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Addendum: Symmetric vs. asymmetric timetables

B!

lines operate in both directions, frequency: 10 minutes

waiting times: 2 minutes (A, D), 0 minutes (B, C)

minimum transfer time: 2 minutes

no turnarounds, no transfers to opposite direction of the same line
weights: 1 (transfers), 0 (other activities)
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Event-activity network £ = (V/, E)
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PESP MIP formulation

Timetable-based MIP formulation:

Minimize Z xjj — 64
ij transfer activity
s.t. xjj = mj — ;i + 10pj;,
li < xij < ujj,
pij € {07 L, 2}7
0<m <09,

Symmetry constraints (axis = 0):

O:7r,~—|—7rj—10q;j,
qij € {071}7

(minimal slack)
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(i,j) € V x V complementary
(i,j) € V x V complementary
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Optimal asymmetric solution (computed by SCIP)
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Optimal symmetric solution (computed by SCIP)

station | slack
A 20
B 24
C 24
D 0
total 68
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Chapter 5
Line Planning

5.1 Overview
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5.1 Overview

Public transport planning cycle

[Network Design}
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Line Planning
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5.1 Overview

Description

Let G be a graph modeling a public transportation network, e.g.,
» a road network (for buses)
> a railway track system (for railways, trams, underground trains, ...)
Definition
A line plan is a set L of paths (/ines) in G together with frequencies
f: L — Np.

Line Planning Problem

The line planning problem is to find a feasible line plan providing both
convenient travel for passengers and small operational costs.

Feasible lines
Lines are either chosen from a line pool, or are computed on the fly subject
to certain restrictions.
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5.1 Overview

Optimization goals

Two oppositional goals

passenger-oriented cost-oriented
Minimize travel time | Minimize operational costs
given an upper bound given an upper bound
on operational costs on travel time

Passenger quality
Minimize travel time (estimated: no timetable available), Maximize
number of passengers having a direct connection, ...

Operational costs
Minimize vehicle costs (estimated: no vehicle schedule), Minimize driver
costs (estimated: no crew schedule), ...
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5.1 Overview

Feasibility

B!
Basic Line Planning Feasibility Problem (BLPFP)

Given a graph G = (V, E), a line pool Ly, lower and upper frequency
bounds fMn < fma : E — Ny, find a line plan (£, f) with £ C Lg such
that
VecE: "< > f<
leL:eel

Example

Assume that there is an edge e that has to be served at least 3 times per
hour, i.e., f{™" = 3. This might be satisfied by a line ¢; with f,, = 2 (riding
twice per hour), together with a line ¢, with f,, = 1 (riding once per hour).

Theorem (Bussieck, 1998)
BLPFP is NP-complete.
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5.1 Overview

Complexity

B!

Definition
The exact cover by 3-sets problem (X3C) is the following:

Given a set X with 3g elements for some integer g, and a collection C of
3-element subsets of X, is there a subcollection S C C such that each
x € X occurs in exactly one member of 57

Theorem (Karp, 1972)
X3C is NP-complete.

Theorem (Bussieck, 1998)
X3C < BLPFP.
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5.1 Overview

X3C < BLPFP

Proof («).

Let (X, C) be an instance for X3C. We consider C as set of triples
(x,y,z). Build a simple graph G = (V/, E) as follows:

B!

» Add two vertices x™ and x~ for each x € X.
» Add an edge {x~,x"} for each x € X.
» Add two edges {xT,y~}, {yT,z"} for each (x,y,z) € C.
Define the line pool Lo := {(x~,x",y~,y",z7,z") | (x,y,z) € C} and

the lower and upper frequency bounds

frmin . 1 ife= «l{x_7x+} for some x € X, .1 ecE.
0 otherwise,

Let (L, f) be a feasible line plan. Then for each x € X, the edge {x,x™}

is covered by a unique line £ € £ with f, = 1, corresponding to a unique

triple (x,y,z) € C.

June 28, 2018 13/ 24



§5.1 Overview

X3C < BLPFP

Proof (=):
Conversely, let S C C be a subcollection solving the X3C problem on
(X, C). Then taking all lines (x~,x™,y~,y*,z7,z") € Lg for triples

B!

(x,y,z) € S with frequency 1 yields a feasible line plan. O]
Example
X = {17 27 37 47 5’ 6}’ C = {(13 37 6)’ (174? 6)’ (2 3 5)7 (47 57 6)}
1t
S @)
© ) S
5~ 5~ 3"
5t G
)
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5.1 Overview

Cost-oriented LPP

Cost-oriented Line Planning Problem ZIEB
Given a graph G = (V, E), a line pool Ly with costs ¢ : Lo — R>q, lower
and upper frequency bounds ™" < fmax: E 3 Ny, find a line plan (£, f)

minimizing Zcz

LeL

subject to AR A A ecE,
leL.eck

le Ly, lLeL.

Lemma (Exercise)

The problem “Given C, is there a feasible line plan with cost < C" is
NP-complete.

Remark

The quality for passengers is established by the minimum frequency
requirement.
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5.1 Overview

Cost-oriented LPP: Example

Graph G with line pool Ly Further data
A Cc =
Fmin =1
. max = 2
D

Since the edges AD, BC, EF, EG need to be served with frequency
> fMin =1, the lines 1, 3, 5, 6 have to appear in every feasible line plan.
This leaves the edge DG uncovered, which can be covered either by line 4
or line 7. In particular, the cost of an optimal line plan is at least 5.

Running each of the lines 1, 3, 4, 5, 6 with frequency 1 is a feasible line
plan: Each edge is covered at least once, only CG is covered twice, and no
edge is covered more than twice.
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Chapter 5
Line Planning

5.2 Passenger-Oriented Models
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65.2 Passenger-Oriented Models

Passenger flow
Let G = (V, E) be a graph.
Definition
» An origin-destination matrix, short OD matrix, is a V x V-matrix
(dst) with non-negative entries.

» For (s,t) € V x V, the entry d; is called the demand from s to t.
» An OD pair is a pair (s,t) € V x V such that ds > 0.
OD matrices are the standard tool to model demands in a public

transportation network. However, without a timetable, it is hard to tell
which routes passengers will take.

Routing strategies
shortest paths without transfer times

v

v

shortest paths with transfer penalty
» system split: divide into different transport modes

| S
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65.2 Passenger-Oriented Models

Direct Travelers LPP

Input
» graph G = (V,E)
» OD matrix (dst) with set of OD pairs D C V x V
» fixed passenger paths ps; for all (s,t) € D

B!

» line pool Ly
» frequency bounds f™i" < fmax - £ 4 Ny

» global capacity bound C >0

Goal
Find a feasible line plan (£, f) maximizing the number of direct travelers
over all OD pairs.

Remark
This is trivial to maximize if there are neither capacities nor upper bounds
on line costs: Either pg; is covered by a line in Ly or not.
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§5.2 Passenger-Oriented Models

Direct Travelers LPP

MIP formulation

Maximize E E Xst, ¢

LEL (s,t)ED: pst Tl

subject to E Xst,0 < dst,
LeLl: pssCL

> xwe<C-f,

(s,t)€D:ecps: CL

fmm < Z f[ fmax

LeL:ect
le ,Co,
fe € No,
Xst, 0 >0,

Notation

(s,t) €D,
ecElelL,

ec E,

leL,
leL,
(s,t) eD, L e L.

Xst,¢ is the number of direct travelers from s to t using line /.
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65.2 Passenger-Oriented Models

Direct Travelers LPP

Remarks

>

There is no point in taking xs ¢ integral: Capacities are in general only
rough estimates, and the number of direct travelers is usually large.

The capacity C may be replaced by capacities for each pair of edge
and line.

One may also integrate budget constraints in terms of upper bounds
on the frequencies.

We have £ = {¢ € Lo | fy > 0}. We can therefore replace £ by Ly in
the MIP formulation. In other words, f; also takes the role of a
decision variable if line ¢ should by included into £ or not.

In particular, this is a mixed integer linear program.
This model is due to Bussieck/Kreuzer/Zimmermann, 1995.

Disadvantage: Hard to solve exactly.
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§5.2 Passenger-Oriented Models
Direct Travelers LPP: Aggregation

Aggregation
Set Xst 1= Yy, puct Xst,0, 1-€., count all directly traveling passengers
from s to t using any line.

Aggregated MIP formulation

Maximize E Xst

(5,)€D: psr C8
subject to Xst < dst, (s.t) €D,
<C- > f (s,t) € D,

LeLy: pst CL
A D 2 A e€E,

teLiect

e Lo, leL,
fo € No, ltel,
xst > 0, (s,t) € D.
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§5.2 Passenger-Oriented Models
Direct Travelers LPP: Aggregation

B!

Remarks
» Any feasible solution for the bigger model is feasible for the
aggregated model.
» The converse is in general not true.

» However, this gives a heuristic for solving the bigger model.
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65.2 Passenger-Oriented Models
Direct Travelers LPP: Example

Graph G with line pool Lg OD matrix 72153
A to
B C F
= A|50 0 50
from D| 0 80 20
D ; G|40 0 O

Further data: f™" =0, fM* = o0, C =50

To serve all demands by direct connections, we need

OD pair line freq. pass./cap.‘OD pair  line  freq. pass./cap.

A>B 2 1 5050 | D—>F 7 1 20,50
A>F 3 1 50/50 | G—+B 5o0r6 1 40,50
D>C 4 2  80/100

This clearly maximizes the number of direct travelers, which is 240.
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