
GDB and Git

Matthias Miltenberger

Zuse Institute Berlin

1



Debugging

I most popular free debugger: GDB (GNU debugger)
I debug code written in any language covered by the GNU Compiler

Collection (C/C++, Ada, Java, FORTRAN, . . . )
I much more convenient than putting printf() at critical parts of your

code
I see complete callstack/backtrace of the functions in your code
I inspect values of variables while your code is running
I pause execution whenever a variable is accessed
I . . .

2



Extensions

I use GDB within Eclipse (or your favorite IDE) to immediately see
where you currently are

I undodb-gdb: go backwards in your code
I http://undo-software.com/
I easy to find out what caused a bug
I unfortunately not for free. . .

3



Demo

Time for a demo!

4



...and now for something completely different

5



Who should use git?

I every programmer
I version/history control
I branches

I everyone who uses more than one computer
I file server

I everyone who works together with other people
I file server
I diff and log

I everyone who forgets what he/she did last week
I diff, log, show

I ... and everyone else
I backup tool

6



Introduction

Features of git:
I distributed version control system

I every participant has the complete history of the repository
I branching and merging is very quick and easy

I local branches do not affect other repositories
I fast and memory efficient

I only one directory per repository
I tracks content instead of single files
I most actions work offline

I powerful yet user-friendly
I detailed help for every single command and use case

7



Origin

I git was created by Linus Torvalds

I’m an egoistical bastard, and I name all my projects after
myself. First ’Linux’, now ’git’.

git (Oxford dictionary):
I An unpleasant or contemptible person:

I that mean old git
I a warped, twisted little git

8



How git works

9



Basic git commands

I git: list all common commands available
I git help command: extensive documentation for every command
I git config: change details about your personal git (name, e-mail,

editor, . . . )
I git status: check whether changes are to be commited or if files are

not (yet) tracked
I git log: see all previous commits on your current branch

--stat: also show the changes that were made
I git branch: list all available branches of your repository
I git diff: list all changes between your current state and the last

commit or between two certain commits

10



Local git commands

I git add <file>: add file to the index to be tracked by git
I git commit: save current changes in the index to a new commit

I -a: put all changed files into the index first and commit them
afterwards

I --amend: correct the last commit
I -m: write commit-message directly after the command (no editor opens)

I git branch <branchname>: create new branch branchname based
on current state

I git checkout <hash/tag/branch>: switch to another commit or
branch

I git merge <branchname>: merge branchname into current branch
I git reset --hard: revert all changes made since the last commit

11



Important note

I Always read the output of git!
I It often contains very helpful tips on what to do next

or how to revert what you have just done!

12



Branching

I simple example for branching
I HEAD refers to current state of

working directory
I git checkout switches to

another state (here old)
I git commit extends this branch

or creates a new one

13



How to refer to a certain commit?

I (short) SHA1-hash
I HEAD: current position
I HEAD˜2: go back two commits
I branch names are synonyms for the SHA1-hashes of their leading

commit

14



Idea of Distribution

I multiple repositories everybody can pull from
I joint work on experimental features

I server repository:
I gather finished features
I distribute stable versions

I example: Github

15



Remote Interaction

I git clone: create local copy of repository (containing complete
history)

I git fetch: get latest updates/changes from remote repo without
touching your local workspace

I git pull: sync your repository to remote repo
I same as git fetch followed by git merge

I git push: copy local changes/branches to remote repository
changes on the server must be pulled first

I git remote add remotename: add a new remote repository to work
with (default is origin)

16



Useful tips

I gitg / gitk: visualization of the history tree
I ˜/.gitconfig: personal configuration file, valid for all your repos
I .gitignore: specify files (like *.java˜) that should be ignored by git
I hooks: special scripts that run after certain git actions

(example: check for trailing whitespaces)
I git completion: press TAB to see all your available options
I try to make lots of small commits
I don’t commit binary files

I never change the history (git rebase) of remote commits

17



References

I git homepage: http://git-scm.com/
I official docu: http://git-scm.com/documentation/
I “Pro git” book: http://git-scm.com/book/
I any problems: http://stackoverflow.com/

18


	Introduction
	Local Git
	Remote Interaction

