Exploring Uncertainty in Image Segmentation Ensembles

Bernhard Fröhler1,2, Torsten Möller2, Johannes Weissenböck3, Hans-Christian Hege3, Johann Kastner1, and Christoph Heinzl1

1 Research Group Computed Tomography, University of Applied Sciences Upper Austria, Austria
2 Visualization and Data Analysis Research Group, Faculty of Computer Science, University of Vienna, Austria
3 Visual Data Analysis Department, Zuse Institute Berlin, Germany

Introduction
Finding the most accurate image segmentation involves analyzing multiple results from different algorithms or parameterizations. In such segmentation ensembles, we identified three uncertainty types represented by:
- Results of probabilistic algorithms
- Local variability in the segmentation
- Variability across the ensemble
We propose visualization techniques for the analysis of such types of uncertainties in segmentation ensembles. For a global analysis we provide overview visualizations in the image domain as well as in the label space. Our probability probing and scatter plot based techniques facilitate a local analysis. We evaluate our techniques using case studies on industrial computed tomography and hyperspectral data.

Uncertainty Types in Segmentation Ensembles

To cover the range of results possible with the analyzed algorithms, multiple segmentation results are computed, utilizing all algorithms and sampling their parameter space. The label probability distribution delivered by probabilistic algorithms represents the first uncertainty type we identified. For each result, an additional uncertainty type results from considering the distribution in the neighborhood of each pixel. The distribution across the ensemble for each pixel represents a third type of uncertainty information.

The segmentations and the distributions (algorithm, neighborhood and ensemble) derived from these are computed as a preprocessing step. For each of those distributions, uncertainty values are computed using Shannon entropy.

Visual Analysis of Hyperspectral Data
Selecting regions of high algorithm uncertainty but low neighborhood uncertainty (b, yellow dots) reveals a label where the algorithm is uncertain despite high homogeneity (a). Mouse interactions in the image (red crosshair) trigger probability probing (c), which shows the uncertainty, label and highest label probability distribution. In addition to the final label 5, we see a high probability for label 0 in the marked region.

Visual Analysis of Computed Tomography Data
Selecting in scatter plot highlights corresponding pixels in images in (a). Individual segmentation results (e) can be shown by clicking on the bar of the respective result in (d). Hovering in the images in (a) triggers probability probing (see lower left of this poster).

Conclusion and Future Work
We have systematically categorized the uncertainty available in a segmentation ensemble into algorithm, neighborhood and ensemble uncertainty. We propose techniques for analyzing this information, and case studies on how this information can be used to analyze segmentation algorithms. We are currently looking into further ways of how to use these techniques to improve the performance of segmentation algorithms, and how to apply this uncertainty information to combining segmentation results.

Acknowledgements
We want to thank our anonymous reviewers for the helpful comments. This work received funding from the Research Foundation Flanders (FWO) and the Austrian Science Fund (FWF) project Quantitative X-ray tomography of advanced polymer composites, under grant numbers G09111N and I3261-N36 respectively.