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Large Neighborhood Search in MIP



Mixed Integer Programs

min c"x
s.t. Ax > b
I<x<u
x €{0,1}"™ x 2" "™ x Q"™

(MIP)

Solution method:

e typically solved with branch-and-cut

e primal heuristics support the solution process

Notation:
e Fp set of solutions of a MIP P

e X" incumbent solution, ¢ dual bound
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LNS and the auxiliary MIP

Auxiliary MIP

Let P be a MIP with solution set Fp. For a polyhedron N' C Q" and objective
coefficients caux € Q", a MIP P?** defined as

min{cazxx|x € Fp ﬂ/\/}

is called an auxiliary MIP of P, and A\ is called neighborhood.

Large Neighborhood Search (LNS) heuristics solve auxiliary MIPs and can be
distinguished by their respective neighborhoods.
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Typical LNS neighborhoods

Let M C{1,...,n}, x* € Q".
e fixing neighborhood

NPM,x™) = {x € Q" |x =x" Vj e M}
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Typical LNS neighborhoods

Let M C{1,...,n}, x* € Q".
e fixing neighborhood

NPM,x™) = {x € Q" |x =x" Vj e M}

e improvement neighborhood

NObj((S’Xi"c) — {X c Qn | CTX < (1 _ 6) . CTXinc 46 Cdual}
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Examples of LNS Heuristics

Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]

Nas = N’fix (M: <{ Ip’Xinc}> ’Xinc) nNobj (5’ Xinc) '
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Examples of LNS Heuristics

Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]
NRINS — N'fix (M: <{ Ip’Xinc}> 7Xinc) m’/\/robj (5’ Xinc) .
Local Branching [Fischetti and Lodi, 2003]

NLBranch = {X € Qn| HX — Xinc

< obj inc
s dmax} NNZ(5,x™)
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Examples of LNS Heuristics

Relaxation Induced Neighborhood Search (RINS) [Danna et al., 2005]
NRINS — N'fix (M: ({ Ip’Xinc}> 7Xinc) m’/\/robj (5’ Xinc) .
Local Branching [Fischetti and Lodi, 2003]

NLBranch = {X € Qn| HX — )(inC

S dmax} N Nobj (5’ XinC)
b

e Crossover, Mutation [Rothberg, 2007]

e RENS [Berthold, 2014]

e Proximity [Fischetti and Monaci, 2014]

DINS [Ghosh, 2007]

Zeroobjective [in SCIP, Gurobi, XPress,...]
Analytic Center Search [Berthold et al., 2017]
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Adaptive Large Neighborhood Search



Adaptive Large Neighborhood Search

e new primal heuristic plugin heur_alns.c
e controls 8 LNS heuristics called neighborhoods
e 3 important callbacks

/** callback to collect wariable fizings of neighborhood */
#define DECL_VARFIXINGS(x) SCIP_RETCODE x ( ... )

/*% callback for subproblem changes other than variable fizings
#define DECL_CHANGESUBSCIP (x) SCIP_RETCODE = ( ... )

/%% callback function to return a feasible reference solution

* for further fizings */
#define DECL_NHREFSOL (x) SCIP_RETCODE x ( ... )

e neighborhoods are called based on their reward
e further algorithmic steps: generic fixings, adaptive fixing rate

e released with SCIP 5.0
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The Multi-Armed Bandit Problem

e Discrete time steps t = 1,2, ...

e Finite set of actions H

1. Choose hy € H
2. Observe reward g(he, t) € [0,1]
3. Goal: Maximize ), g(h:, t)
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The Multi-Armed Bandit Problem

e Discrete time steps t = 1,2, ...

e Finite set of actions H

1. Choose hy € H
2. Observe reward g(he, t) € [0,1]
3. Goal: Maximize ), g(h:, t)

2 Scenarios:

e stochastic i.i.d. rewards for each action over time
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The Multi-Armed Bandit Problem

e Discrete time steps t = 1,2, ...

e Finite set of actions H

1. Choose hy € H
2. Observe reward g(he, t) € [0,1]
3. Goal: Maximize ), g(h:, t)

2 Scenarios:

e stochastic i.i.d. rewards for each action over time
e adversarial an opponent tries to maximize the player’s regret.
Literature: [Bubeck and Cesa-Bianchi, 2012]
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Bandit Algorithms

Upper Confidence Bound (UCB)

~ o In(1+t) .
argmax{r t—1)+ — } if t > |H]|,
he € e ( ) Tp(t—1) [H|
{H:} if t <|H|
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Bandit Algorithms

Upper Confidence Bound (UCB)

argmax {Fh(t 1)+ (‘T,I,Q(tljf))} if > |H|,
he € {  hen
{H:} if t < [#H].

e-greedy

Select heuristic at random with probability ; = 5\/? otherwise use best.
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Bandit Algorithms

Upper Confidence Bound (UCB)

argmax {Fh(t 1)+ (‘T,I,Q(tljf))} if > |H|,
h: € heH

{H:} if £ < [H].

e-greedy

Select heuristic at random with probability ; = 5\/? otherwise use best.

Exp.3
exp(Wh,t) Y 1

=(1—~)-
Ph,t ( ) Zh/ eXP(W/-,/,t)
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Bandit Algorithms

Upper Confidence Bound (UCB)

argmax {Fh(t 1)+ (‘T,I,Q(tljf))} if > |H|,
h: € heH

{H¢} if £ < |H|.

e-greedy

Select heuristic at random with probability ; = 5\/? otherwise use best.

Exp.3
exp(Wh,t) Y 1

=(1—7)-
Ph,t ( ) Zh/ eXP(W/-,/,t)

Individual parameters o, s, > 0 must be calibrated.
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Bandit Selection in SCIP API

Since SCIP 5.0, all 3 bandit algorithms are available in the public API.

1. Bandit creation

SCIP_BANDIT* bandit;

SCIPcreateBanditUcb(scip, &bandit, priorities,
alpha, nactions, seed);

SCIPcreateBanditExp3 (scip, &bandit, priorities,
gamma, ..., nactions, seed);

SCIPcreateBanditEpsgreedy (scip, &bandit, priorities,
epsilon, nactions, seed) ;

2. Selection

SCIPbanditSelect (bandit, *selection);

3. Update

SCIPbanditUpdate (bandit, selection, reward);

http://scip.zib.de/doc-5.0.1/html/group__PublicBanditMethods.php
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Rewarding Neighborhoods

Goal A suitable reward function r*™(h,, t) € [0,1]
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Rewarding Neighborhoods

Goal A suitable reward function r*™(h,, t) € [0,1]

Solution Reward

1 , if Xold # x"ew

sol
r%(he, t) =
' 0 ,else
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Rewarding Neighborhoods

Goal A suitable reward function r*™(h,, t) € [0,1]

Solution Reward

1 , if Xold # x"ew

sol
r (ht t) =
’ 0 ,else
Gap Reward
T old T _new
cC X —C X
rEP (e, t) =

CTXoId _ Cdual
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Rewarding Neighborhoods

Goal A suitable reward function r*™(h,, t) € [0,1]

Solution Reward

1 , if Xold # x"ew

sol
r (ht t) =
’ 0 ,else
Gap Reward
T old T _new
cC X —C X
rEP (e, t) =

CTXoId _ Cdual
Failure Penalty

1’ if Xold ?é Xx"ew
1— (he, £) "5

plim

I‘fa”(ht, t) _
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Rewarding Neighborhoods

Goal A suitable reward function r*™(h,, t) € [0,1]

Solution Reward

1 , if Xold # x"ew

sol
r (ht t) =
’ 0 ,else
Gap Reward
T old T _new
cC X —C X
rgap(hﬁ t) —

CTXoId _ Cdual

Failure Penalty

1’ if Xold ?é Xx"ew ralns( )
1— ¢(he, t) 27

nfim Default settings in ALNS: 771 = 0.8, 7, = 0.5

rfa\il(ht7 t) _
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Fixing at a Target Rate

If a neighborhood provides a reference solution x™ (neighborhood callback)

Additional variables are fixed in ascending order based on

. Proximity to already fixed variables in the variable constraint graph
. High root reduced cost score of the fixing

1
2
3.
4

High pseudo cost score of the fixing

. Randomly

A similar logic is applied to unfix variables.
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Computational Results




e Always execute all 8

~
a
8

neighborhoods with

Fixing rate
ALNS (disable old . H-:
LNS heuristics) 5 .Z:
= Mor

e Disable solution

09

transfer

e Record each reward

o

N
S

|
|

.
g

e Fixing rates 0.1 — 0.9

ALNSc;ITs
Test Set
665 instances from the test sets MIPLIB3, MIPLIB2003, MIPLIB2010, Cor@I,
5h time limit.

Gregor Hendel — Adaptive Algorithmic Decisions 12/24



Rewards by Fixing Rate

0.7-
0.6- Neighborhood
rens
4 rins
'(Eu ~+ mutation
g 0.5- - localbranching
g - crossover
~%~ proximity
Zzeroobjective
0.4+ dins
0.3-

01 03 0’5 07 09
Fixing rate

Gregor Hendel — Adaptive Algorithmic Decisions 13/24



Solution Rate
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UCB Calibration

Simulate 100 repetitions of UCB, Exp.3, and e-greedy on the data

0.55-
ucB

alpha_0
~#- alpha_0.2
0.50 - —+ alpha_0.4
—*- alpha_0.6

~&- alpha_0.8

Sol. rate

~7- alpha_1
0451 alpha_0.0016

avg

0.40-

0.1 0.3 0.5 0.7 0.9
Fixing rate
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Learning Curve of UCB
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More Learning Curves
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Performance of the ALNS framework
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Extensions




Diving Heuristics (joint work with Jakob Witzig)

8 different diving heuristics explore an auxiliary tree in probing mode.

0
/\9

) <
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Goal of Selection
Improving solutions and relevant search
information

Possible Reward functions

e minimum avg. depth
e minimum backtracks/conflict ratio
e minimum avg. probing nodes

e minimum avg. LP iterations
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LP Pricing (joint work with Matthias Miltenberger)

Pricings e
e Devex ool mode
L %
e Steepest Edge 8 =‘p
e Quick Start Steepest Edge ]
Goal of the Selection i " > S
depth

Maximize LP throughput

LP counts in diving, probing, and normal Ip mode for timtabi.

Challenge
Calibration of a deterministic timing approximation across instances.
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Conclusion

e ALNS framework to unify existing LNS heuristics as neighborhoods

e Bandit selection algorithms available in SCIP.
e A suitable reward function for LNS heuristics from which the bandits can
"learn” even in a short amount of time.
e Started on applications to other selection problems within SCIP.
Next steps

e finish transformation of the classic LNS plugins.

e better communication of presolving/propagation/history information
between SCIP and sub-SCIP.
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