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Addendum: Symmetric vs. asymmetric timetables
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I lines operate in both directions, frequency: 10 minutes
I waiting times: 2 minutes (A, D), 0 minutes (B, C)
I minimum transfer time: 2 minutes
I no turnarounds, no transfers to opposite direction of the same line
I weights: 1 (transfers), 0 (other activities)

June 28, 2018 2 / 24



Event-activity network E = (V ,E )
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PESP MIP formulation

Timetable-based MIP formulation:

Minimize
∑

ij transfer activity

xij − 64 (minimal slack)

s.t. xij = πj − πi + 10pij , ij ∈ E

`ij ≤ xij ≤ uij , ij ∈ E

pij ∈ {0, 1, 2}, ij ∈ E

0 ≤ πi ≤ 9, i ∈ V

Symmetry constraints (axis = 0):

0 = πi + πj − 10qij , (i , j) ∈ V × V complementary

qij ∈ {0, 1}, (i , j) ∈ V × V complementary
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Optimal asymmetric solution (computed by SCIP)
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Optimal symmetric solution (computed by SCIP)
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Chapter 5

Line Planning

§5.1 Overview
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§5.1 Overview

Public transport planning cycle

Network Design

Line Planning

Timetabling

Vehicle Scheduling

Duty Scheduling

Crew Rostering

strategic planning

operational planning
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§5.1 Overview

Description

Let G be a graph modeling a public transportation network, e.g.,

I a road network (for buses)

I a railway track system (for railways, trams, underground trains, . . . )

Definition
A line plan is a set L of paths (lines) in G together with frequencies
f : L → N0.

Line Planning Problem

The line planning problem is to find a feasible line plan providing both
convenient travel for passengers and small operational costs.

Feasible lines
Lines are either chosen from a line pool, or are computed on the fly subject
to certain restrictions.
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§5.1 Overview

Optimization goals

Two oppositional goals

passenger-oriented cost-oriented

Minimize travel time Minimize operational costs
given an upper bound given an upper bound
on operational costs on travel time

Passenger quality

Minimize travel time (estimated: no timetable available), Maximize
number of passengers having a direct connection, . . .

Operational costs

Minimize vehicle costs (estimated: no vehicle schedule), Minimize driver
costs (estimated: no crew schedule), . . .
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§5.1 Overview

Feasibility

Basic Line Planning Feasibility Problem (BLPFP)

Given a graph G = (V ,E ), a line pool L0, lower and upper frequency
bounds f min ≤ f max : E → N0, find a line plan (L, f ) with L ⊆ L0 such
that

∀e ∈ E : f min
e ≤

∑
`∈L:e∈`

f` ≤ f max
e .

Example

Assume that there is an edge e that has to be served at least 3 times per
hour, i.e., f min

e = 3. This might be satisfied by a line `1 with f`1 = 2 (riding
twice per hour), together with a line `2 with f`2 = 1 (riding once per hour).

Theorem (Bussieck, 1998)

BLPFP is NP-complete.
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§5.1 Overview

Complexity

Definition
The exact cover by 3-sets problem (X3C) is the following:

Given a set X with 3q elements for some integer q, and a collection C of
3-element subsets of X , is there a subcollection S ⊆ C such that each
x ∈ X occurs in exactly one member of S?

Theorem (Karp, 1972)

X3C is NP-complete.

Theorem (Bussieck, 1998)

X3C ≤ BLPFP.
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§5.1 Overview

X3C ≤ BLPFP

Proof (⇐).

Let (X ,C ) be an instance for X3C. We consider C as set of triples
(x , y , z). Build a simple graph G = (V ,E ) as follows:

I Add two vertices x+ and x− for each x ∈ X .

I Add an edge {x−, x+} for each x ∈ X .

I Add two edges {x+, y−}, {y+, z−} for each (x , y , z) ∈ C .

Define the line pool L0 := {(x−, x+, y−, y+, z−, z+) | (x , y , z) ∈ C} and
the lower and upper frequency bounds

f min
e :=

{
1 if e = {x−, x+} for some x ∈ X ,

0 otherwise,
f max
e := 1, e ∈ E .

Let (L, f ) be a feasible line plan. Then for each x ∈ X , the edge {x−, x+}
is covered by a unique line ` ∈ L with f` = 1, corresponding to a unique
triple (x , y , z) ∈ C .
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§5.1 Overview

X3C ≤ BLPFP

Proof (⇒):

Conversely, let S ⊆ C be a subcollection solving the X3C problem on
(X ,C ). Then taking all lines (x−, x+, y−, y+, z−, z+) ∈ L0 for triples
(x , y , z) ∈ S with frequency 1 yields a feasible line plan.

Example

X := {1, 2, 3, 4, 5, 6}, C := {(1, 3, 6), (1, 4, 6), (2, 3, 5), (4, 5, 6)}
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§5.1 Overview

Cost-oriented LPP

Cost-oriented Line Planning Problem

Given a graph G = (V ,E ), a line pool L0 with costs c : L0 → R≥0, lower
and upper frequency bounds f min ≤ f max : E → N0, find a line plan (L, f )

minimizing
∑
`∈L

c`

subject to f min
e ≤

∑
`∈L:e∈`

f` ≤ f max
e , e ∈ E ,

` ∈ L0, ` ∈ L.
Lemma (Exercise)

The problem “Given C , is there a feasible line plan with cost ≤ C” is
NP-complete.

Remark
The quality for passengers is established by the minimum frequency
requirement.
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§5.1 Overview

Cost-oriented LPP: Example

Graph G with line pool L0
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Further data

c ≡ 1

f min ≡ 1

f max ≡ 2

Since the edges AD, BC, EF, EG need to be served with frequency
≥ f min = 1, the lines 1, 3, 5, 6 have to appear in every feasible line plan.
This leaves the edge DG uncovered, which can be covered either by line 4
or line 7. In particular, the cost of an optimal line plan is at least 5.

Running each of the lines 1, 3, 4, 5, 6 with frequency 1 is a feasible line
plan: Each edge is covered at least once, only CG is covered twice, and no
edge is covered more than twice.
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Chapter 5

Line Planning

§5.2 Passenger-Oriented Models
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§5.2 Passenger-Oriented Models

Passenger flow
Let G = (V ,E ) be a graph.

Definition
I An origin-destination matrix, short OD matrix, is a V × V -matrix

(dst) with non-negative entries.

I For (s, t) ∈ V × V , the entry dst is called the demand from s to t.

I An OD pair is a pair (s, t) ∈ V × V such that dst > 0.

OD matrices are the standard tool to model demands in a public
transportation network. However, without a timetable, it is hard to tell
which routes passengers will take.

Routing strategies
I shortest paths without transfer times

I shortest paths with transfer penalty

I system split: divide into different transport modes

I . . .
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§5.2 Passenger-Oriented Models

Direct Travelers LPP

Input
I graph G = (V ,E )

I OD matrix (dst) with set of OD pairs D ⊆ V × V

I fixed passenger paths pst for all (s, t) ∈ D
I line pool L0
I frequency bounds f min ≤ f max : E → N0

I global capacity bound C ≥ 0

Goal
Find a feasible line plan (L, f ) maximizing the number of direct travelers
over all OD pairs.

Remark
This is trivial to maximize if there are neither capacities nor upper bounds
on line costs: Either pst is covered by a line in L0 or not.

June 28, 2018 19 / 24



§5.2 Passenger-Oriented Models

Direct Travelers LPP

MIP formulation

Maximize
∑
`∈L

∑
(s,t)∈D: pst⊆`

xst,`

subject to
∑

`∈L: pst⊆`

xst,` ≤ dst , (s, t) ∈ D,

∑
(s,t)∈D: e∈pst⊆`

xst,` ≤ C · f`, e ∈ E , ` ∈ L,

f min
e ≤

∑
`∈L: e∈`

f` ≤ f max
e , e ∈ E ,

` ∈ L0, ` ∈ L,
f` ∈ N0, ` ∈ L,

xst,` ≥ 0, (s, t) ∈ D, ` ∈ L.

Notation
xst,` is the number of direct travelers from s to t using line `.
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§5.2 Passenger-Oriented Models

Direct Travelers LPP

Remarks

I There is no point in taking xst,` integral: Capacities are in general only
rough estimates, and the number of direct travelers is usually large.

I The capacity C may be replaced by capacities for each pair of edge
and line.

I One may also integrate budget constraints in terms of upper bounds
on the frequencies.

I We have L = {` ∈ L0 | f` > 0}. We can therefore replace L by L0 in
the MIP formulation. In other words, f` also takes the role of a
decision variable if line ` should by included into L or not.

I In particular, this is a mixed integer linear program.

I This model is due to Bussieck/Kreuzer/Zimmermann, 1995.

I Disadvantage: Hard to solve exactly.
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§5.2 Passenger-Oriented Models

Direct Travelers LPP: Aggregation

Aggregation

Set xst :=
∑

`∈L0: pst⊆` xst,`, i.e., count all directly traveling passengers
from s to t using any line.

Aggregated MIP formulation

Maximize
∑

(s,t)∈D: pst⊆`

xst

subject to xst ≤ dst , (s, t) ∈ D,

xst ≤ C ·
∑

`∈L0: pst⊆`

f`, (s, t) ∈ D,

f min
e ≤

∑
`∈L: e∈`

f` ≤ f max
e , e ∈ E ,

` ∈ L0, ` ∈ L,
f` ∈ N0, ` ∈ L,
xst ≥ 0, (s, t) ∈ D.
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§5.2 Passenger-Oriented Models

Direct Travelers LPP: Aggregation

Remarks

I Any feasible solution for the bigger model is feasible for the
aggregated model.

I The converse is in general not true.

I However, this gives a heuristic for solving the bigger model.
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§5.2 Passenger-Oriented Models

Direct Travelers LPP: Example
Graph G with line pool L0
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OD matrix

to
B C F

A 50 0 50
from D 0 80 20

G 40 0 0

Further data: f min = 0, f max =∞, C = 50

To serve all demands by direct connections, we need

OD pair line freq. pass./cap. OD pair line freq. pass./cap.

A → B 2 1 50/50 D → F 7 1 20/50
A → F 3 1 50/50 G → B 5 or 6 1 40/50
D → C 4 2 80/100

This clearly maximizes the number of direct travelers, which is 240.
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