence Vt, V2·, .•••

of vertices and a sequence it, i2, ••• of colours; such that·

(i) UVj has colour i j , and
(ii) ij + 1 is not represerited at Vj.

Since the degree of u is finite, there exists a smallest integer l such that, for
some. k < .1,

(iii) i r+ 1 = i k •
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The situation is depicted in figure 6.2a.
We now recolour G as follows. For 1 <:: j <:: k - 1, recolour UVj wi~h colour

ij+1, yielding a new (A + 1)-edge colouring ((6' = (E~, E~, ... ,E~+l) (figure
6.2b). Clearly .

c'(v) > c(v) for all v E V

and therefore ((6' is also an optimal (A + I)-edge colouring of G. By lemma
6.1.2, the component H' of G[E~o UE~k] that contains u is an odd cycle.

Now, in addition, recolour UVj with colour i j + 1, k -< j < 1- 1, and UVr with
colour ik , to obtain a (A + I)-edge colouring ((6" = (E~, E~, ... ,E~+l) (figure
6.2c). As above

c"(v) >c(v)· for all v E V

and the component H" of G[E~o UE'lk ] that contains u is an odd cycle. But,
since Vk has degree two in H', Vk clearly has degree one in R". This
contradiction establishes the theorem 0

Actually, Vizing proved a more general theorem than" that given above,
one that· is valid. for all loopless graphs. The ma~imum number of edges
joining· two vertices in G is called the multiplicity of G, and denoted by
IL(G). We can now state Vizing's theorem in its full generality: if G is
loopless, ~hen A<:: XI <: A+ lot.

This theorem is best possible in the sense that, for any JL, there exists a
graph G such that· X' = A+ IL.. For example, in the graph G of figure 6.3,
A= 2fL and,since any two edges are adjacent, X', = B = 3,..,.

Strong as theorein. 6.'2 is, it leaves open one interesting qu~stion: which
simple graphs satisfy X' = A? The significance of this question will become
apparent in chapter 9, when we study edge colourings of planar graphs.

Figure 6.3. A graph G with X' = ~+ IL
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Exercises
6.2.1* Show, by finding appropriate edge colourings, that X'(K2n- 1) =

X'(K2n) = 2n - 1.
6.2.2 Show that if G is a nonempty regular simple graph with v odd, then

X'=~+l.

6.2.3 (a) Let G be a simple graph. Show that if v = 2n + 1 and e > n6.,
then X' = A+1. (V. G. Vizing)·

(b) Using (a), show that
(i) if G is obtained from a simple regular graph with an even
number of vertices by subdividing one edge, then X' =A+ 1;
(ii) if G is obtained from a simple k-regular graph with an odd
number of vertices b,y deleting fewer than k/2 edges, then X' =
A+ 1. (L. W. Beineke and R. J. Wi~son)

6.2.4 (a) Show that if G is loopless, then G has a A-regular loopless
supergraph.

(b) Using (a) and exercise 5.2.3b, show that if 0 is loopless and ~ is
even, then x./:s 3A/2.
(Shanno~, 1949 has shown that this inequality also holds when

A is odd.) .
6.2.5 G is called uniquely k-edge-colourable if any two proper k-edge

colourings of 0 induce the same partition of E. Show that every
uniquely 3-edge-colourable 3-regular graph is hamiltonian.

. (D. L. Greenwell and H. V. Kronk)
6.2.6 The product, of simple graphs ·0 a~d H is the simple graph G x H

with vertex set V(O) x V(H), in which (u, v) is adjacent to (u', v') if
and only if either u= u' and vv' E B(H) or v = v' and uu' E B(G).

(a) Using Vizing's theorem (6.2), show·that X'(G x K 2) =A(G x K 2).

(b) Deduce that if H is nontrivial with X'(H) =A(H), then
X/(O x H) = A(G x H).

6.2.7 Describe a good algorithm for finding a proper (A + I)-edge colour
ing of a simple graph o.

6.2.8* Show that ifG is simple with 8 > 1, then G has a (8 -l)-edge
colouring such that all 8 - 1 colours are represented at each vertex.:

(R. P. Gupta)

APPLI·CATIONS

6.3 THE TIMETABLING PROBLEM

In a school, there are m teachers Xl, X 2, ••• ,Xm , and n classes
Y 1, Y 2 , ••• , Yn. Given that teacher Xi is required to teach class Y j for Pij
periods, schedule a complete timetable in the minimum possible number ·of
periods. .
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The above problem is known as the timetabling problem, and can be solved
completely using. the theory of edge colourings developed in this chapter.
We represent the teaching requirements by a bipartite graph G with
bipartition (X, Y), where X = {Xl, X2, •.• ,Xm}, Y ={yt, Y2, ••• , Yn} and ver
tices Xi and Yi are joined by Pij edges. Now, in anyone period, each teacher
can teach at most one class, and each class can be taught by at most one
teacher-this, at least, is our assumption. Thus a teaching schedule for one
period corresponds to a matching in the graph and, conversely, each
matching corresponds to a possible assignment of teachers to classes for one
period. OUf problem, therefore, is to partition the edges of G into as few
matchings as possible Of, equivalently, to properly colour the edges of G
with as few colours as possible. Since G is bipartite, we know, by theorem
6.1, that X' --:- d.Hence, if no teacher teaches for more than· p periods, and if
no class is taught for more than p periods, the .teaching requirements can be
scheduled in a p-period timetable. Furthermore, there is a good algorithm
for constructing such a timetable, as is indicated in exercise 6.1.4. We thus
have a complete solution to the timetabling problem.

However, the situation might not be so straightforward. Let us assume
that only a limited number of classro·oms are available. With this additional
constraint, how many .periods are n<?w needed to ~chedule .a complete .
timetable?

Suppose that altogether there are I lessons to be given, and that they have
been scheduled in a p-r-eeriod timetable. Since this timetable requires an
average of IIp lessons to be given per period, it is· clear that at least'{l/p}
rooms will be needed in some one period. It turns out that one can always
arrange I lessons in a p-period timetable so that at most {lIp} rooms are
occupied in anyone period. This follows fr.om theorem 6.3 below. We first
have a lemma.

Lemma 6.3 Let M andN be d~sjointmatchingsof G witlllMI > INI. Then
there are disjoint matchings M' and N' of G· such that IM'I =,IMI-t,
IN'I = /N/+ 1 and M'~N'=MUN.

Proof Consider the graph H = G[M UN). As in the proof of theorem
5.1, each component of H is either an even cycle, with-· edges alternately in
M and N, or else a path with edges alternately in M and N. Since IMI >1NI,
som·e path componentP of H must start and end with edge~ of M. Let
P = VOetVl ••• e2n+1V2n+t, and set

M' = (M\{et, e3, · · · , e2n+l}) U {e2' e4, 4l ••• , e2n}:

N'= (N\{e2' e4, ... , e2n}) U {et, e3, , .. , e2D+l}

Th·en M' and N' are matchings of G that satisfy the conditions of the
lemma 0
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Y, Y2 Y3 Y4 Y5

X, 2 0 1 1 0 X,

X2 0 , 0 , 0 X2
.p=

X3 0 1 1 1 0 X3

X4 0 0 0 1 1 X4

(a )

Figure 6.4

Graph Theory with Applications

Period
1 2 3 4

Y1 Y1 Y3 Y4

Y2 - Y4 -

Y3 Y4 - Y2

Y4 Y5 - -

Theorem 6.3 If G is bipartite" and if p:> A, then there exist p disjoint
matchings M 1, M 2 , ••• , M p of G such that

(6.4)

and, for 1 <: i <: P

(6.5)

(Note: condition (6.5) says that an'y twomatchings M i and M j differ in size
by at most one.) .

Proof Let G be a bipartite graph. By theorem 6~1, the edges of G can be
partitioned into A· matchings M~, M~, ,M~. Therefore, for any p:> A,
there exist p disjoint matchings M~, M~, , M~ (with M~=0 for i >A) such
that

x,

\
\
\
\
\
\
\
\
\

b
. )4 Ys

Figure 6.5
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X1 X2 x3 x4

\
\ x1\
\ x2\
\ x3\
\ x4\

b
}2 Y3 Y4 Ys

(a )

Figure 6.6

Period
234

Y4 Y1 Y3 'r1
Y2 - Y4 -

Y3 Y4 - Y2

- Y5 - Y4

( b )
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As an example, suppose that there are four teachers and five classes, and
that the teaching requirement matrix P = [pij] is as given in figure 6.4a. One
possible 4-period timetable is shown in figure 6.4b.

We can represent the above timetable by a decomposition into matchings
of the edge set of the bipartite graph G corresponding to P, as shown in
f}.gure 6.5a. (Normal edges correspond to period 1, broken edges to period
2, wavy edges to period 3, and heavy edges to period 4.)

From the timetable we see that four classes are taught in period 1, and so
four rooms are needed. However € = 11 and so, by theorem 6.4, a 4-period
timetable can be arranged so that in each period either 2( = [11/4]) or
3( = {11/4}) classes are taught. Let Ml denote the normal matching and M4

the heavy matching; notice that IMlj= 4 and IM41- 2. We can now find a
4-period 3-room timetable by considering G[Ml U M 4 ] (figure 6.5b).
G[Ml UM 4 ] has two components, each consisting of a path of length three.
Both paths start· and end with normal edges and so, by interchanging the
matchings on one of the two paths, we shall reduce the normal matching to
one of three edges, and -at the same time increase the heavy matching to one
of three edges. If we choose the path YlXlY4X4, making the edges YlXl and
Y4x4heavy and the edge XlY4 normal, we obtain the decomposition of E
shown in figure 6.6a. This then gives the revised timetable shown in figure
6.6b; here, only three rooms are needed at anyone time.

Period
23456

Y4 Y3 Y, - Y1 -

Y2 Y4 - - - -
- - Y4 Y3 Y2 -

- - - Y4 - Ys

Figure 6.7
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However, suppose that there are just two rooms available. Theorem 6.4
tells us that there must be a 6-period timetable tha~ satisfies our require
ments (since {11/6}= 2). Such a timetable is given in figure 6.7.

In practice, most problems on timetabling are complicated by preassign
ments (that is, conditions specifying the periods during which certain
teachers and classes must meet). This generalisation of the timetabling
problem has been studied by Dempster (1971) and de Werra (1970).

Exercise
6.3.1 In a school there are seven teachers and twelve classes. The teaching

requirements for a five-day week are .given by the matrix

Y1 Y2 Y3 Y4 Y s Y6 Y7 Ys Y~ Y10 Y11 Y 12

Xl 3 2 3 3 3 3 3 3 3 3 3 3
X2 1 3 '6 0 4 2 5 1 3 3 0 4
X 3 5 ·0 5 5 0 0 5 0 5 0 5 5

P=X4 2 4 2 4 2 '4 2 4 2 4 2 3
Xs 3 5 2 2 '0 3 1 4 4 3 2 5
X6 5 5 0 0 5 5 0 5 0 5 5 0
X7 0 3 4 3 4 3 4 3 4' 3 3 0

wh·ere Pij is the number of periods that teacher Xi must teach class
Yj •.

(a) Into how many periods must a day be divided so that the
requirements can be satisfied?

(b) If an eight-period/day timetable IS drawn up, how many class
rooms will be needed?
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7 Independent Sets and
Cliques

7.1 INDEPENDENT SETS

A subset S of V is called an independent set of G if no two vertices of S are
adjacent in G. An independent set is maximum if G has no independent set
S' with IS'I > lSI. Examples of independent sets are shown in figure 7.1.

Recall that a subset K of. V such that every edge of G has at least one end
in K is called a covering of G. The two examples of independent sets given
in figure 7.1 are both complements of coverings. It is n'ot difficult to see that
this is always the case.

Theorem 7.1 A set S c V is an independent set of G if and only if V\S is a
covering of G.

Proof By definition, S· is an independent set of G if and only if no edge
of G has both ends in S Of, equivalently, if and only if each edge bas at least

. one end in V\S. But this is so if and only if V\S is a covering of G 0

The number of vertices in a' maximum iIldependent set of G is called the
independence number of G and is denoted by a (G); similarly, the number of
vertices in a minimum covering of G is the covering number of G and is
denoted by '(3 (G).

Corollary 7.1 a + (3 = v.

Proof Let S be a maximum· independent set of G, and let K be a
'minimum covering of G. Then, by theorem 7.1, V\K is an independent set

(a ) (b )

Figure 7.1. (a) An independent set; (b) a maximum independent set
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and V\S is a covering. Therefore

v-13 = IV\KI<a (7.1)

(7.2)v-a = IV\SI > (3

Combining (7.1) and (7.2) we have a + f3 = v 0

The edge analogue of an independent set is a set of links no two of which
are adjacent, that is, a matching. The edge analogue of a covering is called
an edge covering. An edge covering of G is a subset L of E such that each
vertex of G is an end of some edge in L. Note that edge coverings do not
always exist; a graph G has an edge covering if and only if S > o. We denote
the number of edges in a maximum matching of G by Q'(G), and the
number of edges ina minimum edge covering of G by (3'(G); the num·bers
a'(G) and (3'(G) are the edge independence number and edge covering
number, of G, respectively.

Matchings and edge coverings are not related to. one another .as simply as
are independent sets and coverings; the complement of a matching need not
be an edge covering, nor is the complement of an edge covering necessarily
a matching. However, it so happens that the parameters a' and {3' are
related in precisely the same manner as are a and (3.

and

or
a' + /3.' -< v {7.3}

Now let L be a minimum edge covering ofG, set H = G[L] and let M be
a maximum matching in H. Denote the set of M-unsaturated vertices in H
by U. Since M is maximum, H[ U] has no links and therefore

ILI-IMI =IL\MI>IUI= v-21MI

(7.4)

Because H is a subgraph of. G, M is a matching in G and so

a'+(3'>IMI+ILI> v

Combining (7.3) and (7.4), we have a'+{3'= v 0

We can now prove a theorem that bears a striking formal resembla~ce to
Konig's theorem (5.3).
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Theorem 7.3 In a bipartite graph G with 5 > 0, the' number of vertices in a
maximum independent set is equal to the number of edges in a minimum
edge covering.

Proof LetG be a bipartite graph with 13 > O. By corollary 7.1 and
theorem 7.2, we have

a+(3=a'+f3'

and, since G is bipartite, it follows from theorem 5.3 that a' = (3. Thus
a = 13' 0

Even though'; the concept of an independent set is analogous to that of a
matching, there exists no theory of independent sets comparable to the
theory of matchings presented in chapter 5; for example, no good algorithm
for finding a maximum independent set in a graph is known. However, there
are two interesting theorems that relate the number of vertices in a max
imum independent set of a graph to various other parameters of the graph.
These theorems will be discussed in sections 7.2 and 7.3. .

Exercises

7.1.1 (a) Show that G is bipartite if and only if a(H»!v(H) for every
subgraph H of G.

(b) Show that G is bipartite if and only if a(H) = (3'(H) for every
subgraph H of G such that 5(H» O.

7.1.2 A graph is a-critical if a(G - e) > a(G) for all e E E. Show' that
a connected a-critical graph has·no cut vertices.

7.1.3 A graph G is f3-critical if (3(G-e)<f3(G) for all e EE. Show that

(a) a' connected f3-critical graph has ooeut vertices;
(b)* if G is connected, then (3 <: !(B + 1).

7.2 RAMSEY'S THEOREM

In this section we deal only with simple graphs. A clique of a simple graph G
is a ~ubset S of V such that G[S] is complete. Clearly, S is a clique of G if
and only if S is an independent set of GC" and so the two concepts are
complementary.

If G has no large cliques, th~n one might expect G to have a large
independent set. That this is indeed the case was first proved by Ramsey
(1930). He showed that, given any positive integers k and l, there exists a
smallest integer r(k, I) such that every graph on r(k, I) vertices contains
either a clique ·of k vertices or an independent set of I vertices .. For example,
it is easy to see that

r(l, I) = r(k, 1)~ 1 (7.5)
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and
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r(2, ,I) = I, r(k, 2) = k (7.6)

The numbers r(k, l) are known as the Ramsey numbers. The following
theorem on Ramsey numbers is due to Erdos and Szekeres (1935) and
Greenwood and Gleason (1955).

Theorem 7.4 For any two integers k:> 2 and I>2

r(k, 1)< r(k, l- 1) + r(k - 1, I) (7.7)

Furthermore, if r(k, 1- 1) and r(k -1, I) are both even, then strict inequality
holds in (7.7).

Proof Let G be a graph on r(k, 1- 1) + r(k -1, I) vertices, and let v E V.
We distinguish two cases:

(i) v is nonadjacent to a set S of at least r(k, l- 1) vertices, or
(ii) v is adjacent to a set T of at least r(k -1, l) vertices.

Note that either case (i) or case (ii) must hold because the number of
vertices to which v is nonadjacent plus the number of vertices to which v is
adjacent is· equal tor(k, 1-1) + r(k -1, I) -1.

In case (i), G[S] 'contains either a clique of k vertices or an independent
set of l- 1 vertices, and therefore G[S U {v}] contains either a clique of k
vertices or an independent set of I vertice~. Similarly, in case (ii), G[T U {v}]
contains either a cliqu:e of k vertices or an independent set. of I vertices.
Since one of case (i) and ~ase (ii) must hold, it follows that G contains either
a clique of k vertice~ or an independent set of l vertices. This proves (7.7).

Now suppose that r(k, 1- ~) and r(k - 1, I) are both even, and let G be a
graph on r(k, 1- 1) + r(k -1, I) - 1 vertices. Since "G has an odd number of
vertices, if follows from corollary 1.1 that some vertex v is of even degree;
in particular, v ·cannot be adjacent to precisely r(k - 1, I) - 1 vertices.
Consequently, either case (i) or case (ii) "above hqlds, and therefore G

.contains either a clique of k vertices or an independent set of I vertices.
Thus

r(k, l)< r(k, l-l)+r(k -1, I)-I"

as stated 0

'The determination of' the Ramsey numbers in general is' a very. difficult
unsolved problem. Lower bounds can be obtained by the construction of
suitable graphs. Consider, for exatnple, the four graphs in figure 7.2.

The 5-cycle (figure 7.2a) contains no clique of thrOee vertices and no
independent set ,of three vertices. It shows, therefore, that

r(3, 3) >6 (7.8)
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Figure 7.2. (a) A (3,3)-Ramsey graph; (b) a (3,4)-Ramsey graph; (c) a (3,5)-Ramsey
. graph; (d) a (4,4)-Ramsey graph

The graph of figure 7.2b contains no clique of three vertices and no
independent set of four vertices. Hence

r(3,4»9

Similarly, the graph of figure 7.2c shows that

r(3, 5) >- 14

and the graph of figure 7.2d yields

r(4, 4):> 18

(7.9)

(7.10)

(7.11)

With the aid of theorem 7.4 and equations (7.6) we can now show that
equality in fact holds in (7.8), (7.9), (7.10) and (7.11). Firstly, by (7.7) and
(7.6)

r(3, 3) <: r(3, 2) + r(2, 3) = 6
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and therefore, using (7.8), we have r(3, 3) = 6. Noting that r(3, 3) and r(2, 4)
are both even, we apply theorem 7.4 and (7.6) to obtain

r(3', 4) < r(3, 3) + r(2, 4) -1·..·=:9

With (7.9) this gives r(3, 4) = 9. Now we again apply (7.7) and (7.6) to obtain

r(3, 5) < r(3, 4) + r(2, 5) = 14
and

r(4, 4) < r(4, 3) + r(3, 4) = 18

which, together with (7.10) and (7.11), respectively, yield r(3, 5)= 14 and
r(4, 4) = 18.

The following table shows all Ramsey numbers r(k, l) known ~o date.

123 4 5 6 7

1 1

2 1

3' 1

4 1

1 1 1 1 1 1

2 3 4 5 6 7

3 6 9 14 18 23

4 9 18

A (k, i)-Ramsey graph is a graph on r(k, l) -1 vertices that contains
neither a clique of k vertices nor an independent set of I vertices. By
definition of r(k, l) such graphs exist for all k:> 2 and l:> 2. Ramsey graphs
often seem to possess interesting structures. All of the graphs in figure 7.2
are Ramse.y graphs; the last two can be obtained from finite fields in the
following way. We get the (3, 5)-Ramsey gr~ph by regarding' the thirteen
vertices as elements of the field of integers modulo 13, and joining two
vertices· by an edge if their difference is a cubic residue of 13 (either ,1, 5, 8
or .1~); the (4, 4)-Ra~sey graph is. obtained by regarding the vertices as·
elements of the field of integers modulo 17, and joining two vertices if their
difference is a quadratic residue of 17 (either 1, 2, 4, 8, 9, 13, 15 or 16). It
has '-'been conjectured that the (k, k)-Ramsey graphs are always self
complementary (that is, isomorphic to their complements); this is true for
k = 2, 3 and 4.

In general, theorem 7.4 yields the following upper bound for r(k, l).

. (k+l-2)
Theorem 75 r(k, l) <: k -1

,'.

Proof By· :ipc,iuction on k + l. Using (7.5) and (7.6) we see that the
theorem holds w.llen k + l <: 5. Let m and n be positive integers, and assume
t.hat the theorem is .valid for all positive integers k and I such· that



Independent Sets a.nd Cliques 107

5 < k + I < m + n. Then, by theorem 7.4 and the induction hypothesis

r(m, n) <: r(m, n - 1) + r(m -1, n)

-< (m + n - 3) + (m + n - 3) = (m + n - 0

2)
m-1 m-2 m-l

'-rhus the theorem holds for all values of k and I 0

A lower bound for r(k, k) is given in the next theorem. It is obtained by
means of a powerful technique known as the probabilistic method (see Erdos
and Spencer, 1974). The probabilistic method is essentially a crude counting
argument. Although nonconstructive, it can often be applied to assert the
existence of a graph with certain specified properties.

Theorem 7.6 (Erdos, 1947) °r(k, k) >2k
/
2

Proof. Since r(l, 1) = 1 and r(2, 2) = 2, we may assume that k:> 3. De
note by 'Sn the set of simple graphs with vertex set {VI, V2, ••• , vn}, and by
'S~ the set of those graphs in 'Sn that have a clique of k vertices. Clearly

l'Snl = 2li) (7.12)

since each subset of the (;) possible edges ViVj determines a graph in 'Sn.
Similarly, the number of graphs in C§., having a particular set of k vertices as

a clique is 2m-m. Since there are (~) distinct k-element subsets of
{VI, V2, · .• , V n }, we have

By (7.12) and (7.13)

I'S~I <: (~)2(2)-m (7.13)

(7.14)I'S~I <: (n) -m nk2-m
l'Snl- k 2 < k !

Suppose, now, that n < 2k
/
2

• From (7.14) it follows that

1'Ij~1 2k2
/
22-m 2k

/
2

1

l'Snl < k ! = k! < 2

Therefore, fewer than half of the graphs in CDn contain a clique of k vertices~

Also, because 'Sn = {G IGC E C§n}, fewer than half of the graphs in C§n
contain an independent set of k vertices. Hence some graph in 'lln contains
neither a clique of k vertices nor an independent set of k vertices. Because
this holds for any n < 2k/2:1 we have r(k, k) >- 2k

/
2 D

From theorem 7.6 we can immediately deduce a lower bound for r(k, I).
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Corollary 7.6 If r:n = min{k, I}, then r(k, l) > 2m
/
2

All known lower bounds for r(k, I) obtain-ed by constructive arguments
are much weaker thalO. that given_ in corollary 7.6; the best is due to Abbott
(1972), who shows that r(2n + 1,2"+ 1):> 5"+ 1 (exercise 7.2.4).

The Ramsey numbers r(k, I) are sometimes defined in a slightly different
way from that given at the beginning of this section.- One easily sees that
r(k, I) can be thought of as the smallest integer n such that every 2-edge
colouring (E 1 , E 2) of K n cQntains either a complete subgraph on k vertices,
all of whose edges are in colour 1, or a complete subgraph on I vertices, all
of whose edges are in colour 2. Expressed in this form, the Ramsey numbers
have a natural generalisation. We define r(k 1 , k2 , ••• , km ) to be the smallest
integer n such that every m-edge colouring (E 1 , E 2 , ••• , Em) of Kn contains,
for some i, a complete subgraph on k i vertices, all of whose edges are in
colour i. -

Tl~e following theorem and corollary generalise (7.7) and theorem· 7.5,
and can be proved in a similar manner. They are left as-an exercise (7.2-.2).

Theorem 7.7 r(k}, k2~ ... , km )-< r(k1-l, k 2 , ••• -, km )+
t(k 1, k2 -1, ... , km )+ ... +r(k 1 , k 2 , ••• , km-l)-m +2

Exercises -:

7.2.1 Show that, for _all k and " r(k, l) = r(l, k).
7.2.2 Prove theorem 7.7 and corollary 7.7.
7.2.3 Let rn denote the Ramsey number r(k 1, k2 , ••• , kn) with k i = 3 for all

I.

(u) Show that Yo -< n(rn-l - 1) + 2..
(b ) Noting that r2 = 6, use (a) to show that rit < [n! e] + 1.
(c) Deduce that '3 <: 17.

(Greenwood and Gleason, 19-55 have shown -that r3 = 17.)

7.2-.4 The composition ~f simple g-raphsG _and H is the simple graph G[H]
with vertex set V(G) x V(H), in which (u, v) is adjacent to (u', v') if
and only if either UU'E E(G) or u = it' and vv' E E(H).

(a)- Sho'w that a(G[H])-< a(O)a(H).
(b) Using (a), show that·

r(kl +1, kl + 1.) -1 >- (r(k + 1,·k + 1)-1) x (r(l_.+ 1, 1+1)-1)

(c) Deduce that r(2n
~-1, 2" + 1) > 5° + 1 for all n':> o.

(H. L. Abbott) -
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7.2.5 Show that the join of a 3-cycle and a 5-cycle contains no K6 , but that
every 2-edge colouring yields a monochromatic triangle.

(R. L. Graham)
(Folkman, 1970 has constructed a graph containing no K4 in which

every 2-edge colouring yields a monochromatic triangle-this graph
has a very large number of vertices.)

7.2.6 Let Gt, G 2 , ••• ,Gm be simple graphs. The generalised Ramsey
number r(Gt, G 2, ••• , G m) is the smallest integer n such that every
m-edge colouring (E 1, E 2, ••• ,Em) of Kn contains" for some i, a
subgraph isomorphic to G i in colour i. Show that

(a) if G is a path of length three and H is a 4-cycle, then
r(G, G) =5,r(G, H) = 5 and r(H, H) = 6;

(b)* if T is any tree on m vertices and if m -1 divides n -1, then
r(T, K1,n) = m + n - 1;

(c)* if T is any tree on m vertices, then r(T, Kn) = (m -1)(n -1)+ 1.
(V. Chvatal)

7.3 TURAN'S THEOREM

In this section, we shall prove a well-known theorem due to Turan (1941).
It determines the maximum number of edges that a simple graph on v
vertices can have without containing a clique of size m + 1. Turan's theorem
has become the basis of a significant branch of graph theory known as
extremal graph theory (see Erdos, 1967). We shall derive it from the
following result of 'Erdos (1970).

Theorem 7.8 If. a simple graph G contains no Km+ 1, then G is degree
majorised by some complete m-partite graph H. Moreover, if G has the
same degree sequence as H, then G:::: H.

Proof By induction on m. The theorem is trivial for m = 1. Assume that
it holds for all m < n, and let G be a simple graph which contains no Kn + 1•

Choose a vertex u of degree a in G, and set G 1 = G[N(u)]. Since G
contains no Kn+ 1 , G 1 contains no K n and therefore, by the induction
hypothesis, is degree-majorised by some complete (n -I)-partite graph H •.

Next, set V. = N(u) and V2 = V\VI, and denote by G 2 the graph whose
vertex set is V2 and whose edge set is empty. Consider the join G 1 v G2 of
G t and ·G2 • Since ~

(7.15)

and since each vertex of V2 has degree a in G 1 v G 2 , G is degree-majorised
-by G 1 v G 2 • Therefore G is also degree-majorised by the complete n-partite
graph H = HI V G 2 • (See figure 7.3 for illustration.)
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Another diagram of G
with G, =G[N(u)] indicated

5

5

5

5

5

5

5

5

5

5

5

5

G, v G
2

(5,5,5,5,5,5,5,5)

Figure 7.3

Suppose, now, that G has the same degree sequence as H. Then G has
the same degree sequence as G I v G 2 and hence equality must hold in (7.15).
Thus, in G, every vertex of VI must be joined to every vertex of V2 • It
follows that G = G 1 V G 2 - Since G = G 1 V G2 has the same degree sequence
as H =HI V O 2 , the graphs G I and HI must have the same degree sequence
and therefore, by the induction hypothesis, be isomorphic. We conclude that
G:::: H 0

It is interesting to note that the above theorem bears a striking si~ilarity

to theorem 4.6.
Let Tm,n denote the complete m-partite graph on n vertices in which all

parts are as equal in size as possible; the graph H of figure 7.3 is T3,s.

Theorem 7.9 If G is simple and contains no Km+l, then e(G) <: e(Tm •v ).

Moreover, £(G) = e(Tm,lI) only if G:::: Tm,v.
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Proof Let G be a simple graph that contains no Km+ 1• By theorem 7 .8, G
is degree-majorised by some complete m-partite graph H. It follows from
theorem 1.1 that

e(G) < e(H)

But (exercise 1.2.9)

e(H) < e(Tm,v)

Therefore, from (7.16) and (7.17)

B(G)< B(Tm,v)

(7.16)

(7.17)

(7.18)

proving the first assertion.
Suppose, now, that equality holds in (7.18). Then equality must hold in

both (7.16) and (7.17). Since e(G) = e(H) and G is degree-majorised by H,
G must have the same degree sequence as H. Therefore, by theorem 7.8,
G == H. Also, since £ (H) = e(Tm,.,), it follows (exercise 1.2.9) that H == Tm,v.

We conclude that G ~ Tm,lJ ·0

Exercises

7.3.1 In a group of nine people, one person knows two of the others, two
people each know four others, four each. know five others, and the
remaining two each know six oth.ers. S.how that 'there are three
people who all know one another.

7.3.2 A certain bridge club has a special rule to the effect thal four
members may play together only if no two of them have previously
partnered one another. At one meeting fourteen members, each of
whom has previously partnered five others, turn up. Three games are
played, and then proceedings come to a halt because of the club rule.
Just as the members are preparing to leave, a new member, unknown
to any of them, arrives. Show that at least on'e more g'ame can now
be played..

. 7.3~3 (a) Show that if G is simple and e > v 2 /4, then G contains a
. triangle.

(b)· Find a simple graph G with e = [v 2/4] that contains no triangle.
(c)* Show that if G is simple and· ·not bipartite with E >

«v - 1)2/4) + 1, then G contains a triangle.
(d) Find a simple non-bipartite graph G with e = [(v - 1)2/4] + 1

that containsno triangle. . (P. Erdos)

7.3.4 (a)* Show. that if G is simple andv~(d~v»)>(m~1)(;), then G
contains K 2•m (m:> 2).

1 3

(m -1)2V2 v
(b ) Deduce that if G is simple and e > 2 +4' then G

contains K2•m (m:> 2}.



112

7.3.5

Graph 'Theory with Applications

(c) Show that, given a set of n points in the plane, the number of
pairs of points at distance exactly 1 is at most n!/J2 + n/4.

. (m _1)1/m v2-1/m (m -l)v
Show that if G is simple and e > 2 + 2 then G

contains Km •m •

APPLICATIONS

7.4 SCHUR'S THEOREM

Consider the partition ({I, 4,1.0, 13}, {2, 3,11, 12}, {5, 6, 7,8; 9}) of the set
of .integers {I, 2, ... , 13}. We observe that in no subset of the partition are
there integers x, y and z (not necessarily distinct) which satisfy the equation

x+y=z (7 ..19)

Yet, no matter how we partition {I, 2, ... , 14} into three subsets, there
always .exists a subset of the partition which. contains a solution to (7.19).
Schur (1916) proved that, in general, given any positive integer n, there
exists an integer fn such that, in any partition of {I, 2, ... , In} into n subsets,
there is ~ subset which contains a solution to (7.19). We shall show how
Schur's theorem follows from the existence of the Ramsey numbers rn

(defined in exercise 7.'2.3).

·Theorem 7. )'0 Let (51, 52, ... ,So) be any partition of the set of integers
{1, 2, ... ,rn}. Then, for some i, Si contains three integers x, y and z
satisfying the equation x +.Y = z.

.Proof Consi.der the complete graph whose vertex set. is {I, 2, ... , rn}.
Colour the edges of this graph in colours 1, 2, ... ,n by the rule that the
edge uv is assigned colour j if and only if Iu - vi E Sj. By Ramsey's theorem
(7.7) there exists a mo~ochromatic triangle; that is, there are three' vertices
a, band c such that ab, be and ,ca have the same colour, say i. Assume,
without los~ of generality that a> b > c and write x. = a - b, y = b -'c and
z = a-c. Then x, y, Z E Si -and x + y = z 0

Let So denote the least integer such that, in any partition of {1, 2, ... , so}
into n subsets, there is a subset which contains a solution to (7.19). It can he
easily seen that 51 = 2, 82 = 5· and S3 = 14 (exercise 7.·4.1). Also, from theorem
7.10 a~d exercise 7.2.3 we have the upper bound

Sn <: rn < [n! e.l+ 1

Exercise7.4.2b provides a lower bound for Sn-
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Exercises

7.4.1 S'how that 81 = 2, S2 = 5 and S3 = 14.
7.4.2 (a) Show that So > 3sn - 1 - 1.

(b) Using (a) and the fact that S3 = 14, show that Sn:> !(27(3)O-3 + 1).
(A better lower bound has been obtained by Abbott and Moser,
1966.)

7.5 A GEOMETRY PROBLEM

The diameter of a set S of points in the plane is the maximum distance
between two points of S. It should be noted that this is a purely geometric
notion and is quite unrelated to the graph-theoretic concepts of diameter
and distance.

We shall discuss sets of diameter 1. A set of n points determines (;)

distances between pairs of these points. It is intuitively clear that if n is
'large', then some of these distances must be 'small'. Therefore, for any d
between 0 and 1, we can ask how many pairs of points in a set
{Xl, X2, ••• ,xn} of diameter 1 can be at distance greater than d. Here, we
shall present a solution- to one special case of this problem, namely when
d = 1/J2.,

As an illustration, consider the case n = 6. We then have 'six points Xl, X2,

X3, X4, Xs and X6. If we place them at the vertices of a regular hexagon so that
the pairs (Xl, X4), (X2, xs) and (X3, X6) are at distance 1, as shown in figure
7.4a, these six points constitute a set -of diameter 1.

It is easily calculated that the pairs (Xl, X2), (X2, X3), (X3, X4), (X4, Xs), (Xs, X6)
and (X6, Xl) are at distance 1/2, and the pairs (Xl, Xj), (X2, X4), (X3, Xs), (X4, X6),
(Xs, Xl) and (X6, xi) are at distance J3/2. Since J3/2 > J2/2 = 1/J2, there are
nine pairs of points at distance greater than 1/J2 in this set of diameter 1.

(a )

x,

Figure 7.4



114 ' Graph Theory with Applications

However, nine is not the best that we can do with six points. By placing the
points in the configuration shown in figure 7Ab, all pairs of points except
(Xl, X2), (X3, X4) and (xs, X6) are at distance greater than 1/.J2. Thus we have
twelve pairs at distance greater than 1/.J2; this is, in fact, the best we can do.
The solution to the problem in general is given by the following theorem.

Theorem 7.11 If {Xl, X2, ••• ,xn } is a set of diameter 1 in the plane, the
maximum possible number of pairs of points at distance greater than 1/.J2 is
[n 2/3]. Moreover, for each n, there is a set {Xl, X2, ••• , xn} of diameter 1 with
exactly [n 2/3] pairs of points at distance greater than 1/.J2.

Proof Let G be the graph defined by

V(G) = {Xl, X2, ••• , Xn}.

and
E(G) = {XiXj Id(Xi, Xj) > 1/.J2}

where d(xi, Xj) here denotes the euc.lidean distance betweeQ Xi and Xj. We
shall show that G cannot contain a K 4 •

First, note that any four points in the plane. must determine an angle of at
least 90°. For the convex hull of the points is either (a) a line, (b) a triangle,
or (c) a quadrilateral (see figure 7.5). Clearly, in each case there is an angle
XjXjXk of at least 900

• .

Now look at the three points Xi, Xj, Xk which determine this angle..Not all
the distances d(Xi, Xj), d(Xi, Xk) and d(Xh Xk) can be greater than 1/.J2 and
less than or equal to 1. For, if d(Xi, Xj) > 1/.J2 and d(xj, Xk) > 1/.J2, then
·d(xi, Xk) > 1. Since the set {Xl, X2, ••• , xn} is assu·med. to have diameter 1, it
follows that, of any four points in G, at least one pair cannot be joined by an
edge, and hence that G cannot contain a K 4 • .By Tllran's theorem (7.9) .

e(G) <: e(T3,n) = [n 2/3]

One can construct a set {Xl, X2, ••• ,xn} of diameter 1 in which exactly

Xi

(a) . (b)

Figure 7.5

(c )
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[n
2/3J pairs of points are at distance greater than l/J2 as follows. Choose r

such that' 0 < r < (1- l/J2)/4, and draw three circles of radius r whose
centres are at a distance of 1- 2r from one another (figure 7.6). Place
Xl, • • • , X[n/)) in one circle, X[n/3)+1, ••• ,X[2n/3) in another, and xr::!n::\]+l~ ., •• , X n in
the third, in such a way that d(xI, xn ) = 1. This set clearly has diameter 1.
Also, d(xi, Xj) > l/J2 if and only if Xi and Xj are indifferent circles, and, so
there are exactly [n 2/3] pairs (Xi, Xj) for which d(xi, Xj) > l/J2 ,0 .

Exercises

7.5.1* Let {Xl, X2, .•. , xn } be a set of diameter 1 in the plane.

(a) Show that the maximum possible number of pairs of points at
distance 1 is n.

(b) Construct a set {Xl, X2, ... ,xn } of diameter 1 in the plane in
which exactly n pairs of points are at distance 1. (E. Pannwitz)

7.5.2 A flat circular city of radius six miles is patrolled by eighteen police
cars, which communicate with one another by radio. If the range of a
radio is nine miles, show that, at any time, there are always at least
two cars each of which can communicate with at least five other cars.
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8 Vertex Colourings

8.1 CHROMATIC NUMBER

In chapter 6 we studied edge colourings of graphs. We now turn our
attention to the analogous concept of vertex colouring.

A k -vertex colouring of G is an assignment of k colours, 1, 2, ... , k, to
the vertices of G; the colouring is proper if no two distinct adjacent vertices
have the same colour. Thus a proper k-vertex colouri~g of a loopless graph
G is a partition (VI, V 2 , ••• , V.) of V into k (possibly empty) independent
sets. G is k-vertex-colourable if G has a proper k-vertex colouring. It will
be convenient to refer to a 'proper vertex colouring' as, simply, a colouring
and to a 'proper k-vertex colouring' as a k-colouring;we shall similarly
abbreviate 'k-vertex-colourable' to k-colourable.' Clearly, a graph is k
colourable if and only if its underlying simple graph is k-colourable.
Theref~re, in discussing colourings, we shall restrict oU,rselves to simple

'graphs; a simple graph is 1-colourable if and only if it is empty, and
2-colourable if and only 'if it is bipartite. The chromatic number, x(G), of, G
is the minimum k for which G is k-colourable; if X(G) = k, G is said to be
k-chromatic. A 3-chromatic graph is shown in figure 8.1. It has the indicated

"o3-colouring, and is not 2-colourable since' it is not bipartite.
It is helpful, when dealing with colourings, to study the properties of a

special class of graphs called critical graphs. We say that a graph G is critical
if X(H) < x(G) for' every proper subgr,aph H of G. Such. graphs were first
investigated by D.irac (1954). A k-critical graph is one that is k-chromatic
and critical; every k-chromatic graph has a k-critical subgrilph. A 4-critical
graph" due to Grotzsch (1958), is shown in figure 8.2.

An easy consequence of the definition is that every critical graph is
connected. The following theorems establish some of the basic properties of
critical graphs.

Theorem 8.1 If G is k -critical, then 8:> k - 1 ~'

Proof By contradiction. If possible, let G be a k -critical graph with
a< k -1, and let v be a vertex of degree 8 in G. Since G is k-critical, G - v
is (k -l)-colourable. Let (VI, V 2 , ••• , Vk - I) -be a (k - I)-colouring of G - v.
By definition, v is adjacent in G to 5 < k -'I v'ertices, and therefore v must
be nonadjacent in G to every vertex of some Vj. But then (Vt , V 2 , ••• , V j U
{v}, ... , Vt - t ) is a (k -I)-colouring of G, a contradiction. Thus 8> k -1 0
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Figure 8.1. A 3-chromatic graph

Corollary 8.1.1 Every k-chromatic graph has at least k vertices of degree
at least k -1.

Proof Let G be a k-chromatic graph, and let H be a k-critical subgraph
of G. By theorem 8.1, each vertex of H has degree at least k -1 in H, and
hence also in G. The corollary now follows since H; being k-chromatic,
clearly has at least k vertices 0

Corollary 8.1.2 . For any graph G,

x<~+l

Proof This is an immediate consequence of corollary 8.1.1 0

Figure 8.2. The Grotzsch graph-a 4-critical graph
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Let S be a vertex cut of a connected graph G, and let the ·components of
G - S have vertex sets VI, V 2 , ••• , Vn • Then the subgraphs G i = G[V U S]
are called the S-components of G (see figure 8.3). We say that colourings of
G I , G2, ... , Gn agree on S if, .for every v E 5, vertex v is assigned the same
colour in each of the colourings..

Theorem 8.2 In a critical graph, no vertex cut is a clique.

Proof By contradiction. Let G be a k-critical graph, and suppose that G
has a vertex cutS that is a clique. Denote the S-components of G r
G t , G2 , ••• , G n • Since G is k -critical, each G i is (k - l)-colourable. Furth~ ·
more, because S is a clique, the vertices in S must receive distinct colours in
any (k -I)-colouring of Gi~ It follows that there are (k -I)-colourings of
G t , G 2 , ••• ,Gn which agree on S. But these colourings together yield a
(k -I)-colouring of G, a contradiction 0

Corollary 8.2 Every critical graph is a block.

Proof If v is a cut vertex, then {v} is a vertex cut which is also, trivially, a
clique. It follows from theorem 8.2 that no critical graph has a cut vertex;
equivalently, every critical graph is a block 0 .

Another consequence of theorem 8.2 is that if a k -critical graph G has a
2-vertex cut .{u, v}, then u and v cannot be adjacent. We shall say that a
{u,v}-component G i of G is of type 1 if every (k -'I)-colouring of G i assigns
the same colour to u"and v, and of t.ype 2 if every (k -I)-colouring of G i

assigns different colours to u and v (see figure 8.4).

Theorem 8.3 (Dirac, 1953) Let G be a k-critical·graph with a 2-vertex cut
{u, v}. Then

(i) G = G t U G 2 , where G i is a {u, v}-component of type i (i = 1,2), and

(0) (b)

Figure 8.3. (a) G; (b) the {u, v}-components of G
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v
Type 1

v v
Type 2

Figure 8.4

(ii) both G1 + uv and G2 • uv are k-critical (where G 2 • uv denotes the graph
obtained from G2 by identifying u and v).,

Proof (i) Since G is critica~, each {u, v}-component of G is (k -1)
colourable. Now there cannot exist (k -1)-colourings of these {u, v}
components all of which agree on {u, v}, since such colourings would
together yield a (k -I)-colouring of G. Therefore there are two {u, v}
components G1and G 2 such that no (k -I)-colouring of G1agrees with any
(k -I)-colouring of G2 • Clearly one, say GJ" must be of type I and the
other, G

2
, of type 2. Since G t and G 2 are of different types, the subgraph

G1U G
2

of G is not (k -I)-colourable. Therefore, because G is critical, we
must have G = G 1 U G 2 •

(ii) Set H 1 = G t + uv. Since G t is of type 1, H t is k-chromatic. We shall
prove that H t is critical by showing that, for every edge e of HI, H t - e is
(k -l)-colourable. This is clearly so if e= uv, since then H t - e = G t • Let e
be some other edge of H t • In any (k -I)-colouring of G - e, the vertices u
and v must receive different colours, since G2 is a subgraph of G - e. The
restriction of such a colouring to the vertices of G t is a (k -l)-colouring of
H 1 - e. Thus G 1 + uv isk -critical. An analogous argument shows that G2 • UV

is k-critical 0

Corollary 8.3 Let G be a k-critical graph with a 2-vertex cut {u, v}. Then

d(u) + d(v).~3k - 5 (8.1)

Proof Let G1 be the {u, v}-component of type 1 and G2 the {u, v}
component of type 2. Set -H1 = G 1 + uv and H2 = G2 • uv. By theorems 8.3
and 8.1

and
dH2(w»k-l

where w is the new vertex obtained by identifying u and v.

It follows that



Vertex Colourings

and
121

These two inequalities yield (8.1) 0

Exercises

8.1.1
8.1.2

8.1.3

8.1.4

8.1.5

8.1.6*

8.1.7

8.1.8

8.1.9

8.1.10

8.1.11

8.1.12
8.1.13

Show that if G is simple, then X";?V 2/(v 2 -2B).
Show that if any two odd cycles of G have avertex in common,
then X -< S".
Show that if G has degree sequence (d

"
dz, • •• , d,,) with d 1 >d2 ";?

· · .:> dv , then X <max min {d i + 1, i}.
i

(D. J. A. Welsh and M. B. Powell)
Using exercise 8.1.3, show that

(a) X < {(2e)!};
(b) X(G)+X(GC)<v+1. (E.A. Nordhaus and J. W. Gaddum)
Show that X(G) <: 1 +max 8(H), where the maximum is taken over
all induced subgraphs H of G. (G. Szekeres and H. S. Wilf)
If a k-chromatic graph G has a colouring in which each colour is
assigned to at least two vertices, show that G has a k-colouring of
this type. (T. Gallai)
Show that the only I-critical graph is Kt , the only 2-critical graph is
K 2 , and the only 3-critical graphs are the odd k-cycles with k ";? 3.
A graph G is uniquely k-colourable if any two k-colourings of G
induce the same partition of V. Show that no vertex cut of a
k-critical graph induces a uniquely (k -I)-colourable subgraph.
(a) Show that if u and v are two vertices of a critical graph G, then.

N(u)~N(v).

(b) Deduce that no k-critical graph has exactly k + 1 vertices.
Show that

(a) X(G1 v G2 ) = X(G1)+ X(G2);.

(b) G 1 v G2 is critical if and only if both G 1 and G 2 are critical.

Let G 1 and G2 be two k-critical graphs with exactly one vertex v in
common, and let vv I and VV2 be edges of G 1 andG2 • Show that the
graph (G1 -VVt)U(G2 -VV2)+VIV2 is k-critical. (G~ Haj6s)
For n = 4 and all n > 6, construct a 4-critical graph on n vertices.
(a)* Let (X, Y) be a partition of V such that G[X] and G[Y] are

both n-colourable. Show that, if the edge cut [X, Y] has at
most n -1 edges, then G is also n-colourable.

(P. C. Kainen)
(b) Deduce that every k-critical graph is (k -I)-edge-connected.

. (G. A. Dirac)
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8.2 BROOKS'THEOREM

The upper bound on chromatic number' given in corollary 8.1.2 is sometimes
very much greater than the actual value. For example, bipartite graphs are
2-chromatic, but can have arbitrarily large maximum degree. In this sense
corollary 8.1.2 is a considerably weaker result than Vizing's theorem (6.2).
There is another sense in which Vizing's result is stronger. Many graphs G
satisfy X' = A+ 1 (see exercises 6.2.2 and 6.2.3). However, as is shown in the
following theorem due to Brooks (1941), there are only two types of graph
G for which X = A+ 1. The proof of Brooks' theorem given here is by
Lovasz (1973).

Theorem 8.4 If G is a connected simple graph and is neither an odd cycle·
nor a complete graph, then X -< A.

Proof Let G be a k-chromatic graph which satisfies the hypothesis of the
theorem. Without loss of generality, we ~ay assume that G is k-critical. By
corollary 8.2, G is a block. Also, since I-critical and 2-critical graphs are
complete and 3-critical graphs are odd cycles (exercise 8.1.7), we have k >4.

If G has a 2-vertex cut{u, v}, corollary 8.3 gives

2A> d(u) + d(v):> 3k - 5 >2k-1

This implies that X = k -< ,A, since 2A is even.
Assume, then, that G is 3-connected. Since G is not complete, there are

three vertices u, v andwin G such that UV, vw E E and uw e E (exercise
1.6.14). Set U = Vt and w = V2 and. let V3, V4, ••. , Vv = v be any ordering of
the vertices of G - {u, w} such that each Vi is adjacent to some Vj with j > i.
(This can be achieved by arranging the vertices of G - {u, w} in nonincreas
ing order of their distance from v.) We can now describe a A-colouring of
G: assign colour 1 to VI = U and V2 = w; then successively colour
V3, V4, ••. , vv , each with the first available colour in the list 1, 2, ... ,A. By
the construction 'of the sequence VI, V2, ••• , Vv , each vertex Vi, 1<: i -< v -1, is
adjacent to some vertex Vj with j> i, and therefore to at most A-1 vertices
Vj with j < ,i. It follows that, when its turn comes to be coloured, Vi, is
adjacent to at most a-1 colours, and thus that one of the colours
1, 2, ... , A will be available. Finally, since vv is adjacent to two vertices of
colour 1 (namely VI and tJ2), it is adjacent to at most A~ 2 other colours and
can be assigned one of the colours 2, 3, ... ,A 0

Exercises

8.2.1 Show that Brooks' theorem is equivalent to the following statement:
if G is k-critical (k >4) and not complete, then 2£ :> v(k -1)+ 1.
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8.2.2 Use Brooks' theorem to show that if G is loopless with 4 =3, then
X'<4.

8.3 HAlOS' CONJECTURE

A subdivision of a graph G is a graph that can be obtained from G by a
sequence of edge subdivisions. A subdivision of K 4 is shown in figure 8.5.
Although no necessary and sufficient condition for a graph to be k
chromatic is known when k > 3, a plausible necessary condition has been
proposed by Hai.6s (1961): if G is k-chromatic, then G contains a subdivi
sion of K k • This is known as Hajas' conjecture. It should be noted that the
condition is not sufficient; for example, a4-cycle is a subdivision of K 3, but
is not 3-chromatic.

For k = 1 and k = 2, the validity of Hajos' conjecture is obvious. It is also
easily verified for k = 3, because a 3-chromatic graph necessarily contains an
odd cycle, and every odd: cycle is a subdivision of K 3 • Dirac (1952) settled
the case k = 4.

Theorem 8.5 If G is 4-chromatic, then G contains a subdivision of K 4 •

Proof Let G be a 4-chromatic graph. Note that if some subgraph of G
contains a subdivision of K 4 , then so, too, does G. Without loss of general
ity, therefore, we may assume that G is critical, and hence that G is a block
with 8:> 3. If v = 4, then G is K4 and the theorem holds trivially. We
proceed by induction on v. Assume the theorem true for all 4-chromatic
graphs with fewer than n vertices, and let v(G) = n > 4.

Suppose, first, that G has a 2-vertex cut {~,v}. By theorem 8.3, G has two
{u, v}-components G 1 and G 2, where G 1 + uv is 4-critical. Since v(G I + uv) <
v(G), we can apply the induction hypothesis and d"educe that G 1 + uv

Figure 8.5. A subdivision of K..
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contains a subdivision of K 4 • It follows that, if P is a (u, v)-path in G 2, then
Gt U P contains a subdivision of K4- Hence so, too, does G, since G1 U P c G.

Now suppose that G is 3-connected. Since 8:> 3, G has a cycle C of
length at least four. Let u and v be nonconsecutive verti~es on C. Since
G - {u, v} is connected, there is a path P in G - {u, v} connecting the two
components of C -{u, v}; we may assume that the origin x and the terminus
yare the only vertices of P on C. Similarly, there is a path Q in G - {x, y}
(see figure 8.6).

If P and Q have no vertex in common, then CU P U Q is a subdivision of
K 4 (figure 8.6a). Otherwise, let w be the first vertex of P on Q, and let P'
denote the (x, w)-section of P. Then C U P' U Q is a subdivision of K4 (figure
8.6b). Hence, in both cases, G contains a subdivision of K4 0

Haj6s' conjecture has not yet been settled in general, and its resolution js
known to be a very difficult problem. There is a related conjecture due to
Hadwiger (1943): if G is k-chromatic, then G is 'contractible' to a graph
which contains K k • Wagner (1964). has shown that the case k = 5 of
Hadwiger's conjecture is equivalent to the famous four-colour conjecture, to
be discussed in chapter 9.

Exercises

8.3.1* Show that if G is simple and has at most one vertex of degree less
than three, then G contains a subdivision of K4 •

8.3.2 (a)* Show that if G is simple with v~4 and B:>2v-:-2, then G
contains a subdivision of K 4 •

(b) For v:> 4, find a simple graph G. with B= 2v - 3 that contains
no subdivision· of K4 •

x

(a )

Figure 8.6

x

( b)
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8.4 CHROMATIC POLYNOMIALS
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In the study of colourings, some insight can be gained by considering not
only the existence of colourings but the number of such colourings; this
approach was developed by Birkhoff (1912) as a possible means of attacking
the four-colour conjecture.

We shall denote the number of distinct k-colourings of G by 1Tk(G); thus
7Tk(G) > 0 if and only if G is k -colourable. Two colourings are to be
regarded as distinct if some vertex is assigned different colours in the two
colourings; in other words, if (VI, V 2 , ••• , Vk ) and (V~, V~, ... , V~) are two
colourings, then (VI, V 2 , ••• , Vk ) = (V;, V~, ... , V~) if and only if Vi = V:
for 1 <: i' <: k. For example, a triangle has the six distinct 3-colourings shown
in figure 8.7. Note that even though there is exactly one vertex of each
colour in each colouring, we still regard these six colourings as distinct.

If G is empty, then each vertex can be independently assigned anyone of
the k available colours. Therefore 7Tk(G) = k V. On the other hand, if G is
complete, then there are k choices of colour for the first vertex, k - 1
choices for the second, k - 2 for the third, and so on. Thus, in this case,
1Tk(G) = k(k -1) ... (k - v + 1). In general, there is a simple recursion .for
mula for 1Tk(G). It bears a close resemblance to the recursion formula for
T(G) (the number of spanning trees of G), given in theorem 2.8.

Figure 8.7

Theorem 8.6 If G is simple, then 1Tk(G) = 1Tk(G - e) -1Tk(G · e) for any edge
e of G. .

Proof Let u and v .be the ends ofe. To each k~colouring of G - e that
assigns the same colour to u ~nd v, there corresponds a k -colouring. of G · e
in which the vertex of G· e formed by identifying u and v is assigned the
common colour of u and v. This correspondence is clearly a bijection (see
figure 8.8). Therefore '7Tk(G· e) is' 'precisely the number of" k-colourings of
G - e in which u and v are assigned the same colour. '

Also, since each k-,colouring of G ~ e that assigns different colours tou
and v is" a k -colouring of G, and conversely,1Tt(G) is the number of
k -colourings of G - e in which u and v are assigned different colours. It
follows that 1Tk(G -e) = 1Tk(G) + 7Tk(G· e) 0
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Figure 8.8
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Corollary 8.6 For any graph G, '7Tk(G) is a polynomial in k of degree v,
with integer coefficients, leading term k" and constant term zero. Further-
more, the coefficients of '7Tk(G) alternate in sign.

Proof By induction on e. We may assume, without loss of generality,
that G is simple. If e = 0 then, as has already been noted, '7Tk(G) = k", which
trivially satisfies the conditions of the corollary. Suppose, now, that the
corollary holds for all graphs with fewer than m edges, and let G be a graph
with m edges, where m:> 1. Let e be any edge of G. Then both G - e and
G · e havem - 1 edges, and it follows from the induction hypothesis that
there are non-negative integers a., a2, ... , a..-I and b., b2, · · · , b,,-2 such that

",-I

'7Tk(G-e)= L (_l)"-iaiki+k"
i-I

and ,,-2
'7Tk(G •e) = L (-1)"-:-1biki+ k ,,-I

i-I

,,-2

=L (-1)"-i(ai+bi)ki -(a..-I+l)k"-I+k"
i-I

Thus G, too, satisfies the conditions of the corollary. The result follows by
the principle of induction 0

By virtue of corollary 8.6, we can now refer to the function 1Tk(G) as the
chromatic polynomial of G. Theorem 8.6 provides a means of calculating the
chromatic polynomial of a graph recursively. It can be used in either of two
ways:

(i) by repeatedly applying the recursion '7Tk(G) = '7Tk(G - e) - '7Tk(G · e), and
thereby expressing '7Tk(G) as a linear. combination of chromatic polyno-
mials of empty graphs, or

(ii) by repeatedly applying the recursion '7Tit(G - e) = '7Tk(G) + '7Tk(G · e), and
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Figure 8.9. Recursive calculation of 1Tk(G)
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thereby expressing 'TTk(G) as a linear combination of chromatic polyno
mials of complete graphs.

Method (i) is more suited to graphs with few edges, whereas (ii) can be
applied more efficiently to graphs with many edges. These· two methods are
illustrated in figure 8.9 (where the chromatic polynomial of a graph is
represented symbolically by the graph itself).

The calculation of chromatic polynomials can sometimes be facilitated by
the use of a number of formulae relating the chromatic polynomial of G to
the chromatic polynomials of various subgraphs of G (see exercises 8.4.5a,
8.4.6 and 8.4.7). However, no good algorithm is known for finding the
chromatic polynomial of a graph. (Such an algorithm would clearly provide
an efficient way to determine the chromatic number.)

Although many p.roperties of chromatic polynomials are known, no one
has yet discovered which polynomials are chromatic. It has been conjectured
by Read (1968) that the sequence of coefficients of any chromatic polyno
mial must first rise in absolute value and then fall-in other words, that no
coefficient may be flanked by two coefficients having greater absolute value.
However, even if. true, this condition, together with the conditions of
corollary 8.6, would not. be enough. The polynomial k 4 -3k 3 +3k 2

, for
example, satisfies all these c.onditions, but still is not the chromatic polyno
mial of any graph (exercise 8.4.2b) .

.Chromatic polynomials have been used with some success in the ~tudy of
planar graphs, where their roots exhibit an unexpected regularity (see Tutte,
1970). Further results. on chromatic polynomialsc~nbefound in the lucid
survey article by Read (1968).

Exercises
8.4.1 Calculate the chromatic polynomials of the following two graphs:

8.4.2 . (a) Sh.ow, by means of theorem 8.6, that if G is simple·, then the
coefficient of k v

-
1 in 'lTk(G) is -E.

(b) Deduce that no graph has ,chromatic polynomial k 4 - 3k 3 + 3k 2.

8.4.3 (a) Show that if G is a tree, then 1Tk(G) = k(k - l)V-l.
(b) Deduce that if G is connected, then 7Tk(G) s; k (k _l)V-l, and

show that equality holds only when G is a tree.
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8.4.4 Show that if G is a cycle of length n, then 7Tk(O) =
(k -l)"+(-l)n(k -1).

8.4.5 (a) Show that 1Tk(G v K 1) = k7Tk-l(O).
(b) Using (a) and exercise 8.4.4, show that if 0 is a wheel with n

spokes, then 1Tk(G)"= k(k -2)n+(-1)Dk(k -2).
8.4.6 Show that if G t , G 2 , ••• , Ow are the components of 0, then 1Tk(O) =

1Tk( G t ) 7Tk(O 2 ) ••• 1Tk(Gw ).

8.4.7 Show that if G n H is complete, then 1Tk(G U H)7Tk(0 n H) =
7Tk(G) 7Tk(H).

8.4.8* Show that no real root of '1Tk( G) is greater than v. (L. Lovasz)

8.5 CJIR1~H AND CHROMATIC NlJ~1BER

In any colouring of a graph, the vertices in a clique must all be assigned
different colours. Thus a graph with a large clique necessarily has a high
chromatic number. What is perhaps surprising is that there exist triangle
free graphs with arbitrarily high chromatic number. A recursive construction
for such graphs was first described by Blanches Descartes (1954). (Her
method, in fact,. yields graphs that possess no cycles of length less than six.)
We describe here an 'easier construction due to Mycielski (1955).

Theorem 8.7 For any positive integer k, there exists a k -chromatic graph
containing no triangle.

Proof For k = 1 an'd k == 2, the graphs K 1 and K 2 have the required
property. We proceed. by illducti~n on k.. Suppose that we have already
constructed a triangle-free graphGk with chromatic number k ::> 2. Let the
vertices of G k be VI, V2, ... , vn • Form a new graph Ok+l from Ok as follows:
add n + 1 new vertices Ul, U2, .•. , Un, v, and then, for 1<: i <: n, join Ui to the
neighbours of Vi and to· ·v. For example, if O 2 is K 2 then 0 3 is the 5-cycle and
G 4 the Grotzsch graph (see figure 8.10).

The graph G k + 1 clearly has no triangles. For, since {Ul,U2, •• '. , Un} is an
independent set in Ok+l, no triangles can contain more than·one Ui; and iif
UiVjVkUi were a triangle in Gk + 1, the~ ViVjVkVi would be a. triangle in Gk ,

con trary to assumption.
We now show that G k + 1 is (k + I)-chromatic. Note, first, that Ok+l is

certainly (k.+ l)-colourable, since any k-c.olouring of G k can be exten,ded to
a (k+ I)-colouring of Gk + 1 by .colouring,ui the same·as Vi, 1 <: i < n, and then
assigning a new colour to v. Therefore it remains to show that Ok+l is not
k -colourable. If possible, consider a k -colouring of· Gk + 1 in which, without
loss of generality, v is assigned colour k. Clearly, no Ui can also have colour
k. Now recolour each vertex Vi of colour k with ·the colour assigned to Ui.
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V, V20-----------0
)

v,

. Vs

)

V1

Figure 8.10.. Mycielski's ·construction

This results in a (k -I)-colouring of the k-chromatic graph Gke Therefore
G k+! is indeed' (k + I)-chromatic. The theorem follows from the principle of
inductio·n 0

By starting with the 2-chromatic graph ~2' the above construction yields,
for all k:> 2, a triangle-free k-chromatic graph on 3.2k

-
2

- 1 vertices.
We have already noted that there are graphs with girth six and arbitrary

chrom~tic number. Using' the probabilistic method, Erdos (1961) has, in
fact, shown that, given any two integers k 2: 2 and I ~ 2, there is a graph
with girth kand chromatic number I.· Unf~rtunately, this, ap.plication of the
probabilistic method is not quite as straightforward as. the one given in
.section 7.2, and we, therefore choose to omit it. A constructive. proof of
Erdos' result has been given by Lovasz (1968).

Exercises

8.5.1 Let G 3 , G4 , • •• be the graphs obtained from O 2 = K 2 , using
.t.1ycielski's cons~ruction. Show that each Gk is k-critical.
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8.5.2 (a)* Let G be a k-chromatic graph of girth at least six (k :> 2). Form

a new graph H as follows: Take (~) disjoint copies of G and a

set S of kv new vertices, and set up a one-one correspondence
between the copies of G and" the v -element subsets of S. For
each copy of G, join its vertices to the members of the corre
sponding v-element subset of S by a matching. Show that H has
chromatic number at least k + 1 and girth at least six.

(b) Deduce that, for any k ;> 2, there exists a k-chromatic graph of
girth six. (B. Descartes)

APPLICATIONS

8.6 A STORAGE PROBLEM

A company manufactures n chemicals C 1, C2 , ••• , Cn. Certain pairs of these
chemicals are incompatible and would cause explosions if brought into
contact with each other. As a precautionary measure the company wishes to
partition its warehouse into compartments, and store incompatible chemicals
in different c~mpartments.What is the least number of compartments into
which the warehouse should be partitioned?

We obtain a graph G on the vertex set {VI, V2, ••. ,vo} by joining two
vertices Vi and Vj if and only if the chemicals Ci and Cj are incompatible. It is
easy to see that the least number of compartments into which the warehouse
should be" partitioned is equal to the chromatic number of G.

The solution of many problems of practical interest (of which the storage
problem is one instance) involves finding the chromatic number of a graph.
Unfortunately, no good algorithm is known for determining the chromatic
number. Here we describe a syste~atic procedure which is basically
'enumerative~ in nature. It is not very efficient for large graphs.

Since the chromatic number of a graph is the least'number of independent
sets into which its vertex set can' be partitioned, we begin by describing a
method for listing all the independent" sets in a graph. Because every
independent set -is a subset of a maximal independent set, it suffices to
determine all the maximal independent sets. In fact, our procedure first
determines complements of maximal independent sets, that is, minimal
coverings.
. Observe that a subset K of V is a minimal covering 'of G if and only if, for
each vertex v, either v belongs to K or all the neighbours of V belong to K
(bu.t not both). This provides us with a procedure for finding ,minimal
coverings:

FOR EACH VERTEX V, CHOOSE EITHER V, OR ALL THE NEIGHBOURS OF V

(8.2)
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To implement this procedure effectively, we make use of an algeb·raic
device. First, we denote the instruction 'choose vertex v' simply by the
symbol v. Then, given two instructions X and Y, the instructions 'either X
or Y' and 'both X and Y' are denoted by X + Y (the logical sum) andXY
(the logical p.roduct) , respectively. For example, the instruction 'choose
either u and v or v and w' is written uv + vw. Formally, th.e logical sum and
logical product behave like U and n for sets, and the algebraic laws that
hold with respect to U and nalso hold with respect to these two operations
(see exercise 8.6.1). By using' these laws, we can often simplify logical
expressions; thus

(uv + vw)(u + vx) = uvu + uvvx + vwu + vwvx

= uv + uvx + vwu + vwx

~ uv+vwx

Consider, no'w, the graph G of figure 8.11. OUf pres'cription (8.2) for
finding the minimal coverings in G is

.(a + bd)(b +aceg)(c + bdef)(d + ac~g)(e + bcdf)(f +·ceg)(g + bdf) (8.3)

It can be checked (exercise' 8.6.2) that, on simplification, (8.3) reduces to

aceg + bcdeg + bdef'+.bcdf.

In other words, 'choo~e a, C, e and g, or b, C, d, e and g or b, d, e and f or b,
C, d and f'. Thus {a, c, e, g}, {b, c, d, e, g}, {b, d, e, f} and {b, c, d,'f} are the
minimal coverings of G. On complementation, we obtain the list of all
maximal independent sets of G: {b, d~ f}, '{a, f}, {a, c, g} and {a, e, g}.

a

b

f

Figure 8.11
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Now let us return to the problem of determining the chromatic number of
a graph. A k-colouring (Vt , V 2 , ••• , Vt ) of G is said to be canonical if VI is
a maximal independent set of G, V 2 is a maximal independent set of G - VI,
V 3 is a maximal independent set of G - (VI U V 2), and so on. It is easy to see
(exercise 8.6.3) that if G is k-colourable, then there exists a canonical
k -colouring of G. By repeatedly using the above method for finding maxi
mal independent sets, one can determine all the canonical colourings of G.
The least number of colours used in such a colouring is then the chromatic
number of G. For the graph G of figure 8.11, X = 3; a corresponding canonical
colouring is ({b, d, f}, {a, e, g}, {c}).

Christofides (1971) gives some improvements on this procedure.

Exercises

8.6.1 Verify the associative, commutative, distributive and absorption laws
for the logical sum and logical product.

8.6.2 Reduce (8.3), to aeeg +bcdeg + bdef+ bedf.
8.6.3 Show that if G is k -vertex-colourable, then G has a canonical

k -vertex colouring.
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9 Planar Graphs

9.1 PLANE AND PLANAR GRAPHS

A graph is said to be embeddable in the plane, or planar, if it can be drawn in
the plane so that its edges intersect':,only at their ends. Such a drawing of a
planar graph G is called a planar embedding of G. A planar embedding G
of G can itself be regarded as a graph isomorphic to G; the vertex set of G
is the set of points representing vertices of G, the edge set of G is the set of
lines repre~enting edges of G, and a vertex of G is incident with all the
edges of G that contain it. We therefore sometimes refer to a planar
embedding of a planar graph as a plane graph. Figure 9.1 b shows a planar
embedding of the planar graph in figure 9.1 a.

It is clear from the above definition that the study of planar graphs
necessarily involves the topology of the plane. However, we shall not
a~tempt here to be strictly rigorous in topological matters, and will be
content to adopt a naive point of view toward them. This is done so as not to
obscure the combinatorial aspect of the theory, which is our main interest.

The results of topology that are especially relevant in the study of planar
graphs are those which deal with Jordan curves. (A Jordan curve is a
continuous ,non-self-intersecting curve whose origin and terminus coincide.)
The union of the edges in a cycle of a plane graph constitutes a Jordan
curve; this is the reason why properties of Jordan curves come into play in
planar graph theory. We shall recall a well-known theorem about Jordan
curves and use it to demonstrate the nonplanarity of Ks.

Let J be a Jordan curve in the plane. Then the rest of the plane is
partitioned into two disjoint open sets ~alled the interior ,al\.d exterior of J.
We shall denote the interior and exterior of J, respectively, by int J and
ext J, and their closures by Int J and Ext J. Clearly Int J nExt J = J. The
Jordan curve theorem states that any line joining a point in int J to a point in
ext J must meet J in some point (see figure 9.2). Although this theorem is
intuitively obvious, a formal proof of it is quite difficult.

Theorem 9.1 Ks is nonplanar.

Proof By contradiction. If possible let G be a plane graph corresponding
to Ks. Denote the vertices of G by VI, V2, V3, V4 and Vs. Since G is complete,
any two of its vertices are joined 'by an edge. Now the cycle C = VI V2V3Vl is a
Jordan, curve in the plane, and the point V4 must lie either in,;; int C or ext C.
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(0)

Figure 9.1. (a) A planar graph '0; (b) a planar embedding of G

We shall suppose that V4 E intC. (The case where V4 E ext C can be dealt with
in a similar manner.) Then the edges V4Vl, V4V2 and V4V3 divide int C into the
three regions int CI, int C2 and int C3, where C1 = VI V4V 2V I, C2 = V2V4V3V2

and C3 = V3V4VIV3 (see figure 9.3).
Now vs must lie in one of the four regions ext C, int C t , int C2 and int C3 •

If Vs E ext C then, since V~E int C, it follows from the Jordan curve theorem
that' the edge V4VS' must meet C in some point. But this contradicts the
assumption that G is a plane graph. The 'cases Us E int Ch i = 1, 2, 3, can be
disposed of in like manner 0"

Figure 9.2

A similar argument. can be us~d to establish that K 3 ,3, too, is nonplanar
(exercise 9.1.1). We shall see in section 9.5 that, o~ the other hand, every
nonplanar graph contains a subdivision of either K s orK3,3.

The. notion of a planar embedding. extends to other, surfaces. t A graph G
is said to be embeddable on a surface S if it can be drawn in S so that its

tA surface is a2-dimensional manifold. Closed surfaces are divided into two classes,
orientable and non-orientable. The-sphere and the torus are examples of orientable surfaces;
the projective plane and t~e Mobius band are' non-orientable. For a detailed account of
embeddings of graphs on ~urfaces the reader is referred to Frechet and Fan (1967).
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Figure 9.3
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edges intersect only at their ends; such a drawing (if one exists) is called an
embedding of G on S. Figure 9.4a shows an embedding of Ks on the torus,
and figure 9.4b an embedding of K 3•3 on the Mobius band. The torus is
represented as a rectangle in which opposite sides are identified, and the
Mobius band as a rectangle whose two ends are identified after one
half-twist.

We have seen that not all graphs can be embedded in the plane; this is
also true of other surfaces. It can be shown (see, for example, Frechet and
Fan, 1967) that, for every surface S, there exist graphs which are .not
embeddable on S. Every graph can, however, be 'embedded' in 3
dimensional space f1t3 (exercise 9.1.3).

p.....-.------.-----------p

p~----'"--~----'p

p..---------------s

s'----------------p

(b)

Figure 9.4. (a) An embedding of K s on the torus; (b) an embedding of K 3 •3 on the
Mobius band
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Planar graphs and graphs embeddable on the sphere are one and the
same. To show this we make use of a mapping known as stereographic
projection. Consider a sphere S resting on a plane P, and denote by z the
point of S that is diagonally opposite the point of contact of Sand P. The
l11apping 'IT : S\{z} --+- P, defined by 7T(S) =P if and only if the points z, sand
p are collinear, is called stereographic projection from z; it is illustrated in
figure 9.5.

Figure 9.5. Stereographic projection

Theorem 9.2 A graph G is embeddable in the plane if and only if it is
embeddable on the sphere.

Proof SupposeG has an embedding G on the sphere. Choose a point z
of the sphere not in G. Then the image of Gunder stereographic projection
from z is an embedding of G in the plane. The converse is proved
similarly 0

On many occasions it is advantageous to consider embeddings of planar
graphs on the sphere; one instance is provided by the proof of theorem 9.3
in the next s·ection.

Exercises

9.1.1 Show that K3,3 isnonplanar.·
9.1.2 (a) Show that K s - e is planar for any e'dge e of K s•

(b) Show that· K 3,3 - e is planar for any edge e of K 3 ,3.

9.1.3 Show that all graphs are 'embeddable' inge.
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9.1.4 Verify that the following is an embedding of K7 on the torus:

9.1.5 Find a planar embedding of the following graph in which each edge
is a straight line.
(Fary, 1948 has proved that every simple planar graph has such an
embedding.)

9.2 DUAL GRAPHS

A plane graph G partitions the rest of the plane into a number of connected
regions; the closures of these regions are called. the faces of G. Figure 9.6
shows a plane graph with six faces, ft'[2' f3' f4' fs and /6. The notion of a face
applies also to embeddingsof graphs on other surfaces. We shall denote by
F(G) and <f>(G), respectively, the set of faces and the number of faces of a
plane graph G.

Each plane graph has exactly one unbounded face, called the exterior face;
in the plane graph of figure 9.6, fl is the exterior face.

Theorem 9.3 Let v be a vertex of a planar graph G. Then G can be
embedded in the plane in such a way that v is on the exterior face of the
embedding.
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Figure 9.6. A plane graph \vith six faces

Proof Consider an embedding G of G on the sphere; such an embed
ding exists by virtue of theorem 9.2. Let z b.e a point in the interior of some
face containing v, and let 7T(G) be the image of Gunder stereographic
projection from z. Clearly 7T( G) is a planar embedding of G of the desired
type 0 .

We denote the boundary of a face f, of a plane graph G by b(f). If G is
connected, then b(f) can be regarded as a closed walk in which each cut
edge of G in b(f) is traversed twic'e; when b(f) contains no cut edges, it is a
cycle of G. For example, in the plane graph 'of figure ,'9.6,

b(f2) = Vle3V2 e 4V3 e SV4et VI

and

A face f is said to be incident with th,e vertices and edges in its boundary.
,If e is a cut edge in a plane graph, just one face is incident with e; otherwise,
there are two faces incident with e. We say that an edge separates the faces
incident with it. The degree, dG(f), of 'a face f is the number of edges with
which it is incident (that is, the number of edges in b(f), ,cut edges being
counted twice. In figure 9.6, ft is incident with the vertices Vt, V3, V4, Vs, V6,

V7 and the edges et, e2, es, e6, e7, e9, eU.l; el sep~rates /t from f2 and ell

separates fs from fs; d(f2) '= 4 and d(fs) r.: 6. '
Given a plane graph G, one can defille another graph G* as follows:

~orresponding to each face f of G. there is a vertex f* of G *, and
corresponding to each edge e ofG there is an edgee*of G*; two vertices
f* and g* are joined by the edge e* in G* if and only if their corresponding
faces' f and g. are separated by the edge e in G. The graph G* is called the
dyal of G. A plane graph and its dual are s110wn in figures9.7a :and 9.7b.

It .is easy to see that ,the dual G * of a plane graph G is planar; in' fact,
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G

(0)

G*
(b)
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(c)

Figure 9.7. A plane graph and its dual

there is a natural way to embed G* in the plane. We place each vertex f* in
the corresponding- face f of G,and then draw each edge e* in such a way
that it crosses the corresponding edge e of G exactly once (and crosses no
other edge of G). This procedure is illustrated in figure 9.7C, where the ·,~i",; ,ll

is indicated by heavy points and lines. It is intuitively clear that we call
always draw the dual as a plane graph in this way, but we shall flot pr~ve

this fact. Note that if e is a loop of G, then e* is· a cut edge of G*, and vice
versa.

Although defined abstractly, it is sometimes convenient to regard the dual
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(9.1)

(0) . (b)

Figure 9.8. Isomorphic plane graphs with nonisomorphic duals

G* of a plane graph G as a plane graph (embedded as described above).
One can then consider the dual G** of G*, and it is not difficult to prove
that, when G is connected, G**::: G (exercise 9.2.4); a glance at figure 9.7c
will indicate why this is so.

It should be noted that isomorphic plane graphs may ,have nonisomorphic
duals. For example, the plane graphs in figure 9.8 are isomorphic, but their
duals are not-the plane graph of figure 9.Sa has a face of degree five,
whereas the plane graph of figure 9.8b has no such face. Thus the notion of
a dual is meaningful only for plane graphs, and cannot be extended to planar
graphs in general.

The following relations are direct consequences of the definition of G*:

v( G'*) = cf>(G)

e(G*) = e(G)

do*(f*) = do(f) for all f E F(G)

Theorem 9.4 If G is a plane graph, then

L d(f)=2B
'eF

Proof Let G* be the dual of G. Then

~ d(f) = L d(f*)
fE7(O) f*ev(o·)

=2£(G*)

=2e(0)

by (9.1)

by theorem 1.1

by(9.1) 0
Exercises
9.2.1 (a) Show that a graph is planar if and only if each of its blocks is

planar.
(b) Deduce that a minimal nonplanar graph is a simple block.

9.2.2 A plane graph is self-dual if it is isomorphic to its dual.

(a) Show that if 0 is self-dual, then £ = 2v - 2.
(b) For each n > 4, find a self-dual plane graph on n vertices.
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9.2.3 (a) Show that B is a bond ofa plane graph G if and only if
{e* E E (G *) leE B} is a cycle of G *.

(b) Deduce that the du~l of an eulerian plane graph is bipartite.
9.2.4 Let G be a plane graph. Show that

(a) G**::: G if and only if G is connected;
(b) X(G**)=X(G).

9.2.5 Let T be a spanning tree of a connected plane graph G, and let
E* = {e* E E(G*) lee E(T)}. Show that T* = G*[E*] is a spanning
tree of G*.

9.2.6 A plane triangulation is a plane graph in which each face has degree
three. Show that every simple plane graph is a spanning subgraph of
some simple plane triangulation (v > 3).

9.2.7 Let G be a simple plane triangulation with v:> 4. Show that G* is a
simple 2-edge-connected 3-regular planar graph.

9.2.8* Show that any plane triangulation Gcontains a bipartite subgraph
with 2e (G)/3 edges. (F. Harary, D. Matula)

9.3 EULER'S FORMULA

There is a simple formula relating the numbers of vertices, edges and faces
in a connected plane graph. It is known as Euler's formula because Euler
established it for those plane graphs defined by the vertices and edges of
polyhedra.

Theorem 9.5 IfG is a connected plane graph, then

v-B+cP=2

Proof By induction on cP, the number of faces of G. If cP = 1, then each
edge of G is a cut edge and so G, being connected, is a tree. In this case
£ = v -1, by theorem 2.2, and the theorem clearly holds. Suppose that it is
true for all connected plane graphs with fewer than n faces, and let G be a
connected plane graph with n > 2 faces. 'Choose an edge e of G that is not a
cut edge. Then G - e is a connected plane graph and has n - 1 faces, since
the two faces of G separated by e combine to form one face of G - e. By the
induction hypothesis

v( G - e) - B (G- e) + cP(G - e) = 2

and, using the relations

v( G - e) = v(G)
we obtain

£(G - e) = £(G)-l cP(G - e) = cP(G)-1

v(G)-e(G)+cP(G)=2

The theorem follows by the principle of induction 0
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Corollary 9.5.1 All planar embeddings of a given connected planar graph
have the same number of faces.

Proof Let G and H be two planar embeddings of a given connected
planar graph. Since G=::H, v(G)=v(H) and £(G)=£(H). Applying
theorem 9.5, we have

</>(G) = e(G)- v(G)+2 = £(H)- v(H)+2 = </>(H) 0

Corollary 9.5.2 If G is a simple planar graph with v:> 3, then £ <3v - 6.

Proof It clearly suffices to prove this for connected graphs. Let G be a
simple connected graph with v:> 3. Then d(f):> 3 for all f E F, and

L d(f) >3</>
fEF

By theorem 9.4
28 > 3</>

Thus, from theorem 9.5
v- E +2e/3 >2

or
E <3v-6 0

Corollary 9.5.3 If G is a simple planar graph, then 5 <5.

Proof This is trivial for v = 1, 2. If v:> 3, then, by theorem 1.1 and
corollary 9.5.2,

5v -< L d(v) = 2£ -< 6v -12
vEV

It follows that 8 -< 5 0

We have already seen that Ks and K 3,3 are nooplanar (theorem 9.1 and
exercise 9.l.l). Here, we shall derive these two results as corollaries of
theorem 9.5.

Corollary 9.5.4 Ks is nonplan~r.

Proof If K s were planar then" by corolla'ry 9.5.2, we ,would' have

10 =e(Ks) <'3v(Ks) - 6 = 9

Thus K s must be nonplanar 0

Corollary 9.5.5 K3 ,;J is nonplanar.

Proof Suppose that K 3,3 is planar and let G be a planar embedding of
K 3•3 • Since K 3•3 has no cycles of length less than four, every face of G must
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have degree at least four. Therefore, by theorem 9.4, we have

4 <t> < L d(f) = 2e = 18
fEF

That is

Theorem 9.5 now implies that

2=v-e+<t><6-9+4=1
which is absurd 0

Exercises
9.3.1 (a) Show that if G is a connected planar graph with girth k:> 3,

then e<k(v-2)/(k-2).
(b) Using (a), show that the Petersen graph is nonplanar.

9.3.2 Show that every planar graph is 6-vertex-colourable.
9.3.3 (a) Show that if G is a simple planar graph with v:> 11, then GC is

nonplanar.
(b) Find a simple planar- graph G with v = 8 such that GC is also

planar.
9.3.4 The thickness 8(G) of G is the minimum number of planar graphs

whose union is G. (Thus 8(G) = 1 if and only if G is planar.)

(a) Show that 6(G):> {B/(3v - 6)}.
(b) Deduce that 8(K.,) >{v(v -1)/6(~- 2)} and show, using exercise

-9.3.3b, that equality holds for all v <: 8.

9.3.5 Use the result of exercise 9.2.5 to deduce Euler's formula.
_9.3.6 Show that if G is a plane triangulation, then B == 3v - 6.
9.3.7 Let S = {~1, X2, ••• ,xn} be a set o~ n >-3 points in the plane such that

the distance between any two points is at least one. Show that there
are at most 3n - 6 pairs of points at distance exactly one.

9.4 BRIDGES

In the study of planar graphs, certain subgraphs, called bridges, play an
important role. We shall discuss properties of these subgraphs in this
section.

Let H be a given subgraph of a graph G. We define ~ relation - on
E(G)\E(H) by the condition that el - e2 if there exists a walk W such that

(i) the first and last edges of Ware el and e2, respectively, and
(ii) W is internally-disjoint from H (that is, no internal vertex of W is a

vertex of H).

It is easy to verify that -- is an equivalence relati~n on E(G)\E(H). A
subgraph -of G - E (H) induced by an equivalence class under the relation -
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is called a bridge of H in G. It follows immediately from the definition that
if B is a bridge of H, then B is a connected graph and, moreover, that any
two vertices of B are connected by a path that is internally-disjoint from H .

. It is also easy to see that two bridges of H have no vertices in com
mon except, possibly, for vertices of H. For a bridge B of H, w~ write
V(B) n V(H) = V(B, H), and call the vertices in·this set the v~rticesof attach
ment of B to H. Figure 9.9 shows a variety of bridges of a cycle in a graph;
edges of different bridges are represented by different kinds of lines.

In this section we are concerned with the study of bridges of a cycle C.
Thus, to avoid repetition, we shall abbreviate 'bridge of C' to 'bridge' in the
coming discussion; all bridges will be understood to be bridges of a given
cycle C.

In a connected graph every bridge has at least one vertex of attachment,
and in a block every bridge has at least two vertices of attachment. A bridge
with k vertices of attachment is called a k-bridge. Two k-bridges with the
same vertices of attachment are equivalent k-bridges; for example, in figure
9.9,B 1 and B 2 are equivalent 3-bridges.

The vertices of attachment of a k-bridge B with k:> 2 effect a partition of
C into edge-disjoint paths, called the segments of B. Two bridge~ avoid one
another if all the vertices of attacbment of o·ne bridge lie in a single segment
of the other bridge; otherwise they overlap. In figure 9.9, B 2 and B 3 avoid
one another, whereas B 1 and B 2 overlap. Two bridges B and ~' are skew if
there are four distinct vertices u, v, u' and v' of C such that u and v are
ve·rtices of attachment of B, u' and v' are vertices of attachment of B', and
the four vertices appear in the cyclic order u, u', V, v' on C. In figure 9.9, B 3

and .B4 are skew, but B 1 and B 2 are not.

.~.

I "i 8
5

".
. ,

6----_..

Figure 9.9. Bridges in a graph
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Theorem 9.6 If two bridges overlap, then either they are. skew or else they
are equivalent 3-bridges.

Proof Suppose that the bridges Band B' overlap. Clearly, each must
have at le~st two vertices of attachment. Now if eith'er B or B' is a 2-bridge,
it is easily verified that they must be skew. We may therefore assume that
both Band B' have at least three vertices of attachment. There are two
cases.

Case 1 Band B' are not equivalent bridges. Then B' has a vertex of
attachment u' between two consecutive vertices of attachment u and v of B.
Since Band B' overlap, some vertex of attachme"nt v' of B' does not lie in
the segment of B connecting u and v. It now follows that Band B' are
skew.

Case 2 Band B' are equivalent k-bridges, k:> 3. If k :> 4, then Band
B' are clearly skew; if k = 3, they are equivalent 3-bridges 0

Theorem 9.7 If a bridge B has three vertices of attachment VI, V2 and V3,

then there exists a vertex Vo in V(B)\ V( C) and three paths PI, P2 and 'P3 in
B joining Vo to VI, V2 and V3, respectively, such that, for i ¢ j, Pi and Pj have
only the vertex Vo in common (see figure 9.10).

Proof Let P be a (VI, v2)-path in B, internally-disjoint from C. P must
have an internal vertex v, since otherwise the bridge B would be just P, and
would not contain a third vertex V3- Let 0 be a (V3' v)~path in B; internally
disjoint from C, and let Vo be the first vertex of 0 on P. Denote by PI the
(vo, vt)-section of p- t

, by P 2 the (vo, v2)-section of P, and by P 3 the
(vo, v3)-section of 0-1

• Clearly PI, P 2 and P3 satisfy the required
conditions 0

Figure 9.10
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We shall now consider bridges in plane graphs. Suppose that G is a plane
graph and that C is a cycle in G. Then C is a Jordan curve in the plane, and
each edge of E(G)\E(C) is contained in one of the two regions Int C and
Ext C. It follows that a bndge of C is contained entirely in Int C or Ext C. A
bridge contained in IntC is called an .inner bridge, and a bridge contained in
Ext C, an outer bridge. In figure 9.11 B I and B 2 are inner bridges, and B 3

and B 4 are outer bridges.

Theorem 9.8 Inner (outer) bridges avoid .one another.

Proof By contradiction. Let Band B' be two inner bridges that overlap.
Then, by theorem 9.6, they must be either skew or equivalent3-bridges.

Case 1 Band B' are skew. By definition, there exist distinct vertices u
and v in Band u' and v' in B~, appearing in the cyclic order u, u', v, v' on
C. Let P be a (u, v)-path in Band P' a (u', v')-path in B', both internally
disjoint from C. The two pathsP and P' cannot have a.D internal vertex in
common -because they belong to different bridges. At the same time, both P
and P' must be contained in Int C because Band B' are inner bridges. By
the Jordan curve theorem, G cannot be a. plane graph, contrary to
hypothesis (see figure 9.12).

Case 2 Band B' are equivalent3-bridges. Let the common set of
vertices of attachment be {VI, V2, V3}. By theorem. 9.7, there exist in B a
vertex Vo and t.hree paths PI, P2 and P 3 ·'joining Vo to VI, V2 and V3,

respectively, such that, for i #- j, Pi and P j have only the vertex voin common.
Similarly, B' has a vertex v~ a~d thre~ paths P~, P~ and P~ joining v~ to Vt,

V2 and V3, respectively, such that, for i #- j, pr and Pi have only the vertex Vb
in common (see figure 9.13).

Figure. 9.11. Bridges in a plane graph
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Now the paths Pt, P2 and P3 divide Int C into three regions, and Vb must
be in the interior of one of these regions. Since only two of the vertices Vt,

V2 and V3 can lie on the boundary of the region containing .vb, we may
assume, by symmetry, that V3 is not on the boundary of this region. By the
Jordan curve theorem, the path P~ must cross either PI, P2 or C. But since B
and B' are distinct inner bridges, this is clearly impossible.

We conclude that inner bridges avoid one another. Similarly, outer
bridges avoid one another D.

Let G be a plane graph. An inner bridge B of a cycle C in G is
transferable if there exists a planar embedding G of G which is identical to
G itself, except that B is an outer bridge of C in G. The plane graph G is
said to be obtai~ed from G by transfe~ring B. Figure 9.14 illustrates the
transfer of a bridge.

Theorem 9.9 An inner bridge that avoids every outer bridge IS

transferable.

Figure 9.13
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Figure 9.14. The transfer of a bridge

Proof Let B be an inner bridge that avoids every outer bridge. Then
the vertices of attachment of B to C all lie on the boundary of some face of
G contained in Ext C. B can now be drawn in this face, as shown in figure
9.15 0 .

)

Figure 9.15

Theorem 9.9 is crucial to the proof of Kuratowski's theorem, which will
be proved in the next section.

Exercises
9.4.1 Show that if B and B' are two distinct bridges, then V(B) n V(B') c

V(C).
9.4.2 Let u, x, v and y (in that cyclic order) be four distinct vertices of

attachment of a bridge B to a cycle C in a plane graph. Show that
there is a (u, v)-path P and an (x, y)-path Q in B such that (i) P and
Q are internally-disjoint from C, and (ii) IV(P) n V(Q)I ~ 1.
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.9.4.3 (a) Let C = VtV2 ••• VnVt be a longest cycle in a nonhamiltonian
connected graph O. Show that

(i) there exists a bridge B such that V(B)\V(C) ¢ 0;
(Iii) if Vi and Vj are vertices of attachment of B, then Vi+t Vj+l eE.

(b) Deduce that if (X < K, then 0 is hamiltonian.
(V. Chvatal and P. Erdos)

9.5 KURATOWSKI'S THEOREM

Since planarity is such a fundamental property, it is clearly of importance to
know which graphs are planar and which are not. We have already noted
that, in particular, K s and K 3•3 are nonplanar and that any proper subgraph
of either of these graphs is planar (exercise 9.1.2). A remarkably simple
characterisation of planar graphs was given by Kuratowski (1930). This
section is devoted to a proof of Kuratowski's theorem.

The following lemmas are simple observations, and· we leave their proofs
as an exercise (9.5.1).

Lemma 9.10.1 If 0 is nonplanar, then every subdivision of 0 is
nonplanar.

Lemma 9.10.2 If 0 is planar, then every subgraph of 0 is planar.

Since K s and K3•3 are nonplanar, we see from these two lemmas that if G
is planar, then 0 cannot contain a subdivision of K s or of K 3•3 .(figure 9.16).
Kuratowski showed that this necessary condition is also sufficient.

Before proving Kuratowski's theorem, we need to establish two more
simple lemmas.

Let G be a graph with a 2-vertex cut {u, v}. Then there exist edge-disjoint
subgraphs 0 1 and O2 such that V(G t ) n V(O2)= {u, v} and G 1 U G 2 = G.
Consider such a separation of 0 into subgraphs. In both 0 1 and O 2 join "

(0) (b)

Figure 9.16. (a) A subdivision of K,; (b) a subdivision of K 3•3
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and v by a new edge e to obtain graphs HI and H 2, as in figure 9.17. Clearly
G == (HI U H 2) - e. It is also easily seen that B(Hi) < e (G) for i = 1, 2.

Lemma 9.10.3 If G is nonplanar, then at least one of HI and H 2 is also
nonplanar.

Proof By contradiction. Suppose that both HI an~ H 2are planar. Let I!l
be a planar embedding of H~, and let f be a face of HI incident with e. If H 2

is an embedding of H 2 in f such that HI and H2 have only the vertices u and
v and the edge e in common, then (HI U H2) - e is a planar embedding of G.
This contradicts the hypothesis that G is nonplanar 0

Lemma 9_10.4 Let G be a nonplanar connected graph that contains no
subdivision of Ks or K 3 •3 and has as few edges as possible. Then G is simple
and 3-connected..

Proof By contradiction. Let G satisfy the hypotheses of the lemma.
Then G is clearly a minimal nonplanar graph, and therefore (exercise
9.2.1b) must be a simple block. If G is not 3-connected, let {u, v} be a
2-vertex cut of G and let HI and H 2 be the graphs obtained from this ~ut as
described above. By lemma 9.10.3, at least one of HI and H 2,say HI, is
nonplanar. Since B(HI) <. e(G), HI must contain a subgraph K which is a
subdivision of K s or K3,3; moreover K ~ G, and so the edge e is in K. Let P
be a (u, v)-path in H 2 - e. Then G contains the subgraph (K U P) - e, which
is a subdivision of K and hence a subdivision of K s or K 3 ,3. This contradic
tion establishes the lemma 0

We shall find it convenient to adopt the following notation in the proof of
Kuratowski's theorem. Suppose that C isa cycle in a plane graph. Then we
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can regard the two possible orientations of C as 'clockwise' and 'anticlock
wise'. For any two vertices, u and v of C, we shall denote by C[u, v] the
(u, v)-path which follows the clockwise orientation of C; similarly we shall
use the symbols C(u, v], C[u, v) and C(u, v )to denote the paths C[u, v] - u,
C[u, v]-v and C[u, v]-{u, v}. We are now ready to prove Kuratowski's
theorem. OUf proof is based on that of Dirac and Schuster (1954).

Theorem 9.10 A graph is planar if and only if it contains no subdivision of
K s or K 3,3.

Proof We have already noted that the necessity follows from lemmas
9.10.1 and ,9.10.2. We shall prove the sufficiency by contradiction.

If possible, choose a nonplanar graph G that contains no subdivision of
K s or K 3,3 and has as few edges as possible. From lemma 9.10.4 it follows
that G is simple and 3-connected. Clearly G must also be a minimal
nooplanar graph'.

Let uv be an edge of G, and let H be a planar embedding of the planar
graph G - uv. Since G is 3-connected, H is 2-connected and, by corollary
3.2.1, u and v are contained together in a cycle of H. Choose a cycle C of H
that contains u and v and i,s such that the number of edges in Int C is as
large as possible.

Since H is simple and 2-connected, each bridge of C in H must have at
least two vertices of attachment. Now all outer bridges of C must be
2-bridges that overlap uv because, if some outer bridge were a k -bridge for
k :> 3 or a 2-bridge that avoided uv, then there would be a cycle C'
containing u and v with more edges in its interior than C, contradicting the
choice of C. These two cases are illustrated in figure 9.18 (with C' indicated
by heavy lines).

In fact, all outer bridges of C in H must be single edges. For if a 2-bridge
with vertices of attachment x and y had a third vertex, the set {x, y} would
be a 2-vertex cut of G, contradicting the fact that G is 3-connected.

(0)

Figure 9.18

(b)



154 Graph Theory With Applications

By theorem 9.8, no two inner bridges overlap. Therefore some inner
bridge skew to uv must overlap some outer bridge. For otherwise, by
theorem 9.9, all such bridges could be transferred (one by one), and then the
edge uv could be drawn in Int C to obtain a .planar embedding of G; since
G is nonplanar, this is not possible. Therefore, there is an inner bridge B
that is both skew to uv and skew to some outer bridge xy.

Two cases now arise, depending on whether B has a vertex of attachment
different from u, v, x and y or not.

Case 1 B has a vertex of attachment different from u, v, x and y. We
can choose the notation so that B has a vertex of attachment VI in C(x, u)
(see figure' 9 .19). We consider two subcases, depending on whether B has a
vertex of attachment in C(y, v) or riot.

Case la B has a vertex of attachment V2 in C(y, v). In this case there is
a (V"l' v2)-path P in B that is internally-disjoint from C. But then (C U P) +
{uv, xy} is a subdivision of K 3,3 inG, a contradiction (see figure 9.19).

Case Ib B has no vertex of attachment in C(y, v). Since B is skew to uv
and' to xy, B must have vertices of attachment V2 in C(u, y] and V3 in
C[v, x). Thus B has three vertices of attachment VI, V2 and V3. By theorem
9.7, there exists a vertex Vo in V(B)\V(C) and three paths PI, P2 and P3 in B
joining Vo to VI, V2 and V3, respectively, such that, for i~ j, Pi and Pj have
only the vertex Vo in common. But now (CUPt UP~UP3)+{UV, "xy} contains
a subdivision of K 3t3 , a contradiction. This case is illustrated in figure 9.20.
The subdivision of K 3t3 is indicated by, heavy lines.

u

Figure 9.19



Planar Graphs
u

Figure 9.20

155

Case 2 B has no vertex of attachment other than u, v, x and y. Since B
is skew to both uv and xy, it follows that u, v, x and y must all be vertices of
attachment of B. Therefore (exercise 9.4.2) there exists a (u, v)-path P and
an (x, y)-path Q in B such that (i) P and Q are internally-disjoint from C,
and (ii) IV(P) n V(Q)I:> 1. We consider two subcases, depending on whether
P and Q have one or more vertices in COmmO"D.

Case 2a IV(p)nV(Q)I=l. In this case (CUPUQ)+{uv,xy} is a sub
,division of Ks in G, again a contradiction (see figure 9.21).

u

Figure 9.21
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Case 2b IV(p)n V(Q)I>2. Let u' and v' be the first and last vertices of
P on Q, and let PI and P2. denote the (u, u')- and (v', v)-sectionsof P. Then
(CUPI UP2 UQ)+{uv, xy} contains a subdivision of K 3,3 in G, once more a
contradiction (see figure 9.22).

u

Figure 9.22

Thus all the' possible cases lead to contradictions, and' the proof is
complete 0

Th'ere are several other characterisations of planar graphs~ For example,
Wagner (1937) has shown that a graph is planar if and only if it contains no
subgraph contractible to K s or K 3,3.

Exercises

9.5.1 Prove lemmas 9.10.1 and 9.10.2.
9.5.2 S'hQw, using Kuratowski's theorem, that the Petersen graph is oon

planar.

9.6 THE FIVE-COLOU~ THEOREM AND THE FOUR-COLOUR CONJECfURE

As has alr.eady been noted (exercise 9.3.2), every planar graph is 6-vertex
colourable. Heawood (1890) improved upon this result by showing that one
can always properly colour the vertices of a planar graph with at most five
colours. This is ,known as the five-colour theorem.

Theorem 9.11 Every planar graph is 5-vertex-colourable.

Proof By contradiction. Suppose that the theorem is false. Then there
exists a 6-critical plane graph G. Since a critical graph is simple, we see from
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3

Figure 9.23

corollary 9.5.3 that 8<5. On the other hand we have, by theorem 8.1, that
8 :> 5. Therefore 0 = 5. Let v be a vertex of degree five inG, and let (VI, V2 ,

V 3 , V 4 , Vs) be a proper 5-vertex colouring of G - v; such a colouring exists
because G is 6-critical. Since G itself is not 5-vertex-colourable, v must be
adjacent to a vertex of each of the five colours. Therefore we can assume
that the neighbours of v in clockwise order about v are VI, V2, V.3, V4 and Us,

where Vi E Vi for 1 <: i < 5.
Denote by G ij the subgraph G[ Vi U V j ] induced by Vi U V j • Now Vi and Vj

must belong to the same component of G ij • For, otherwise, consider the
component of G ij that contains Vi. By interchanging the colours i and j in
this component, we obtain a new proper 5-vertex colouring of G - V in
which only four colours (all but i) are assigned to the neighbours of v. We

. have already shown that this situation cannot arise. Therefore Vi and Vj must
belong to the same component of G ij • Let P ij be a (Vi, Vj)-path in G ij , and let
C denote the cycle VV t P13 V3V (see figure· 9.23).

Since C separates V2 and V4 (in figure 9.23, V2 E int C and V4 E ext C), it
follows from the Jordan curve theorem that the pathP24 must meet·C in
some point. B·ecause G is a plane graph, this point must be a vertex. But this
is impossib'le, since the vertices of P24 · have colours 2 and 4, whereas no
vertex of C has either of these colours 0

-The q~estion now arises as to whether the five-colour theorem is best
possible. It has been conjectured that every planar graph is 4-vertex
colourable; this is known as the four-colour conjecture. The four-colour
conjecture has .remained unsettled for more thana century, despite many·
attempts by major mathematicians t6 solve· it ..If it were true, then it would,
of course, be best possible because there do exist planar graphs which

-are not 3-vertex-colotirable (K4 is the simplest such· gra·ph). For a history of
the four-colour conjecture, see ·Ore (1967)t. .

t The four-colour conjecture has now been settled in the affirmative by K. Appel and
W. Haken; see page 253.
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The problem of deciding whether the four-colour conjecture is true or
false is called the four-colour problem. t There are several problems in graph
theory that are equivalent to the four-colour problem; one of these is the
case n = 5 of Hadwiger's conjecture (see section 8.3). We now establish the
equivalence of certain problems concerning edge and face colourings with
the four-colour problem. A k -face colouring of a plane grap.h G is an
assignment of k colours 1,2, ... , k to the faces of G; the colouring is proper
if no two faces that are separated by an edge -have the same colour. G is k
face-colourable if it has a proper k -face colouring, and the minimum k for
which G is k-face-colourable is the face chromatic number of G, denoted by
x*(G). I~ follows immediately from these definitions that, for any plane
graph G with dual G*,

x*(G) = X( G*) (9.2)

Theorem 9.12 The following three statements are equivalent:

(i) every planar graph is 4-vertex-colourable;
(ii) every plane graph is 4-face-colourable;

(iii) every simple 2-edge-connected 3-regular planar graph IS 3-edge
colourable.

Proof We shall show that (i)~ (ii)~ (iii)~ (i).

(a) (i)~ (ii). This is a direct consequence of (9.2) and the fact that the dual
of a plane graph is planar.

(b) (ii)~ (iii). Suppose that (ii) holds, let G be a simple 2-edge-connected
3-regular planar graph, and let G be a planar embedding of G. By (ii), G
has a proper 4-face-colouring. It is, of course, immaterial which symbols
are used as the 'colours', and in this' case we shall denote the four
colours by the vectors Co = (0,0), Cl - (1,0), C2 = (0, 1) and C3 = (1, 1),
over the field of integers modulo 2. We now obtain a 3·edge-colouring
of G by assigning to each edge the sum of the colours of the faces it
separates (see figure 9.24). If Ci, cjand Ck are the three colours assigned
to the three faces incident with a vertex v, then Ci + Cj, Cj + Ck and Ck + Ci

are the colours assigned to the three edges incident with v. Since G is 2-
"edge-connected, each edge separates two distinct faces,and it follows

that no edge is assigned the colour Co under this scheme. It is" also clear
that the three edges incident with a" given vertex are assigned diff~rent

colours. Thus we have a proper 3-edge-colouring of G, and hence of G.

t The four-colour problem is often posed in the" following terms: can the countries of any
map be coloured in four colours so that no two countries which have a common boundary are
assigned the same colour? The equivalence of this problem with the four-colour problem
follows from theorem 9.12· on observing that a map can be regarded as a plane graph with its
countries as the faces.
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(c) (iii)::} (i). Suppose that (iii) holds, but that (i) does not. Then there is a
5-critical planar graph G. Let G be a planar embedding of G. Then
(exercise 9.2.6) G is a spanning subgraph of a simple plane triangulation
H. The dual H* of H is a simple 2-edge-connected 3-regular planar
graph (exercise 9.2.7). By (iii), H* has a proper 3-edge colouring
(E1, E 2 , E 3). For i~ j, let Ht denote the subgraph of H* induced by
E i U E j • Since each vertex of H*is incident with one edge of E i and one
edge of E;, Ht is a union of disjoint cycles and is therefore (exercise
9.6.1) 2-face-colourable. Now each face of H* is the intersection of a
face of Hf2 and a face of H~3. Given proper 2-face colourings of Hf2 and
H~3 we can obtain a 4-face colouring of H* by assigning to each face f
the pair of colours assigned to the faces whose intersection is f. Since
H* = Hf2 U H~3 it is easily verified that this 4-face colouring of H* is
proper. Since H -is a supergraph of G we have

5 = X(G) <: X(H) = X*(H*) <: 4

This contradiction shows that (i) does, in fact, hold 0

That statement (iii) of theorem 9.12 is equivalent to the four-colour
problem was first observed by"Tait (1880). A proper 3-edge colouring of a
3-regular graph is often called a Tait colouring. In the next section we shall
discuss Tait's ill-fated approach to the four-colour conjecture. Grotzsch
(1958) has verified the four-colour conjecture for planar graphs without
triangles. In fact, he has shown that every such graph is 3-vertex-colourable.

Exercises

9.6.1 Show that a plane graph G is 2-face-colourable if and only if G is
eulerian.

9.6.2 Show that a plane triangulation G is 3-vertex colourable if and only
if G is eulerian·.

9.6.3 Show that every hamiltonian plane graph is 4-face"'colourable.
9.6.4 Show that every hamiltonian 3-regular graph has a Tait colouring.
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9.6.5 Prove theorem 9.12 by showing that (iii)~ (ii)~ (i)~ (iii).
9.6.6 Let G be a 3-regular graph with K' = 2.

(a) Show that there exist subgraphs G t and G 2 of G and non
adjacent pairs of vertices Ut, VI E V(G 1) and U2, V2 E V(G 2) such
that G consists of the graphs G l and G 2 joined by a 'ladder' at
the vertices Ul, Vl, U2 and V2.

(b) Show that if G 1 + UIVt and G 2 + U2V2 both have Tait colourings,
then so does G.

(c) Deduce, using theorem 9.12, that the fou~-colour conjecture is
equivalent to Tait's conjecture: every simple 3-regular 3
connected planar graph has a Tait colouring.

9.6.7 Give an example of

(a) a 3-regular planar graph- with no Tait colouring;
(b) a 3-regular 2-connected graph with no Tait colouring.

9.7 NONHAMILTONIAN PLANAR GRAPHS

In his attempt to prove the four-colour conjecture, Tait (1880) observed
that it would be enough to show that every 3-regular 3-connected planar
graph has a Tait colouring (exercise 9.6.6). By mistakenly assuming that
every such graph is hamiltonian, he .gavea 'proof' of the four-colour
conjecture (see exercise 9.6.4). Over half a century later, Tutte (1946)
showed Tait's proof to be invalid by const~ucting a nonhamiltonian 3
regular 3-connected planar graph; it is depicted in figure 9.25.

Tutte proved. that his graph is nonhamiltonian by using ingenious ad hoc
arguments (exercise 9.7.1), and for many years the Tutte graph was the only
krlow·n example of' a nonhamiltonian 3-regular 3-connected planar graph.
However, Grinberg (1968) then discovered a necessary condition for a plane
graph to be hamiltonian. His discovery has led to the construction of many
nonhamiltonian planar graphs.
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Theorem 9.13 Let G be a loopless plane graph with a Hamilton cycle C.
Then

v

L (i - 2)(</>[ - </>':) =0
i== 1

(9.3)

where </>: and </>'[ are the numbers of faces of degree i contained in Int C and
Ext C, respectively.

Proof Denote b}l E' the subset ofE(G)\E(C) contained in Int C, and let
B' = IE'I. Then Int C contains exactly e' + 1 faces (see figure 9.26), and so

v

L </>[ = e' +.1
i== 1

(9.4)

Now each edge in E' is o·n the boundary of two faces in IntC, and each edge

Figure 9.26
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of C is on the boundary of exactly one face in Int C. Therefore

v

L iq,: = 2e I + V
i== 1

Using (9.4), we can eliminate e' from (9.5) to obtain

v

L (i - 2)q,: = v - 2
i=l

Similarly
"L (i-2)q,':= v-2

i== 1

(9.5)

(9.6)

(9.7)

Equations (9.6) and (9.7) now yield (9.3) 0

With the aid of theorem 9.13, it is a simple matter to show, for example,
that the Grinberg graph (figure 9.27) is nonhamiltonian.

Suppose that this graph is hamiltonian. Then, noting that it only has faces
of degrees five, eight and nine, condition (9.3) yields

3(q,~ - q,~) + 6(q,~ - q,~) + 7(q,9 - q,~) = 0
We deduce that

7(q,~ - q,~) ~ 0 (modulo 3)

But this is clearly impossible, since the value of the left-hand side is 7 or -7,
f

depending on whether the face of degree nine is in Int C or Ext C.
Therefor~ the graph cannot be hamiltonian.

Figure 9.27. The Grinberg graph
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Although there exist nonhamiltonian 3-connected planar graphs, Tutte
(1956) has shown that every 4-connected planar graph is hamiltonian.

Exercises

9.7.1 (a) Show that no Hamilton cycle in the graph G 1 below can contain
both the edges e and e'.

(b) Using (a), show that no Hamilton cycle in the graph G 2 can
contain both the edges e and e'.

(c) Using (b), show that every Hamilton cycle in the graph G3 must
contain the edge e.

e

(d) Deduce that the Tutte graph (figure 9.25) is nonhamiltonian ..
9.7.2 Show, by applying theorem 9.13, that the Herschel graph (figure

4.2b) is nonhamiltonian. (It is, in fact, the smallest nonhamiltonian
3-connected planar graph.)

9 ~ 7.3 Give an example of a simple nonhamiltonian 3-regular planar graph
with co~nectivity two. . ·

APPLICATIONS

9.8 A PLANARITY ALGORITHM

There are many practical situations in which it is im"portant to decide
whether a "gi~en graph is planar, and, if so, to then find a planar embedding
of the graph. For example, in the layout of printed circuits one is interested
in knowing if a particular electrical network is planar. In this section, we
shall present an algorithm for solving this problem, due to Demoucron,
Malgrange and Pertuiset (1964).

Let H be a planar subgraph of a graph G and let fI be an embedding of
H in the plane. We say that fI is G-admissible if G is planar and there is a
planar embedding G of G such that fI c G. In figure 9.28, for example, two
embeddings of a planar subgraph of G are shown; one is G-admissible and
the other is, not.
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Figure 9.28. (a) G; (b) G-admissible; (c) G-inadmissible

If B is any bridge ofH (in G), then B is said to be drawable in a face f of
H if the vertices of attachment of B to H are contained in the boundary of
f. We write F(B, H) for the set of faces of H in which B is drawable. The
following theorem provides a necessary condition for G to be planar.

Theorem 9.14 If H is G-admissible then, for every bridge B of H,
F(B, H) ¢ 9.

Proof If H is G-admissible then, by definition, there exists a planar
embedding 0 of G such that H c O. Clearly, the subgraph of 0 which
corresponds to a bridge B of H must be confined to on~ face of H. Hence
F(B,H)~0 0

Since a graph is planar if .and only if each block of its underlying simple
graph is planar, it suffices to consider simple blocks. Given such a graph G,
the algorithm determines an increasing sequence G t , G2 , ••• of planar
subgraphs ofG, and corresponding planar embeddings 0 1, O2 , •••• When G
is planar, each Oi is G-admissible and the sequence 0 1, O2 , ••• terminates in
a planar embedding of G. At each stage, the ne~essary condition in theorem
9.14 is used to test G for nonplanarity.-

Planarity Algorithm

1. Let 0 1 be a cycle in G. Find a planar embedding 0 1 of G 1 • Set i = 1.
2. If E(G)\E(Gi ) = 0, stop. Otherwise, determine all bridges of G i in- G; for

each such bridgeBfind the set F(B, Oi). . .
3. If there exists a bridge B such that F(B, Oi) = 9, stop; by· theorem 9.14,

G is nonplanar. If there exists a bridge B such that IF(B, Oi)1 =1, let
{f} =F(B, Oi). Otherwise, let B be any bridge and f any face such that
fe F(B, Oi).

4. Choose a path Pi eB connecting two vertices of attachment of B to G i .

Set Gi+1 = GiU Pi and obtain a planar embedding Oi+l of G i+1 by drawing
Pi in the face f of Oi. Replace i by i + 1 and go to step 2.

To illustrate this algorithm, we shall consider the graph G of figure 9.29.
We start with the cycle 0 1 =2345672 and a list of its bridges (denoted, for
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Figure 9.29



166 Graph Theory with Applications

brevity, by their edge sets); at each stage, the bridges B for which
IF(B, Oi)l =1 are indicated in bold face. In this example, the algorithm
terminates with a planar embedding 0 9 of G. Thus G is planar.

Now let us apply the algorithm to the graph H obtained from G by
deleting edge 45 and adding edge 36 (figure 9.30). Starting with the cycle
23672, we Rroceed as shown in figure 9.30. It can be seen that, having
constructed H3' we find a bridge B ={12, 13, 14, 15, 34, 48, 56, 58, 68, 78}

5 4
H

3

2

"""H2

{37}

{12,13,'4,15,34,48,56,58~68,78}

~27,.

6 "'"H,

{26},{37}

{12.13,14,15,34t48.~6,58,68,78}

?

{12,13,14,15,34,48,56,58,68,78}

Figure 9.30
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such that F(B, H3) = B. At this point the algorithm stops (step 3), and we
conclude that H is nonplanar.

In order to establish the validity of the algorithm, one needs to show that
if G is planar, then each term of the sequence Gt, G2 , ••• ,Oe-I1+1 is
G-admissible. Demoucron, Malgrange and Pertuiset prove this by induction.
We shall give a general outline of their proof.

Suppose that G is planar. Clearly 0 1 is G-admissible. Assume that G
i

is
G-admissible for 1 <: i <: k < € - V + 1. By definition, there is a planar em
bedding G of G such that Gk C G. We wish to show that Gk+1 is G
admissible. Le! Band f be as defined in step 3 of the algorithm. If, in a, B
is drawn in f, G k + 1 is clearly G-admissible. So assume that no bridge of G

k
is

drawable in only one face of Gk , and that, in G, B is drawn in some other
face f'. Since no bridge is drawable in just one face, no bridge whose
vertices of attachment are restricted to the common boundary of f and f'
can be skew to a bridge not having this property. Hence we can interchange
bridges across the common boundary of f and f' and thereby obtain a planar
embedding of G in which B is drawn in f (see figure 9.31). Thus, again, G

k
+

1is G~admissible.

Figure 9.31

The algorithm that we have described is good. From the flow diagram
(figure 9.32), one sees that the main operations involved are

(i) finding a cycle G 1 in the block G;
(ii) determining the bridges ofGi in G and their vertices of attachment to

Gi ;



Find a cycle G1 and a

planar embedding 61 of G1

;+,-. i
YES

For each bridge 8 of Git

find F(B,G;)

Find a path ~ in B
connecting two vertices

of attachment.
Set Gi+1= GluPi.

Draw Pi in f to get Gi+1

YES:

3 Band f such that

F{B,G1)= {f}

Choose any
Band f

such that

f€ F(8t~)

YES

Figure 9.32. Planarity algorithm
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(iii) determining b(f) for each face f of Gi ;

(iv) determining F(B, Gi) for each bridge B of Oi;
(v) finding a path Pi in some. bridge B of Oi between two vertices of

V(B,Oi).

There exists a good algorithm for each of these operations; we leave the
details as an exercise.

More sophisticated algorithms for testing planarity than the above have
since been obtained. See, for example, Hopcroft and Tarjan (1974).

Exercise

9.8.1 Show that the Petersen graph is nonplanar by applying the above
algorithm.
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10 Directed Graphs

10.1 DIRECTED GRAPHS

Although many problems lend themselves naturally to a graph-theoretic
formulation, the concept of a graph is sometimes not quite adequate. When
dealing with problems of traffic flow, for example, it is necessary to know
which roads in the network are one-way, and in which direction traffic is
permitted. Clearly, a graph of the network is not of much use in such a
situation. What we need is a graph in which each link has an assigned
orientation-a directed graph. Formally, a directed graph D is an ordered
triple (V(D), A(D), t/Jo) consisting of a nonempty set V(D) of vertices, a set
A(D), disjoint from V(D), of arcs, and an incidence function t/Jo that
associates with each arc of D an ordered pair of (not necessarily distinct)
vertices ofD. If a is an arc and u and v are vertices such that t/Jo(a) = (u, v),
then a is said to join u to v; u is the tail of a, and v is its head. For
convenience, we shall abbreviate 'directed graph' to digraph. A digraph D'
is a subdigraph of D if V(D') c V(D), A(D') c A(D) and t/Jo' is the
restriction of t/Jo to A(D'). The terminology and notation for subdigraphs is
similar to that used for" subgraphs.

With each digraph D we can associate a graph G on the same vertex set;
corresponding to each arc of D there is an edge of G with the same ends.
This graph is the underlying graph of D. Conversely, given any graph G, we
can obtain a digraph from G by specifying, for each link, an order on its
ends. Such a digraph is called an orientation of G.

Just as with graphs, digraphs have a simple .pictorial representation. A
digraph is represented by a diagram of its underlying graph together with
arrows on its edges, each arrow pointing towards the head of the corre
sponding arc. A digraph ",an·d its underlying graph are shown in figure 10.1.

Every concept that is valid for graphs automatically applies to digraphs
too. Thus the digraph of figure 10.1 a is connected and has no cycle of length
three because its underlying graph (figure 10.1 b) has these properties.
However, there are many concepts that involve the 'notion of orientation,
an"d these apply only to digraphs.

A directed ·walk in D is a finite non-null sequence W =
(Vo, aI, VI, ... , ak, Uk), whose terms are alternately vertices and arcs, such
that, for i = 1,2, ... , k, the arc ai has head Vi and tail Vi-I. As with walks in
graphs,. a directed walk (vO,al, 'Vt, ••• , ak, Vk) is often represented simply by
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(a )
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( b )

Figure 10.1. (a) A digraph D; (b) the underlying graph of D

its vertex sequence (Vo, VI, ..• , Vk). A directed trail is a directed walk that is
a trail; directed paths, directed cycles and directed tours are similarly defined'.

If there is a directed (u, v)-path in D, vertex v i~ said to be reachable from
vertex u in D. Two vertices are diconnected in D if each is reachable from
the other. As in the case of connection in graphs, diconnection is. an
equivalence relation on the vertex set of D. The subdigraphs
D[V1], D[V 2], ••• , D[ Vm] induced by the resulting partition
(VI, V 2 , ••• , Vm ) of V(D) are called' the dicomponents of D. A digraph D is
diconnected if 'it' has exactly one dicomponent. The digraph of figure lO.2a
is not diconnected; it has the three dicomponents shown in figure lO.2b.

The indegree d o(v) of a· vertex v inD is the nu~ber of arcs with head v;
the outdegree d~(v) of v· is the number of arcs with tail v. We denote the
minimum and maximum indegrees and outdegrees in D by 8-(D), ~-(D),
l)+(D) and ~+(D), respectively. A digraph is strict if it has no loops and no
two arcs with the same ends have the same orientation.

Throughout this chapter, D will denote a digraph and G its underlying
graph. This is' a llseful convention; it allows us, for example, to denote the
vertex set of D by V (since V = V( G», and the numbers of vertices and arcs
in D by v and €, respectively. Also, as with graphs, we shall drop the letter
D from our notation whenever possible; thus we write A for A(D), d+(v)
for d~(v), 0- for 5-(D), an.d so on.

(0) (b)

Figure 10.2. (a) A digraph D; (b) the three dicomponents of D
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Exercises

10.1.1 How many orientations does a simple graph G have'?

10.1.2 Show that L d-(v) = e = L d+(v)
vEV vEV

10.1.3 Let D be a digraph with no directed cycle.
(a) Show that 5- = O.

(b) Deduce that there is an ordering VI, V2, ••• , VI' of V such that,
for 1 <: i <: v, every arc of D with head Vi has its tail in
{Vi, V2, •.• , Vi-I}.

. 10.1.4 Show that D is diconnected if and only if Disconnected and each
block of D is diconnected. ·

10.1.5 The converse fj of D is the digraph obtained fromD by reversing
the orientation of each arc.

(a) Show that

(i) b = D;
(ii) dfi(v) = dn(v);

(iii) v is reachable from u in fj if and only if u is reachable
from v in D.

(b) By using part (ii) of (a), deduce from exercise lO.1.3a that if D
is a digraph with no directed cycle, then 8+ = O.

10.1.6 Show that if D is strict~ tJ..~n D contains a directed path of length at
least max{8-, 8+}.

10.1.7 Show that if D is strict and max{a-, a+} = k >0, then D contains a
directed cycle 'of length at least k + 1.

10.1.8 Let VI, V2, •.. ,VI' be the vertices of a digraph D. The adjacency
matrix of D is the v x v matrix A = [~i;] in which aij is the number
of arcs of D with tail Vi and head Vj. Show that the (i, j)th entry of
A

k
is the number of directed (Vi, vj)-walks of length k in D.

10.1.9 Let Dl, D 2 , ••• ,Dm be the dicomponents of D. The condensation D
of D is a directed graph with m vertices .Wi" W2, .•• , Wm ; there is an
arc in D with tail Wi and head Wj if and only if there is an arc in D
with tail in D i and head in D j • Show that the condensation D of D
contains no directed cycle.

10.1.10 Show that G has an orientation D such that Id+(v)-d-(v)ls 1 for
all v E'V.

10.2 DIRECfED PATHS

There is no close relationship between the lengths of paths and directed
paths in a digraph. That this is so is clear from the digraph of figure 10.3, which
has no directed path of length greater than one.
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Figure 10.3

Surprisingly, some information about the lengths of directed paths in a
digraph can be obtained by looking at its chromatic number. The following
theorem, due to Roy (1967) and Gallai (1968), makes this precise.

Theorem 10.1 A digraph D contains a directed path of length X- 1.

Proof Let A' be a minimal set of arcs of D such that D' = D - A'
contains no directed cycle, and let the length of a longest directed path in D '
be k. Now assign colours 1, 2, ... , k + 1 to the vertices of V' by assigning
colour i to vertex v if the length of a longest directed path in D' with origin
v is i-I. Denote by Vi the set of vertices with colour i. We shall show that
(VI, V 2 , ••• , Vk + 1) is a proper (k + I)-vertex colouring of D.

First, observe that the origin and terminus of any directed path in D ' have
different colours. For let P be a directed (u, v)-path of positive length in D '
and suppose v E "Tie Then there is a directed path Q = (VI, V2, ••• , Vi) in D ',
where Vt = v~ Since D' contains no directed cycle, PO is a directed path with
origin u and length at least i~ Thus u~ Vi.

We can now show that the ends of any arc of D have different colours.
Suppose (u, v)EA(D). If (u, v)eA(D') then (u, v) is a directed path in D '
and so u and v have different colours. Otherwise, (u, v) E A'. By the
minimality of A', D'+(u, v) contains a directed cycle C. C-(u, v) is a
directed tv, u)-path in D ' and hence in this case, too, u and v have different
colours.

Thus (VI, V 2 , ••• , Vk +.1) is a proper vertex colouring of D. It follows that
X <: k + 1, and so D has a directed path of len.gth k > X-I 0

Theorem 10.1 is best possible in that every graph G .has an orientation in
which the longest directed path is of length X -- 1. Given a proper x-vertex
colouring (Vt , V 2 , ••• , V)() of G, we orient G by converting edge uv to arc
(u, v) if u e Vi and v E Vj with i <j. Clearly, oq directed path in this
orientation of G can contain more than X vertices, since no two vertices of
the path can have the same colour.

An orientation of a complete graph is called a tournament. The tourna
ments on four vertices are shown in figure 10.4. Each can be regarded as
indicating the results of games in a round-robin tournament between four
players; for example, the first tournament in figure 10.4 shows that one
player has won all three games and that the other three have each won one.

A directed Hamilton pa,th of D isa directed path that includes every
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Figure 10.4. The tournaments on four vertices

vertex of D. An immediate corollary of theorem 10.1 is that every tourna
ment has such a path. This was first proved by Redei (1934).

Corollary 10.1 Every tournament has a directed Hamilton path.

Proof If D is a tournament, then X = v 0

Another interesting fact about tournaments is that there is always a vertex
from which every other vertex can be reached in at most two steps. We shall
obtain this as a special case of a theorem of Chvatal and Lovasz (1974). An
in-neighbour of a vertex v in D is a vertex u such that .(u, v) E A; an
out-neighbour of v is a vertexw such that (v, w)eA. We denote the sets of
in-neighbours and out-neighbours of v in D by No(v) and N~(v), respec
tively.

Theorem 10.2 A loopless digraph D has an independent set S such that
each vertex of D not in S is reachable from a vertex in S by a directed path
of length at most two.

Proof By induction on v. The theorem holds trivially for v = 1. Assume
that it is true for all digraphs with fewer than v vertices, and let v be an
arbitrary vertex of D. By the ind~ction hypothesis there exists in D' =
D-({v}UN+(v» an independent set 5' such that each vertex of D' not in 5/
is reachable from a vertex in S' by a directed path of length at most two. If v
is an out-neighbour of some vertex u of S', then every vertex of N+(v) is
reachable from u -by a directed path of length two. Hence, in this case,
s- = S' satisfies the required property. If, on the other hand, v is not an
out-neighbour of any vertex of S', then v is joined to no vertex of S' and the
independent set S = S' U {v} has the required property 0

Corollary 10.2 -A tournament contains a vertex from which ~very other
vertex is reachable by a directed path of length at most two.

Proof If D is a tournament, then a = 1 0
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Exercises

10.2.1 Show that every tournament is either diconnected or can be trans
formed into a diconn.ected tournament by the reorientation of just
one arc.

10.2.2* A digraph D is unilateral if, for any two vertices u and v, either v is
reachable from u or u is reachable from v. Show that D is unilateral
if and only if D has a spanning directed walk.

10.2.3 (a) Let P = (VI, V2, •.. , Uk) be a maximal directed path in a tourna
ment D. Suppose that P is not a directed Hamilton path and let
v be any vertex not on P.Show that, for some i, both (Vi, v) and
(v, Vi+l) are arcs of D.

(b) Deduce Redei's theorem.
10.2.4 Prove corollary 10.2 by considering a vertex of maxImum
, outdegree.
10.2.5* (a) Let D be a digraph with X·> mn, and let f be a real-valued

function defined on V. Show that D has either a directed path
(uo, Ul, ... , Urn) with [(uO)<f(Ul)< ... <f(um) or a directed path
(vo, Vt, · · · , Un) with f(vo) > [(VI) >. · ·> f(v n ).

(V. Chvatal and J. Koml6s)
(b) Deduce that any sequence of, mn + 1 distinct integers contains

either an increasing subsequence of m terms or a decreasing
subsequence of n terms. (P. Erdos and G. Szekeres)

10.2.6 (a) Using theorem 10.1 and corollary 8.1:2, show that G has an
orientation in which each directed path is of length at most ~.

(b) Give a constructive proof of (a).

10.3 DIRECfED CYCLES

Corollary 10.1 tells us that every tournament contains a directed Hamilton
path. Much strong~r conclusions can be drawn, however, if the tournament

. is assumed to be diconnected. The following theorem is due' to Moon
(1966). If Sand T are subsets of V, we denote ·by (5, T) the set of arcs of D
that have their tails in S and their h·eads in T.

Theorem 10.3 Each vertex of' a diconnected tournament D with v:> 3 is
contained in a directed k -cycle, 3 < k < v.

Proof Let D be a diconnected tournament with v :> 3, and let u· be any
vertex of D. Set S = N+(u) and T == N-(u). We first show that u is in a
directed 3-.cycle. Since D is diconnected, neither S nor .T can be empty; and,
for the same reasc;>n, (5, T) ·must be, ~onempty (see figure 10.5). There is
thus some arc (v, w) in D with v E Sand wET, and u is in the directed
3-cycle (u, v, w, u).
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The theorem is now proved by induction on k. Suppose that u is in
directed cycles of all lengths between 3 and n, where n < v. We shall show
that u is in a directed (n + I)-cycle.

Let C = (Va, V1, • · • , vn ) be a directed n-cycle in which Va = Vn = u. If there
is a vertex V in V(D)\V(C) which is both the head of an arc with tail in C
and the tail of an arc with head in C, then there are adjacent vertices Vi and
Vi+l on C such that both (Vi, v) and (v, Vi+l) are arcs of D. In this case u is in
the directed (n + I)-cycle (Va, VI, ••• ,Vi, V, Vi+1, ••• , Vn).

Otherwise, denote by 5 the set of vertices in V(D)\V(C) which are heads
of arcs joined to C, and by T the set of vertices in V(D)\V(C) which are
tails of arcs joined to C (see figure 10.6).

As before, since D is dicpnnected, 5, T and (5, T) are all nonempty, and
there is some arc (v, w) in D with V E 5 and wET. Hence u is in the
directed (n + I)-cycle (Va, V, W, V2, .•• ,vn) 0

A directed Hamilton cycle of D is a directed cycle that includes every
vertex of D. It follows from theorem 10.3 (and was first proved by Camion,
1959) that every diconnected tournament contains such a cycle. The next

c

Figure 10.6
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theorem extends Dirac's theorem (4.3) to digraphs. It is a special case of a
theorem due to Ghouila-Houri (1960).

Theorem 10.4 If D is strict and min{a-, a+}> vl2 > 1, then D contains a
directed Hamilton cycle.

Proof Suppose that D satisfies the hypotheses of the theorem, but does
not contain a directed Hamilton cycle. Denote the length of a longest
directed cycle in D by I, and let C =(Vl, V2, ••• , VI, Vl) be a directed cycle in
D of length l. We note that I> vl2 (exercise 10.1.7). Let P be a longest
directed path in D - V(C) and suppose that P has origin u, terminus v and
length m (see figure 10.7). Clearly

and, since I > v/2,

Set

v>l+m+l

m<v/2

(10.1)

(10'.2)

S = {i I(Vi-l, u) E A} and T = {i I(v, Vi) E; A}

We first show that Sand T are disjoint. Let Cj,k denote the section of C
with origin vjand terminus Vk. If some integer i were in both Sand T, D
would contain the directed cycle Ci,i-l(Vi-l, u)P(v, Vi)' of length I + m + 1,
contradicting the choice of C. Thus

SnT=0 (10.3)

Now, because P is a maximal directed path in D - V(C), N-(u) c
V(P) U V(C). But the number of in-neighbours of u in C is precisely lSI and
so do(u)=d;(u)+ISI. Since do(u):>8-~vI2 and d;(u)<m,

lSI:> vl2 - m (10.4)
A similar argument yields

ITI2: v/2- m (10.5)

Figure 10.7
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Note that, by (10.2), both Sand Tare nonempty. Adding (10.4) and
(lO.5) and using (lO.l), we obtain

lSI + ITI:> 1- m + 1
and therefore, by (10.3),

Is U TI:> 1- m + 1 (10.6)
Since Sand T are disjoint and nonempty, there are positive integers i and k
such that i E S, i + k E T an-d-

i + j fl S U T for 1<: j < k (l0.7)
where addition is taken modulo I.

From (10.6) and (lO.7) we see that k;5 m. Thus the directed cycle
C i+ k.i - 1(Vi-J, u)P(v, Vi+k), which has length I + m + 1- k, is longer than C. This
contradiction establishes the theorem 0

Exercises

10.3.1
10.3.2

10.3.3

10.3.4*

10~3.5

10.3.6

Show how theorem 4.3 can be deduced from theorem 10.4.
A directed Euler tour of D is a directed tour that traverses each arc
of D exactly once. Show that D contains a directed Euler tour if
and only if D is connected and d+(v) = d-(v) for all v E V.
Let D be a digraph such that

(i) d+(x) - d-(x) = 1 = d-(y) - d+(y);
(ii) d+(v) = d-(v) for v E V\{x, y}.

Show, using exercise 10.3.2, that there exist I arc-disjoint directed
(x, y)-paths i~ D.

Show that a diconnected digraph which contains an odd cycle, also
contains a directed odd cycle.
A nontrivial digraph D is k-arc-connected if, for every nonempty
proper subset S of V, 1(5, 5)1:> k. Show that a nontrivial digraph is
diconnected if and only if it is I-are-connected.
The associated digraph D(G) of a graph G is the digraph obtained
when each edge e of G is replaced by two oppositely oriented arcs
with the same ends as -e. Show that

(a) there is a one-one correspondence between paths in G and
directed paths in D(G);

(b) D(G) is k-arc-connected if and only if G .s k-edge-connected.

APPLICATIONS

10.4 A JOB SEQUENCING PROBLEM

A number of jobs 11 , 12 , ••• ,1n , have to be processed on one machine; for
example, each 1i might be an order of bottles or jars in a glass factory. After
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each job, the machine'must be adjusted to fit the requirements.of the next
job. If the ~ime of adaptation from job Ji to job Jj is tij, find a sequencing
of the jobs thatminimis.es the total machine adjustme'nt time.

This problem i~ clea'rly r.el~ted, to the travelling salesman prqblem, a~.d no
efficient method for its solution is known. It is therefore desirable to have 'a

. method for obtaining "-a reasonably good (but not necess.arily optimal)
solution. Our method m~kes use of Redei's theorem (corollary 10.1) .

. Step 1 Construct a digraph D with vertices v 1, V2, • •. , Vn , such that (Vi, Vj) E

•. A if and only if tij,< t ji • By definition, D contains a. spanning tourname~t.
. .

Step 2 Find a directed Hamilton path (Vip Vi2' ... ,ViJ of D (exercise
10.4.1), and sequence the jobs ,accordin,gly. ' .

, ~ince step 1 discards the larger half .of the adjustment matrix [tij], it is a
reasonable supposition that this method,in general, .produces a f,aifly good
job sequence .. Note, however,. that when the -adjustment matrix is symmetric,
the, method is of, no help wh.atsoever.

."As an example, supp,ose that there are six jobs J 1, J2 , -J3 , J4,J5 and 16 ~nd

that _the adjustment ~atrix is

J1 12 .J3 .J4, J 5 16

.1.1 0 5- 3 4 2 1
12 1· 0 1 2 3' 2
J

3
. .' 2' 5, '0 1 2 3

J4
- 1 4 4 0 1· 2

J 5 1 3 4 5 0 5
J6 . 4 4 2 3 1 0

The sequence J 1~-J2 ~ J3~- J.4~ !5~ J'6 requires 13 unit~ .in' adjustment
time. To find a better sequence, construct the digraph D as in step 1 (figure
10-.,8). . '

(VI, V6, V3, V4,' Vs, V2) is a directed Hamilton path of p;and yields the sequence _

J1. ---+ J6.~ .1.3 --+ .14~ Js~ J2\

':Vhich requires only eight units of adjustment time. Note that the reverse
sequence

.:

is far wor~e, requiring 1'9 units of adjustm~nt time.

Exercises

10.4.·1 ,With the aid of exercise 10.2.3, des.cribe a good algqrithm for
finding adirected Hamilton path in a tournament.
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10.4.2 Show, by means of an example, that a sequencing of jobs obtained
by the above method may be far from optimal.

10.5 DESIGNING AN EFFICIENT COMPUTER DRUM

The position of a rotating drum is to be recognised by means of binary
signals produced at a number of electrical contacts at the surface of the
drum. The surface is divided into 2° section:s, each consisting of either
insulating or conducting material. An insulated section gives signal 0 (no
current), whereas a conducting section gives signal 1 (current). For example,
the position of the drum in figure 10.9 gives a reading 0010 at the four

.Contacts.

Figure 10.9. A computer drum
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contacts. If the drum were rotated clockwise one section, the reading would
"be" 1001. Thus these two positions can be distinguished, since th'eygive
different readings. Ho.wever, a further rotation of two sectio.ns would result
~n another position with read~ng 0010, and theref.ore this latter position is·
indistinguishable from the initial orie.

We wish to design the drum surface in such a way that the 2°. different
positions of the drum· can be distinguished by k contacts placed consecu
tively around part of the drum,and -we would like this number k to be as
small as possible. How ·can· this be accomplished?

First note that k contacts yield a k -digit binary number, and there are 2k
.

such numbers.~Therefore, if. all 20 positions are to give different readings, ·we
must have 2k :> 2°, that is, k:> n. We shall show that the surface of the drum
can be designed in such a way that n contacts suffice to distinguish all 2°
posi~ions.

We define a digraph Do as. follows: the vertices of Do are the (n -I)-digit
binary numbers ptp2 ... po-l with Pi = 0 or 1. There is 'an arc with tail
P1P2". · · po-l and head qlq2 ... qn-l if and only if Pi+l = qi for 1 <: i < n - 2; in
other words, all arcs are of the form (P1P2 ... po-t, P2P3 ... po). In addition,
each arc (P1P2 ... pn-'t, P2P3 . · . po) of DOn is assigned the label "ptp2 ...pn- D4 is
show.n in figure 10.10. ~ .

Clearly, Do is connected and each vertex of Do has indegreetwo .and
o~tdegree two. Therefore (ex'ercise 10.3.2) D n has a directed Euler tour.

. This directed Euler tour, regarded as a sequence of arcs of Do, yields a
binary sequence of length 2D suitable for" the design of the drum: surface.

'For exampl.e~ the· digraph D 4 of figure 10.10 has a directed Euler tour
(at, a2, ...., a16), giving the 16-digitO binary sequence 0000111100101101.
(Just read off the first digits of the labels of the ai.) A drum constructed from
this sequence is sh~wn in figure ·10.11.

This application of directed Euler tours is due to Good (1946).

Exercises

10.5.1. Find a circular sequence of seven O's and sev~n 1's such that· all
4-digit binary numbers except 0000 and 1111 appear as blocks of
the sequence. "

10.5.2 Let S be an alphabet of n lett~rs~ ;Show that there is a circular
sequence containing n3 copies of each letter such that every four
letter 'word' formed· from letters 9£ S. appears as a block of the
sequence.

10.6 MAKING A ROAD SYSTEM ONE-WAY

Given a road system, how can· it be cqnverted to one~way operation so· th-at
traffic may flow as smoothly as possible?
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Figure 10.10

Arc Label
01 0000
02 000 1
03 00 1 1
04 0 1 1 1
05 1 1 1 1
06 1 1 10
07 1 1 00
08 100 1
09 001 0
010 010 1
011 1 0 1 1
012 0 1 1 0
013 1 10 1
014 1 0 10
015 0 100
016 1000

Figure 10.11
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This is clearly a problem on orientations of graphs. Consider, for example,
the two graphs, representing road networks, in figures lO.12a and lO.12b.

No matter how G i may be oriented, the resulting orientation cannot be
diconne~ted-trafficwill not be able to flow freely through the system. The
trouble is that G t has a cut edge. On the other hand G 2 has the 'balanced'
orientation D 2 (figure lO.12c), in which each vertex is reachable from each
other vertex in at most two steps; in particular D 2 is diconnected.

Certainly, a necessary condition for G to have a diconnected orientation
is that G be 2-edge-connected. Robbins (1939) showed that this condition is
also sufficient.

Theorem 10.5 If G is 2-edge-connected, then G has a diconnected orien
tation.

Proof Let G be 2-edge-connected. Then G contains a cycle G i . We
define inductively a sequence G 1, G 2 , e •• of connected subgraphs of G as
follows: if G i (i == 1, 2, ...) is not a spanning subgraph of G, let Vi be a vertex
of G not in Gie Then (exercise 3.2.1) there exist edge-disjoint paths .Piand
Oi from Vi to Gi • Define

G i + 1 = G i U Pi U Oi

Since v( G i + 1) > v(G i), this sequence must terminate in a spanning subgraph
G n of G.

We now orient G n by orienting G t as a directed cycle, each path Pi as a
directed path with origin Vi, and each path Oi as a directed path with
terminus Vi. Clearly every G i , and hence in particular G n , is thereby given a
diconnected orientation. Since Gn is a spanning subgraph of G it follows that
G, too, has a diconnected orientation 0

Nash-Williams (1960) has generalised Robbins' theorem by showing that
every 2k-edge-connected graph G has a k-are-connected orientation. Al
though the proof of this theorem is difficult, the special case when G has an
Euler trail admits of a simple proof.

(0 ) (b) (c )
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Theorem 10.6 Let G be a 2k -edge-connected graph with an Euler trail.
Then G has a k -arc-connected orientation.

Proof Let VOet Vi .•. ef;'VE be an Euler trail of G. Orient G by converting
the edge ei with ends Vi-] and Vi to an arc ai with tail Vi-l and head Vi, for
1< i < E. Now let [S,5] be an m-edge cut of G. The number of times the
directed trail (vo, ai, VI, ... , aE , ve ) crosses from S to S·· differs from the
number of times it crosses from 5 to 5 by at most one. Since it includes all
arcs of D, both (5, 5) and (5, 5) must contain at least [m12] arcs. The result
follows 0

E.xercises

10.6.1 Show, by considering the Petersen graph, that the following state
ment is false: every graph G has an orientation in which, for every
S c V, the cardinalities of (5, 5) and (5, S) differ by at most one.

10.6.2 (a) Show that Nash-Williams' theorem is equivalent to the follow
ing statement: if every bond of G has at least 2k, edges, then
there is an orientation of G in which every bond has at least k
arcs in each direction.

(b) Show, by considering the Grotzsch graph (figure 8.2), that the
following analogue of Nash-Williams' theorem is false: if every
cycle of G has at least 2k edges, then there is an orientation of
G in which every cycle has at least k arcs in each direction.

10.7 RANKING l'HE PARTICIPANTS IN A TOURNAMENT

A 11umber of players_ each play one another in a tennis tournament. Given
the outcomes of the games, how should the participants be ranked?

Consider, for example, the tournament of figure 10.13; This represents
the result of a tournament between six players; we see that player 1 beat
players 2, 4, 5 and 6 and lost to player 3, and so on.

One possible approach to ranking the participants would be to find a
directed Hamilton path in the tournament (such a path exists by virtue of
corollary 10.1), and then rank according to the position on the path. For
instance, the directed Hamilton path (3, 1, 2, 4, 5, 6) would declare player 3
the winner, player 1 runner-up, and so on. This method' of rankin·g,
however, does not bear further examination, since a tournament generally
has many directed Hamilton paths; our example ,has (1,2,4,5,6, 3), (1, 4,
6, 3, 2, 5) and several others.

Another approach would be to compute the scores (numbers of games
won by each player) and compare them. If we do this we obtain the score
vector '

St . (4, 3, 3, 2, 2, 1)
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6 ~--......-.-------.--+----~ 3

5

Figure 10.13

4

The drawback here is that this score vector does not distinguish between
players 2 and 3 even though player 3 beat players with higher scores than
did. player 2. We are thus led to .th~ second-level score vector

82 = (8, 5, 9, ~, 4, 3)
\

in which each player's second-level score is the sum of the scores of the
players he beat. Player 3 now ranks first. Continuing this procedure we
obtain further vectors

53 = (15, 10, 16,7, 12,9)

54= (38,28,32,21,25,16)

Ss = (90,62,87,41,48,32)

56 = (183, 121, 193, 80, 119,87)

The ranking of the players is seen to fluctuate a little, player 3 vying with
player 1 for first place. We shall show that .this procedure always converges
to a fi~ed ranking when the tournament in question is diconnected and has
at least four vertices. This will then lead to a method of ranking the players
in ·any tournament.

In a diconnected digraph D, the length of a shortest directed (u, v)-path is
denoted by clo(U, v) and is called the distance from. u to v; the directed
diameter of D is the maximum distance from anyone vertex of D to any
other.

Theorem 10. 7 Let D be a diconnected tournament with v > 5, and let A be
the adjacency matrix of D. Then A~+3>0 (every entry positive), where d is
the directed diameter of D. .
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Proof The (i, j)th entry of A k is precisely the number of directed (Vi, Vj)
walk·s of length k in D (exercise 10.1.8). We must therefore show that, for
any two vertices Vi and Vj (possibly identical), there is a directed (Vi, vj)-walk
of length d + 3.

Let dij = d(Vi, Vj). Then 0 -< dij -< d -< v -1 and therefore

3 <: d - dij + 3 <: v + 2

If d - dij + 3 <v then, by theorem 10.3, there is a directed (d - dij +3)-cycle
C containing Vj. A directed (Vi, vj)-path P of length dij followed by the
directed cycle C together form a directed (Vi, vj)-walk of length d + 3, as
desired.

There are two special cases. If d.- dij + 3 = v + 1, then P followed by a
directed (v - 2)-cycle through Vj followed by a directed 3-cycle through Vj

constitute a directed (Vi, vj)-walk of length d + 3 (the (v - 2)-cycle exists since
v ~ 5); and if d - dij + 3 = v + 2, then P followed by a directed (v -l)-cycle
through Vj followed by a directed 3-cycle through Vj constitute such a
walk 0

A real matrix R is called primitive if R k > 0 for so~e k.

Corollary 10.7 The adjacency matrix A of a tournament D is primitive if
and only if D is diconnected and v:> 4.

Proof If D is not diconnected, ,then there are vertices Vi and Vj in D such
that' -Vj is not reachable from Vi. Thus there is no directed (Vi, vj)-walk in D.
It follows that the (i, j)th entry of A k is zero for all k,and hence A is not
primitive.

Conversely, suppose that D is .diconnected. If v >- 5 then, by theorem
10.7, A d

+
3 >O and so A is primitive. There is just one diconnected tourna

ment on three vertices (figure lO.14a), and just one diconnected tournament
on four vertices. (figure lO.14b). It is readily checked ,that the adjacency

( 0) ( b )

Figure 10.14
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matrix of the 3-vertex tournament is not primitive, and it can be shown· that
the ninth power of the adjacency matrix of the 4-vertex tournament has all
entries positive 0

Returning now to the score vectors, we see that the ith-Ievel score vector
in a tournament D is given by.

where A is the adjacency matrix of D, and J is a column vector of 1'so If the
matrix A is primitive then, by the Perron-Frobenius theorem (see
Gantmacher, 1960), the eigenvalue of A with largest absolute value is a real
positive number r and, furthermore,

. (A i~lm -)J=S
1--+00 r

where s is· a positive- eigenvector of A corresponding to r. Therefore, by
corollary 10.7, ifD isa diconnected t9urnament on at least four vertices,
the normalised vector s (with entries summing to one) can be taken as the
vector of relative strengths. of the' players in. D. In the example of figure

.10.13, we find that (approximately)

r = 2.232 and s= (.238, .164, .231, .113, .150, .104)

Thus the ranking of the players given by this method is 1, 3, 2, 5, 4, 6.
If the to·urnament is not diconnected, then (exercises 10.1.9 and 10.1.3b)

its dicomponents can be linearly ordered so that the ordering preserves
dominance. The participants in a round-robin tournament can now be
ranked according to the following procedure.

Step 1 . In each dicomponent on four or mo·revertices, rank the players
using the eigenvector s; in a dicomponent on three vertices rank all three
players equal.

Step 2 Rank the dicomponents in their dominance-preserving linear order
D t , D 2 , ••• ,Dm .; that is, if i < j then every arc with one end in D i and one
end in D j has its head in D j •

This method of ranking is due to Wei (1952) and Kendall (1955). For
other r~nking procedures, see Moon and Pullman (1970).

Exercises

10.7.1 Apply the method of ranking described in section 10.7 to

(a) the four tournaments shown in figure 10.4;
(b) ·the tournament with adjacency matrix
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A B C D E F G H I J

A 0 1 1 1 1 1 0 0 1 1
B 0 0 1 0 0 1 0 0 0 0
C 0 0 0 0 0 0 0 0 0 .0
D 0 1 1 0 1 1 0 0 1 0
E 0 1 1 0 0 0 0 0 0 0
F 0 0 1 0 1 0 0 0 0 0
G 1 1 1 1 1 1 0 0 1 0
H 1 1 1 1 1 1 1 0 1 1
I 0 1 1 0 1 0 0 0 0 0
J 0 1 1 1 1 1 1 0 1 0

10.7.2 An alternative method of ranking IS to consider 'loss vectors'
instead .of score vectors.

(a) Show that this amounts to ranking the converse tournament
and then reversing the ranking so found.

(b) By considering the diconnected tournament on four vertices,
show that the two methods of ranking do not necessarily yield
the same result.
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11 Networks
11.1 FLOWS

Transportation networks, the means by which commodities are shipped from
their production centres to their markets, can be most effectively analysed
when they are viewed as digraphs that possess some additional structure.
The resulting theory is the subject of this chapter. It has a wide range of
important applications.

A network N is a digraph D (the underlying digraph of N) with two
distinguished subsets of vertices, X and Y, and a non-negative integer
valued function·c defined on its arc set A; the sets X and Yare assumed to
be disjoint and nonempty. The vertices in X are the sources of N and those
in Yare the sinks of N. They correspond to production centres and
markets, respectively. Vertices which are neither sources nor sinks are called
intermed~ate vertices; the set of such vertices will be denoted by I. The
function ""c is the capacity {unction of N and its value on an arc a the
capacity of a. The capacity of an arc can be thought of as representing the
maximum rate at which a commodity can be transported along it.

We represent a network by drawing its underlying digraph and labelling
each arc with its capacity. Figure 11.1 shows a network with two sources Xl

and X2, three sinks yt, y2 and Y3, and four intermediate vertices VI, V2, V3 and
V4.

If S c V, we denote V\S by S. In addition, we shall find the following
notation useful. If { is a real-valued function defined on the arc set A ·of N,
and if K c A, we denote L f(a) by f(K). Furthermore, if K is a set of arcs

. aEK

of the form (S, S), we shall write f+(S) for f(S, S) and f-(S) for f(5, S).
A flow in a network N is an integer-valued function f defined on A such

that

and
0< f(a) -< c(a) for all a E A (11.1)

(11.2)'

The value f(a) of f on an arc a can be likened to the rate at which
material is transported along a. under the flow f. The upper boun.d in

. condition (11.1) is called the capacity constraint; it imposes the natural
restriction that the rate of flow along an arc cannot exceed the capacity of
the arc. Condition (11.2), called the conservation condition, requires that, for
any intermediate vertex v, the rate at which material is transported into v is
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5

Figure 11.1. A network

equal to the rate at which it is transported out of v. Note that every network
has at least one flow, since the function f defined by f(a) = 0, for all a E A,
clearly satisfies both (11.1) and (11.2); it is called the zero flow. A less trivial
example of a flow is given in figure 11.2. The flow along each arc is indicated
in bold type.

If S is a subset of vertices in a network Nand f is a flow ill N, then
f+(S) - f-(S) is called the resultant flow out of S, and f-(S) - f+(S) the
resultant flow into S, relative to f. Since the conservation condition requires
that the resultant flow out of any intermediate vertex is zero, it is intuitively
clear and not difficult to show (exercise 11.1.3) that, relative to any flow f,
the resultant flow out of X is equal to the resultant flow into Y. This
common quantity is called the value of f, and is denoted by val f; thus

val f = f+(X) - t-(X)

The value of the flow indicated in figure 11.2 is 6.
A flow f in N is a maximum flow if there is no flow f' in N such that

val f' > val f. Such flows are of obvious importance in the context of trans
portation networks. The problem of determining a maximum flow in an
arbitrary network can be reduced to the case of networks that have just one

Figure 11.2. A flow in a network
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(11.3)

source and one sirlk by means of a simple device. Given a network N,
construct a new network N' as follows:

(i) adjoin two new vertices x and y to N;
(ii) join x to each vertex in X by an arc of capacity 0:>;

(iii) join each vertex in Y to y by an arc of capacity 00;
(iv) designate x as the source and y as the sink. of N'.

Figure 11.3 illustrates this procedure as applied to the netw·ork N of figure
11.1.

Flows in Nand N' correspond to one an\other in a simple way. If f is a
flow in N such that the resultant flow out of each source and into each sink is
·non-negative (it suffices to restrict our attention to such flows) then the function
/' ·defined by·

f(a) if a is an arc of N

!'(a)= f+(v)-f-(v) if a=(x,v)

f-(v)-f+(v) if a=.(c,y)

is a flow in N' such that valf'=valf (exercise 11.1.4a). Conversely, the
restriction to the arc set of N of a flow in N' is a flow in N having the same
value (exercise 11.1.4b) .. Therefore, throughout the next three sections, we
shall confine our attention to networks th·at have a single source x and a
single sink y.

Exercises

11.1.1 For each of the following networks (see diagram, p. 194), determine
all possible flows and the v·~lue of a ·maximum flow.

11.1.2 Show· that, for any flow. f in N and any Sc V,

L (f+( v) -:- f-( v» = f+(S) - f-(S)
vES

(Note that, in general, L f+(v) # f+(S) and L f-(v) # f-(S».
vES vES
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Exercise 11.1.1 1

11.1.3 Show that, relative to any flow f in N, the resultant flow out of X is
equal to the resultant flow into Y.

11.1.4 Show that

(a) the· function {' given by (11.3) is a flow' in N' and that
val i ' = val f;

(b) the restriction to .the arc set of N of a flow in N' is a flow in N
having the same value.

11.2 CUTS

Let N be a network with a single source x and a single sink y. A cut in N is
a set of arcs of the form (5, S), where XES and yES. In the network of
figure 11.4, a cut is indicated by heavy lines.

The capacity of a cut K is the sum of the capacities of its arcs. We denote
the capacity of K by cap K; thus

cap K = L c(a)
aEK

The cut indicated in figure 11.4 'has capacity 16.

3 5

x y

5 3

Fig~re ~ 1.4. ,A cut in a networ~
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Lemma 11.1 For any flow f and any cut (5, S) in N

(11.4)

Proof Let f be a flow and (5,8) a cut in N. From the definitions of flow
and value of a flow, we have

f+(v) - f-(v) = {Val f ~f v =x .
o If v E S\{x}

Summing these equations over S and simplifying (exercise 11.1.2), we
obtain

valf= L (f+(v)-f-(v»=f+(S)-f-(S) 0
YES

It is convenient to call an arc a f-zero if f(a) = 0, f-positive if f(a) > 0,
f-unsaturated, if f(a) < c(a) andf-saturated if f(a) = c(a).

Theorem 11.1 For any flow f and any cut K =(S, S) in N

val {~ cap K (11.5)

Furthermore, equality holds in (11.5) if and only if each arc in (S,8) is
f-saturated and each arc in (8, S) is f-zero.

Proof By (11.1)
(11.6)

and
{-(S»O' (11.7)

We obtain (11.5) by substituting inequalities (11.6) and (11.7) in (11.4).
The second statement follows, on noting that equality holds in (1'1.6) if and
only if each arc in (S, S) is f-saturated, and equality holds in (11.7) if and
only' if each arc in (8, S) is f~zero 0

A cut K in N is a minimum cut if there is no· cut K' in N such that
cap K'<cap K. If f* is a maximum flow and K is a minimum cut, we have,
as a special case of theorem 11.1, that

val f* < cap K (11.8)

Corollary 11.1 Let f be a flow and K be a cut such that val f - cap K. Then
f is a maximum flow and K is a minimum cut.

Proof Let f* be a maximum flow and K a minimum cut. Then, by (11.8),

val f<val f* <cap K<cap K

Since, by hypothesis, val f = cap K, it follows that val f -:- val f* and cap K =
cap K. Thus f is a maximum flow and K is a minimum cut 0
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In the next section, we shall prove the converse of corollary 11.1, namely
that equality always holds in (11.8).

Exercises

11.2.1 In the following network:

(a) determine all cuts;
(b) find the capacity of a mini~um cut;
(c ) show that the flow indicated is a maximum flow.

x

22

11.2.2 Sh"ow that, if there exists no directed (x, y)-path in N, then the
value of a maximum flow and the capacity of a minimum cut are
both zero.

11.2.3 .If (5, S) and ~T, T) are minimum cuts in N, show that {5 U T, 5 U n
and (5 n T, S n n are also minimum cuts in N.

11.3 THE MAX-FLOW MIN-CUT THEOREM

In this section we shall present an algorithm (or determining a maximum
flow in a network. Since a basic requirement of'any such algorithm is that it
be. able to decide wh.en a given flow ·is, in fact, a maximum flow, we first look
at this question.

Let [ be a flow in a network N. With each path P in N we associate a
non-negative integert(P) defined by

t(P) = min t(a)
aEA(P)

where

( ) == {c(a) - [(a) if a is a forward arc of P
t a f{a) if a is a reverse arc of P

As may easily be seen, t(P) is the larg.est amount by which the flow along P
can be increased (relative to f) without violating condition (l1.1). The path
P is said to be f-saturated if t{P) = 0 and f-unsaturated if t{P) >0 (or,
equivalently .. if each forward arc of P is [-unsaturated and each reverse arc
of P is f-positive). Put simply, an f~unsaturated path is one that is not being
used to its full capacity. An [-incrementing path is an [-unsaturated path
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from the source x to the sink y. For example, if f is the flow indicated in the
network of figure It.5a, then one [-incrementing path is the path P =
XVtV2V3Y· The forward arcs of P are (x, VI) and (V3' y) and t{P) = 2.

The existence of an I-incrementing path P in a network is significant since
it implies that f is not a maximum flow; in fact, by sending an additional flow
of t(P) along P,one obtains a new flow I defined by

f(a) + t{P) if a is a forward arc of P

I(a) = [(a) - t(P) if a is a reverse arc of P (11.9)

f( a) otherwise

for which vall = val [+ t(P) (exercise 11.3.1). We shall refer to I as the
revised flow based on P. Figure 11.5b shows the revised flow in the network
of figure II.Sa, based on the f-incre.menting path XVIV2V3Y.

The role played by incrementing paths in flow theory is analogous to that
of augme.nting paths in matching theory, as the following theorem shows
(compare theorem 5.1).

Theorem 11.2 A flow f in N is a maximum flow if and only if N contains
no [-incrementing path.

Proof If N contains an [-incrementing path P, then f cannot be a
maximum flow since I, the revised flow based on P, has a larger value.

Conversely, suppose that N contains no [-incrementing path. OUf aim is
to show that f is a maximum flow. Let S denote the set of all vertices to
which x is connected by [-unsaturated paths in N., Clearly XES. Also, since
N has no [-incrementing, path, yES. Thus K = (S, S) is a cut in N. We shall
show that each arc in (S,5) is [-saturated and each arc in (5, S) is [-zero.

Consider an arc a' with tail U E S and head v E S. Since U E S, there exists
an f-unsaturated (x, u)-path Q. If a were [-unsaturated, then Q could be
extended by the arc a to yield an [-unsaturated (x, v)-path. But v E 5, and so
there' is no sllchpath. Therefore a must be {-saturated. Similar reasoning
shows that if a E (5, S), then a must be' [-zero.

x y x

(b)

y

Figure 11.5. (a) An {-incrementing path P; (b) revised flo",' based on P
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On applying theorem 11.1, we obtain

·val f= cap K

It now follows from corollary 11.1 that f is a maximum flow (and that K. is a
minimum cut) 0

In the course of the above proof, we established the existence of a
maximum flow [ and a minimum cut K such that val [= cap K. We thus have
the following theorem, due to Ford and Fulkerson (1956).

Theorem 11.3 In any network, the value of a maximum flow is equal to the
capacity of a minimum cut.

Theorem 11.3 is known as the max-flow min-cut theorem. It is of central
importance in graph theory. Many results on graphs turn out to be easy
consequences of this theorem as applied to suitably chosen networks. In
sections 11.4 and 11.5 we shall demonstrate two such applications.

The proof of theorem 11.2 is constructive in nature. We extract from it an
algorithm for finding a maximum flow in a network. This algorithm, also due
to Ford and Fulkerson (1957), is known as the labelling method. Starting
with a known flow, for instance the zero flow, it recursively constructs a
sequence of flows of increasing value, and terminates with a maximum flow.
After the construction of each new flow f, a subroutine called the labelling
procedure is used to find an I-incrementing path, if one exists. If such a path
P is found, then " the revised flow based on P, is constructed and taken as
the next flow in the sequence. If there is no such path, the algorithm.
terminates; by theorem 11.2, f is a maximum flow.

To describe the labelling procedure we need the following definition. A
tree T in N is an [-unsaturated tree if (i) x E V(T}, and (ii) for every vertex v
of T, the unique (x, v)-path in T is an {-unsaturated path. Such a tree is
shown in the network of figure 11.6.

The search for an [-incrementing path, involves growing an [-unsaturated
tree T in N. Initially, T consists of just the ~ource x. At any stage, there are
two ways in which the tree may grow:
1. If there exists an f-unsaturated arc a in (5, S), where S = V(T), then both

a and its head are adjoined to T.

x

V1 23 v4 22 v5

Figure 11.6. An f ..uns~t.urated tree

y
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2. If there exists an {-positive arc a in (8, S), then both a and its tail are
adjoined to T. .

Clearly, each of the above procedure$ results in an enlarged f-unsaturated
tree.

Now either T eventually reaches the sin.k y or it stops growing before
reaching y. The former case is referred to as breakthrough; in the event of
breakthrough, the (x, y)-path in T is 'ourdesired {-incrementing path. If,
however, T stops growing before reaching y, we deduc"e from theorem 11.1
and corollary 11.1 that f is a maximum flow. In figure 11.7, two iterations of
this tree-growing procedure are illustrated. The first leads to breakthrough;
the second shows that the resulting revised flow is a maximum flow.

The labelling procedure is. a systematic .way of growing an [-unsaturated
tree T. In the process of growing T, it assigns to each vertex v of T the label
l(v)=I,(Pv ), where Pv is the unique (x,v)-path in T. The advantage of this
labelling is that, in the event of breakthrough, we not only have the
f-incr~mentingpath Py , but also the quantity t{Py) with which to calculate
the revised flow based on P y • The labelling procedure begins by assigning to
the source x the label I(x) = 00. It continues according to the following rules:

1. If a is an {-unsaturated arc whose tail u is already labelled but whose
head v is not, then v is labelled l(v) = min {l(u), c(a) - {(a)}.

2. If a is an f-positive arc whose head u is already labelled but whose tail v
is not, then v is labelled l(v) = Olin. {l(u), f(a)}.

In each of the above cases, v is said to be labelled based on u. To scan a
labelled vertex u is to label all unlabelled vertices that can be labelled based
on u. The labelling' procedure is continued until either the sink y is labelled
.(breakthrough) or all labelled vertices have been scanned and no more
vertices can be labelled (implying that f is a maximum flow).

A flow diagram s.ummarising the labelling method is given in figure 11.8.
It is worth pointing out that the labelling method, as described above, is

not a good algorithm. Consider, for example, the network N in figure 11.9.
Clearly, the value of a maximum flow in N is 2m. The labelling method will
use the labelling procedure 2m + 1 times if it starts with the zero flow and
alternates between selecting xpuvsy' and xrvuqy as an incre~enting path;
for, in each .case, the flow value increases by exactly one. Since m is
arbitrary, the number of 'computational steps required to implement the
labelling method in this instance can be bounded by no function of J;1 and B.

~n other words, it is not a good algqrithm.
However, Edmonds and Karp (1970) have shown that a slight refinement

of the labelling proceduretums" it into a good algorithm. The refinement
"suggested "by· them· is .the following: in the labelling procedure, scan on a
. 'first-labelledfirst-scanned~ basis; that is, before ~canning a labelled vertex
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V1 23' v4 22 v5

Initial flow
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y
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x x.

V1 23 v4 22 v5
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V1 ?"3 v4 22 "V5

Revised ,flow"

Figure 11 ~7 ,
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Figure 11.7. (Cont'd)

{xl ~'L
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Find revised flow

f' based on P

YES:

3 an (
incrementing path P

Scan u
LUL(u)~L

NO:

3 vertex
u€ L\S

NO
>--......-~ Su{u}~S

Figure 11.8. The. labelling method "(L,set of labelled vertices; S, set of scanned
vertices; L(u), set of vertices labelled during scanning of u)
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U, scan the vertices that were labelled before u. It can be seen that this
amounts to selecting a shortest incrementing path. With this refinement,
clearly, the maximum flow in the network of figure 11.9 would be found in
just two iterations of the labelling procedure.

Exercises

11.3.1 Show that the function ! given by (11.9) is a flow with val! =
val f+ t(P).

11.3.2 A certain commodity is produced at two factories Xl and X2. The
commodity is to be shipped to markets yl, Yi and Y3 through the
network shown below. Use the labelling method to determine the
maximum amount that can be shipped from the factories to the
markets.

11.3.3 Show that, in any network N (with integer capacities), there is a
maximum flow f such that f(a) is an integer for all a E A.
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11.3.4 Consider a network N such that with each arc a is associated an
integer b(a) <: c(a). Modify the labelling method to find a maximum
flow f in N subject to the constraint f(a) > b(a) for all a E A
(assuming that there is an initial flow satisfying this condition).

11.3.5* Consider a network N such that with each intermediate vertex v is
associated a non-negative integer m(v). Show how a maximum flow
f satisfying the constraint f-(v) < m(v) for all v E V\ {x, y} can be
found by applying the labelling method to a modified network.

APPLICATIONS

11.4 MENGER'S THEOREMS

In this section, we shall use the max-flow min-cut theorem to obtain a
number of theorems due to Menger (1927); two of these have already been
mentioned in section 3.2. The following lemma provides a basic link.

Lemma 11.4 Let N be a network with source x and sink y in which each
arc has unit capacity. Then

(a) the value ofa maximum flow in N is equal to the maximum number m
of arc-disjoint directed (x, y)-paths in ·N; and

(b) the capacity of a minimum cut in !'1 is equal to the minimum number n
of arcs whose deletion destroys all directed (x, y)-paths in N.

Proof Let f* be a maximum flow in N and let D * denote the digraph
obtained from D by deleting all f* -zero arcs. Since each arc of N has unit
capacity, f*(a) = 1 for all a E A(D*). It follows th·at

(i) d~.(x) - do·(x) = val f* = do·(y) - d~.(y);

(ii) d~.(v)= d o.(v) for all v E V\{x, y}~

Therefore (exercise 10.3.3) -there exist val f* arc-disjoint directed (x, y)
paths in D*, and hence also in D. Thus

val f* <: m (11.10)

Now letPt , P2 , ••• ,Pm be any system of m arc-disjoint directed (x, y)
paths in N, and define a function fon A by

. { 1 if a is an arc of 0 Pi
f(a) = i=-=t

o otherwise

Clearly f is a flow in N with value m. Since f* is a ·maximum flow, we have

valf*>m (11.11)
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It now follows· from (11.10) and (11.11) that

valf* = m

Let K ~ (5, S) be ~ minimum cut in N. Then,in N ~ K, no vertex of S is
reachable from any vertex in S; in particular, y is not reachable from x.
Thus K is a set of arcs whose deletion destroys all directed (x, y)-paths, and
we have

(11.12)

Now let Z be a set of n arcs whose deletion destroys all directed
(x, y)-paths, and denote by S the set of all yertices reachable from x in
N - Z. Since x E 5 and YES, K - (5, S) is a cut in N. Moreover, by the
definition of S, N- Z can contain no arc of (5, S),. and so K c Z. Since K is
a minimum cut .. we conclude that

cap K<cap K = IKI<IZI = n

Together, (11.12) and (11.13) now yield

cap K = n 0

(11.13)

Theo'rem 11.4' Let x and y be two vertices of a digraph D. Then the
maximum number of arc-disjoint directed (x, y)-paths in D is equal to the
minimum number of arcs whose deletion destroys a~l directed (x, y)-paths in
D.

Proof We obtain a network N with source x and sink y by assigning unit
capacity to each arc of D. The theorem now follows from lemma 11.4 and
the max-flow min-cut ·theorem (11.3) 0

A simple trick immediately yields the undirected version~f theorem 11.4.

Theorem 11 ..5 Let x and" y be two vertices of a graph G. Then the"'
maximum number of edge-disjoint (x, y)-paths in G. is equ~1 to the
minimum number of edges whose deletion destroys all (x, y)-paths in G.

Proof Apply theore~ 11.4 to D(G)., the associated digraph of G (exer-
cise 10.3.6) O' .

Corollary 11.5 A gr,aph G is k -edge-connected if and only if any two
distinct. vertices of G are connected by at least k edge-disjoint paths.·

Proof This follows directly from theorem 11.5 and the definition of k
ed"ge-connected'ness 0

We now turn to the vertex ,'ei-sions of the above theorems.
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Theorem 11.6 Let x and y be two vertices of a digraph D, such that x is
not joined to y. Then the maximum number of internally-disjoint directed
(x, y)-paths in D is equal to the minimum number of vertices whose deletion
destroys all directed (x, y)-paths in D.

Proof Construct a new digraph D' from D as follows:

(i) split each vertex v E V\{x, y} into two new vertices v' and v", and join
them by an arc (Vi, v");

(ii) replace each arc of D with head v E V\{x, y} by a new arc with head v',
and each arc of D with tail v E V\{x, y} by a new arc with tail v". This
construction is illustrated in figure 11.10.

Now to each directed (x, y)-path in D' there corresponds a directed
(x, y)-path in D obtained by contracting. all arcs of type (Vi, v"); and,
conversely, to each directed (x, y')-path in D, there corresponds a directed
(x, y)-path in D' obta~ned by splitting each internal vertex of the path.
Furthermore, two directed (x, y)-paths in D' are arc-disjoint if and only if
the corresponding paths in D are internally-disjoint. It follows that the
maximum number of arc-disjoint directed (x, y)-paths in D' is equal to the
lDaximum number of internally-disjoint directed (x, y)-paths in D. Simil~rly,

the minimum number of arcs in D' whose deletion destroys all directed
(x, y)-paths is equal to the minimum number of vertices in D whose deletion
destroys all directed (x, y)-paths (exercise 11.4.1). The theorem now follows
from theorem 11.4 0

Theorem 11.7 Let x and y be two nonadjacent vertices of a graph G. Then
the maximum number of internally-disjoint (x, y)-paths in G is equal to the
minimum number of vertices whose deletion destroys all (x, y)-paths.

Proof Apply theorem 11.6 to D(G), the associated digraph of G 0

The following corollary is immediate.

Corollary 11.7 A.graph G with v>k-+'l is k-connected if and only if any
two distinct vertices of G are connected by at least k internally-disjt')int.
paths.

u v ·u' U" Vi V"

x y --;>-- x

w z

Figure 11.10

Wi wIt z'· z"
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Exercises

11.4.1 Show that, in the proof of theorem 11.6, the minimum number of
arcs in D' whose deletion destroys all directed (x, y)-paths is equal
to the minimum number of vertices in D whose deletion destroys
all directed (x, y)-paths.

11.4.2 Derive Konig's theorem (5.3) from theorem 11.7~

11.4.3 Let G be a graph and let Sand T be two disjoint subsets of V.
Sh.ow that the maximum number of vertex-disjoint paths with one
end in S and one end in T is equal to the minimum number of
vertices whose deletion separates S from T (that is, after deletion
no component contains a vertex of Sanda vertex of T).

11.4.4* Show that if G is k·-connected with k ::> 2, then any k vertices ofG
are contained together in some cycle. (G. A. Dirac)

11.5 FEASIBL.E FLOWS

Let N be a·network. Suppose that to each source Xi of N is assigned -a
non-negative integer U(Xi), called the supply at Xi, and to each sink Yj of N is
assigned a non-negative integer a(Yj), called ·the demand at Yj. A flow f in N
is said to be feasible if

f+(Xi) - t-(Xi) <: U(Xi) for all XiE X
and

f-(Yj) -f+(Yj) > a(Yj) for all Yj E Y

In other words, a flow f is feasible if the resultant flow out of each source Xi

relative to f does not exceed tQe supply at Xi, and the resultantftow into·
each sink Yj relative to f is at least as large as the demand at YJ. A natural
question, then, is to ~sk for necessary and· sufficient conditions for the
existence of a feasible flow in 'N. Theorem 11.8, due to Gale (1957),
provides an answer to this question. It says that a feasible flow exists if and
only if, for every subset S of V, the total capacity of arcs from S to S is at
least as large as the net demand of S. .

For any subset 5 of V, we shall denote L O'(v) by 0'(5) and L a(v) by
yes vES

a(S).

Theorem 11.8 There exists a feasible flow in N if and only if, for all S c V

c(5, S) >a(Y n S) - O'(X n S)

Proof· Construct a new network N' from N as follows:

(i) adjoin two new vertices x and Y to N;
(ii) join X to each Xi E X by an arc of capacity 0'(Xi);

(11.14)



Networks 207

(iii) join each Yj E Y to y by an arc of capacity a(Yj);
(iv) designate x as the source and Y as the sink of N',

This construction is illustrated in figure 11.11.
It is not difficult to see that N has a feasible flow if and only if N' has a

flow that saturates each arc of the cut(Y, {y}) (exercise 11.5.1). Now a flow
in N' that saturates each arc of (Y, {y}) clearly has value a(Y) = cap (Y, {y}),
and is therefore, by corollary 11.1, a maximum flow. It follows that N has a
feasible flow if and only if, for each cut (SU{x},SU{y}) of N'

cap(SU{x},SU{y}»a(Y) (11.15)

But conditions (11.14) and (11.15) are precisely the same; for, denoting the
capacity function in N' by c', we have

cap (S U {x}, SU{y}) = c'(S, S)+c'(S, {y}) + c'({x}, S)
=c(S,S)+a(YnS)+u(XnS) 0

There are many applications of theorem 11.8 to problems in graph theory.
We shall discuss one such application.

Let P = (Pt, P2, · · · , pm) and q = (ql, q2, ... ,qn) be two sequences of non
negative integers. We say that the pair (p, q) is realisable by a simple bipartite
graph if there exists a simple bipartite graph G with bipartition
({Xl, X2, · • · , xm }, {yr, Y2, •.• , Yn}), such that

d(Xi) = Pi for 1<: i =s; m
and

d(Yj) = qj for 1sj <: n

For example, the pair (p, q), where

p =(3, 2, 2, 2, 1) and q =(3, 3, 2, 1, 1)

is realisable by the bipartite graph of figure 11.12.

x
u.---......_~y.

Figure 11.11
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An obvious necessary condition for'realisability is that

(11.16)

However, (11.1'6) is not in itself sufficient. For instance, the pair (p, q),
where

p = (5, 4, 4, 2, 1) and q = (5, 4, 4, 2, 1)

is. not realisable by any simple bipartite graph (exercise 11.5.2). In the
following theorem· we present necessary. and sufficient conditions for the
realisability of a pair of sequences by a simple bipartite graph. The order of
the terms in the sequences clearly has no beari.ng on the question' of
realisability, and we shall find it convenient to assume that the terms of q are
arrang.ed in nonincreasing order

(11.17)

Theorem 11.9 Let p = (PI, P2, ... ,pm) and q = (qI, q2, ... ,qn). be two se
quences of non-negative integers that satisfy (11.16) and (11.1 7). Then (p, q)
is realisable by a simple bipartite graph if' and only if

m k

·I min{pi, k}> I qj for 1 <: k <: n
i==1 j==l

(11.18)

Proof Let X = {Xl, X2, ••• ,xm } and Y = {Yl, Y2, ... ,Yn} be two disjoint
sets, and let D be the digraph obtained' from the. complete bipartite graph
with bipartition (X, Y) by orienting each edge from X to Y. We obt~in a
network N by assigning unit capacity to each arc of D and designating the
vertices in X and Y as its so.u·rces and sinks, respectively. We shall assume,
further, that the supply at source Xi is pi, 1 <: i <: m,· and that the demand at
sink Yj is qj, 1 <: j <: n..

Now, to each spanning subgraph of D, there corresponds ~ flow in N
which saturates precisely the a.r~s of th.e subgraph, and this correspondence
is clearly one-one. In view of (11.16), it follows that (p, q) is realisable by a
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(11.19)

simple bipartite graph if and only if the network N has a feasible flow. We
now use theorem 11.8.

For any set S of vertices in N, write

1(5) ={i IXiE 5} and 1(5) ={j IYjE 5}

Then, by definition,

c(S, S) = 11(S)111(S)1

u(X n S) = L Pi and a(Y n S) = L qj
iEI(S) jEJ(S)

Suppose that N has a feasible flow. By theorem 11.8 and (11.19)

11(5)111(5)/ > L qj - L Pi
jEJ(S) , iEI(S)

for any 5 eX U Y. Setting 5 = {Xi IPi> k} U{yj Ij > k}, we have
k

L: min{pi, k} > L qj - L: min{pi, k}
iEI(S) j = 1 iEI(S)

Since this holds for all values of k, (11.18) follows.
Conversely, suppose that (11.18) is satisfied. Let 5 be any set of vertices

in N. By (11.18) and (11.19)

k

c(5, S» L: min{pi, k}> L qj- L: min{pi, k}>a(YnS)-u(XnS)
iEI(S) j = 1 .iEI(S)

where k = /1(S)I. It foHows from theorem 11.8 that N has a feasible flow D

We conclude by looking at theorem 11.9 from the viewpoint of matrices.
With each simple bipartite graph G having bipartition ({Xl, X2, ••• , Xm},

{yt, Yz, · · · ,Yo}), we can associate an m x n matrix B in which .bij = 1 or 0,
depending on whether XiYj is an edge of G or not. Conversely, every m x n
(0, I)-matrix· corresponds in this way to a simple --bipartite graph. Thus
theorem 11.9 provides necessary and sufficient conditions for the existence
of an m x n (0, I)-matrix B with row sums PI, P2, ... ,pm and column sums
ql, q2, · · · , qn.

There is a simple way of visualising condition (11.18) in terms of matrices.
Let B* denote the (0, I)-matrix in which the Pi leading terms in each row i
are ones, and the remaining entries are zeros, and let pt, pt ... , p~ be the
column sums of B*. The sequence p* = (pT, P!' ... ,p~) is called the conju
gate of p. The conjugate of (5, 4, 4, 2, 1) is (5, 4, 3, 3, 1), for example (see
figure 11.13).

k

Now consider the sum L: pr Row i of B* contributes min{pi, k} to this
j=l

k

sum. Therefore the left-hand side of(11.18) isequal to L: pr, and (11.18) is
j=l
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p*

5 4 3 3 1

5 .1 1 1 1 1

4 1 1 1 1 0

P 4 1 1 1 1 0,

2 1 1 0 0 0

1 1. 0 0 0 0

FigQre 11.13

equivalent to the condition
k k

L pr:>L qj for 1 -< k -< n
j-l j==1

This formulation of theorem 11.9 in terms of (0, 1)-m~trices is due to Ryser
(1957). For other applications of the theory of flows in networks, we refer
·the reader to Ford and Fulkerson "(1962).

Exercises

11.5.1 Show that the network N in the proof of theorem 11.8 has 'a
feasjble flow if and only· if N' has a flow that s,aturates each arc of

. the cut ·(Y, {y})."
11.5.2 Show that the p~ir (p, q), where

.p = (5, 4,.4, 2; 1) and q'= (5, 4, 4, 2, 1)

is not realisable by any simple bipartite graph.
11.5.3 Given two sequences, p = (PI, P2, ... ,pn) and q = (ql, q2, ... , qn),

find. necessary and sufficient conditions for the existence of a
digraph D on the vertex s~t {Vt, V2, ••• , Vn}, such that (i) d-(Vi) = Pi
and d+(Vi) = qi, 1 -< i -< n, and (ii) D has a (0, 1) adjacency matrix.

11.5.4* Let p =(Ph P2, · . · , pm) and q = (qh q2, ... , qn) be two nonincreasing
sequences of non-negative integers, and denote the sequences
(P2, P3,. · ., Pm) and (ql-1, q2-1, · .. ,qP

1
-1,qPl+h' .. , qn) by p' and

q', re~pectively.~ .

(a) Show that (p,q) is realisable by a simple bipartite graph if and
only if the same is true of (p', q').

(b) Using (a), describe an algorithm for constructing a simple
bipartite. graph which realises (p, q), if such a "realisation exists,.

11.,5.5' An (m + n)-re~lar graph G is (m,n)~orientable if it can. be oriented
so that each indegrte is either m or n.
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(a)* Show that G is (m,n)-orientable if and only if there is a
partition (V1, V2) of V such that, for every 5 c V,

I(m - n)(IV1 n 51-IV2 n 51)1 -< 1[5,5]1

(b) Deduce that if G is (m,n )-orientable and m > n, then G is also
(tn - 1, 11 + 1)-orientabie.
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12 The Cycle Space and
Bond Space

12.1 CIRCUf-ATIONS AND POTENTIAL DIFFERENCES

Let· D be a digraph. A real-valued function f on A is called a circulation in
D if it satisfies the conservation con'dition at each vertex:

(12.1)

If we think of D as an electrical network, then such a function f represents a
circulation of currents in D. Figure 12.1 shows a circulation in a digraph.

If f and g are any two circulations and r is any real number, then it is easy
to verify that both f+ g al)d rf are also circulations. Thus the set of all
circulations in D is a vector space. We denote this space by C€. In what
follows, we shall find it convenient to identify a subset S of A with D[5],
the subdigraph of D induced by S.

There are certain circulations of sp.ecial interest. These are associated with
cycles in D. Let C b.e a cycle in D with an assigne~ orientation and letC+
denote the set of arcs of C whose direction agrees with this orientation. We
associate with C the function fe defined by

1 if ·u E c+
fda) = -1 if a E C\C+

o if ae C

Clearly, fc satisfies (12.1) and hence is a circulation. Figure 12.2 depicts .a
circulation associated with a cycle.

We shall see later on that each circulation· is a linear combination of the
circulations associated with cycles. For this reason we refer to ~ as the cycle
space of D.

We now turn our attention to a related class of functions. Given a
function p on the vertex set V of D, we define the function 5p on the arc set
A by the rule that, if an arc a has tail x and heady, then

op(a) = p(x) - p(y) (12.2)

If D is thought of as an electrical network with potential p (v) at v, th.en, by
(12.2), 5p represents the potential difference along the wires oJ the' .network.
For this reason a function g on A is called a potential difference in D if
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g = 8p for some function p on V. Figure 12.3 shows a digraph with an
assignment of potentials to its vertices and the corresponding potential
difference.

As with circulations, the set 00 of all potential differences in D is closed
under addition and scalar multiplication and, hence, is a vector space.

Analogous to th~ function fe associated with a cycle C, there is a function
gB associated with a bond B. Let B =[5, S] be a bond of D.We define gB by

1 if a E (5, S)

gB(a)= -1 if aE(S,S)

o if ae B

It can be verified that gB = 8p where

{
I if v E S

p(v)=·O
if v E S

Figure 12.4 depicts the potential difference associated with a bond.
We shall see that each potential difference is a linear combination of

potential differencesass0ciated' with bonds. For this reaso·n we refer to 00 as
the bond space of D.

In studying the properties of the two. vector spaces 00 and C(6, we shall find

1
Figure 12.2
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2

2 5/4

4 -3 1

Figure 12.3. A potential difference

. it convenient to regard a function on A as a. row vector w:hose coordinates
are labelled with the elements of A. The relationship between 00 and ~ is
best seen by introducing the incidence matrix of D. With each vertex v of D
we associate the function mv on.A defined by

1 if a is a link and v is the tail of a

mv(a) == -1 if a is a link and v is the head of a

o ,otherwise

The incidence matrix of D is the' matrix M whose rows are the functions my.
Figure 12.5 shows a digraph and its incidence matrix.

Theorem 12.1 Let M be the incidence matrix of a digraph D. Then 00 IS

the fO\\· space of 'M and ~ is its orthogonal complement.

Proof Let 'g = 8p 'be a potential difference in D. It follows from (12.2)
that

g(a) = L p(v)mv(a) for all a E A
vEV

Thus g is a linear combination of the rows of M. Conversely, any linear
cO~lbination of the rows of M is a potential -difference. Hence 00 is the row
space of M.

1 0

o

o

Figure 12.4
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x

abc d e

x 10100
u -1 1 0 -1 0
v 0 0 -1 1· 1
Y 0 -1 0 0 -1

v
(a) ( b)

Figure 12.5. (a) D; (b) the incidence matrix of D

Now let f be a fun~tion on A. The condition (12.1) for f to be a
circulation can be rewritten as

L mv(a)f(a) = 0 for all v E V
aEA

This implies that f is a circulation if and only if it is orthogonal to each row
of M. Hence <'f6 is the orthogonal complement of 00 0

The support of a function f on A is the set of elements of A at which the
value of f is nonzero. We denote the support of f by IItll.

Lemma '12.2.1 If f is a nonzero circulation, then Iltll contains a cycle.

Proof This follows immediately, since IItll clearly cannot contain a vertex
of degree one 0

Lemma 12.2.2 ·If g is a nonzero potential difference, then Ilgll contains a
bond.

Proof Let g = Sp be a nonzero potential difference in D. Choose a vertex
U E V which is incident with an arc of °llgll and set

u = {v E V Ip{v) = p(u)}

Clearly, Ilgll ~ [U, 0] since g(a),i 0 for all a E [U, 0]. But, by the choice of
U, [U, 0] is nonempty. Thus Ilgil contains a bond 0

A matrix B is called a basis matrix of 00 if the rows of B form a basis for
·00; a basis matrix of <'f6. is similarly defined. We shall find the following
no·tation convenient.> If' R is a matrix whose columns are labelled with the
elements of A, and if S c A, we shall denote by. R IS the submatrix of R
consisting of those columns of R labelled with elements in S. If R has a
single row, our notation is the same as the usual notation for the restriction
of a function to a subset of its domain.
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. Theorem 12.2 Let Band C be basis matrices of 00 and e.g, respectively.
Then, for any S c A

(i) the columns of B IS are linearly independent if and only if S is acyclic,
and

(ii) the columns of CiS are linearly independent if and only if S contains no
bond.

Proof Denote the column of B corresponding to ar~ a "by B(a). The
columns of B IS are linearly dependent if and only if there exists a function f
on A such that

f(a) ¢ 0 for some a E S

f(a) = 0 for all ae S
and

L f(a)B(a) = 0
aEA

We conclude that the columns ofB IS are linearly dependent if and only if
there exists a nonzero circulation f such that IItll c S. Now if there is such an
f then, by lemma 12.2.1, S contains a cycle. On"the other hand, if S contains
a cycle C, then fe is a nonzero circulation with Ilfell = C c S. It follows that
the" columns of 81 S are linearly independent if and only if S is acyclic. A
similar argument using lemma 12.2.2 yields a pro.of of (ii) 0

Corollary 12.2 The dimensions of 00 and e.g ~re given by

dim 00 = v-w

dim e.g = e - v + w

(12.3)

(12.4)

Proof Consider a basis matrix B of 00. By theorem 12.2

rank B = max{ISII S c A, S acyclic}

The above maximum is attained when S is a maxinl~l forest of D, and is
therefore (exercise 2.2.4) equal to v - w. Since dim 00 ~ rank B, this estab
lishes (12.3). Now (12.4) follows, since e.g is the orthogonal. complement of
00· 0

Let T be a maximal f()rest of D. Associated with T is a special basis
matrix of e.g. If a is an arc of f, then T + a contains a unique cycle. Let C a

de"note this cycle and let. fa denote the circulation corresponding to Ca,
defined so that fa(a) = 1. The (e ~ v +w) X £ tnatrix C whose rows are fa,
a E f, is a basis matrix of e.g. This follows from the fact that each row is a
circulation and that rank C = £ - V + w (because elf is an identity matrix).
We refer to C as the basis matrix of e.g corresponding to T. Figure 12.6b
shows the basis matrix of e.g corresponding to the tree indicated in figure
12 ~6a.
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( a )

abc d e

fd -1 0 1 0
'e -1 ~1 01

( b )

Figure 12.6

abc d e

go 1 0 0_ 1
gb 0 1 0 0 1
gc a 0 1 -1 -1

(c )

Analogously, if a is an arc of T, then f + a contams a unique bond (see
theorem 2.6). Let Ba denote this bond and ga the potential difference
corresponding to Ba, defined so that ga(a) = 1. The (v - w) x e matrix B
whose rows are ga, a E T, is a basis matrix of 00, called the basis matrix of 00
corresponding to T. Figure 12.6c gives an example of such a matrix.

The relationship between cycles and bonds that has become apparent
from the foregoing discussion finds its proper setting in the theory of
matroids. The interested reader is referred to Tutte (I971).

Exercises

12.1.1 (a) In figure (i) below is indicated a function on a spanning tree and
in figure (ii) a function on the complement of the tree. Extend
the function in (i) to a potential difference and the function in
(ii) to a circulation.

( i )

8

( ii )

6

(b) Let f be a circulation and g a potential difference in D, and let
T be a spanning tree of D. Show that f is uniquely determined
by f I f and g by g rT.

12.1.2 (a) Let Band C be basis matrices of 00 and ~ and let T be any
spanning tree of D. Show that B is uniquely determined by BIT
and C is uniquely determined by elf.
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(b) Let Tand T 1 be two fixed spanning trees of D. Let Band B1

denote the basis matrices of 00, and C and C1 the basis matri'ces
of ~, correspo'nding to the trees T and Tle Show that B =
(B IT1)B1 and C = (C ITt)Cl.

12.1.3 Let K denote the matrix obtained from the incidence matrix M of a
connected digraph D by deleting anyone of its rows. Show that K
is a basis matrix of 00.

12.1.4 Show that if G is a plane graph, thenoo(G)==~(G*)and ((6(G)==
00(0*).

12.1.5 A. circulation of D over a field F is a function f: A ~ F which
satisfies (12.1) in F; a potential difference of Dover F is similarly
defined. The vector spaces of these potential differences and circu
lations are denoted .by OOF and ~F. Show that theorem 12.2 remains
valid if 00 and ~ are replaced by OOF and ~F, respectively.

12.2 THE NUMBER OF SPANNING TREES

In this· section 'we shall derive a formula for the numbe~ of spanning trees. in
a graph.

Let 0 bea connected graph and 'let T be a fixed spanning tree of G.
Consider an arbitrary orientation D of G' and let B be the basis matrix of 00
corresponding to T. It follows from theorem 12.2 that if S is a subset of A
with lSI =v-I then the square submatrix B ISis nonsingular if and only ifS
is a spanning tree of G. Thus the number of spanning trees of G is equal to
the number of nonsingular submatrices of ·B of order v-I.

A matrix is said to be unimodular if all its full square submatrices have
determinants 0, + l' or -1. The proof of the following theorem is due to
Tutte (1965b).

Theorem 12.3 The basis matrix B is unimodular.

Proof Let P be a full submatrix of B (one of order v -1). Suppose
-that· P = BI T t • We may assume that T 1 is a spanning tree of D since, .
otherwise, det P = 0 by theorem 12.2 .. Let B 1 denote the basis matrix of 00
corresponding to T t • Then (exercise 12.1.2b)

Restricting both sides to T, we obtain

(B ITt)(Bt I.T) =BIT

Not'ing thatB IT is an identity matrix, and taking determinants, we get

det(B ITt)det(B1 IT) = 1 (12.5-) .
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Both determinants in (12.5), being determinants of integer matrices, are
themselves integers. It follows that det(B IT1) =±1 0

Theorem 12.4 T(G) = det BB' (12.6)

Proof Using the formula for the determinant of the product of two
rectangular matrices (see Hadley, 1961), we obtain

det BB' = L (det(B I5»2 (12.7)
Ss;A

Isl=,,-1

Now, by theorem 12.2, the number of nonzero terms in (12.7) is equal to
T(G). But, by theorem 12.3, each such term has "value 1 0

One can similarly show that if C is a basis matrix of Cf6 corresponding to a
tree, then C is unimodular and

Proof

T(G) = det CC'"

Corollary 12.4 1"(G) = ±det[~J

(1"(0»2 =det BB' det CC' = det -----+----- .
"0 0 : CC'

Since 00 and Cf6 are orthogonal, BC' =CB' = O. Thus

- [BB
I

: BC'] ([B][B' : C'j(T(G»2 = det ------~-----=det --- .
CB' : CC' C

=det[:Jdet[B' : C']= ( det[-:-J)2

(12.8)

The corollary follows on taking square. roots 0

Since theorem 12.2 is valid for all basis matrices of 98, (l2.6) clearly holds
for any such matrix B that is unimodular. In particular, a matrix K obtained
by deleting anyone row of the incidence matrix M is unimodular (exercise
12.2.1a). Thus

T(G) = det KK'

This expression for the number of spanning trees in a graph is implicit in the
work of Kirchhoff (1847), and is known as the matrix-tree theorem.
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Exercises

12.2.1 Show that

(a)* a matrix· K obtained from M by deleting anyone row IS

unimodular;

(b) T(G) = ±dett~]
12.2.2 The conductance matrix. C = [Cij] of a loopless graph G is the v x v

matrix in which

Cii = L aij for all
j#i

Cij = -·aij for all and j with i -# j

where A = [aij] is the adjacency matrix of G. Show that

(a) C = MM', where M is the incidence matrix of any orienta~ionof

G;
(b) all cofactors of Care equal to T(G).

12.2.3 A matrix is totally unimodular if all square submatrices have
dete"rminants 0, + 1 or -1. Show that

(a) any basis mat.rix of 00 or CfG corresponding to a tree is totally
unimodular; .

(b) the incidence matrix of a simple graph G is totally unimo"dular
if and only if 0 is bipartite.

12.2".4 Let F be a field of characteristic p. Show that

(a) if 8 and. C are basis matrices of ooF and CfG F , respectiv~ly,

'[8] .corresponding to a tree, then det -~- = + T(G)(mod p);

(b) dinl(f!}J F nCfG F»o if and only if pi ,-(0). (H. Shank)

APPLICATIONS

12.·3 PERFE("'T SQUARES

A squared rectangle is a rectangle dissected into at least two (but a finite
number of) squares. If no two of the squares in the dissection have the same
size, then the squared rectangle is perfect. The order of a squared rectangle is
the number of squares into which it is dissected. Figure 12.7 shows a perfect
rectangle of order 9. A squared rectangle is simple if it does not contain a
rectangle which is itself squared. Clearly, every squared rectangle is com
posed ()f ones that are simple.
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For a lorIg time n() perfect squares were known, and it was conjectured
that SllCh squares did nClt exist. Sprague (1939) was the first to publish an
example of a perfect square. About the same time, Brooks et ale (1940)
developed systematic Inethods for th'eir construction by using the theory of
gra.phs. In this section, we shall present a brief discussion of their methods.

We first sh()w how a digraph can be associated with a given squared
rectangle R. The union ()f the horizontal sides of the constituent squares in
the dissection c,onsists (Jf horiz()ntal line segments; e~ch such segment is
called a fl()rizontal dissector of R. In figure 12.8a, the horizontal dissectors
are illdicate(i by solid lines. We can now define the digraph D associated
with R. T() each horiz()ntal dissector of R there corresponds a vertex of D;
tW() vertices Vi and Vj of Dare joilledby an arc (Vi, Vj) if and only if their
correspon1ding horizontal dissectors Hi and H j flank some square of the
dissection and Hi lies above Hi ill R. Figure 12·.Bb shows the digraph
associated with the squared rectangle in figure 12.8a. The vertices corre
sponding t(l the upper and lower sides of R are called the poles of D and
are denoted by x and y, re.spectively.

We 11()W assign to each vertex ~ of D a potential p(v) equal to the height
(above the lower side <;>f ·R) of the corresponding horizontal dissector. If we
regard I) as an electrical network in which ~ach wire has unit resistance, the
potential difference g = DP determin~s a flow of currents from x to y (see
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figure 12.8e ). These currents satisfy Kirchhoff's current law: the total
amount of current entering a vertex v E V\{x, y} is equal to the total amount
leaving it. For example, the total amount enteri~g u in figure 12.8c is
25 + 9 + 2 = 36, and the same amount leaves this vertex.

Let D be the digraph corresponding to a squared rectangle R, ·with poles
x and y, and let G be the underlying graph of D. Then the graph G + xy is
called the horizontal graph of R. Brooks et ale (1940) showed that the
horizontal graph of any simple sq~ared rectangle is a 3-connected planar
graph (their definition of connectivity differs slightly from the one used in
this book). They also showed that, conversely, if H is a 3-connected planar
graph and xy E E(H), then any flow of currents from x to y in H - xy
determines a squared rectangle. Thus one possible way of searching for
perfect rectangles of order n is to

(i) list all 3-c~nnected planar graphs with n + 1 edges, and
(ii) for each such graph H and each edge xy of H, determine a flow of

currents from x to y in H - xy.

Tutte (1961) showed that every 3-connected planar graph can be derived
from a wheel by a sequence of operations involving face subdivisions and
the taking of duals. Bouwkamp, Duijvestijn and Medema (1960) then
applied Tutte's theorem to list all 3-connected planar graphs· with at most 16
edges. H.ere we shall see how the theory developed in sections 12.1 and 12.2
can be used in computing a flow of currents from x to y in· a digraph D.

Let g(a) denote the current in arc a of D, and suppose that the total
current leaving x is u. Then

L mx(a)g(a) = 0"
aEA

Kirchhoff's current law can be formulated as

L mv(a)g(a) = 0 . for all v E V\{x, y}
aEA

(12.9)

(12.10)

Now, since g is a potential difference, it is orthogonal to every circulation.
Therefore,

Cg'=O (12.11)

where ~ is a basis matrix of C(6 ·corresponding to a tree T of D and g' is the
transpose of the vector g. Equations (12.9)-(12.11) together give the matrix
equatiol\

(12.12)

where K IS the matrix obtained from M by deleting the row my. This
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equation can be solved usmg Cramer's rule. Note that, smce det[-~-] =

±T(G) (exercise 12.2.1 b), we obtain a solution in integers if fT = T(G). Thus,
in computing the currents, it is convenient to take the total current leaving x
to be equal to the number of spanning trees of D.

We illustrate the above procedure with an example. Consider the 3
connected planar graph in figure 12.9a. On deleting the edge xy and
orienting each edge we obtain the digraphD- of figure 12.9b.

It can be checked that. the number of spanning trees in D is 66. By
considering the tree T = {at, a2, a3, a4, as} we obtain the following nine
equations, as in (12.] 2), (with g(ai) written simply as gi)'

=66

- g8- g9= 0

--:-0
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The solution to this system of equations is given by

(gl, g2, g3, g4, g5, g6, g" g8, g9) = (36, 30, 14, 16, 20, 2, 18, 28, 8)

The squared rectangle based on this flow of currents is just the one in figure
12.7 with all dimensions doubled.

Figure 12.10 shows a simple perfect square of order 25. It was discovered
by Wilson (1967), and is the smallest (least order) such square known.

Further results on perfect squares can be found in the survey article by
Tutte (1965a).

Exercises

12.3.1 Show that the constituent squares in a squared rectangle have
commensurable sides.

12.3.2 The vertical graph of a squared rectangle R is the horizontal graph
of the squared rectangle obtained by rotating R through a right
angle. If no point of Ris the corner of four constituent squares,
show that the horizontal and vertical graphs of R are duals.

12.3.3* A perfect cube is a cube dissected into a finite number of smaller
cubes, no two of the same size. Show that there exists no perfect
cube.

135
157

211

22

113

62 179
25

149 88
87

100
93

167143

27 116 33
67

50 ~ 3423 19

Figure 12.10. A simple perfect square of order 25
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Appendix I
Hints to Starred Exercises

1.2.9(b)

1.3.3

1.4.5

1.5.7(a)

1.5.8

1.5.9

1.7.3

1.7.6(b)

2.1.10

If G ~ Tm
t
", then G has parts of size nl, n2, ..... , nm , with ni - nj>

1 for some i and j. Show that the complete m -partite graph with
parts of size n 1, n2, .... , ni - 1, ..... , nj + 1, ... , nm has more edges
than G.
In terms of the adjacency matrix A, an automorphism of G is a
permutation matrix P such that PAP' = A Of, equivalently, P A 
AP (since P' = P- 1

). Show that if. x is an eigenvector of A
belonging to an eigenvalue A, then, fOf any ,automorphism P of
G, so is Px. Since the eigenvalues of A are .. distinct and P is
orthogonal, P~x = x foraH eigenvectors x.
Suppose that all induced sub'graphs of G on n vertices havem
edges. Show that, for any two vertices Vi and Vj,

e(G)-d(Vi)=e(G-Vi)=m(V n l)/(~=~)

e(G) - d(Vi) - d(Vj) + aij = e(G - Vi :-Vj) = m(V n 2)/ (~=~)

where aij = 1 or 0 according as Vi and Vj are adja~ent Of not.
Deduce that aij is independent of' i and j.
To prove the necessity, first show that if G is simple with UtUt,

U2V2 E" E and Ul V2, U2Vl ~ E, then G - {Ul VI, U2V2} +{UtV2, U2Vl}

has the same degree sequence as G. Using this, show that if d is
graphic, then there is a simple graph .G with V = {VI., V2, .... , Un}

such that (i) d(Vi) = d i for 1 <: i -< n, and (ii) Vt is joined to
V2, V3, •.• , Vdt+l.T·he graph G - Vi has degree sequence d/.
Show that a bipartite subgraph with the largest possible number
of edges has this prop.erty.
Define a graph on S in which Xi and Xj are adjacent if and only if
they are at distance one. Show that in this graph each vertex has
degree at most six.
Consi.der a longest path and the vertic~s adjacent to the origin of
this path.
By cont~adiction. Let G be a smallest counter-example. Show
that (i) the girth of G is at least five, and (ii) 5::> 3. Deduce that
v <: 8 and show that no such graph exists.
To prove the ·~ufficiency, consider a graph G with degree se
quence d =(d J, d2 , ••• , d.,,) and as- few components as possible. If
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2.2.12

2.4.2

3.2.6

3.2.7(a)

(b)
4.1.6

4.2.4'

4.2.6

4.2.9

4.2.11(b)

Graph Theory with Applicatiotls

G is not connected, show that, by a suitable exchange of edges
(as in the hint to exercise 1.5.7a), there is a graph with degree
sequence d and fewer components than G.
Define a labelled graph G as follows: the vertices llf G are the
subsets A I, A 2 , ••• , An, and Ai is joined to A j (i ~ j) by an edge
labelled a 'if either A i == AjU{a} or A j = AiU{a}. f"()f any sub
graph H of G, let L(H) be the set of labels on edges ()f H. Sh()w
that if F is a maximal forest of G, then L(F) == L(O). Any
element x in S\L(F) has the required property.
Several applications of theorem 2.8 yield the recurrence relati()n

W n -4W n -'1 +4w n --2-1 =0

where Wn is the number of spanning trees in the wheel with n
spokes. Solve this recurrence relation.
Form a new graph 0' by adding two vertices x and y, and join,ing
x to all vertices in X and y to all vertices in Y. 'Show that 0' is
2-connected and -apply theorem 3.2.
Use induction on B. Let el E E. If 0 · et is a critical block, then
G · et has a vertex of degree two and, hence, so does O. If G · el
is not critical, there is an e2 E E\{e I} such that (0· eI) - e2 is a
block. Using the fact that (0· et) - e2 == (G - e2)· el, show that el
and e2 are incident with a vertex of degree two in G.
Use (a) and induction on v.
Necessity: if G - v contains a cycle C, consider an Euler tour
(with origin v) of the component of 0 - E(C) that contains v.
Sufficiency: let Q be a (v, w)-trail of G which is not an Euler
tour. Show that G - E(Q) has exactly one nontrivial component.
Form a new graph G' by adding a new vertex and joining it to
every vertex of G. Show that G has a Hamilton path if and. only
if G' has a Hamilton cycle, and apply theorem 4.5.
Form a new graph G'by adding edges so that G'[X] is complete.
Show that G is hamiltonian if and only if G' is hamiltonia"n, and
apply theorem 4.5.
Let P be a longest path in G. If P has length 1<20, show, using
the proof technique of theorem 4.3, that G has a cy'cle of length
1+ 1. Now use the fact that G is connected to obtain a contradiction ..

If even
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4.2.13 Use the fact that the Petersen graph is hypohamiltonian (exercise
4.2.12).

4.4.1 Consider an Euler tour Q in the weighted graph formed from T
by duplicating each of its edges. Now make use of triangle
inequalities to obtain from Q a Hamilton cycle in a of weight at
most \v(Q).

5.1.5(a) To show that K2n is i-factorable, arrange the vertices in the form
of a regular (2n - I)-gon with one vertex in the centre. A radial
edge together with the edges perpendicular to it is a perfect
matching.

5.1.6 Label the vertices 0,1,2, ... , 2n and arrange the vertices 1,
2, · · · , 2n in a circie with 0 at the centre. Let C = (0, 1, 2, 2n, 3,
2n -1, 4, 2n - 2, ... , n +2, n + 1, 0) and consider the rotations of C.

5.2.3(b) Let a be a 2k-regular graph with V ={VI, V2, ••. ,VII}; without
loss of generality, assume that a is connected. Let C be an Euler
tour in G. Form a bipartite graph a' with bipartition (X, V),
where X = {Xl, X2, • • • , XII} and Y = {Yl, Y2, ••• , YII} by joining Xi to
Yj whenever Vi immediately precedes Vj on C. Show that a' is
I-factorable and hence that a is 2-factorable.

5.2.8 Construct a bipartite graph a with bipartition (X, Y) in which X
is the set of rows of Q, Y is the set of columns of Q, and row i is
joined to column j if and only if the entry qij is positive. Show that
a has a perfect matching, and then use induction on the

.number of nonzero entries of Q.
5.3.1 Let a be a bipartite graph with bipartition (X, V). Assume that

v is even (the case when v is odd requires a little modification).
Obtain a graph H from G by joining all pairs of vertices in Y. a
has a matching that saturates every vertex in X if and only if H
has a perfect matching.

5.3.4 Let G* be a maximal spanning supergraph of a such that the
number of edges in a maximum matching of G* is the same as
for a. Show, using the proof technique ot theorem 5.4, that if U
is the set of vertices of degree v -1 in 0* then G* - U is a
disjoint union of complete graphs.

. 6.2.1 See the hint to exercise 5.I.Sa.
6.2.8 Use the proof technique of theorem 6.2.
7.1.3(b) Let VI V2 ... Vn be a longest path in a. Show that a - V2 has at

inost one nontrivial component, and use indu'ction on £.

7 .2.6(b) Let p(m -1) = n - 1. The complete (p + I)-partite graph with
m -1 vertices in each part shows that r(T, K 1•n ) > (p + 1)(m -1) =
m + n - 2. To prove that r(T, KI,n) < m + n - 1, show that any
simple graph a with S :> m - 1 contains every tree T on m vertices.
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(c) The complete (n - I)-partite graph with m -1 vertices in each
part shows that r(T, K n ) > (m - l)(n - 1). To prove that
r(T, K n ) < (m -1)(n - 1) +-1, use induction on n and the fact that
any simple graph with S:> m - 1 contains every tree T on m
vertices.

7.3.3(c) Assume G contains no triangle. Choose a shortest odd cycle C
in G. Show that each vertex in V(G)\V(C) can be joined to at
most two vertices of C. Apply exercise 7.3.3a to G - V(C), and
obtain a contradiction.

7 .3 .4(a) G contains K 2 ,m if and only if there are m vertices with a pair of

common neighbours. Any vertex v has (d~V») pairs of neigh-

bours. Therefore ifv~(d~V»)> (m -1)(;), G contains K2,m.

7.5.1 Define a graph G by V(G)={Xl, ... ,Xn}, and E(G)=
{XiXj Id(Xi, Xj) = I}, and show that if all edges of G are drawn as
straight line segments, then (i) any two edges of G are either
adjacent or cross, and (ii) if some vertex of G has degree greater
than two, -it is adjacent to a vertex of degree one. Then prove (a)
by induction on n.

8.1.0 Let ~ ==(V1, V 2, ••• , Vk ) be a k-colouring of.G, and let ~'be a
colouring of G in which -each colour- class contains at least two
vertices. If Ivii >- 2 for all i, there -is nothing to prove, so assume
that Vi == {VI}. Let U2 E V 2 be a vertex of the same colour as VI in
~'. Clearly IV2!>2. If IV21>2, transfer U2 to Vt. Otherwise, let
V2 be the other vertex in V 2• In ~', VI and V2 must be assigned
different colours. Let U3 E V 3 be ·a vertex of .the same colour as V2

in ~'. As before, IV31>2. Proceeding in· this way, one must
eventually find a set V. with Ivil>2. G can-now be recolour'ed so
that fewer colour classes contai~ only one ver~ex.

8.1 ..13(a) Let (Xl, X 2 , • •• , Xn) and (Y1, Y 2 , ••• , Yn) be n-colourings of
G[X] and G[Y], respectively. Construct a bipartite graph H
with bipartition ({XI, X2, • •• , xn}, {Yl' y2, ... , Yn}) by joining Xi

and Yj if and only if the edge cut [Xi, Yj ], is empty inG. Using
exercise 5.2.6b, show that H has a perfect matching. If Xi is
matched with YHi) under this matching, let Vi = Xi U Yf(i). Show
that (VI, V 2 , ••• , Vn ) is an n-colouring of G.

8.3.1 Show that it suffices to consider 2-connected graphs. Choose a
longest cycle C in G and show that there are two paths across C
as in theorem 8.5.

8.3.2(a) If 8:> 3, use exercise 8.3.1. If there is a vertex of degree less
. than three, delete it and use induction.
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8.4.8 Consider the expansion of '1Tk( G) in terms of chromatic polyno
mials of complete graphs.

8.5 :2(a) It is easily verified that H has girth at least six. If H is
k-colourable, there is a v-element subset of. S all of whose
members receive the same colour. Consider the corresponding
copy of G and obtain a contradiction.

9.2.8 The dual G* is 2-edge-conneeted and 3-regular and, hence
(corollary 5.4), has a perfect matching M. (0* · M)* is a bipar
tite subgraph of G.

10.2.2 Form a new digraph on the same vertex set joining uto v if v is
reachable from u, and apply corollary 10.1.

10.2.5 Let D I and D2 be the spanning subdigraphs of D such that the
arcs of D 1 are the arcs (u, v) of D for which f(u)<f(v), and the
arcs of D2 are the arcs (u,v) for which f(u»f(v). Show that
either X(D I ) > m or X(D 2) > n, and apply theorem 10.1.

10.3.4 Let VI V2",V2n+IVI be an odd cycle. If (vi,vi+I)EA, set Pi=
(Vi- vii-d; if (Vi, Vi+l) e A, let Pi be a directed (Vi, vi+I)-path. If
sonie Pi is of even length, Pi+ (Vi+ I, Vi) is a directed odd cycle;
otherwise, P IP2· · . P 2n+ 1 is a closed directed trail of odd length,
and therefore contains a directed odd cycle.

11.3.5 Use the construction given in the proof of theorem 11.6, and
assign capacity m (v) to arc (v', v").

11.4.4 Use induction on k and exercise 11.4.3.

11.5.4 Use an argument similar to that in exercise 1.5.7.
11.5.5(a) ~ecessity follows on taking VI as the set of vertices with indegree

m and V 2 as the set of vertices with indegree n. To prove
sufficiency, construct a network N by forming the associated
digraph of G, assigning unit capacity to each are, and regarding
the elements of VI as sources and the elements of V 2 as sinks. By
theorem 11.8, there is a flow f in N (which can be assumed
integral) in which the supply at each source and demand at each
sink is 1m - nl. The f-saturated arcs induce an (m,n)-orientation
on a subgraph H of G. An (m,n)-orientation of G can now be
obtained by giving the remaining edges an eulerian orientation.

12.2.I(a) Use inductionon the order of the submatrix. Let P be a square
submatrix. If each column of P contains two nonzero entries,
then det P = O. Otherwise, expand det P about a column with
exactly one nonzero entry, and apply the induction hypothesis.

l2.3.3 Show, first, that in any perfect rectangle the smallest constituent
square is not on the boundary of the rectangle. Now suppose that
there is a perfect cube and consider the perfect square induced
on the base of this cube by the constituent cubes.



Appendix II
Four Graphs and a
Table of their Properties

G1 G2

S ~
,

~ (3'
,

V E W K 'K a a X X

G 1 7 12 3 4 1 3 3 3 3 4 4 4 4
G2 11 28 4 8 1 3 4 4 5 7 6 3 8
GJ '14 21 3· 3 1 3 3 7 7 7 7 2 3
0 4 16 15 1 '3 3 0 0 9 7 7 9 3 3
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G3 64

diam.eter girth bipartite? eulerian? hamiltonian? cr'itical? . planar?

2 3 No No Yes Yes Yes
2 3 No Yes No No No
3 6 Yes No Yes No No
00 4 No No No No Yes



Appendix III
Some Interesting Graphs

There are a number of graphs w.hich are interesting because of their special
structure. We have already met. some of these (for example, the Grinberg
graph, the Grotzsch graph, the Herschel graph ~nd the Ramsey graphs).
Here we present a selection of other interesting graphs and families of
graphs.

THE PLATONIC GRAPHS

These are the graphs whose vertices and edges are the vertices and edges of
the platonic solids (see Frechet and Fan, 1967).

(0) (b) (e)

(d) (e)

(a) The tetrahedron; (b) the octahedron; (c) the cube; (d) the icosahedron; (e) the
dodecahedron
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AUTOMORPHISM GRO'UPS

235

(i) As has already been noted (exercise 1.2.1~), every group is isomorphic to
the automorphism group of some graph. Frucht (1949) showed, in fact, that
for any group there is a 3-regular graph with that group. The smallest
3-regular graph whose group is the identity is the following:

(ii) Folkman (1967) proved that every edge- but not vertex-transitive
regular graph has at least 20 vertices. This result is best possible:

The Folkman graph

The Gray graph (see Bouwer, 1972) is a 3-regular edge- but not vertex
transitive graph on 54 vertices. It has the following description: take three
copies of K 3 ,3. For a particular edge e, subdivide e· in each of the three
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copies and join the resulting three vertices to a new vertex. Repeat this with
each edge.

CAGES

An m-regular graph of girth n with the least possible number of vertices is
called an (~, n)-cage. If we denote by f(m, n) the .number of vertices in an
(m, n)-cage, it is easy to see that {(2, n) = n and for m :> 3,

m(m -l)r - 2
if n = 2r+ 1m-2

f(m, n) >
2(m-l)r-2

(111.1 )
if n = 2rm-2

The (2, n)-cage is the n-cycle, the (m, 3)-cage is Km+I, and the (m, 4)-cage
is Km,m. In each of these cases, equality holds in (111.1). It has been shown by
Hoffman and Singleton (1960) that, for m:> 3 and n:> 5, equality can hold
in (111.1) only if n = 5 and m·= 3,7 or 57, or n = 6,8 or 12. When m -1 is a
prime power, the (m,6)-cage is the p·oint-line incidence graph of the
projective plane of order m -1; the (m, 8)- and (m, 12)":cages are also
obtained from projective geometries (see Biggs, 1974 for further details),
Some of the smaller (m, n)-cages are depicted below:

('3,5) - cage

The Petersen' graph

(3,6) - cage,

The He'awood graph
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(3,7)- cage

The McGee graph

(3,8) -cage

The Tutte-Coxeter graph

(4,5)- cage

The Robertson graph
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(4.6)-cage

(5,5)-cage
The Robertson-Wegner graph
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The (7,5)-cage (the Hoffman-Singleton graph) can be described as fol
lows: it has ten 5-cycles Po, PI, P2 , P3 , P4 , 00, 01, 02, 03, 04, labelled as'
shown below; vertex i of P j is joined to vertex i + jk (mod 5) of Ok. (For,
example, vertex 2 of P2 is connected as indicated.)

2

1

2
------ 2

II \ --------__
II I \ - ......... ,

I I \ '"
I I, " "I, 1 "I ,,1 ,_ \

. ,
o "2 0', 2 0 0
~" ,

~ ,
~ "

0---<1' 3n---.-a

2o

(7,5) - cage ..

The Hoffman-Singleton graph

NONHAMILTONIAN GRAPHS

(i) Conditions for a graph to be hamiltonian have been sought ever since Tait
made his conjecture on planar graphs. Listed here are counter-examples to
several conjectured' results.

(a) Every 4-regular 4-connected graph is hamiltonian (C. St. J. A. Nash
Williams).

The Meredith graph

(b) There is no hypotraceable graph (T. GalIai).
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. The Thomassen graph

(The first hypotraceable graph was discovered by J. D. Horton.)
(c) Every 3-regular 3-connected bipartite graph is hamiltonian (W. T.

Tutte).

The Horton .graph
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(ii) An example of a nonhamiltonian graph with a high degree of
symmetry-there is an automorphism taking any path of length three into
any other. (The Petersen graph also has this property.) See Tutte (1960).

CHROMATIC NUMBER

(i) Griinbaum. (1970) has conjectured that, for everym > 1 and n > 2, there
exists an m-regular,. m-chromatic gr~ph of girth at least ~. For ~ ~ 3, this is
trivial, and for m = 2 and 3, the validity of the conjecture follows from the
existence of the cagest. Apart from this, only two such graphs are known:

The Chvatal graph
. t Thi.s conjecture has now been disproved: (Borodin, O. V. and Kostochka, A. V. (1976).

On an upper bound of the graph's chromatic number depending on graph's degree and density.
Ins!. Malhs., Novosibirsk, preprint GT-7).
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The Grunbaum graph

(ii) Since r(3, 3, 3) = 17 (see exercise 7.2.3), there is a 3-edge colouring of
K 16 witho.ut monochromatic triangles. Kalbfleisch and .Stant<?n (1968).
showed that, in such a colouring, the .subgraph induced by the edg~s of any
one colour is isomorphic to the following graph: .

The Greenwood-Gleaso.n graph
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EMBEDDINGS -
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(i) Simple examples of self-dual plane graphs are -the wheels. Some more
interesting plane graphs with this property are depicted below (see, for
example, ·Smith and Tutte, 1950).

-(ii) The chromatic number X(S) of a surface S is the maximum number of
colours required to properly colour the faces of any map ~n S. (The
four-colour conject~re claims that the sphere is 4~chromatic.) Heawood
(1890) proved that if S has characteristic ~ < 2, then

, X(S)<U(7+J49-24n)] (111.2)

For the projective plane and Mobius band (characteristic 1) and for th'e
torus (characteristic 0), the bound given in (111.2) i~ attained, as is shown by
the following graphs and their embeddings:

1

6

5

1

( a ) (b)

(a) The Tietze graph; (b) an embedding on the Mobius band

(0) (b)

(a) The Petersen graph; (b) an embedding on the projective plane
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(0)

(a) The Heawood graph; (b) an embedding on the torus

Although the Klein bottle has characteristic 0, Franklin (1934) proved
that it is only 6-chromatic, and found the following 6-chromaticmap oil the
Klein bottle:

(0)

~ - ~

i - - - I

1 4 1 I
I I

•
~, 2 5 '2 t

I

I :3 6 3~
I

I t- .- - I- -

(b)

(a) The Franklin graph; (b) an embedding on the Klein bottle

It has been shown that, with the sole exception of the Klein bottle,
equality holds in (111.2) for every surface S of characteristic n < 2. This
result is kn'own as the map colour theorem (see Ringel, 1974).
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Appendix IV
Unsolved Problems
Collected here are a number of unsolved problems of varying difficulty, with
originators, dates and relevant bibliography. Conjectures. are displayed in
bold type. Problems marked tha·ve now been solved; see page 253.

1. Two graphs G and Hare hypomorpJtic (written G::::H) if there is a
bijection u: V(G)-+ V(H) such that G-v:::H~u(v)for all v E V(G).
A graph G is reconstructible if G:::: H implies G::: H. The reconstruction
conjecture, claims that .every graph G with .... > 2 is reconstructible (S. M.
Ulam, 1929). This has been verified for d~sconnectedgraphs, trees and a
few other classes of graphs (see H~rary, 1974). ,

There is a corresponding edge reconstruction conjecture: every graph
G with £ > 3 is edge reconstructible. Lovasz (1972) has shown that

every simple graph Gwith B > (;)/2 is edge .reconstructible.

P. K..,Stockmeye.r has found an infinite family of counterexamples, to
the analogous reconstruction conjecture for digraphs.

Bondy, J. A. and Hemminger, R. L. (1976). G·raph reconstruction-a
survey. J. Graph Theory, to be published

Lovasz, L. (1972). A note on the line reconstruction problem. J.
,Combinatorial Theory B, 13, 309-10

2. A graph G is embedd.able in a graph H if G is isomorph.ie to a subgraph
of H. Characterise the graphs embeddable in the k -cube (V. V. Firsov,
1965).

Garey, M. ·R. and Graham, R. L~ (1975). On cubical graphs. J. Com
binatorial Theory (B), 18, 84-95

3. Every4-regular simple graph contains a 3-regular subgraph (N. Sauer,
1973). <

4. U Ie > 2, there exists no graph with the property that every pair of
. vertices is connected by a unique path of length Ie (A. Kotzig, 1974).

Kotzig has verified his conjecture for k < 9.
5. Every connected graph G is the union of at most [(1'+ 1)/2] edge

disjoint paths_ (T. Gallai, 1962). Lovasz (1968) .has shown that every
graph G is the union of at most [v/2] edge-disjoint paths and cycles.
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Lovasz, L. (1968). On coverings of graphs, in Theory ·of Graphs. (eds. P.
Erdos and G. Katona), Academic Press, New York, pp. 231-36

6. Every 2-edge-connected simple graph G is the union of v-t. cycles (P.
Erdos, A. W. Goodman and L. Posa, 1966).

.Erdos, P., Goodman, A. W. and Posa, L. (1966). The representation of
a graph by set -intersections. Canad. J. Math., 18, 106-12

7. If G is a simple block with at least v/2 + k vertices of degree at least k,
then G has a cycle of length at least 2k (D. R. Woodall, 1975).

8. Let !(m, n) be the maximum possible number of edges in a simple graph
on n vertices which contains no m -cycle. It is known that

[n2/4J if m is odd, m <!(n + 3)

!(m, n) = ( 2) ( 1)n - ~ +. + m~ if m :>!(n +3)

Determine f( m, n) ·for the remaining cases (P. Erdos, 1963).

Bondy, J. A. and Simonovits, .M. (1974). Cycles of even length In
graphs. J. Combinatorial Theory (B), 16, 97-105

Woodall, D. R. (1972). Sufficient conditions for circuits in graphs. Proc.
London Math. Soc., 24, 739-S5

9. Let f(n) be th~ maximum possible number of edges in a simple graph on
n· v·ertices which contains no 3-regular subgraph. Determine f(n) (P.
Erdos and N. Sauer, 1974). Since there is a constant c such that every
simple graph G with B:> ev8

/
S contains t"he 3-cube (Erdos and

Simonovits, ~970), clearly f(n) < en 8
/
S

•

Erdos, P. and Simonovits, M. (1970). Some extremal problems in graph
theory, in Combinatorial Theory and its Applications I (eds. P. Erdos,
A. Renyi and V. T. Sos), North-Holland, Amsterdam, pp. 3.78-92

10. Determine which simple graphs G have exactly one cycle of each length
I, 3 <: I <: v (R. C. Entringer, 1973).·

11. Let f(n) be the maximum possible number of edges in a .graph on n
vertices in whicJt no tw<? cycles have the same length. Determine f(n)
(P.. Erdos, 1975).

12. U G is simple and E >·v(k -1)/2, th.en G contains every tree with k
edges (P. Erdos and V. T. S~s, 1963). It is known that every such graph
contains a path of length k (Erdos a.nd G.allai, 1959).

Erdos, P. and GaHai, T. (1959); On maximal paths and circuits of
graphs. Acta Math. Acad. Sci. Hungar., 10, 337-56

13. Find a (6,5)-cage (see appendix IiI).
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14. The bandwidth of G is defined to be

min maxl'(u) -1(v)1
I uvEE

where the minimum is taken over all labellings·· I of V in distinct
integers. Find. bounds f()r the bandwidth of a graph (L. H. Harper,
1964). The bandwidth of the k-cube has been determined by Harper
(1966).

Chvatalova, J. (1975). OptImal labelling of a product of two p·aths.
Discrete Math., 11, 249-53

Harper, L. H. (1966). Optimal numberings and is~perimetric problems
on graphs. J. Combinatorial· Theory, 1,385-93

15. A simple graph G is graceful if there is a·labelling I of its vertices with
distinct integers from the set {a, 1, .... , e}, so that the induced edge
labelling I' defined by

l'(uv) = 1·1(14) -l(v)1

assigns each" edge a different label. Chara.ct~rise the graceful graphs (S.
.. Golomb, 1972). It has been conjectured that, in particular, every tree is

graceful (A. Rosa, 1966)..
. . .

Golomb, S. (1972). How to number a gra·ph, i~ Graph Theory and
Comp·uting (ed. R. C. Read), Acad·emic Press, New York, pp. 23-37

t 16. The 3-connecte~planar graph on 2m edges with the least possible number of
spanning trees is the wheel with m spokes (W.. T. Tutte, 1940).

. .

K~lmans, A. K. and Chelnokov,-V. M. (1974).. A certain polynomial of
. a graph and graphs with an extremal number.of trees. J. Combinatorial

Theory (B), 16, 197--214

17. Let u and v be two vertices in a graph G. Denote the minimum number
of vertices whose deletion destroys all (u. v )~paths of length at ~ost n by
an, and the maximum number of ·internally disjoint (u, v)-paths of
length at most n by.bn • Let f(n). denote the maximum possible·value of
an/bne Determine f(n) (V. Neumann, 1974). L. Lovasz has conjectured
that Ifn) < JR. it is known that .. ..

[In/2]< f(n) < [n/2]

18. Every 3-regular 3-connected bipartite planar graph is hamiltonian (D.
Barnette, 1970). P. Goodey has verified this co.njecturefor plane graphs
whose faces- are all of degree four or six. N~te that if the planarity
condition -is dropped, the conjecture is no longer valid (see appendix
III).

19. A graphic sequence d is forcibly hamiltonia·n if ev~ry ·simple graph with
degree sequence d .is hamiltonian. Characterise the. forcibly hamiltonian
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sequences (C. St. J. A. Nash-Williams, 1970). (Theorem 4.5 gives a
partial solution.)

Nash-Williams, C. St. J. A. (1970). Valency sequences which force
graphs to have Hamiltonian circuits: interim report, University of
Waterloo preprint

20. Every connected vertex-transitive graph has a Hamilton path (L.
Lovasz, 1968). L. Babai has verified this conjecture for graphs with a
prime number of vertices. .

21. A graph G is t-tough if, for every vertex cut S, w(G-S)<ISIIt. (Thus
theorem 4.2 says that every hamiltonian graph is I-tough.)

(a) If G is 2-tough, then G is hamiltonian (V. Chvatal, 1971). C.
Thomassen has obtained an example of a nonhamiltonian t-tough graph
with t >" 3/2 .

(b) If G is 3/2-tough, then G has a 2-factor (V. Chvatal, 1971).

Chvatal. V. (1973). Tough graphs and ha~iltonian circuits. Discrete
Math., S, 215-28

22. The binding number of G is defined by

bind G = min IN(S)I/ISI-
BllfSs;v
.~(s,~ v

(a ) If bind G:> 3/2, then G contains a triangle- (D. R. Woodall,
1973).

(b) If bind G :> 3/2, then G is pancycUc (contains cycles of all lengths
I, 3:s I <: v) (D. R. Woodall, 1973). -

Woodall (1973) has shown that G'is hamiltonian if bind G ~3/2, and
- that G contains atrian"gle if bind G:> to + J5). "

Woodall. D. R. (1973). The binding number of a graph and its Ander
son number. J. Combinatorial Theory (B), 15, 225-55

23., Every nonempty regular simple graph contains two di$joint maximal
independent sets (C. Payan, 1973)

24. Find the Ramsey number r(3, 3, 3, 3). It j~ known that

51 <: r(3, 3, 3, 3) -< 65

Chung. F.. R. K. (1973). On the Ramsey numbers N(3, 3, ... , 3; 2),
Disctete Math., S, 317-21

Folkman, J. (1974). Notes on the Ramsey number N(3, 3, 3,3). J.
Combinatorial Theory (A), 16, 371-79

25. For m < n, let f(m, n) denote the least possible number of vertices in a
graph which contains no K n but has the property that in every 2-edge
colouring there is a monochromatic K m • (Folkman, 1970 has estab
lished the existence of such graphs.) Determine bounds for f(m, n).It is
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f(3,n)=6 for n>7

f(3, 6) = 8 (see exercise 7.2.5)

lO<f(3, 5)< 18

Folkman, J. (1970). Graphs with monochromatic complete subgraphs in
every edge coloring. SIAM J. Appl. Math., 18, 19-24

Irving, R. W. (1973). On a bound of Graham and Spencer for a
graph-colouring constant. J. Combinatorial Theory (B), 15, 200-203

Lin, S. On Ramsey numbers and Kr-coloring of graphs. J. Combinatorial
Theory (B), 12, 82-92

26. If.G is n-chromatic, then r(G, G) > r(n, n) (P. Erdos, 1973). (r(G, G) is
defined in exercise 7.2.6.)

27. What is the maximum possible chromatic number of a graph which can
be drawn in the plane so that each edge is a straight line segment of unit
length? (L. Moser, 1958).
Erdos. P., Harary, F. and Tutte, W. T. (1965). On the dimension of a

graph. Mathematika, 12, 118-22

28. The abso~ute ·values of the coefficients of any chromatic polynomial form
a unimodal sequence (that is, no term is flanked by terms of greater
value) (R. C. Read, 1968).

Chvatal, V. (1970). A note on coefficients of chromatic polynomials. J.
Combinatorial Theory, 9, .95-96

29. If G is not complete and X = m + n -1, where m:> 2· and n:> 2, then
there exist disjoint subgraphs G 1 and G z of G such that x(G I ) = m.and

.X(G2) =n (L. Lovasz, 1968).
30. A simple graph G is perfect if, for every induced subgraph H of G, the

number of vertices in a maximum clique is X(H). G is perfect if and
only if no induced subgraph of GorGe is an odd cycle of length greater
than three (C. Berge. 1961). This is the strong perfect graph conjecture.
Lovas~ (1972) has shown that the complement of any perfect graph is

.perfect.

Lovasz, L. (1972). Normal hypergraphs and the perfect graph conjec
ture. Discrete Math., 2, 253-67

Parthasarathy, K. R. and Ravindra, G. (to be published). The strong
perfect-graph conjecture is true for K1,3-free graphs. J. Combina-
torial Theory

31. If G is a 3-regular simple block and H is obtained from G by
doplicatingeach edge, then X'(H) =6 (D. R. Fulkerson, 1971).

32. If G is simple, with" even ~d X'(G) = 4(G)+1, then X'(G·-- v) = X'(G)
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for some v eV (I. T. Jakobsen, L. W. Beineke and R. J.Wilson, 1973).
This has been verified for all graphs G with v < 10 and all 3-regular
graphs G with v = 12.

Beineke, L. W. and Wilson, R. J. (1973). On the edge-chrom·atic
number of a graph. Discrete Math., S, 15-20 .

33. For any simple graph G, the elements of VUE can be coloured in ~+2
colours so that no two adjacent or incident eleme~ts receive the same
colour (M. Behzad, 1965). This is known as the total colouring conjecture.
M. Rosenfeld and N. Vijayaditya have verified it for all graphs G with
~<3.

Vijayaditya, N. (1971). On total chromatic number of a graph. J.
London Math. Soc., 3, 405-408

34. If G is simple and E > 311- 6, then G contains a subdivision ofK5 (G. A.
Dirac, 1964). Thomassen (1975) has shown that G contains a subdivi
sion of K s if E ~4v-l0.

Dirac, G. A. (1964). Homo·mo·rphism t'heorems for graphs. Math. Ann.,
153, 69~80

Thomassen, C. (1974). Some homeomorphism properties Qf graphs,
Math. Nachr., 64, 119-33

35 ..A sequence d of non-negative integer's 'is potentially planar if there is a
simple planar graph with degree sequence d. Characterise the poten
tially planar sequences (S. L. Hakimi, 1963).

Owens, A.· B. (1971). On the planarity of regular 'incidence sequences.
J. Combinatorial Theory (B), 11, 201-12'

t36. If G is a loopless planar grap.h, then 01. 2; v/4 (P. Erd'os, 1968). Albertson
(1974) has shown that every such graph satisfies a > 2,,/9.

Albertson, M. O. (1974). Finding an independent set in a planar graph,
in Graphs and Combinatorics (eds. ·R. A. Bari and F. Harary),
Springer-Verlag, New York, pp. 173-79

t 37. Every planar graph is 4-colourable (F. Guthrie, 1852).

Ore, O. (1969).. T~e Four-Color Problem, A~ademic Press, New York

38. Every k -chromatic graph contains a subgrapb contractible to K k (H.
Hadwiger, 1943). Dirac (1964) has .proved that every 6-chromatic graph
contains a subgraph contr~ctible. to K6 less one edge.·

Dirac, G. A. (1964). Generalizations of the five colour theorem, in
Theory of Graphs and its Applications (ed. M. Fiedler), Academic
Press, New York, pp. 21-27

39. Every k-chromaticgraph contains a subdivision of K k (G. Haj6s, 1961).
Pelikan (1969) has shown that every 5-chromatic graph contains a
subdivision of Ksless one edge.
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Pelikan, J. (1969). Valency conditions for the existence of certain
subgraphs, in Theory of Graphs (eds. P. Erdos and G. Katona),
Academic Press, New York, pp. 251-58

40. Every 2-edge-connected 3-regular simple graph which has no Tait
colouring contains a subgraph contractible to the Petersen graph (W. T.
Tutte, 1966).
Isaacs, R. (1975). Infinite families of nontrivial trivalent graphs which

are not Tait colourable. Arner. Math. Monthly, 82, 221-39
Tutte, W. T. (1966). On the algebraic theory of graph colorings. J.

Combinatorial Theory, 1, 15-50
41. For every sudace S, there· exists a finite number of graphs which have

mini",UDl degree at least three and are minimally Donembeddable on S.
t 42. U D is dicODDected, then D has a directed cycle of length at least X (M.

Las Vergnas, 1974).
43.U D is a toumamentwith " odd and every indegree and outde.gree

equal to (.-1)/2, then D is the union of (.-1)/2 arc-disjoint directed
Hamilton cycles (P. Kelly, 1966).

44. U D is a tournament with 11 even, then D is the union of
L max{O, d+(v)-d-(v)} arc-disjoint directed paths (R. O'llrien, 1974).

•ev .

This wo~ld imply the truth of conjecture 43.
45. Characterise the tournaments D with the property that all subtourna
. ments D - v are isomorphic (A. Kotzig, 1973).

46. IfD is a digraph which contains a directed cycle, then there is some arc
whose reversal decreases the Dumber of directed cycles in D (A. Adam,
1963).

47. Given a positive integer n, there exists a least integer f(n) such that in
any digraph with at most n arc-disjoint directed cycles there are f (n)
ara whose deletion destroys all directed cydes (T. Gallai, 1964; D.
H. Younger, 1968).

Erdos. P. and P6sa, L. (1962). On the maximal number of disjoint
circuits of a graph. Publ. Math. Debrecen, 9, 3-12

Younger, D. H. (1973). Graphs with interlinked directed circuits, in
Proceedings of Midwest Symposium on Circuit Theory

48. An (m + n)-regular graph is (m, n)-orientable if it can be oriented so'
that each indegree is either m or n. Every S-regular simple graph with
no I-edge cut or 3-edge cut is (4,1)-orientable (W. T. Tutte, 1972).
Tutle has shown that this would imply Grotzsch's theorem

49. Obtain an algorithm to find a maximum ftow in a network with two
sources Xl and %2, two sinks yl and·· y2, and two commodities, the
requirement being to ship commodity 1 from Xl to yl and commodity 2
from X2 to }'2 (L. R. Ford and D. R. Fulkerson, 1962).
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Rothschild, B. and WhinstoD, A. (1966). On two commodity network
flows. Operations Res., 14, 377-87

50. Every 2-edge-connected dignph D has a circulation f over the field of
integers modulo 5 in which 1(0) ~ 0 for aU arcs 4 (W. T. Tutte, 1949).
Tutte "has shown that this would imply the five-colour theorem.

References for problems solved since first printing:

16. Gobel, F. and Jagers, A. A. (1976). On a conjecture of Tutte concerning
minimal tree numbers. J. Combinatorial Theory (B), to be published"

36 and 37. Appel, K. and Haken, W. (1976). ·Every planar map is four
colorable. Bull. Arner. Math. Soc., 82, 711-2

42. Bondy, J. A. (1976). Diconnected o~ient~tions ~nd a conJecture of Las
Vergnas. J. London Math. Soc., to be published"
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BOOKS OF A GENERAL NATURE, LIS1'ED ACCORDING TO LEVEL OF TREATMENT

Ore, O. (1963). Graphs and Their Uses, Random House, New York
Rouse Ball, W. W. and Coxeter, H. S. M. {1974). Mathematical Recreations

and Essays, University of Toronto Press, Toronto
Liu, C. L. (1968). Introduction to Combinatorial Mathematics, McGraw-Hill,

New York
Wilson, R. J .. (1972). Introduction to Graph Theory, Oliver and Boyd,

Edinburgh
Deo, N. (1974). Graph Theory with Applications to Engineering and Compu

ter Science, Prentice-Hall, Englewood Cliffs, N.J.
Behzad, M. and Chartrand, G. (1971). Introduction,to the Theory of Graphs,

Allyn and Bacon, Boston
Harary, F. (cd.) (1967). A Seminar on Graph Theory, Holt, Rinehart and

Winston, New York
Ore, O. (1962). Theory of Graphs, American Mathematical Society, Provi

dence, R.I.
Konig, D. (1950). Theorie der Endlichen und Unendlichen Graphen,

Chelsea, New York
Sachs, H. (1970). Einfuhrung in die Theorie der Endlichen Graphen, Te~bner

Verlagsgesellsch.aft, Leipzig
Harary, F. (1969). Graph Theory, Addison-Wesley, Reading, Mass.
Berge, C. (1973). Graphs and Hypergraphs, North Holland, Amsterdam

SPECIAL TOPICS

Biggs, N. (1974). Algebraic Graph Theory, Cambridge University Press,
Cambridge

Tutte, W. T. (1966). Connectivity in Graphs, University of Toronto Press,
Toronto

Ore, O. (1967). The Four-Color Problem, Academic Press, New York
Ringel, G. (1974) . Map Color Theorem, Springer-Verlag, Berlin
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Moon, J. W. (1968). Topics on Tournaments, Holt, Rinehart and Winston,
New York

Ford, L. R. Jr. and Fulkerson, D. R. (1962). Flows in Networks, Princeton
University Press, Princeton

Berge, C. and Ghouila-Houri, A. (1965). Programming, Games, and
Transportation Network~, John Wiley, New York

Seshu, S. and Reed, M. B. (1961). Linear Graphs and Electrical Networks,
Addison-Wesley, Reading, Mass.

Tutte, W. T. (1971). Introduction to the Theory of Matroids, American
Elsevier, New York •

Harary, F. and Palmer, E. (1973). Graphical Enumeration, Academic Press,
New York

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974). The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.

Welsh, D. J. A. (1976). Matroid Theory, Academic Press, New York
Biggs, N., Lloyd, E. K. and Wilson, R. J. (1976). Graph Theory 1736-/936,

Clarendon Press, Oxford



Glossary of Symbols
GENERAL MATHEMATICAL SYMBOLS

u
n

\
A
[xl
{x}
Ilfll
RIS
R'

union
intersection
subset
proper subset
set-theoretic difference
symmetric difference
greatest integer s x
least integer:> x.
support of f
restriction of R to S
transpose of R

Page

·215
215

GRAPH-THEORETIC· SYMBOLS

A
A
A
b(f)
!I
c(G)
capK
((6

do(v)
do(f)
do(v)
d~(v)

do(u,v)
D
D(G)
ext]
Ext]
E ..
/-(5)
f+(S)
F
F(B, H)

arc set
adjacency matrix of a graph
adjacency matrix of a digraph
boundary of f
bond space
closure of G
capacity of cut K
cycle space
degree of vertex v in G
degree of face f in G
indegree of V in D
outdegree of v in D
distance between u and v in G
directed graph
associated digraph of G
exterior of J
closure of ext J
edge set
flow into S
flow out of S
face' set
set of faces of H in which B is drawable

1.71
7

.173
140
213

56
194.
212

10
.140'
~72

172
14

171
17'9
135
135

1
191
191
139'
164
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Page
1
9

135
135

4
5
7

214
191

72
175
175
103
108
108'

; 192
1

146
101
102
101
102

10·
172
172
10

172
172

3
·42

42
3

76
125
32

139
117

91
158

13
173
173

graph
subgraph of G induced by S
interior of J
closure of int J
complete graph
complete bipartite graph
incidence matrix of a graph
incidence matrix of a digraph
network
neighbour set of S in G
in-neigh~our set of v in D
out-neighbour set of v in D
Ramsey o1.Jmber
Ramsey number
r(3, 3, ... , 3)
value of flow f
vertex set
set of vertices of attachment of B to H

. independence number
edge independence number
covering number
edge covering number
minimum degree
minimum indegree
m~nimum outdegree
maximum degree
maximum indegree
maximum outdegree
number of edges
connectivity
edge connectivity
number of vertices
number of odd components
chromatic polynomial
number of spanning trees
number of faces
chromatic number
edge chromatic number
face chromatic number
number of components
converse of D
condensation of D

258

1Tk

T

c/>
X
X'
x*
Cd

fJ
D

valf
V
V(B, H)
a
a'

,
·K

V

o

G
G[8]
int J
IntI
Kn

. Km,n

M
M
N
Na(S)
Nn(v)
N~(v)

r(k, I)
r(k t , k2 , ••• , km )
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GC
G*
G
w- t

G -e
G-e
G+e
G-v
G+E'
G-S
G~H

HeG
ReG
GUH
GnH
G+H
GxH
GvH
H(G)
[5, T]
(5, T)
WW'

complement of G
dual of G
planar embedding of G
reverse of walk W
contraction of e
deletion of e
addition of e
deletion of v
addition of E'
deletion of S
isomorphism
subgraph
proper subgraph
union
intersection
disjoint union
product
join.
complement of H in G
set of edges between Sand T
set of arcs from S to T
concatenation of walks

259

Page
6

140
135
12
32

9
9
9
9
9
4
8
8
9

10
10
96
58
29
29

176
12



Index
This index is arranged strictly in alphabetical order according to the first
significant word'. Thus, 'edge connectivity' is listed under'E and 'k-chromatic
graph' under C.

Acyclic graph, 25
Adjacency matrix

of a digraph, 173
of a graph, 7

Adjacent vertices, edges, 3
M -alternating path, 70
M -alternating tree, 81
Arc, 171
k-arc-connected digraph, 179
Associated, digraph, 179
M-augmenting path, 70
Automorphism, 6
Automorphism group, 7
Avoiding bridges, 146

,Bandwidth, 248
Basis matri~, 215
Basis matrix corresponding to a tree, 216
Berge"s theorem, 80 .
Binding' number, 249
Bipartite graph, 4
Bipartition, 5
Block, :44
'Block Q,f a graph, 44
Bond, 29
Bond space, 213

. Breakthrough, 199
Bridge, 146
k -bridge, 146
Brooks.' theorem, 122
Brouwer's fixed-point theorem, 21

Cage, 236
Capacity

. of a cut, 194
of an are, 191

·Capa.city function, 191
,-Cayley's formula, 32
Centre, 27
Chinese .postman problem, 62
k-chromatic g~aph, 117
Chromatic number, 117
Chromatic number of a surface, 243

Chromatic polynomial, 126
Chvatal graph, 241 '
Circulation, 212
Clique, 103
Closed walk, 14
Closure., 56
k -colourable graph, 117
k-colouring, 117
Complement

of a graph, 6
of a subgr~ph, 29

Complete bipartite graph, 5
Complete graph, 4
Compl~te k -partite graph, 6
Component, 13,
S-component, 119
Composition of. two graphs, 108 .
Condensation, 173
Conductance matrix, 220
Connected graph, 13
k-connected graph, 42
Connected vertices, 13
Connectivity, 42
Connector problem, 36
Conservation condition, 191
,Contraction of an edge, 32
Converse, 173
Cotree, 29
Covering, 73

. Covering number, 101
Coxeter graph, 241
Critical graph, 117
k.-critical graph, 117
a-critical gra·ph, 103'
l3-critical graph, 103

, K -critical graph, 47
Cube,234 .
k-cube,6
Cut, 194
Cut edge, 27
Cut vertex, 31
Cycle, 14
~_-cycle, 14
Cycle space, 212



262
Degree

of a face, 140
of a vertex, 10

Degree-majorised, 58
Degree sequence, 11
Demand,206
Diameter, 14
Diameter of a plane set, 113
Dicomponent, 172
Diconnected digraph, 172
Digraph, 171
Dijkstra's algorithm, 19
Dirac's theorem, 54
Directed cycle, 172
Directed diameter, 186
Directed Euler tour, 179
Directed graph, 171
Directed Hamilton cycle, 177
Directed- Hamilton path, 174
Directed path, 172
Directed tour, 172
Directed trail, 172
Directed walk, 171
Disconnected graph, 13
Disjoint subgraphs, 9
Distance

in a digraph, 186
in a graph, 14
in a weighted graph, 16

Dodecahedron, 234
Dual, 140
Duplication of an edge, 63

Edge, 1
Edge chromatic number, 91
k-edge-chromatic graph, 91
k-edge-colourable graph, 91
k -edge colouring, 91
k -edge-connected graph, 42
Edge connectivity, 42
Edge covering, 102
Edge covering number, 102
Edge cut, 29
k -edge cut, 42
Edge-disjoint subgraphs, 9
Edge graph, 11
Edge independence number, 102
Edge-induced subgraph,_ 9
Edge-transitive graph, 7
Embeddable on a surface,' 136
E-mbedding, 137
Empty graph, 4
End, 1
Equivalent k~bridges, 146
Eulerian graph, 51
Euler's formula, 143
Euler's theorem, 51

Index
Euler tour, 51
Euler trail, 51'
Even component, 76
Even cycle, 14
Exterior of a Jordan ciI've, 135
Exterior face, 139
Extremal graph theory, 109

Face, 139
Face chromatic number, 158
k-face-colourable plane graph, 158
k-face colouring, 158
k-factor, 71
k-factorable graph, 71
Fary's theorem, 139
Feasible flow 1 206
Finite graph, 3
Five-colour theorem, 156
Fleury's algorithm, 62
Flow, 191
Folkman graph, 235
Forcibly hamiltonian sequence, 248
Forest, 26
Four-colour conjecture, 157
Four-colour problem, 158
Franklin graph, 244
Frucht's theorem, 7

Generalised Ramsey numbers, 109
Girth, 15
Good algorithm, 19
Graceful graph, 248
Graph, 1-
Graphic sequence, 11
Gray graph, 235
Greenwood-Gleason graph, 242
Grinberg graph, 162
Grotzsch graph, 118
Grotzsch's theorem, 159
Griinbaum graph, 242

Hadwiger's conjecture, 124
Hajos' conjecture, 123
Hall's theorem, 72
Hamilton cycle; 53
Hamilton path, 53
Hamilton-connected graph, 61
Hamiltonian graph, 53
Head, 171
Heawood graph, 236
Herschel graph, 53
Hoffman-Singleton graph, 2.39
Horton graph, 240
Hungarian method, 82
Hypohamiltonian graph, 61
Hypotraceable graph, 61



·Index
Icosahedron, 234
Identical graphs, 4
Improvement of an edge colouring, 92
Incidence function

of a di"graph, 17)1
of ·a graph, 1

Incidence matrix
of a digraph, 214
of a graph, 7

Incident
edge with vertex, 3
face with edge or vertex, 140

{-incrementing path, 196
Indegree, 172
Independence number, 101
Independent set, 101 .
Induced subgraph, 9
In-neighbour, 175
Inner bridge, 148
Interior of a Jordan curve, 135
Intermediate vertices, 191
Internal vertices, 12
Internally-disjoint paths, 44
Intersection of graphs, 10
Isomorphic graphs, 4
Isomorphism, 4

Join of two graphs, 58
Joined vertices

in a digraph, 171
in a graph, 1

Jordan curve, 135
Jordan curve theorem, 135

Kirchhoff's current law, 223
Konig's theorem, 74
Kruskal's algorithm, 37
Kuhn-Munkres algorithm, 87
K~ratowski's theorem, 153

Labelling method, 198
Labelling procedure, 198
Length of' walk, 12
Link, 3
Loop, 3

Map ,colour theorem., 244
Marriage theorem, 73 .
Matching, 70
Matrix-tree theorem, 219
Max-flow min-cut theorem, 198
Maximum flow, 192
Maximum independent set, 101
Maximum matching, 70
~cGee graph, 237
Menger's .theorems, 46

.' Meredith graph, 239
Minimum covering, 73

lvlinirnum cut, 195
Multiplicity, 95

Neighbour set, 72
Network, 191
Nontrivial graph, 3

Octahedron~ 234
Odd component, 76
Odd cycle, 14
Optimal assignment problem, 86 .
Optimal cycle, 65
Optimal k -edge colouring, 92
Optimal matching, 86
Optimal tour, 62
Optimal tree, 3'6
Order of a squared rectangle, 220
Order of magnitude of a function, 19
Orientation, 171
Origin of a walk, 12
Outdegree, 172
Out.er bridge, 148
Out-neighbour, 175
Overlapping bridges, 146'

k -partite graph, 6
Path, 12
Perfect graph, 250
Perfect matching, 70
Perfect rectal1g1e, 220
Personnel assignment problem, 80
Petersen graph, 55
Petersen's theorem, 79
Planar embedding, 135
Planar graph, 135
Plane graph, 135 .
Plane triangulation, 143
Platonic graphs, 234
{-positive arc, 195
Potential difference,. 212
Potentially planar sequence, 251
Probabilistic method, 107

. Product of 'graphs, 96
Proper colouring, 117
Proper edge colouring, 91
Proper face colouring, 158
Proper subgraph, 8

Ramsey graphs, 106
Ramsey numbers,104
Ramsey's theorem, 103
Reachable vertex, 172
Reconstruction conjecture, 246'
Redei's theorem, 175
Regular graph, 11
k -regular graph, 11.

263
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Represented (colour at a vertex), 91
-Resultant flow, 192
Revised flow, 197
Robbins' theorem, 184
Robertson graph, 237
R.obertson--Wegner graph, 238

Saturated (vertex by a matching),' 70
[-saturated arc, 195
f -saturated path, 196
M-saturated vertex, 70
Schur~s theoret:n, 112
Section of a walk, 12
Self-complementary graph, 6
Self-.du~l plane ,graph, 142
Separated (faces by an edg-e), 140
Shortest path 'problem, 16
Simple graph, 3
Simple squared rectangle, 220
Sink, 191
Ske.w bridges, 146
Source, 191
Spanning subgraph, 8
Spanning supergraph, 8
Spanning tree, 28 -
Sperller's lernma, '22

- Squared rectangle, 220
Stereographic projection, 138
Strict digraph, 172
Str<Jng perfect graph ,conjecture; 25,0 '
Subdigraph, 171 : .
Subdivision

of a graph, 123
of an ~dge, 45

Subgraph, 8
Supergraph, 8

-Supply, 206
Surface, 136

Tail, 171
T~it colouring, 159 '
Tait's conjecture, ~60

Terminus of a walk,'12
Tetrahedron, 234
Thickness"145
Thomassen graph, 240
Tietze gr~ph, 243'
Timetabling problenl, 96
Total colouring conjecture, 25 1
Totally lJilimod.ular Rlatrix, ~20",

t-tough grap~, 249

Index
Tour, 51
Tournament, 174
Trail, 12 '
Transfer of a bridge, 149
Traveliing salesman problem, 65
'Tree, 25
Tr~e graph, 41
Triangle, 14
Trivial graph, 3
Turan'ls theoreJn. 109
Tutte-Coxeter graph~ 237
Tutte graph .. 161
Tutte's theorem, 76
Type 1 {u,v}-component, 119
Type 2 {u, u}-component, 119

Underlying digraph, 191
Underlying graph, 171
Underlying simple graph, 8
Unilateral·digraph, 176
Unimodular matrix, 218
Union of graphs, 9' ,
Uniquely k-colourable graph, 121
Uniquely k-edge-colourable graph, 96
f-unsaturated are, 195
f -unsaturated path, 196

.f ...unsaturated tree, 198
J.JVf-unsaturatedvertex,70

Value of a flow, 192
Vertex, 1
k-vertex-colourable graph, 117
k -vertex colouring, 117 .
Vertex cut, 42 .
k -verte'x cut, 42 ,
Vertex-transitive graph, 7
Vertices of attachm¢nt; 146
Vizing's theqrem, 93

'Walk, 12
V/eight

of a s~bgraph, 16
. of an edge, 15

Weighted graph, 15
\\'heel, 36

{-zero arc, 195
Zero flow, 192




