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§1.3 The Traveling Salesman Problem

Interlude: P vs. NP

Informal definitions

I A decision problem is a problem whose solution is either yes or no.

I The complexity class P consists of all decision problems that can be
solved in polynomial time.

I The complexity class NP consists of all decision problems that can
be verified in polynomial time

P vs. NP
The question whether P = NP is a millenium problem.

Notation
For a decision problem Π with an input x , we write x ∈ Π iff x is a
“yes”-instance for Π.
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§1.3 The Traveling Salesman Problem

Interlude: P vs. NP

How to show membership to P or NP

Let Π be a decision problem.

I Π ∈ P⇔ ∃ polynomial p and an algorithm A that decides for each
input x if x ∈ Π, and the running time of A is ≤ p(size(x)).

I Π ∈ NP⇔ ∃ polynomial p and a problem Λ ∈ P such that each input
x has a certificate c(x) satisfying x ∈ Π⇔ (x , c(x)) ∈ Λ, and
size(c(x)) ≤ p(size(x)).

Examples

I “Does a graph G admit an Euler tour?” is in P.

I “Is a graph G Hamiltonian?” is in NP.
(certificate: a Hamiltonian circuit C )

I “Is a graph G not Hamiltonian?” is not known to be in NP.
(certificate: all circuits in G – too large!)
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§1.3 The Traveling Salesman Problem

Polynomial-time reduction

Definition
Let Π and Λ be decision problems. Π reduces polynomially to Λ
(short: Π ≤ Λ) if there is a function f on the inputs for Π such that

x ∈ Π⇔ f (x) ∈ Λ,

and f can be computed by a polynomial-time algorithm.

Remarks

I This is a partial order.

I Intuitively, Π ≤ Λ if and only if Π is at most as hard to solve as Λ.

I If Π ≤ Λ and Λ ≤ Π, then Π and Λ are polynomially equivalent.

Lemma

I Π ∈ P⇔ Π ≤ Λ for some Λ ∈ P.

I Π ∈ NP⇔ Π ≤ Λ for some Λ ∈ NP.
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§1.3 The Traveling Salesman Problem

NP-completeness

Definition
Let Π be a decision problem.

I Π is NP-hard if Λ ≤ Π for each Λ ∈ NP.

I Π is NP-complete if Π is NP-hard and Π ∈ NP.

Lemma (How to show NP-hardness)

Suppose there is an NP-hard problem Λ with Λ ≤ Π. Then Π is NP-hard.

Optimization problems

We also call a minimization problem minx∈X f (x) NP-hard/-complete if
the decision problem

“Given q ∈ Q, is there an x ∈ X with f (x) ≤ q?”

is NP-hard/-complete. (Similar: maximization with “≥”.)
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§1.3 The Traveling Salesman Problem

Complete Graphs

Let n ∈ N. The complete graph Kn is the graph with

I vertex set V (Kn) = {1, . . . , n},
I edge set E (Kn) = {{i , j} | 1 ≤ i < j ≤ n}.

Definition
The Traveling Salesman Problem (TSP) on a complete graph Kn is to
find a minimum-cost Hamilton circuit in Kn w.r.t. a cost function
c : E (Kn)→ R≥0.

Hamburg

Köln

Stuttgart München

Berlin

distance/km HH K S M B

Hamburg 0 366 534 613 256
Köln 366 0 288 456 478

Stuttgart 534 288 0 191 512
München 613 456 191 0 505

Berlin 256 478 512 505 0
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distance/km HH K S M B

Hamburg 0 366 534 613 256
Köln 366 0 288 456 478

Stuttgart 534 288 0 191 512
München 613 456 191 0 505

Berlin 256 478 512 505 0
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§1.3 The Traveling Salesman Problem

Hardness

Theorem
TSP is NP-hard.

Proof.
Let G be a graph on n vertices with edge set E (G ). Define a cost function
on E (Kn) via

c({i , j}) :=

{
1 if {i , j} ∈ E (G ),

2 otherwise,
1 ≤ i < j ≤ n.

Then G contains a Hamiltonian circuit if and only if Kn has a Hamiltonian
circuit with cost ≤ n.

Combinatorial Explosion

Kn contains (n − 1)!/2 Hamilton circuits.
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§1.3 The Traveling Salesman Problem

Approximation hardness

Definition
Let P be an optimization problem with non-negative cost and k ≥ 1. A
k-factor approximation algorithm for P is a polynomial-time algorithm
A for P such that

1

k
· OPT(I ) ≤ A(I ) ≤ k · OPT(I )

for all instances I of P. Here, OPT(I ) denotes the cost of an optimal
solution, and A(I ) is the cost of the solution computed by A.

A k-factor approximation algorithm is a polynomial-time heuristic with a
worst-case estimate on the solution quality (the lower k , the better).

Theorem
Let A be a k-factor approximation algorithm for TSP for some k ≥ 1.
Then P = NP.

April 23, 2018 9 / 42



§1.3 The Traveling Salesman Problem

Approximation hardness

Proof.

I Let A be such an algorithm, i.e., for every TSP instance I = (Kn, c)
with optimal solution OPT(I ), A computes a Hamiltonian circuit of
cost A(I ) ≤ k · OPT(I ).

I Let G be a graph with edge set E (G ) and n vertices. Define a cost
function on E (Kn) via

c({i , j}) :=

{
1 if {i , j} ∈ E (G ),

2 + (k − 1)n otherwise,
1 ≤ i < j ≤ n.

I If A(I ) ≤ n, then G admits a Hamiltonian circuit.

I Otherwise k · OPT(I ) ≥ A(I ) ≥ n − 1 + 2 + (k − 1)n = kn + 1, thus
OPT(I ) > n and G cannot have a Hamiltonian circuit.

I A is a polynomial-time algorithm deciding the NP-complete Hamilton
circuit problem on an arbitrary graph. This implies P = NP.
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§1.3 The Traveling Salesman Problem

Metric TSP

Definition
A TSP instance (Kn, c) is called metric if the triangle inequality
c({i , j}) ≤ c({i , k}) + c({k , j}) holds for all 1 ≤ i , j , k ≤ n.

Theorem (Christofides, 1976)

There is a 3
2 -factor approximation algorithm for metric TSP.

Christofides’ algorithm

Hamburg

Köln

Stuttgart München

Berlin

1. Compute a minimum spanning tree T in Kn

w.r.t. c .

2. Find a min-weight perfect matching M of the
odd-degree vertices of T w.r.t. c .

3. Take the Hamiltonian circuit by sorting the
vertices by order of appearance in an Euler tour
in (V (Kn),E (T ) ∪M).
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1. Compute a minimum spanning tree T in Kn
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2. Find a min-weight perfect matching M of the
odd-degree vertices of T w.r.t. c .
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§1.3 The Traveling Salesman Problem

Christofides’ Algorithm

Proof.
I Let I = (Kn, c) be a TSP instance. Removing a single edge from any

Hamilton circuit gives a spanning tree. Hence for a minimum spanning
tree T of Kn w.r.t. c , we have OPT(I ) ≥ c(T ) :=

∑
e∈E(T ) c(e).

I A shortest path from i to j is simply given by the edge {i , j} because
of the triangle inequality.

I Denote by c(M) the weight of the min-weight perfect matching M.
Each Hamiltonian circuit decomposes into two matchings of the
odd-degree nodes of T . Hence OPT(I ) ≥ 2c(M) (triangle inequality).

I The graph (V (Kn),E (T ) ∪M) is clearly Eulerian.

I Computing a Hamiltonian circuit from an Euler tour does not increase
the cost (again triangle inequality).

I Thus A(I ) ≤ c(T ) + c(M) ≤ OPT(I ) +
1

2
OPT(I ) =

3

2
OPT(I ).

I The algorithm runs in polynomial time.
April 23, 2018 12 / 42



§1.3 The Traveling Salesman Problem

The k-opt heuristic
For non-metric TSP instances I = (Kn, c), there is a family of heuristics
based on local search:

k-opt heuristic

Fix an integer k ≥ 2.

1. Let C be any Hamiltonian circuit.

2. Let S be the collection of all k-element subsets of E (C ).

3. Let C ′ := arg min{c(C ′) | C ′ Ham. circuit,E (C ) \ S ⊆ E (C ′), S ∈ S}.
4. If c(C ′) < c(C ), set C := C ′ and go to 2. Otherwise return C ′.

Remarks

I For all k ≥ 2, the worst-case running time is exponential in n.

I n-opt would be exact, but enumerates all possibilites.

I In Step 3, 2-opt simply replaces two edges (i , j), (k , `) by (i , k), (j , `).
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§1.3 The Traveling Salesman Problem

Integer Programming

The TSP on (Kn, c) has the following classical formulation as an IP:

Minimize
∑

e∈E(Kn)

c(e)xe

s. t.
∑

e∈E(Kn):v∈e

xe = 2, v ∈ V (Kn),

∑
e∈E(Kn):e∈S×S

xe ≤ |S | − 1, ∅ ( S ( V (Kn),

xe ∈ {0, 1}, e ∈ E (Kn).

The second constraint is called subtour elimination constraint. It excludes
solutions that are unions of disjoint circuits. Unfortunately, there are
exponentially many of those.
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§1.3 The Traveling Salesman Problem

Separating Subtour Constraints

Theorem
Let x ∈ [0, 1]E(Kn) satisfy

∑
e:v∈e xe = 2. Then there is a polynomial-time

algorithm that decides if there is a subset ∅ ( S ( V (Kn) such that x
violates the subtour elimination constraint w.r.t. S .

Proof.
Tutorial.

This yields the following IP-based solution method:

1. Let S := ∅.
2. Solve the IP with subtour elimination constraints only for S ∈ S.

3. If the optimal solution violates the constraint for some S , add it to S.
Otherwise, an optimal solution is found.

There are also IP formulations for the TSP with a polynomial number of
constraints, but they have weaker LP relaxations and are hence harder for
IP solvers.
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§1.3 The Traveling Salesman Problem

Solving TSP: Summary

Heuristics

I Metric TSP: Christofides’ 3
2 -factor approximation algorithm

I Local search: 2-opt, 3-opt, Lin-Kernighan (combines both,
implementation: LKH)

Exact algorithms

I Integer programming: Branch-and-cut (implementation: concorde)

I Dynamic programming: Held-Karp O(2nn2) algorithm

TSP Record
In 2006, concorde computed a solution for a TSP instance on 85 900
vertices, and proved optimality. LKH can solve this instance as well
nowadays, but cannot provide lower bounds.
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§1.3 The Traveling Salesman Problem

Directed graphs

Let n ∈ N. The complete directed graph K ∗n is the digraph with

I vertex set V (K ∗n ) = {1, . . . , n},
I edge set E (K ∗n ) = {(i , j) | 1 ≤ i 6= j ≤ n}.

Definition
The Asymmetric Traveling Salesman Problem (ATSP) on K ∗n is to
find a minimum-cost directed Hamiltonian circuit w.r.t. a cost function
c : E (K ∗n )→ R≥0.

Remarks

I If c(i , j) = c(j , i) for all 1 ≤ i 6= j ≤ n, then the problem is called
symmetric and is equivalent to the TSP on the undirected complete
graph Kn with cost function c({i , j}) := c(i , j).

I ATSP is NP-complete.
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§1.3 The Traveling Salesman Problem

Asymmetric TSP

Theorem (Jonker-Volgenant, 1983)

TSP is polynomially equivalent to ATSP.

Proof.

I Clearly, any TSP instance can be transformed into an ATSP instance
by replacing each undirected edge {i , j} with cost c({i , j}) by the two
anti-parallel edges (i , j) and (j , i), and setting
c(i , j) := c(j , i) := c({i , j}).

I Conversely, let I = (K ∗n , c) be an ATSP instance. Create a TSP
instance I ′ = (K2n, c

′) as follows: For i ∈ V (K ∗n ), let i+ := 2i and
i− := 2i − 1. Set

c ′{i+,j−} := c(i , j) + M, (i , j) ∈ E (K ∗n ),

c ′{i−,i+} := 0, i ∈ V (K ∗n ),

and let c ′ have value (n + 1)M + 1 on all other edges.
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§1.3 The Traveling Salesman Problem

Asymmetric TSP

Proof.

I Then any directed Hamiltonian circuit (i1, . . . , in, i1) in K ∗n yields a
Hamiltonian circuit (i+1 , i

−
2 , i

+
2 , . . . , i

−
n , i

+
n , i
−
1 ) in K2n, the cost

increases by n ·M. This shows OPT(I ) + n ·M ≥ OPT(I ′).

I Let C ′ be the optimal solution to I ′. Suppose M > OPT(I ).
Then C ′ contains all n edges i− → i+, as otherwise

OPT(I ′) ≥ (n + 1)M = n ·M + M > n ·M + OPT(I ).

I Moreover, C ′ contains none of the (n + 1)M + 1 cost edges, because
otherwise also

OPT(I ′) ≥ (n + 1)M + 1 > n ·M + OPT(I ).

I Hence C ′ can be transformed to a Hamiltonian circuit in K ∗n , the cost
decreasing by n ·M. Thus OPT(I ) + n ·M = OPT(I ′).

I Take e.g. M := 1 + sum of n heaviest edges of K ∗n w.r.t. c .
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§1.3 The Traveling Salesman Problem

Asymmetric TSP

Summary

I A TSP instance on n nodes can be transformed into an ATSP
instance on n nodes, with the same optimal cost.

I An ATSP instance on n nodes can be transformed into a TSP
instance on 2n nodes, the cost increasing by n ·M for a large M.
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§1.3 The Traveling Salesman Problem

General undirected graphs

Let G = (V ,E ) be a not necessarily complete undirected graph with a cost
function c : E → R≥0.

Definition

I A Traveling Salesman tour is a closed walk (e1, . . . , ek) in G such
that every vertex in G is visited at least once.

I The Traveling Salesman Problem (TSP) is to find a Traveling
Salesman tour (e1, . . . , ek) of minimum cost

∑k
i=1 c(ei ).

Lemma
If G is Hamiltonian and c satisfies the triangle inequality, then the optimal
TSP solution is one of the Hamiltonian circuits of G .

In particular, it is important to know if TSP refers to the “exactly once” or
“at least once” version.
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§1.3 The Traveling Salesman Problem

Reducing ≥ 1 to = 1
Let G be an undirected graph on n nodes, c : E (G )→ R≥0 a cost function.

Theorem
The “at least once” TSP on G w.r.t. c can be polynomially transformed to
an “exactly once” metric TSP instance on Kn with the same optimal cost.

Proof.

I Let v1, . . . , vn denote the vertices of G . For 1 ≤ i < j ≤ n, set

c ′({i , j}) := length of shortest path from vi to vj in G w.r.t. c .

I The optimal Hamiltonian circuit on (Kn, c
′) produces a closed walk in

G by transforming i → j to the shortest path from vi → vj . The cost
does not change, hence OPT(G , c) ≤ OPT(Kn, c

′).

I The optimal TSP tour in G w.r.t. c . gives a Hamiltonian circuit in Kn

by sorting the vertices in their order of appearance. Since c ′ consists
of the shortest distances, we have OPT(G , c) ≥ OPT(Kn, c

′).
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§1.3 The Traveling Salesman Problem

Example: Amsterdam metro
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Amsterdam Zuid
Centraal Station

Gaasperplas
Gein

Isolatorweg
Overamstel
Spaklerweg

van der Madeweg
Westwijk

1. Compute all shortest paths (e.g., using Floyd-Warshall).

2. Solve the TSP on the complete graph (20 160 Hamiltonian circuits).

3. Trace back the shortest paths.
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Example: Amsterdam metro
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Example: Amsterdam metro
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1. Compute all shortest paths (e.g., using Floyd-Warshall).
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Example: Amsterdam metro
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Amsterdam Zuid 0 16 17 18 16 4 7 7 25
Centraal Station 0 21 22 32 12 9 11 41

Gaasperplas 0 21 33 13 12 10 42
Gein 0 34 14 13 11 43

Isolatorweg 0 20 23 23 41
Overamstel 0 3 3 29
Spaklerweg 0 2 32

van der Madeweg 0 32
Westwijk 0

1. Compute all shortest paths (e.g., using Floyd-Warshall).

2. Solve the TSP on the complete graph (20 160 Hamiltonian circuits).

3. Trace back the shortest paths.

Result: The optimal TSP tour is identical to the optimal CPP tour.
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§1.4 Generalized Routing Problems

GATSP and GDRPP
Let G = (V ,E ) be a directed graph with a cost function c : E → R≥0.

Definition
Let V1, . . . ,Vk be disjoint subsets of V (clusters). The
Generalized Asymmetric Traveling Salesman Problem (GATSP) is to
find a directed closed walk C = (e1, . . . , ek) in G such that

I C visits at least one vertex from each cluster at least once,

I C has minimal cost w.r.t. c .

Definition
Let E1, . . . ,Ek be disjoint subsets of E (clusters). The
Generalized Directed Rural Postman Problem (GDRPP) is to find a
directed closed walk C = (e1, . . . , ek) in G such that

I C visits at least one edge from each cluster at least once,

I C has minimal cost w.r.t. c .

We will model the S-Bahn Challenge problem as GDRPP.
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§1.4 Generalized Routing Problems

GATSP and GDRPP: Example
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§1.4 Generalized Routing Problems

GATSP and GDRPP: Equivalence

Theorem (Drexl, 2007)

GATSP and GDRPP are polynomially equivalent.

Proof (GATSP ≤ GDRPP).

I Let I = (G , c , {V1, . . . ,Vk}) be a GATSP instance. Set

Ei := {(v ,w) | v ∈ Vi ,w /∈ Vi}, i = 1, . . . , k,

and define a GDRPP instance I ′ := (G , c , {E1, . . . ,Ek}).

I For each i , any solution to the GDRPP on I ′ visits at least one edge
of Ei , and hence at least one vertex of Vi . We conclude
OPT(I ′) ≥ OPT(I ).

I Conversely, any solution to the GATSP on I visits at least one edge of
Ei , because Ei comprises all outgoing edges from Vi . Hence
OPT(I ′) ≤ OPT(I ).
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§1.4 Generalized Routing Problems

GATSP and GDRPP: Equivalence

Proof (GDRPP ≤ GATSP).

I Let I ′ = (G , c , {E1, . . . ,Ek}) be a GDRPP instance. Split each edge
e = (v ,w) ∈

⋃k
i=1 Ei by a new vertex ze . That is, remove e, and add

the edges (v , ze) and (ze ,w) with cost c(e) and 0, respectively. Set

Vi := {ze | e ∈ Ei}, i = 1, . . . , k.

and define a GATSP instance I := (G , c , {V1, . . . ,Vk}).

I Any solution to the GDRPP on I ′ visits at least one edge ei ∈ Ei for all
i , and hence gives rise to a GATSP solution visiting at least one vertex
zei for all i . The cost does not change, thus OPT(I ′) ≥ OPT(I ).

I Conversely, any solution to the GATSP on I visits at least one vertex
zei ∈ Vi for all i , and yields a GDRPP solution visiting at least one
edge ei for all i . Therefore OPT(I ′) ≤ OPT(I ).
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§1.4 Generalized Routing Problems

GATSP and GDRPP: Equivalence Example
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GDRPP instance
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equivalent GATSP instance
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§1.4 Generalized Routing Problems

GATSP and GDRPP: NP-hardness

Theorem
GATSP and GDRPP are NP-hard.

Proof.

I It suffices to show NP-hardness for GDRPP. We already know that the
Rural Postman Problem (RPP) is NP-hard.

I Let G = (V ,E ) be an undirected graph with a cost function
c : E → R≥0, and let S ⊆ E be a subset of edges. The RPP is to find
a closed walk (e1, . . . , ek) in G covering S of minimal cost w.r.t. c .

I Let D be the digraph obtained from G where each undirected edge
{v ,w} is replaced by two anti-parallel edges (v ,w), (w , v). Extend
the cost function c to D by defining c(v ,w) := c(w , v) := c({v ,w}).
For each edge e = {v ,w} ∈ S , add a cluster Ee = {(v ,w), (w , v)}.

I The GDRPP on (D, c , {Ee | e ∈ S}) is equivalent to the RPP on
(G , c , S).
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GATSP and ATSP

Theorem (Noon/Bean, 1991)

GATSP ≤ ATSP.

Proof.

I Let I = (G , c , {V1, . . . ,Vk}) be an arbitrary GATSP instance, let
n =

∑k
i=1 |Vi |. We will define an ATSP instance I ′ = (K ∗n , c

′).

I For each i = 1, . . . , k , choose any ordering (vi ,1, vi ,2, . . . , vi ,ri ) of Vi .

I Set M := 1 + sum of lengths of the k longest shortest paths in G and

c ′(vi ,1, vi ,2) := c ′(vi ,2, vi ,3) := · · · := c ′(vi ,ri , vi ,1) := 0,

c ′(vi ,j , vp,q) := M + shortest path length from vi ,(j+1)mod ri to vp,q in G

for all i resp. all (i , j), (p, q) with i 6= p.

I All other edges receive cost M.
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GATSP and ATSP: Example

3

3

4

3

3

4

8

8

GATSP instance

1,1

1,2

1,3

2,1

2,2

2,3

equivalent ATSP instance

c ′ 1,1 1,2 1,3 2,1 2,2 2,3

1,1 0 M M + 11 M + 14 M + 15
1,2 M 0 M + 12 M + 15 M + 16
1,3 0 M M + 8 M + 11 M + 12
2,1 M + 15 M + 14 M + 11 0 M
2,2 M + 12 M + 11 M + 8 M 0
2,3 M + 16 M + 15 M + 12 0 M

M = 33
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§1.4 Generalized Routing Problems

GATSP and ATSP: Example
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GATSP instance
optimal tour length: 24

1,1

1,2

1,3

2,1

2,2

2,3

equivalent ATSP instance
optimal tour length: 2M + 24

c ′ 1,1 1,2 1,3 2,1 2,2 2,3

1,1 0 M M + 11 M + 14 M + 15
1,2 M 0 M + 12 M + 15 M + 16
1,3 0 M M + 8 M + 11 M + 12
2,1 M + 15 M + 14 M + 11 0 M
2,2 M + 12 M + 11 M + 8 M 0
2,3 M + 16 M + 15 M + 12 0 M

M = 33
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§1.4 Generalized Routing Problems

GATSP and ATSP

Proof (cont.)

I Let C ′ be a Hamiltonian circuit in I ′ = (K ∗n , c
′) that visits all vertices

of a cluster Vi in ascending order before moving to another cluster.
This way, C contains precisely k edges of weight ≥ M, and we have
c(C ′) < kM + M.

I We claim that the optimal solution to I ′ is such a circuit. Otherwise,
OPT(I ′) ≥ (k + 1)M = kM + M > c(C ′).

I In particular, if the optimal solution enters Vi at vi ,j , it leaves Vi at
vi ,(j−1)mod ri . The cost of the edge to vi ,j is (M +) the shortest path
length to vi ,j , and the cost of the edge from vi ,(j−1)mod ri is (M +) the
shortest path length from vi ,j (note the shift!).

I Hence we find a GATSP tour by tracing the shortest paths back. For
the cost we find OPT(I ) ≤ OPT(I ′)− kM.
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§1.4 Generalized Routing Problems

GATSP and ATSP

Proof (cont.)

I Consider an optimal GATSP tour C . Create a Hamiltonian circuit C ′

in K ∗n by sorting the clusters by their order of appearance in C and
traversing the whole cluster before proceeding. The cost of C ′

increases at most by kM. Thus

OPT(I ′) ≤ c(C ′) ≤ c(C ) + kM = OPT(I ) + kM.

Corollary

GDRPP ≤ GATSP ≤ ATSP ≤ TSP.

Corollary

A GDRPP with clusters E1, . . . ,Ek can be polynomially transformed into a
TSP on 2

∑k
i=1 |Ei | vertices (with a large increase in cost).

Lemma (Exercise)

Metric TSP ≤ Metric ATSP ≤ GATSP.
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GDRPP to TSP: Example
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optimal tour: 108 = 2 · 39 + 30
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TSP instance (M = 225)
optimal tour: 1008 = 4 · 225 + 108
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S-Bahn Challenge

§1.5 Public Transportation Networks

April 23, 2018 36 / 42



§1.5 Public Transportation Networks

Line Networks

Definition
A line network is a graph G together with a line cover L, i.e.,
L is a set of walks in G such that E (G ) =

⋃
L∈L E (L).
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§1.5 Public Transportation Networks

Line Networks and Event-Activity Networks

Remarks

I Depending on the application, line networks may be undirected or
directed.

I The vertices of a line network are stations or stops.

I The elements of L are lines or routes.

I The two directions of a classical path-shaped line can be modeled by
two separated walks or by a closed walk.

Definition
An event-activity network (EAN) is a directed graph E whose vertices
are called events and whose edges are called activities.
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§1.5 Public Transportation Networks

Timetables for Line Networks

Definition
Let N = (G ,L) be a line network.

I A trip of a line L = (e1, . . . , ek) ∈ L is a pair (τdep, τarr) of maps
τdep, τarr : {1, . . . , k} → R such that

τdep(i) ≤ τarr(i), i = 1, . . . , k

τarr(i) ≤ τdep(i + 1), i = 1, . . . , k − 1.

(10:12, 10:44) (10:46, 10:58)

I A schedule for L is a collection of trips of L.

Trip 1: 10:12→ 10:44
Trip 2: 11:12→ 11:48

Trip 1: 10:46→ 10:58
Trip 2: 11:49→ 12:02

I A timetable for N assigns a schedule to each line.
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§1.5 Public Transportation Networks

Time Expansion
Definition
Consider a timetable T for a line network N . The time expansion of N
w.r.t. T is the event-activity network E , together with the length function
` : E (E)→ R≥0, constructed as follows:

1. For each trip τ = (τdep, τarr) of a line L = (e1, . . . , ek) in N :
I Add departure events (L, τ, i , dep) for i = 1, . . . , k.
I Add arrival events (L, τ, i , arr) for i = 1, . . . , k .
I Add driving activities (L, τ, i , dep)→ (L, τ, i , arr) with length
τarr(i)− τdep(i), i = 1, . . . , k .

I Add waiting activities (L, τ, i , arr)→ (L, τ, i + 1, dep) with length
τdep(i + 1)− τarr(i), i = 1, . . . , k − 1.

2. Add a transfer activity (L, τ, i , arr)→ (L′, τ ′, i ′, dep) with length
τ ′dep(i ′)− τarr(i) for each pair of trips (τ, τ ′) associated to a pair of

lines (L, L′) whenever:
I τ ′dep(i ′)− τarr(i) ≥ 0, and
I the (i + 1)-st vertex of L and the i ′-th vertex of L′ coincide in N ,
I (L, τ, i , arr) and (L′, τ ′, i ′, dep) are not connected by a waiting activity.
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Time Expansion

Remarks
I Trips correspond to certain disjoint directed paths in the EAN.

I The EAN is bipartite, as there are no departure-departure and no
arrival-arrival activities.

I No activity goes “backward in time”: Circuits can only have length 0.

I The number of driving and waiting activities is linear in the number of
trips, whereas the number of transfer activities is quadratic.

I A transfer activity between two trips of a line at one of its endpoints is
called a turnaround activity.

I Often there is no point in a transfer between trips of parallel lines, and
the corresponding transfer activities can be removed.

I Sometimes we want to establish a minimum transfer time, and hence
only add transfer activities where τ ′dep(i ′)− τarr(i) is large enough.

I Footpath information can also be included using transfer activities.
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Time Expansion: Example

Trip 1: 10:12→ 10:44
Trip 2: 11:12→ 11:48

Trip 1: 10:46→ 10:58
Trip 2: 11:49→ 12:02

Trip 1: 11:00→ 11:37

Line 1

Line 2

↓
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§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12→ 10:44
Trip 2: 11:12→ 11:48

Trip 1: 10:46→ 10:58
Trip 2: 11:49→ 12:02

Trip 1: 11:00→ 11:37

Line 1

Line 2

↓

32 2 121,1,1,dep
10:12

1,1,1,arr
10:44

1,1,2,dep
10:46

1,1,2,arr
10:58
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§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12→ 10:44
Trip 2: 11:12→ 11:48

Trip 1: 10:46→ 10:58
Trip 2: 11:49→ 12:02

Trip 1: 11:00→ 11:37

Line 1

Line 2

↓

32 2 12

36 1 13

1,1,1,dep
10:12

1,1,1,arr
10:44

1,1,2,dep
10:46

1,1,2,arr
10:58

1,2,1,dep
11:12

1,2,1,arr
11:48

1,2,2,dep
11:49

1,2,2,arr
12:02
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§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12→ 10:44
Trip 2: 11:12→ 11:48

Trip 1: 10:46→ 10:58
Trip 2: 11:49→ 12:02

Trip 1: 11:00→ 11:37

Line 1

Line 2

↓

32 2 12

36 1 13

37

1,1,1,dep
10:12

1,1,1,arr
10:44

1,1,2,dep
10:46

1,1,2,arr
10:58

1,2,1,dep
11:12

1,2,1,arr
11:48

1,2,2,dep
11:49

1,2,2,arr
12:02

2,1,1,dep
11:00

2,1,2,arr
11:37
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§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12→ 10:44
Trip 2: 11:12→ 11:48

Trip 1: 10:46→ 10:58
Trip 2: 11:49→ 12:02

Trip 1: 11:00→ 11:37

Line 1

Line 2

↓

32 2 12

36 1 13

37

65

16

1,1,1,dep
10:12

1,1,1,arr
10:44

1,1,2,dep
10:46

1,1,2,arr
10:58

1,2,1,dep
11:12

1,2,1,arr
11:48

1,2,2,dep
11:49

1,2,2,arr
12:02

2,1,1,dep
11:00

2,1,2,arr
11:37

April 23, 2018 42 / 42


	S-Bahn Challenge
	The Traveling Salesman Problem
	Generalized Routing Problems
	Public Transportation Networks


