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Organization

I Lecture: Mon 14-16, ZIB 2006

I Tutorials: Thu 12-14, ZIB 2006 (new time!)

I Problem sets: published online, due on Mondays

I Exam: written, need 50% of problem sets

I Office: ZIB 3007

I E-Mail: lindner@zib.de

I Course website: www.zib.de/node/3447
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Topics

Course outline

1. S-Bahn Challenge

2. Shortest Routes

3. Periodic Timetabling

4. More on Traffic Optimization

5. Metro Map Drawing

Seminar on Shortest Paths
First meeting: Tomorrow, 10 am, ZIB lecture hall

Lecture Optimization III

Mon 10-12, Wed 10-12, ZIB lecture hall
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Chapter 1

S-Bahn Challenge

§1.1 Walks in graphs
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§1.1 Walks in graphs

Walks in undirected graphs

Let G be an undirected graph with vertex set V and edge set E .

I A walk in G is a sequence of adjacent edges (vertices) in G .

I A walk is called a path if all visited vertices (hence edges) are distinct.

I A walk is closed if first and last vertex coincide.

I A closed walk where all intermediate vertices are distinct is a circuit.

I G is connected if there is a path between any pair of distinct vertices.

1 2 3 4

5 6
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§1.1 Walks in graphs

Walks in directed graphs

For directed graphs:

I only forward edges: directed walk/path/circuit, strongly connected

I forward and backward edges: oriented walk/path/circuit, weakly
connected

1 2 3 4
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For directed graphs:
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§1.1 Walks in graphs

Walks in directed graphs

For directed graphs:

I only forward edges: directed walk/path/circuit, strongly connected

I forward and backward edges: oriented walk/path/circuit, weakly
connected

1 2 3 4

5 6
oriented path: 1, 5, 3, 4
(1,5) and (5,3) are backward edges
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§1.1 Walks in graphs

Königsberg bridges

Images: Bogdan Giuşcă, Xiong, Mark Foskey, all CC-BY-SA 3.0

Question (Euler, 1736)

Is there a closed walk visiting all seven bridges exactly once?

Observation
Every part of the city (aka vertex) will be entered and left, and is therefore
accessed by an even number of bridges.
 There is no such walk.
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§1.1 Walks in graphs

Euler tours
Let G = (V ,E ) be a connected undirected graph.
I An Euler tour (Euler walk) is a closed walk (walk) that visits each

edge in E exactly once.
I G is called Eulerian if it admits an Euler tour.

Theorem (Euler, 1736; Hierholzer, 1873)
I G has an Euler tour
⇔ every vertex of G has even degree
⇔ G is a union of edge-disjoint circuits.

I G has an Euler walk
⇔ exactly zero or two vertices of G have odd degree.

Proof.
Euler tour/walk ⇒ degree condition: Every vertex needs to be entered and
left, except for the two endpoints of an Euler walk.
Rest: Hierholzer’s algorithm.
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§1.1 Walks in graphs

Hierholzer’s algorithm for an Euler tour
Given a graph G whose vertices have all even degree, the following
computes a decomposition into circuits and an Euler tour:

Basic Algorithm (Hierholzer, 1873)

1. Set C := ∅.
2. While G contains a non-isolated vertex:

I Pick a non-isolated vertex of G .
I Traverse G until a previously visited vertex is reached again.
I Add the corresponding circuit C to C.
I Remove the edges of C from G .

3. Circuit decomposition ← C.

4. While |C| ≥ 2:
I Pop two circuits C1,C2 sharing a common vertex from C.
I Insert C2 into C1 at the common vertex.
I Push the new cycle back to C.

5. Euler tour ← unique element of C.
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§1.1 Walks in graphs

Remarks on Hierholzer’s algorithm

I Removing circuits from a graph changes each vertex degree by either
0 or 2, so Step 2 will terminate.

I In Step 4, the union of all cycles in C is always E . Since G is
connected, one can always find two cycles with a common vertex.

I Constructing an Euler walk can be reduced to computing an Euler
tour by connecting the two odd-degree vertices with an edge.

I Hierholzer’s algorithm can be improved to give a linear-time algorithm.
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§1.1 Walks in graphs

Finding Euler tours in linear time

Let G be a connected undirected graph where all vertices have even degree.

Improved Hierholzer’s Algorithm (Read, Fleischner)

Data structures: Store G in an adjacency list. Let head and tail be stacks.

1. Let v ∈ V . Set head := {v} and tail := ∅.
2. While head 6= ∅:

I While top vertex v of head is not isolated:
I Pick an edge {v ,w} and remove it from G .
I Push w to head .

I While head 6= ∅ and top vertex v of head is isolated:
I Pop v from head .
I Push v to tail .

3. Euler tour ← tail .

This algorithm runs in O(|E |) time. It traverses the graph and finds closed
walks. The insertion point of the next cycle is on top of the stack head .
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§1.1 Walks in graphs

Results for directed graphs

Let G = (V ,E ) be a weakly connected directed graph.

Theorem (Directed Euler tours)

G contains a directed Euler tour
⇔ at every vertex, the number of ingoing edges equals the number of
outgoing edges,
⇔ G can be decomposed into edge-disjoint directed circuits.

Theorem (Directed Euler walks)

G contains a directed Euler walk from s to t if and only if

indeg(s) = outdeg(s)− 1,

indeg(t) = outdeg(t) + 1,

indeg(v) = outdeg(v) for all v ∈ V \ {s, t}.
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§1.1 Walks in graphs

Hamiltonian circuits

Let G be a connected undirected graph.

I A Hamiltonian circuit (Hamiltonian path) is a circuit (path)
visiting each vertex of G exactly once.

I If G admits a Hamiltonian circuit, then G is called Hamiltonian.

Christoph Sommer, CC-BY-SA 3.0

Icosian game
(Hamilton, 1857)

Cell of a bee
(Kirkman, 1856)
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§1.1 Walks in graphs

Hamiltonian circuits: Hardness

Theorem (Karp, 1972)

I Given a connected undirected graph G, it is NP-complete to decide
whether G contains a Hamiltonian circuit (or path).

I Given a weakly connected digraph G, it is NP-complete to decide
whether G contains a directed Hamiltonian circuit (or path).

Proof.
Usually by polynomial-time reduction of 3-SAT or Vertex Cover.

Conclusion
Unless P = NP, there is no polynomial-time algorithm for the Hamiltonian
circuit problem. (Euler tour works in linear time!)
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§1.1 Walks in graphs

Hamiltonian circuits: Hardness

Why is Hamilton more difficult than Euler?

I An Euler tour visits every vertex, and it almost always visits vertices
more than once, so it is unlikely to be a circuit.

I A (closed) walk visiting all vertices exactly once is always a path
(circuit). In particular, the Hamilton circuit problem looks for more
delicate structures.

I Seen as a set of edges, a graph has at most one Euler tour, but there
may be many Hamilton circuits.

I If a particular edge is part of an Euler tour, then all edges are. This is
false for Hamilton circuits. As a consequence, a graph-traversing
algorithm for finding Hamilton circuits has to make more decisions.
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§1.1 Walks in graphs

Euler and Hamilton are not enough

Public transport networks usually have lots of tree structures, e.g., east of
Ostkreuz station in the Berlin S-Bahn network. This prevents the
underlying undirected graph from being Eulerian or Hamiltonian.

April 16, 2018 16 / 34



§1.1 Walks in graphs

Optimization versions

Consider a graph with a cost function on the edges.

Informal definitions:

I The Chinese Postman Problem is to find the cheapest way to make
a graph Eulerian.

I The Traveling Salesman Problem is to find the cheapest way to
make a graph Hamiltonian and then to find the cheapest Hamiltonian
circuit.
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Chapter 1

S-Bahn Challenge

§1.2 The Chinese Postman Problem
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§1.2 The Chinese Postman Problem

Definition

Formulation (Guan, 1960)

A postman has to deliver letters to a given neighborhood. He needs to walk
through all the streets in the neighborhood and back to the post-office.
How can he design his route so that he walks the shortest distance?

Definition
Let G = (V ,E ) be a connected undirected graph with a cost function
c : E → R≥0 on the edges.

I A Chinese Postman tour is a closed walk (e1, . . . , ek) in G visiting
each edge at least once, i.e., {e1, . . . , ek} = E .

I The Chinese Postman Problem (CPP) is to find an optimal tour,
i.e., a Chinese Postman tour C := (e1, . . . , ek) that minimizes the
total cost c(C ) :=

∑k
i=1 c(ei ).
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§1.2 The Chinese Postman Problem

Remarks

Remarks

I The problem is sometimes also called Route Inspection Problem.

I If G is Eulerian, an Euler tour is an optimal solution to the CPP.

I Any connected undirected graph has a Chinese Postman tour: If we
duplicate all edges, then all nodes have even degree, and we can take
the corresponding Euler tour. However, this will lead to a Chinese
Postman tour where each original edge is visited at least twice.

Strategy

The strategy to solve the CPP is as follows:

I Duplicate edges in a clever way, so that all vertex degrees become
even.

I Take the corresponding Euler tour.
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§1.2 The Chinese Postman Problem

Example

Example (Amsterdam metro)

1
6

4

3

1
1

2
5

3
9

10

2

Isolatorweg

Station Zuid
Over-
amstel

Spaklerweg

van der Madeweg

Westwijk Gein Gaasperplas

Centraal Station

I 9 vertices (odd: 8)

I 9 edges

I not Eulerian

I not Hamiltonian

I edge cost: average
travel time in minutes

I sum of edge cost: 83

I

I The edge Station Zuid–Overamstel needs to be duplicated as well.
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§1.2 The Chinese Postman Problem

Example

Example (Amsterdam metro)
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1
1

2
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3

9
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2

Isolatorweg

Station Zuid
Over-
amstel

Spaklerweg

van der Madeweg

Westwijk Gein Gaasperplas

Centraal Station I 9 vertices (odd: 0)

I 9 edges (+6)

I not Eulerian

I not Hamiltonian

I edge cost: average
travel time in minutes

I sum of edge cost: 83
(+75)

Conclusion

I The graph has become Eulerian. The optimal tour has cost 158.

I The edge Station Zuid–Overamstel needs to be duplicated as well.
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§1.2 The Chinese Postman Problem

Interlude: Matchings

Let G = (V ,E ) be an undirected graph.

I A matching M in G is a subset of E such that each vertex v ∈ V is
contained in at most one edge e ∈ M.

I A matching M is perfect if each vertex is contained in exactly one
edge e ∈ M.

I Attention: G does not necessarily have a perfect matching.
(Criteria: Hall’s marriage theorem, Tutte-Berge formula)

I E.g., for trivial reasons, graphs with an odd number of vertices cannot
have a perfect matching.

1 2 3 4

5 6

a perfect matching
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§1.2 The Chinese Postman Problem

Interlude: Finding Min-Weight Perfect Matchings
Let G = (V ,E ) be an undirected graph with |V | = n, |E | = m,
equipped with a weight function w : E → R.

Theorem (Edmonds, 1965)

A minimum weight perfect matching can be computed in strongly
polynomial time.

Proof.
Edmonds’ blossom algorithm runs in O(n2m) time.

Remarks

I The weight of a matching M ⊆ E is defined as
∑

e∈M w(e).

I A similar algorithm computes a maximum weight (not necessarily
perfect) matching.

I There are various asymptotically faster techniques, e.g., Gabow’s
algorithm with a running time of O(nm + n2 log n).

April 16, 2018 23 / 34



§1.2 The Chinese Postman Problem

Algorithm

Let G = (V ,E ) be a connected undirected graph.

Algorithm (Edmonds/Johnson, 1973)

1. Let T = {v1, . . . , vk} be the set of odd vertices in G .
If T = ∅, go to Step 5.

2. Construct a complete graph Kk on {1, . . . , k} with weight function

w({i , j}) := length of shortest path from vi to vj in G ,

where 1 ≤ i < j ≤ k .

3. Find a minimum weight perfect matching M in Kk w.r.t. w .

4. For each edge {i , j} ∈ M, duplicate the edges in G along the shortest
path from vi to vj .

5. Compute an Euler tour and return it.
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§1.2 The Chinese Postman Problem

Algorithm: Correctness

Theorem
The Edmonds-Johnson algorithm solves CPP.

Proof.

I Handshaking Lemma (Euler, 1736): The number k of odd vertices in
a graph is even. In particular, Kk has a perfect matching.

I Duplicating the edges along a path from vi to vj will cause the degree
of vi and vj to go up by 1, whereas the degree of the intermediate
vertices increases by 2. Since we matched all odd degree vertices in
the graph, this forces all vertex degrees to become even.

 The algorithm terminates and returns a Chinese Postman tour C .
The cost of C is

c(C ) =
∑
e∈E
|{traversals of e}| · c(e) =

∑
e∈E

c(e) +
∑
{i ,j}∈M

w({i , j}).
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§1.2 The Chinese Postman Problem

Algorithm: Optimality

Proof (cont.)

Let C ∗ be the optimal Chinese Postman tour. Let G ∗ be the Eulerian
graph where all edges are multiplied according to their multiplicity in C ∗.

1
6

4

3

1
1

2
5

3

9
10

2

G ∗

I No edge e ∈ E is used by C ∗ more than twice:
Otherwise, G ∗ remains Eulerian if two copies of e are
removed, producing a shorter Euler tour.

I Let E ∗ denote the set of edges C ∗ uses twice. Set
J := (V ,E ∗).

I The odd nodes in J are precisely the odd nodes in G .

I Handshaking Lemma again: Any connected
component of J contains an even number of odd
vertices of G .
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I No edge e ∈ E is used by C ∗ more than twice:
Otherwise, G ∗ remains Eulerian if two copies of e are
removed, producing a shorter Euler tour.
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§1.2 The Chinese Postman Problem

Algorithm: Optimality

Proof (cont.)

1
6

4

2
5

9

1
1

10

J

I By minimality of C ∗, we can assume that J does not
contain circuits and is hence a forest.

I So any two odd vertices in the same component are
connected by a unique path, which must - again by
minimality - be a shortest path.

I Construct a matching in M∗ in Kk as follows: Start at
an odd vertex vi and traverse J until the next odd
vertex vj , remove the edges along the path, and
continue.

I Each step adds weight w({i , j}) to M∗. The total
weight of M∗ equals

∑
e∈E∗ c(e).
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§1.2 The Chinese Postman Problem

Algorithm

Proof (cont.)

I The cost of C ∗ is now

c(C ∗) :=
∑
e∈E

c(e) +
∑
e′∈E∗

c(e ′) =
∑
e∈E

c(e) +
∑

{i ,j}∈M∗
w({i , j})

≥
∑
e∈E

c(e) +
∑
{i ,j}∈M

w({i , j})

= c(C ),

because M is a minimum weight perfect matching.

I Thus c(C ) = c(C ∗) and hence C is optimal.
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§1.2 The Chinese Postman Problem

Algorithm

Corollary

The CPP on a graph G with n vertices is solvable in O(n3) time.

Proof.
Denote by k the number of odd-degree vertices in G , clearly k ≤ n.

I All-pairs shortest paths can be done in O(k3) time.

I Minimum weight perfect matching in Kk can be done in
O(k · k2 + k2 log k), hence O(k3) time.

I Computing an Euler tour takes O(m) time.
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§1.2 The Chinese Postman Problem

Integer Program
Let G = (V ,E ) be a connected undirected graph.
The incidence matrix of G is the |V | × |E |-matrix with entries

ave :=

{
1 if v ∈ e,

0 otherwise,
v ∈ V , e ∈ E .

Theorem
The CPP on G w.r.t. a cost function c : E → R≥0 is equivalent to the
following integer program:

Minimize
∑
e∈E

c(e)xe

s. t.
∑
e∈E

avexe − 2yv =
∑
e∈E

ave , v ∈ V ,

xe ∈ {0, 1}, e ∈ E ,

yv ∈ Z, v ∈ V .
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§1.2 The Chinese Postman Problem

Integer Program

Proof.
Tutorial.

Remarks

I CPP can hence be solved by a general-purpose integer programming
software. However, since the LP relaxation leads in general to a
non-integral polytope (in fact, the system is totally dual half-integral),
there is no guaranteed polynomial runtime.

I It is possible to compute the convex hull of the integer points in
polynomial time by separating blossom inequalities. This gives another
polynomial-time algorithm to solve CPP (Edmonds/Johnson, 1973).
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§1.2 The Chinese Postman Problem

Directed Case
Let G = (V ,E ) be a directed graph with a cost function c : E → R≥0.

Definition

I A directed Chinese Postman tour is a closed directed walk
(e1, . . . , ek) in G visiting each edge at least once.

I The Directed Chinese Postman Problem (DCPP) is to find a
directed Chinese Postman tour C := (e1, . . . , ek) that minimizes the
total cost c(C ) :=

∑k
i=1 c(ei ).

Lemma
The DCPP has a solution if and only if G is strongly connected.

Theorem
The DCPP is equivalent to a minimum-cost network flow problem.

Proof.
Tutorial.
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§1.2 The Chinese Postman Problem

More

There are a lot of CPP variations:

I windy: undirected graph, but direction-dependent cost on the edges

I mixed: both directed and undirected edges in the graph

I clustered: edges are partitioned into clusters, and all edges in a
cluster must be visited before moving to the next cluster

I rural: only a subset of edges needs to be traversed

I generalized rural: some edges form clusters, only one edge per
cluster needs to be visited

Remark
All of these variations lead to NP-complete decision problems.
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§1.2 The Chinese Postman Problem

Rural Postmen

Let G = (V ,E ) be a graph with cost function c : E → R≥0 a cost function.

Definition
Given a subset S ⊆ E , the Rural Postman Problem (RPP) is to find a
closed walk (e1, . . . , ek) such that S ⊆ {e1, . . . , ek} and

∑k
i=1 c(ei ) is

minimal.

Theorem (Lenstra/Rinnooy-Kan, 1976)

RPP is NP-complete.

Proof (Hamiltonian Circuit ≤ RPP).

Let H be a graph on n vertices. Construct G by copying H and adding
self-loops (v , v) at each vertex v . Choose c ≡ 1. Then H has a
Hamiltonian circuit if and only if G has a Rural Postman tour of cost ≤ 2n
visiting all self-loops.
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