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§1.3 The Traveling Salesman Problem

Interlude: P vs. NP

Informal definitions

» A decision problem is a problem whose solution is either yes or no.

» The complexity class P consists of all decision problems that can be
solved in polynomial time.

» The complexity class NP consists of all decision problems that can
be verified in polynomial time

P vs. NP

The question whether P = NP is a millenium problem.

Notation
For a decision problem I1 with an input x, we write x € T iff x is a
“yes" -instance for 1.
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§1.3 The Traveling Salesman Problem

Interlude: P vs. NP

How to show membership to P or NP
Let I1 be a decision problem.
» [1€ P < 3 polynomial p and an algorithm A that decides for each
input x if x € M, and the running time of A is < p(size(x)).
» [1 € NP < 3 polynomial p and a problem A € P such that each input
x has a certificate c¢(x) satisfying x € [l < (x, c(x)) € A, and
size(c(x)) < p(size(x)).

Examples

» “Does a graph G admit an Euler tour?” is in P.

» “Is a graph G Hamiltonian?" is in NP.
(certificate: a Hamiltonian circuit C)

» "“ls a graph G not Hamiltonian?" is not known to be in NP.
(certificate: all circuits in G — too large!)
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§1.3 The Traveling Salesman Problem
Polynomial-time reduction

Definition
Let IT and A be decision problems. 1 reduces polynomially to A
(short: T < A) if there is a function f on the inputs for I1 such that

xeN& f(x) e,
and f can be computed by a polynomial-time algorithm.
Remarks
» This is a partial order.

> Intuitively, [1 < Aif and only if 1 is at most as hard to solve as A.
» If [T < Aand A <T1, then 1 and A are polynomially equivalent.

Lemma
» MeP < T <A forsome\ € P.
» [1e NP < I1 <A for some A € NP.
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§1.3 The Traveling Salesman Problem
NP-completeness

o 4B
Definition
Let T be a decision problem.

» [1is NP-hard if A <T1 for each A € NP.

> [1is NP-complete if 1 is NP-hard and 1 € NP.
Lemma (How to show NP-hardness)
Suppose there is an NP-hard problem N\ with A < T1. Then I is NP-hard.

Optimization problems
We also call a minimization problem min,cx f(x) NP-hard/-complete if
the decision problem

“Given g € Q, is there an x € X with f(x) < g?”

is NP-hard /-complete. (Similar: maximization with “>".)
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§1.3 The Traveling Salesman Problem

Complete Graphs

Let n € N. The complete graph K, is the graph with
» vertex set V(K,) = {1,...,n},
» edge set E(K,) ={{i,j} |1 <i<j<n}.

Definition

The Traveling Salesman Problem (TSP) on a complete graph K, is to
find a minimum-cost Hamilton circuit in K,, w.r.t. a cost function

C: E(Kn) — Rzo.

distance/km | HH| K | S | M | B
Hamburg 0 366 | 534 | 613 | 256
Kéln | 366 | O 288 | 456 | 478
Stuttgart | 534 | 288 0 191 | 512
Miinchen | 613 | 456 | 191 0 505
Berlin | 256 | 478 | 512 | 505 | 0
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§1.3 The Traveling Salesman Problem

Complete Graphs

Let n € N. The complete graph K, is the graph with

> vertex set V(K,) ={1,...,n},

> edge set E(K,) ={{i,j} |1 <i<j<n}

Definition

The Traveling Salesman Problem (TSP) on a complete graph Kj, is to
find a minimum-cost Hamilton circuit in K,, w.r.t. a cost function

C: E(Kn) — Rzo.

<%, )
° distance/km

HH| K | S | M| B

AN
"

Hamburg

> Kaln

% ' ‘ Stuttgart
Miinchen

" Berlin

optimal cost: 1606

0 366 | 534 | 613 | 256
366 0 288 | 456 | 478
534 | 288 0 191 | 512
613 | 456 | 191 0 505
256 | 478 | 512 | 505 0
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§1.3 The Traveling Salesman Problem
Hardness

Theorem
TSP is NP-hard.

Proof.
Let G be a graph on n vertices with edge set E(G). Define a cost function

on E(Kp,) via

1 if {i,j} € E(G),

. 1<i<j<n
2 otherwise,

c({i.j}) = {
Then G contains a Hamiltonian circuit if and only if K, has a Hamiltonian
circuit with cost < n. O

Combinatorial Explosion
K, contains (n — 1)!/2 Hamilton circuits.
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§1.3 The Traveling Salesman Problem
Approximation hardness

Definition

Let P be an optimization problem with non-negative cost and k > 1. A
k-factor approximation algorithm for P is a polynomial-time algorithm
A for P such that

% -OPT(I) < A(l) < k-OPT()

for all instances | of P. Here, OPT(/) denotes the cost of an optimal
solution, and A(/) is the cost of the solution computed by A.

A k-factor approximation algorithm is a polynomial-time heuristic with a
worst-case estimate on the solution quality (the lower k, the better).

Theorem
Let A be a k-factor approximation algorithm for TSP for some k > 1.
Then P = NP.
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§1.3 The Traveling Salesman Problem
Approximation hardness

Proof.

>

B!

Let A be such an algorithm, i.e., for every TSP instance | = (Kj, ¢)
with optimal solution OPT(/), A computes a Hamiltonian circuit of
cost A(l) < k-OPT(/).

Let G be a graph with edge set E(G) and n vertices. Define a cost
function on E(K,) via

c({i,j}) = {1 if {i,j} € E(G),

24 (k—1)n otherwise,
If A(1) < n, then G admits a Hamiltonian circuit.
Otherwise k-OPT(/) > A(l) > n—1+4+2+ (k—1)n= kn+1, thus
OPT(/) > n and G cannot have a Hamiltonian circuit.

1<i<j<n.

A is a polynomial-time algorithm deciding the NP-complete Hamilton
circuit problem on an arbitrary graph. This implies P = NP.

—
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§1.3 The Traveling Salesman Problem

Metric TSP

Definition
A TSP instance (Kj, ¢) is called metric if the triangle inequality
c({i,j}) < c({i, k})+ c({k,j}) holds for all 1 < i,j, k < n.

Theorem (Christofides, 1976)

There is a %—factor approximation algorithm for metric TSP.

Christofides’ algorithm

1. Compute a minimum spanning tree T in K,
w.r.t. c.

2. Find a min-weight perfect matching M of the
odd-degree vertices of T w.r.t. c.
3. Take the Hamiltonian circuit by sorting the

vertices by order of appearance in an Euler tour
in (V(Kn), E(T)U M).
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§1.3 The Traveling Salesman Problem

Metric TSP

Definition
A TSP instance (Kj, ¢) is called metric if the triangle inequality
c({i,j}) < c({i, k})+ c({k,j}) holds for all 1 < i,j, k < n.

Theorem (Christofides, 1976)

There is a %—factor approximation algorithm for metric TSP.

Christofides’ algorithm

1. Compute a minimum spanning tree T in K,
w.r.t. c.

2. Find a min-weight perfect matching M of the
odd-degree vertices of T w.r.t. c.

3. Take the Hamiltonian circuit by sorting the

vertices by order of appearance in an Euler tour
MST: 1101 in (V(Kn), E(T)U M).
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§1.3 The Traveling Salesman Problem

Metric TSP

Definition
A TSP instance (Kj, ¢) is called metric if the triangle inequality
c({i,j}) < c({i, k})+ c({k,j}) holds for all 1 < i,j, k < n.

Theorem (Christofides, 1976)

There is a %—factor approximation algorithm for metric TSP.

Christofides’ algorithm

1. Compute a minimum spanning tree T in K,
w.r.t. c.

2. Find a min-weight perfect matching M of the
odd-degree vertices of T w.r.t. c.

3. Take the Hamiltonian circuit by sorting the
vertices by order of appearance in an Euler tour
MST: 1101, Matching: 505 in (V(Kn), E( T) U M)

TSP: 1606
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§1.3 The Traveling Salesman Problem

Christofides’ Algorithm

Proof.

>

>

>

B!

Let / = (K,, c) be a TSP instance. Removing a single edge from any
Hamilton circuit gives a spanning tree. Hence for a minimum spanning
tree T of K, w.r.t. ¢, we have OPT(/) = ¢(T) := X ocg(my c(e)-

A shortest path from / to j is simply given by the edge {/,j} because
of the triangle inequality.

Denote by c(M) the weight of the min-weight perfect matching M.

Each Hamiltonian circuit decomposes into two matchings of the
odd-degree nodes of T. Hence OPT(/) > 2c(M) (triangle inequality).

The graph (V(K,), E(T) U M) is clearly Eulerian.
Computing a Hamiltonian circuit from an Euler tour does not increase

the cost (again triangle inequality).

Thus A(1) < c(T) + c(M) < OPT(1) + ;OPT(1) = SOPT()).

The algorithm runs in polynomial time.
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§1.3 The Traveling Salesman Problem
The k-opt heuristic

For non-metric TSP instances | = (Kp, ¢), there is a family of heuristiéd|[£3
based on local search:

k-opt heuristic
Fix an integer k > 2.
1. Let C be any Hamiltonian circuit.
2. Let S be the collection of all k-element subsets of E(C).
3. Let C':=argmin{c(C’) | C' Ham. circuit, E(C)\ S C E(C’),S € S}.
4. If ¢(C") < ¢(C), set C := C’ and go to 2. Otherwise return C’.

Remarks

» For all kK > 2, the worst-case running time is exponential in n.
» n-opt would be exact, but enumerates all possibilites.
» In Step 3, 2-opt simply replaces two edges (1, ), (k,¢) by (i, k), (j, ).
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§1.3 The Traveling Salesman Problem
Integer Programming

The TSP on (K, ¢) has the following classical formulation as an IP:

Minimize Z c(e)xe

ecE(Kn)

5. t. Y xe=2 v e V(K,),
e€E(Kp):vee

Z Xe§|5|_17 QQSQV(KH)’
ecE(Kp):eeSxS

% € {0,1}, e € E(K,).

The second constraint is called subtour elimination constraint. It excludes
solutions that are unions of disjoint circuits. Unfortunately, there are
exponentially many of those.
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§1.3 The Traveling Salesman Problem
Separating Subtour Constraints

Theorem ZIB

Let x € [0, 1]E(K") satisfy 3~ .. xe = 2. Then there is a polynomial-time
algorithm that decides if there is a subset ) C S C V/(K,) such that x
violates the subtour elimination constraint w.r.t. S.

Proof.
Tutorial. O
This yields the following IP-based solution method:

1. Let S :=10.

2. Solve the IP with subtour elimination constraints only for S € S.

3. If the optimal solution violates the constraint for some S, add it to S.
Otherwise, an optimal solution is found.

There are also IP formulations for the TSP with a polynomial number of
constraints, but they have weaker LP relaxations and are hence harder for

IP solvers.
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§1.3 The Traveling Salesman Problem

Solving TSP: Summary

B!

Heuristics

» Metric TSP: Christofides’ %—factor approximation algorithm

» Local search: 2-opt, 3-opt, Lin-Kernighan (combines both,
implementation: LKH)

Exact algorithms

» Integer programming: Branch-and-cut (implementation: concorde)

» Dynamic programming: Held-Karp O(2"n?) algorithm

TSP Record

In 2006, concorde computed a solution for a TSP instance on 85900
vertices, and proved optimality. LKH can solve this instance as well
nowadays, but cannot provide lower bounds.
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§1.3 The Traveling Salesman Problem

Directed graphs

B!

Let n € N. The complete directed graph K is the digraph with
> vertex set V(K}) ={1,...,n},
- edge set E(K3) = {(i.j) | 1< i # ) < n}.
Definition
The Asymmetric Traveling Salesman Problem (ATSP) on K} is to

find a minimum-cost directed Hamiltonian circuit w.r.t. a cost function
C: E(K:) — Rzo.

Remarks

» If c(i,j) = c(j, i) for all 1 < i +# j < n, then the problem is called
symmetric and is equivalent to the TSP on the undirected complete
graph K, with cost function c({i,/}) := c(i,)).

» ATSP is NP-complete.
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§1.3 The Traveling Salesman Problem

Asymmetric TSP

Theorem (Jonker-Volgenant, 1983) ZIE
TSP is polynomially equivalent to ATSP.

Proof.

» Clearly, any TSP instance can be transformed into an ATSP instance
by replacing each undirected edge {/,j} with cost c({/,/}) by the two
anti-parallel edges (i,/) and (j, /), and setting
c(i,j) = c(,i) = c({i,j}).

» Conversely, let | = (K}, c) be an ATSP instance. Create a TSP
instance I’ = (Kap, ) as follows: For i € V(K}), let i™ := 2i and
i~ :=2i—1. Set

C{/:,'-%-,j—} = C(’aJ)+Ma (Iv./)EE(K:)a
Cii*,H} =0, i€ V(K;),

and let ¢’ have value (n+ 1)M + 1 on all other edges.
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§1.3 The Traveling Salesman Problem
Asymmetric TSP
Proof. ZIB

» Then any directed Hamiltonian circuit (i1, ..., in, /1) in K yields a
Hamiltonian circuit (i", iy, iy y ..., im0, i) in Ko, the cost
increases by n- M. This shows OPT(/) 4+ n-M > OPT(/").

» Let C’ be the optimal solution to I”. Suppose M > OPT(/).

Then C’ contains all n edges i~ — i, as otherwise
OPT(I')> (n+1)M=n-M+M > n- M+ OPT(/).

» Moreover, C’ contains none of the (n+ 1)M + 1 cost edges, because
otherwise also
OPT(I') > (n+1)M+1>n-M+ OPT(/).
» Hence C’ can be transformed to a Hamiltonian circuit in K}, the cost
decreasing by n- M. Thus OPT(/) + n- M = OPT(/").

» Take e.g. M :=1 + sum of n heaviest edges of K w.r.t. c.
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§1.3 The Traveling Salesman Problem

Asymmetric TSP

Summary

» A TSP instance on n nodes can be transformed into an ATSP
instance on n nodes, with the same optimal cost.

» An ATSP instance on n nodes can be transformed into a TSP
instance on 2n nodes, the cost increasing by n- M for a large M.
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§1.3 The Traveling Salesman Problem
General undirected graphs

ZIB;

Let G = (V, E) be a not necessarily complete undirected graph with a cost
function ¢ : E — R>o.

Definition
» A Traveling Salesman tour is a closed walk (eq,...,ex) in G such
that every vertex in G is visited at least once.

» The Traveling Salesman Problem (TSP) is to find a Traveling
Salesman tour (ey, ..., ex) of minimum cost S°%_; c(e;).

Lemma
If G is Hamiltonian and c satisfies the triangle inequality, then the optimal
TSP solution is one of the Hamiltonian circuits of G.

In particular, it is important to know if TSP refers to the “exactly once” or
“at least once” version.
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§1.3 The Traveling Salesman Problem

Reducing > 1to =1
Let G be an undirected graph on n nodes, ¢ : E(G) — R>( a cost funédidn)

Theorem
The “at least once” TSP on G w.r.t. ¢ can be polynomially transformed to
an “exactly once” metric TSP instance on K, with the same optimal cost.

Proof.

> Let vi,..., v, denote the vertices of G. For 1 < < j < n, set

c'({i,j}) := length of shortest path from v; to v; in G w.r.t. c.

» The optimal Hamiltonian circuit on (K, ¢’) produces a closed walk in
G by transforming i — j to the shortest path from v; — v;. The cost
does not change, hence OPT(G, ¢) < OPT(K,, c’).

» The optimal TSP tour in G w.r.t. c. gives a Hamiltonian circuit in K,

by sorting the vertices in their order of appearance. Since ¢’ consists
of the shortest distances, we have OPT(G, c) > OPT(K,, ¢').
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§1.3 The Traveling Salesman Problem
Example: Amsterdam metro

Amsterdam Zuid
Centraal Station
Gaasperplas

Gein

Isolatorweg
Overamstel
Spaklerweg

van der Madeweg
Westwijk

c
Amsterdam Zuid
Centraal Station

Gaasperplas

Gein

Isolatorweg
Overamstel
Spaklerweg

van der Madeweg
Westwijk

1. Compute all shortest paths (e.g., using Floyd-Warshall).
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§1.3 The Traveling Salesman Problem
Example: Amsterdam metro

0
£ 2 3 60 - ) 3

s | 2] 5 g | 2] ¢ | =|«

2 3 3 g E § 5 =

ﬁ S R - R T = %

P 2 VT B IR R T I O

Amsterdam Zuid 0 16 4 25

Centraal Station 0 9
Gaasperplas 0 10
Gein 0 11
Isolatorweg 0

Overamstel 0 3 3
Spaklerweg 0 2
van der Madeweg 0

Westwijk 0

1. Compute all shortest paths (e.g., using Floyd-Warshall).
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§1.3 The Traveling Salesman Problem
Example: Amsterdam metro

0

£ £ a o0 < a0 H
S| 5| & S - B e
2 [ 2 ] 5 | < K] B
2 € @ £ kil § ] c 1
P -3 IV G INC N B IR I I
Amsterdam Zuid 0 16 17 18 16 4 7 7 25
Centraal Station 0 21 22 32 12 9 11 41
Gaasperplas 0 21 33 13 12 10 42
Gein 0 34 14 13 11 43
Isolatorweg 0 20 23 23 41
Overamstel 0 3 3 29
Spaklerweg 0 2 32
van der Madeweg 0 32
Westwijk 0

1. Compute all shortest paths (e.g., using Floyd-Warshall).

2. Solve the TSP on the complete

graph (20160 Hamiltonian circuits).
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§1.3 The Traveling Salesman Problem
Example: Amsterdam metro

0
£ (,,g a o0 < a0 H

Tl s | & s1e| 2|2 | =

g | | & s | 5| =8| 38| %

k7] = @ c k3 j = ° z

£ S b3 ‘D o g 3 < 4]

cl <] oo o | = S| & g =

Amsterdam Zuid 0 16 17 18 16 4 7 7 25

Centraal Station 0 21 22 32 12 9 11 41

Gaasperplas 0 21 33 13 12 10 42

Gein 0 34 14 13 11 43

Isolatorweg 0 20 23 23 41

Overamstel 0 3 3 29

Spaklerweg 0 2 32

. van der Madeweg 0 32

TSP: 158 Westwijk 0

1. Compute all shortest paths (e.g., using Floyd-Warshall).
2. Solve the TSP on the complete graph (20 160 Hamiltonian circuits).
3. Trace back the shortest paths.
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§1.3 The Traveling Salesman Problem
Example: Amsterdam metro

bl c g

ISR H

£ = K 60 5 00 3
& » - o E Q 3 ~
Tl ws | 5 g g |z .| =
E b b T | o $ 2 s o
c|l <] oo o | @2 S| & g =
Amsterdam Zuid 0 16 17 18 16 4 7 7 25
Centraal Station 0 21 22 32 12 9 11 41
Gaasperplas 0 21 33 13 12 10 42
Gein 0 34 14 13 11 43
Isolatorweg 0 20 23 23 41
Overamstel 0 3 3 29
Spaklerweg 0 2 32
TSP: 158 van der Madeweg 0 32
Westwijk 0

1. Compute all shortest paths (e.g., using Floyd-Warshall).

2. Solve the TSP on the complete
3. Trace back the shortest paths.

graph (20160 Hamiltonian circuits).

Result: The optimal TSP tour is identical to the optimal CPP tour.
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S-Bahn Challenge

1.4 Generalized Routing Problems
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61.4 Generalized Routing Problems

GATSP and GDRPP
Let G = (V, E) be a directed graph with a cost function ¢ : E — RZZD
Definition

Let Vi,..., Vi be disjoint subsets of V (clusters). The

Generalized Asymmetric Traveling Salesman Problem (GATSP) is to
find a directed closed walk C = (ey,...,ex) in G such that

» C visits at least one vertex from each cluster at least once,
» C has minimal cost w.r.t. c.

Definition

Let E1, ..., Ex be disjoint subsets of E (clusters). The

Generalized Directed Rural Postman Problem (GDRPP) is to find a
directed closed walk C = (e, ..., ex) in G such that

» C visits at least one edge from each cluster at least once,

» C has minimal cost w.r.t. c.

We will model the S-Bahn Challenge problem as GDRPP.
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§1.4 Generalized Routing Problems

GATSP and GDRPP: Example

an optimal GATSP tour of cost 24 an optimal GDRPP tour of cost 28
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61.4 Generalized Routing Problems

GATSP and GDRPP: Equivalence

Theorem (Drex|, 2007) B
GATSP and GDRPP are polynomially equivalent.

Proof (GATSP < GDRPP).

» Let I =(G,c,{Vi,..., Vik}) be a GATSP instance. Set
Ei={(v,w)|veVi,w¢gVi}, i=1,...k,

and define a GDRPP instance I’ := (G, ¢, {E1, ..., Ex}).

» For each /, any solution to the GDRPP on [/’ visits at least one edge
of E;, and hence at least one vertex of V;. We conclude
OPT(I") > OPT(/).

» Conversely, any solution to the GATSP on [ visits at least one edge of

E;, because E; comprises all outgoing edges from V;. Hence
OPT(I") < OPT(!).
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61.4 Generalized Routing Problems

GATSP and GDRPP: Equivalence
Proof (GDRPP < GATSP).

» Let I’ =(G,c,{E,...,Ex}) be a GDRPP instance. Split each edge
e=(v,w) € |, E by a new vertex z.. That is, remove e, and add
the edges (v, z.) and (z., w) with cost c(e) and 0, respectively. Set

B!

Vii={ze|ecE}, i=1,... k.

and define a GATSP instance | := (G, c,{V1,..., Vk}).

» Any solution to the GDRPP on [/’ visits at least one edge ¢; € E; for all
i, and hence gives rise to a GATSP solution visiting at least one vertex
ze, for all i. The cost does not change, thus OPT(/") > OPT(/).

» Conversely, any solution to the GATSP on [ visits at least one vertex
ze, € Vj for all i, and yields a GDRPP solution visiting at least one
edge e; for all i. Therefore OPT(/") < OPT(/).
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81.4 Generalized Routing Problems

GATSP and GDRPP: Equivalence Example

equivalent GDRPP instance equivalent GATSP instance
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61.4 Generalized Routing Problems

GATSP and GDRPP: NP-hardness

Theorem
GATSP and GDRPP are NP-hard.

Proof.

» It suffices to show NP-hardness for GDRPP. We already know that the
Rural Postman Problem (RPP) is NP-hard.

» Let G = (V, E) be an undirected graph with a cost function
c:E —Rx>p, and let S C E be a subset of edges. The RPP is to find
a closed walk (e1, ..., e) in G covering S of minimal cost w.r.t. c.

» Let D be the digraph obtained from G where each undirected edge
{v,w} is replaced by two anti-parallel edges (v, w), (w, v). Extend
the cost function ¢ to D by defining c(v, w) := c(w, v) := c({v, w}).
For each edge e = {v,w} € S, add a cluster E. = {(v,w), (w, v)}.

» The GDRPP on (D, c,{E. | e € S}) is equivalent to the RPP on
(G,c,S).

April 23, 2018 30 / 42
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61.4 Generalized Routing Problems

GATSP and ATSP

Theorem (Noon/Bean, 1991)
GATSP < ATSP.
Proof.

» Let | =(G,c,{V4,..., Vk}) be an arbitrary GATSP instance, let
n =3, |Vi|. We will define an ATSP instance I’ = (K*,c').

» For each i =1,..., k, choose any ordering (vj1,Vi2,..., V) of V.
» Set M :=1 + sum of lengths of the k longest shortest paths in G and
C/(Vi,l, Vi,2) = C'(Vi,2, Vi,3) == C'(Vi,m Vi,1) =0,

c'(Vij, Vp,q) := M + shortest path length from v; ;1 1)modr, 10 Vpq in G

for all i resp. all (i,J), (p, q) with i # p.
> All other edges receive cost M.
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§1.4 Generalized Routing Problems

GATSP and ATSP: Example

GATSP instance equivalent ATSP instance
c 1,1 1,2 1,3 2,1 2,2 23

11 0 M M+11 | M4+14 | M+4+15
1,2 M 0 M+12 | M+15 | M+16
1,3 0 M M+8 | M+11 | M+12

21 | M+15 | M+14 | M+11 0 M

22 | M+12 | M+11 | M+38 M 0

23 | M+16 | M+15 | M+12 0 M

M =33
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§1.4 Generalized Routing Problems
GATSP and ATSP: Example

8

) >

GATSP instance equivalent ATSP instance
optimal tour length: 24 optimal tour length: 2M 4 24

c 1,1 1,2 1,3 2.1 2,2 2,3

1,1 0 M M+11 | M+14 | M+ 15

1,2 M 0 M+12 | M+15 | M+ 16

1,3 0 M M+ 8 M+11 | M+12

21 | M+15 | M+14 | M +11 0 M

22 | M+12 | M+ 11 M+ 8 M 0

23| M+16 | M+15 | M+ 12 0 M

M =33
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§1.4 Generalized Routing Problems

GATSP and ATSP

B!

Proof (cont.)

>

Let C’ be a Hamiltonian circuit in I’ = (K}, ¢’) that visits all vertices
of a cluster V; in ascending order before moving to another cluster.
This way, C contains precisely k edges of weight > M, and we have
c(C") < kM + M.

We claim that the optimal solution to I’ is such a circuit. Otherwise,
OPT(I") > (k+1)M = kM + M > ¢(C").

In particular, if the optimal solution enters V; at v;;, it leaves V; at
Vi(j—1)modr;- The cost of the edge to v; is (M +) the shortest path
length to v;;, and the cost of the edge from v; (;_1)modr, is (M +) the
shortest path length from v;; (note the shift!).

Hence we find a GATSP tour by tracing the shortest paths back. For
the cost we find OPT(/) < OPT(/") — kM.
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61.4 Generalized Routing Problems

GATSP and ATSP
Proof (cont.) zZIiB

» Consider an optimal GATSP tour C. Create a Hamiltonian circuit C’
in K by sorting the clusters by their order of appearance in C and
traversing the whole cluster before proceeding. The cost of C’
increases at most by kM. Thus

OPT(!") < ¢(C') < ¢(C) + kM = OPT(/) + kM.

Corollary
GDRPP < GATSP < ATSP < TSP.

Corollary
A GDRPP with clusters Eq, ..., Ex can be polynomially transformed into a
TSP on 2 Zf'(:l |Ei| vertices (with a large increase in cost).

Lemma (Exercise)
Metric TSP < Metric ATSP < GATSP.
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§1.4 Generalized Routing Problems

GDRPP to TSP: Example

GDRPP instance

optimal tour: 30 ATSP instance (M = 39)

optimal tour: 108 =2 -39 + 30

GATSP instance TSP instance (M = 225)
optimal tour: 30 optimal tour: 1008 = 4 - 225 + 108
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§1.5 Public Transportation Networks
Line Networks

Definition
A line network is a graph G together with a line cover L, i.e.,
L is a set of walks in G such that E(G) = J,c, E(L).
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§1.5 Public Transportation Networks
Line Networks and Event-Activity Networks

B!

Remarks
» Depending on the application, line networks may be undirected or
directed.
» The vertices of a line network are stations or stops.
» The elements of L are lines or routes.

» The two directions of a classical path-shaped line can be modeled by
two separated walks or by a closed walk.

Definition
An event-activity network (EAN) is a directed graph £ whose vertices
are called events and whose edges are called activities.
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§1.5 Public Transportation Networks
Timetables for Line Networks

Definition
Let V' = (G, L) be a line network.
» Atripofaline L=(ey,...,e) € L is a pair (Tdep, Tarr) of maps
Tdep; Tarr : {1, ..., k} — R such that

Tdep(1) < Tarr(1), i=1,...,k
Tarr(i)STdep(i+1), i=1,...,k—1.
(10:12, 10:44) (10:46, 10:58)
O O
» A schedule for L is a collection of trips of L.
Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
O O

» A timetable for A assigns a schedule to each line.
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§1.5 Public Transportation Networks
Time Expansion

Definition B!
Consider a timetable 7 for a line network \. The time expansion of A/
w.r.t. T is the event-activity network &£, together with the length function
¢: E(£) — R>o, constructed as follows:

1. For each trip 7 = (Tdep, Tarr) of @ line L = (e1,..., &) in N:
» Add departure events (L, T,i,dep) for i=1,... k.
» Add arrival events (L,7,i,arr) for i=1,... k.

» Add driving activities (L, T,i,dep) — (L, T, i,arr) with length
Tare(I) — Taep(1), i =1,... k.

» Add waiting activities (L, ,i,arr) — (L, 7,7+ 1,dep) with length
Taep(i +1) = Tan(i), i =1,... k—1.

2. Add a transfer activity (L,T,i,arr) — (L', 7',i’,dep) with length
Taep(i") — Tare(i) for each pair of trips (7,7') associated to a pair of
lines (L, L") whenever:

> Téep(i/) — Tarr(i) > 0, and

» the (i + 1)-st vertex of L and the i’-th vertex of L’ coincide in NV,

» (L,7,i,arr) and (L', 7', i’,dep) are not connected by a waiting activity.
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§1.5 Public Transportation Networks
Time Expansion

Remarks

>

>

>

Trips correspond to certain disjoint directed paths in the EAN.

The EAN is bipartite, as there are no departure-departure and no
arrival-arrival activities.

No activity goes “backward in time": Circuits can only have length 0.

The number of driving and waiting activities is linear in the number of
trips, whereas the number of transfer activities is quadratic.

A transfer activity between two trips of a line at one of its endpoints is
called a turnaround activity.

Often there is no point in a transfer between trips of parallel lines, and
the corresponding transfer activities can be removed.

Sometimes we want to establish a minimum transfer time, and hence
only add transfer activities where 74, (i") — 7ar(i) is large enough.

Footpath information can also be included using transfer activities.
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§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
QO Line 1
Trip 1: 11:00 — 11:37
(O Line 2
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§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
(O Line 1
Trip 1: 11:00 — 11:37
(O Line 2

1

1,1,1,dep 32 JTitar] 2 JT12dep 12 J1.1,2,arr
10:12 7 10:44 7 10:46 7| 10:58
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§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
QO Line 1
Trip 1: 11:00 — 11:37
(O Line 2

1,1,1,dep 32
10:12

JitTar] 2 [Ti2dep 12 JTL2.ar
7 10:44 7 '10:46 7| 10:58

1,2,1,dep 36
11:12

Ji2tar] L [122.dep 13 J1.2.2.arr
7 11:48 7 11:49 7 12:02
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§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
QO Line1l
Trip 1: 11:00 — 11:37
(O Line 2

1,1,1,dep 32 JTitar] 2
10:12 7l 10:44

1,2,1,dep 36 JT.2.1ar
1112 7l 11:48

12 J1.1,2,arr
7| 10:58

13

37
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§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44
Trip 2: 11:12 — 11:48

Trip 1: 10:46 — 10:58
Trip 2: 11:49 — 12:02

QO Line1l

Trip 1: 11:00 — 11:37

(O Line 2

1.1,1dep 32 JTitarr] 2 JT12dep 12 JT.12ar
10:12 7l 10:44 7 10:58

1,2,1,dep 36 JT.2.1ar
1112 7l 1148 7l 11:49

13 | 1,2,2,arr
1 12:02
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