Mathematical Aspects of Public Transportation Networks

Niels Lindner

June 28, 2018

Addendum: Symmetric vs. asymmetric timetables

- lines operate in both directions, frequency: 10 minutes
- waiting times: 2 minutes (A, D), 0 minutes (B, C)
- minimum transfer time: 2 minutes
- no turnarounds, no transfers to opposite direction of the same line
- weights: 1 (transfers), 0 (other activities)

Event-activity network $\mathcal{E} = (V, E)$

PESP MIP formulation

Timetable-based MIP formulation:

 $\begin{array}{ll} \text{Minimize} & \sum_{ij \text{ transfer activity}} x_{ij} - 64 & (\text{minimal slack}) \\ \text{s.t.} & x_{ij} = \pi_j - \pi_i + 10 p_{ij}, & ij \in E \\ & \ell_{ij} \leq x_{ij} \leq u_{ij}, & ij \in E \\ & p_{ij} \in \{0, 1, 2\}, & ij \in E \\ & 0 \leq \pi_i \leq 9, & i \in V \end{array}$

Symmetry constraints (axis = 0):

$$egin{aligned} 0 &= \pi_i + \pi_j - 10 q_{ij}, & (i,j) \in V imes V ext{ complementary} \ q_{ij} \in \{0,1\}, & (i,j) \in V imes V ext{ complementary} \end{aligned}$$

Chapter 5 Line Planning

§5.1 Overview

 $\S5.1$ Overview

Public transport planning cycle

strategic planning

operational planning

Description

Let G be a graph modeling a public transportation network, e.g.,

- a road network (for buses)
- ▶ a railway track system (for railways, trams, underground trains, ...)

Definition

A **line plan** is a set \mathcal{L} of paths (*lines*) in G together with *frequencies* $f : \mathcal{L} \to \mathbb{N}_0$.

Line Planning Problem

The **line planning problem** is to find a feasible line plan providing both convenient travel for passengers and small operational costs.

Feasible lines

Lines are either chosen from a *line pool*, or are computed on the fly subject to certain restrictions.

§5.1 Overview

Optimization goals

Two oppositional goals

passenger-oriented	cost-oriented			
Minimize travel time	Minimize operational costs			
given an upper bound	given an upper bound			
on operational costs	on travel time			

Passenger quality

Minimize travel time (estimated: no timetable available), Maximize number of passengers having a direct connection, ...

Operational costs

Minimize vehicle costs (estimated: no vehicle schedule), Minimize driver costs (estimated: no crew schedule), ...

§5.1 Overview Feasibility

Basic Line Planning Feasibility Problem (BLPFP)

Given a graph G = (V, E), a line pool \mathcal{L}_0 , lower and upper frequency bounds $f^{\min} \leq f^{\max} : E \to \mathbb{N}_0$, find a line plan (\mathcal{L}, f) with $\mathcal{L} \subseteq \mathcal{L}_0$ such that

$$\forall e \in E : \quad f_e^{\min} \leq \sum_{\ell \in \mathcal{L}: e \in \ell} f_\ell \leq f_e^{\max}.$$

Example

Assume that there is an edge e that has to be served at least 3 times per hour, i.e., $f_e^{\min} = 3$. This might be satisfied by a line ℓ_1 with $f_{\ell_1} = 2$ (riding twice per hour), together with a line ℓ_2 with $f_{\ell_2} = 1$ (riding once per hour).

Theorem (Bussieck, 1998) BLPFP is NP-complete.

Definition

The exact cover by 3-sets problem (X3C) is the following:

Given a set X with 3q elements for some integer q, and a collection C of 3-element subsets of X, is there a subcollection $S \subseteq C$ such that each $x \in X$ occurs in exactly one member of S?

Theorem (Karp, 1972)

X3C is NP-complete.

Theorem (Bussieck, 1998) $X3C \le BLPFP.$

5.1 OverviewX3C \leq BLPFP

Proof (\Leftarrow).

Let (X, C) be an instance for X3C. We consider C as set of triples (x, y, z). Build a simple graph G = (V, E) as follows:

- Add two vertices x^+ and x^- for each $x \in X$.
- Add an edge $\{x^-, x^+\}$ for each $x \in X$.
- Add two edges $\{x^+, y^-\}$, $\{y^+, z^-\}$ for each $(x, y, z) \in C$.

Define the line pool $\mathcal{L}_0 := \{(x^-, x^+, y^-, y^+, z^-, z^+) \mid (x, y, z) \in C\}$ and the lower and upper frequency bounds

$$f_e^{\min} := egin{cases} 1 & ext{if } e = \{x^-, x^+\} ext{ for some } x \in X, \ 0 & ext{ otherwise,} \end{cases} f_e^{\max} := 1, \quad e \in E.$$

Let (\mathcal{L}, f) be a feasible line plan. Then for each $x \in X$, the edge $\{x^-, x^+\}$ is covered by a unique line $\ell \in \mathcal{L}$ with $f_{\ell} = 1$, corresponding to a unique triple $(x, y, z) \in C$.

14 / 24

$\frac{X3C \le BLPFP}{Proof (\Rightarrow):}$

§5.1 Overview

Conversely, let $S \subseteq C$ be a subcollection solving the X3C problem on (X, C). Then taking all lines $(x^-, x^+, y^-, y^+, z^-, z^+) \in \mathcal{L}_0$ for triples $(x, y, z) \in S$ with frequency 1 yields a feasible line plan.

Example

§5.1 Overview

Cost-oriented LPP

Cost-oriented Line Planning Problem

Given a graph G = (V, E), a line pool \mathcal{L}_0 with costs $c : \mathcal{L}_0 \to \mathbb{R}_{\geq 0}$, lower and upper frequency bounds $f^{\min} \leq f^{\max} : E \to \mathbb{N}_0$, find a line plan (\mathcal{L}, f)

minimizing
$$\sum_{\ell \in \mathcal{L}} c_\ell$$

$$f_e^{\min} \leq \sum_{\ell \in \mathcal{L}: e \in \ell} f_\ell \leq f_e^{\max}, \qquad e \in E,$$

 $\ell \in \mathcal{L}_0, \qquad \ell \in \mathcal{L}.$

Lemma (Exercise)

subject to

The problem "Given C, is there a feasible line plan with cost $\leq C$ " is NP-complete.

Remark

The quality for passengers is established by the minimum frequency requirement.

June 28, 2018

§5.1 Overview

Cost-oriented LPP: Example

Since the edges AD, BC, EF, EG need to be served with frequency $\geq f^{\min} = 1$, the lines 1, 3, 5, 6 have to appear in every feasible line plan. This leaves the edge DG uncovered, which can be covered either by line 4 or line 7. In particular, the cost of an optimal line plan is at least 5.

Running each of the lines 1, 3, 4, 5, 6 with frequency 1 is a feasible line plan: Each edge is covered at least once, only CG is covered twice, and no edge is covered more than twice.

Chapter 5 Line Planning

§5.2 Passenger-Oriented Models

Passenger flow

Let G = (V, E) be a graph.

Definition

- ► An origin-destination matrix, short OD matrix, is a V × V-matrix (d_{st}) with non-negative entries.
- For $(s, t) \in V \times V$, the entry d_{st} is called the **demand** from s to t.
- An **OD pair** is a pair $(s, t) \in V \times V$ such that $d_{st} > 0$.

OD matrices are the standard tool to model demands in a public transportation network. However, without a timetable, it is hard to tell which routes passengers will take.

Routing strategies

- shortest paths without transfer times
- shortest paths with transfer penalty
- system split: divide into different transport modes

^{▶ ...}

§5.2 Passenger-Oriented Models Direct Travelers LPP

Input

- graph G = (V, E)
- $\blacktriangleright \ \mathsf{OD} \ \mathsf{matrix} \ (\mathit{d_{st}}) \ \mathsf{with} \ \mathsf{set} \ \mathsf{of} \ \mathsf{OD} \ \mathsf{pairs} \ \mathcal{D} \subseteq \mathit{V} \times \mathit{V}$
- fixed passenger paths p_{st} for all $(s, t) \in \mathcal{D}$
- ▶ line pool \mathcal{L}_0
- frequency bounds $f^{\min} \leq f^{\max} : E \to \mathbb{N}_0$
- global capacity bound $C \ge 0$

Goal

Find a feasible line plan (\mathcal{L}, f) maximizing the number of direct travelers over all OD pairs.

Remark

This is trivial to maximize if there are neither capacities nor upper bounds on line costs: Either p_{st} is covered by a line in \mathcal{L}_0 or not.

June 28, 2018

MIP formulation

Maximize

subject to

$$\begin{split} \sum_{\ell \in \mathcal{L}: \ \rho_{st} \subseteq \ell} x_{st,\ell} &\leq d_{st}, \qquad (s,t) \in \mathcal{D}, \\ \sum_{(s,t) \in \mathcal{D}: \ e \in \rho_{st} \subseteq \ell} x_{st,\ell} &\leq C \cdot f_{\ell}, \qquad e \in E, \ell \in \mathcal{L}, \\ f_e^{\min} &\leq \sum_{\ell \in \mathcal{L}: \ e \in \ell} f_{\ell} \leq f_e^{\max}, \qquad e \in E, \\ \ell \in \mathcal{L}_0, \qquad \ell \in \mathcal{L}, \\ f_{\ell} \in \mathbb{N}_0, \qquad \ell \in \mathcal{L}, \\ x_{st,\ell} &\geq 0, \qquad (s,t) \in \mathcal{D}, \ell \in \mathcal{L}. \end{split}$$

Notation

 $x_{st,\ell}$ is the number of direct travelers from s to t using line ℓ .

 $\sum_{\ell \in \mathcal{L}} \sum_{(s,t) \in \mathcal{D}: \, \rho_{st} \subseteq \ell} x_{st,\ell}$

Direct Travelers LPP

 $(c, t) \in \mathcal{D}$

Remarks

- ► There is no point in taking x_{st,ℓ} integral: Capacities are in general only rough estimates, and the number of direct travelers is usually large.
- ► The capacity *C* may be replaced by capacities for each pair of edge and line.
- One may also integrate budget constraints in terms of upper bounds on the frequencies.
- We have L = {ℓ ∈ L₀ | f_ℓ > 0}. We can therefore replace L by L₀ in the MIP formulation. In other words, f_ℓ also takes the role of a decision variable if line ℓ should by included into L or not.
- ► In particular, this is a mixed integer *linear* program.
- ► This model is due to Bussieck/Kreuzer/Zimmermann, 1995.
- Disadvantage: Hard to solve exactly.

Direct Travelers LPP: Aggregation

Aggregation

Set $x_{st} := \sum_{\ell \in \mathcal{L}_0: p_{st} \subseteq \ell} x_{st,\ell}$, i.e., count all directly traveling passengers from s to t using any line.

Aggregated MIP formulation

Maximize	$\sum_{(s,t)\in\mathcal{D}: \rho_{st}\subseteq\ell} x_{st}$	
subject to	$x_{st} \leq d_{st},$	$(s,t)\in\mathcal{D},$
	$x_{st} \leq C \cdot \sum_{\ell \in \mathcal{L}_0: p_{st} \subseteq \ell} f_{\ell},$	$(s,t) \in \mathcal{D},$
	$f_e^{\min} \leq \sum_{\ell \in \mathcal{L}: \ e \in \ell} f_\ell \leq f_e^{\max},$	$e\in E,$
	$\ell\in\mathcal{L}_0,$	$\ell \in \mathcal{L},$
	$f_\ell \in \mathbb{N}_0,$	$\ell\in\mathcal{L},$
	$x_{st} \geq 0,$	$(s,t)\in\mathcal{D}.$

Direct Travelers LPP: Aggregation

Remarks

- Any feasible solution for the bigger model is feasible for the aggregated model.
- The converse is in general not true.
- However, this gives a heuristic for solving the bigger model.

Further data: $f^{\min} = 0$, $f^{\max} = \infty$, C = 50

To serve all demands by direct connections, we need

OD pair	line	freq.	pass./cap.	OD pair	line	freq.	pass./cap.
$A\toB$	2	1	50/50	$D\toF$	7	1	20/50
$A\toF$	3	1	50/50	$G\toB$	5 or 6	1	40/50
$D\toC$	4	2	80/100				

This clearly maximizes the number of direct travelers, which is 240.