Mathematical Aspects of
Public Transportation Networks

Niels Lindner

April 30, 2018

April 30, 2018 1/35

Chapter 1

S-Bahn Challenge

§1.5 Public Transportation Networks

April 30, 2018

/35

§1.5 Public Transportation Networks
Line Networks

Definition
A line network is a graph G together with a line cover L, i.e.,
L is a set of walks in G such that E(G) = J,c, E(L).

April 30, 2018

3/35

§1.5 Public Transportation Networks
Line Networks and Event-Activity Networks

B!

Remarks
» Depending on the application, line networks may be undirected or
directed.
» The vertices of a line network are stations or stops.
» The elements of L are lines or routes.

» The two directions of a classical path-shaped line can be modeled by
two separated walks or by a closed walk.

Definition
An event-activity network (EAN) is a directed graph £ whose vertices
are called events and whose edges are called activities.

April 30, 2018 4/35

§1.5 Public Transportation Networks
Timetables for Line Networks

Definition
Let V' = (G, L) be a line network.
» Atripofaline L=(ey,...,e) € L is a pair (Tdep, Tarr) of maps
Tdep; Tarr : {1, ..., k} — R such that

Tdep(1) < Tarr(1), i=1,...,k
Tarr(i)STdep(i+1), i=1,...,k—1.
(10:12, 10:44) (10:46, 10:58)
O O
» A schedule for L is a collection of trips of L.
Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
O O

» A timetable for A assigns a schedule to each line.

April 30, 2018 5/35

§1.5 Public Transportation Networks
Time Expansion

Definition B!
Consider a timetable 7 for a line network \. The time expansion of A/
w.r.t. T is the event-activity network &£, together with the length function
¢: E(£) — R>o, constructed as follows:

1. For each trip 7 = (Tdep, Tarr) of @ line L = (e1,..., &) in N:
» Add departure events (L, T,i,dep) for i=1,... k.
» Add arrival events (L,7,i,arr) for i=1,... k.

» Add driving activities (L, T,i,dep) — (L, T, i,arr) with length
Tare(I) — Taep(1), i =1,... k.

» Add waiting activities (L, ,i,arr) — (L, 7,7+ 1,dep) with length
Taep(i +1) = Tan(i), i =1,... k—1.

2. Add a transfer activity (L,T,i,arr) — (L', 7',i’,dep) with length
Taep(i") — Tare(i) for each pair of trips (7,7') associated to a pair of
lines (L, L") whenever:

> Téep(i/) — Tarr(i) > 0, and

» the (i + 1)-st vertex of L and the i’-th vertex of L’ coincide in NV,

» (L,7,i,arr) and (L', 7', i’,dep) are not connected by a waiting activity.
April 30, 2018 6 /35

§1.5 Public Transportation Networks
Time Expansion

Remarks

>

>

>

Trips correspond to certain disjoint directed paths in the EAN.

The EAN is bipartite, as there are no departure-departure and no
arrival-arrival activities.

No activity goes “backward in time": Circuits can only have length 0.

The number of driving and waiting activities is linear in the number of
trips, whereas the number of transfer activities is quadratic.

A transfer activity between two trips of a line at one of its endpoints is
called a turnaround activity.

Often there is no point in a transfer between trips of parallel lines, and
the corresponding transfer activities can be removed.

Sometimes we want to establish a minimum transfer time, and hence
only add transfer activities where 74, (i") — 7ar(i) is large enough.

Footpath information can also be included using transfer activities.

April 30, 2018 7 /35

§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
QO Line 1
Trip 1: 11:00 — 11:37
(O Line 2

April 30, 2018 8 /35

§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
(O Line 1
Trip 1: 11:00 — 11:37
(O Line 2

1

1,1,1,dep 32 JTitar] 2 JT12dep 12 J1.1,2,arr
10:12 7 10:44 7 10:46 7| 10:58

April 30, 2018 8 /35

§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
QO Line 1
Trip 1: 11:00 — 11:37
(O Line 2

1,1,1,dep 32
10:12

JitTar] 2 [Ti2dep 12 JTL2.ar
7 10:44 7 '10:46 7| 10:58

1,2,1,dep 36
11:12

Ji2tar] L [122.dep 13 J1.2.2.arr
7 11:48 7 11:49 7 12:02

April 30, 2018

8/ 35

§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44 Trip 1: 10:46 — 10:58
Trip 2: 11:12 — 11:48 Trip 2: 11:49 — 12:02
QO Line1l
Trip 1: 11:00 — 11:37
(O Line 2

1,1,1,dep 32 JTitar] 2
10:12 7l 10:44

1,2,1,dep 36 JT.2.1ar
1112 7l 11:48

12 J1.1,2,arr
7| 10:58

13

37

April 30, 2018 8 /35

§1.5 Public Transportation Networks
Time Expansion: Example

Trip 1: 10:12 — 10:44
Trip 2: 11:12 — 11:48

Trip 1: 10:46 — 10:58
Trip 2: 11:49 — 12:02

QO Line1l

Trip 1: 11:00 — 11:37

(O Line 2

1.1,1dep 32 JTitarr] 2 JT12dep 12 JT.12ar
10:12 7l 10:44 7 10:58

1,2,1,dep 36 JT.2.1ar
1112 7l 1148 7l 11:49

13 | 1,2,2,arr
1 12:02

April 30, 2018

8/ 35

§1.5 Public Transportation Networks

Timetables for EAN

Definition
A timetable for an EAN & with length function ¢ is a map 7: V(€) — R

such that
V(v,w)e E(E): m(w)—mn(v)="L(v,w).

Remarks
» By construction, a timetable of a line network yields an equivalent
timetable on the time expansion.
» The timetable for the example on the previous slide is the time written
in the vertex labels.
> In other terms: A timetable is a potential for £.

April 30, 2018 9/35

§1.5 Public Transportation Networks
Periodic Timetables

B!

Definition

» A periodic timetable for a line network \ assigns to each line a
collection of periodic trips, i.e., triples (Tqep, Tarr,), where Tqep, Tarr
are defined as before and f € N is a frequency.

» A periodic timetable with period time T € N for an EAN £ with
length function £ is a map 7 : V(£) — [0, T) such that
V(v,w)e E(E): 7(w)—m(v)=4(v,w) mod T.
Intuition

» A periodic trip (Tdep, Tarr, f) corresponds to aperiodic trips
(Tdep +i - o Tar +1i -), i € Z.

» The period time of a periodic time expansion should be an integer
multiple of all trip frequencies.

April 30, 2018 10 / 35

§1.5 Public Transportation Networks
Periodic Time Expansion

Definition
Given a line network with a periodic timetable, its periodic time
expansion is an EAN, together with a non-negative length function ¢ and
a period time T € N, constructed as follows:

» T is the least common multiple of all trip frequencies.

» For each periodic trip with frequency f, we add T /f directed paths
for the pairs (Tgep + i f,Tarr +i-f), i =0,..., T/f — 1, as before.

» Connect any two arrival and departure events with the same
underlying station of the line network by a transfer activity (if there is
no waiting activity). Add a suitable integer multiple of T so that the
length lies in [0, T).

Remark
Taking departure and arrival times modulo T yields a periodic timetable

for the EAN.

April 30, 2018

11/35

§1.5 Public Transportation Networks
Periodic Time Expansion: Example

Trip 1: 10:12 — 10:44 (120') Trip 1: 10:46 — 10:58 (120")
Trip 2: 11:12 — 11:48 (120') Trip 2: 11:49 — 12:02 (120")
O QO Line1l
\ Trip 1: 11:00 — 11:37 (60')

(O Line 2

I

T =120

April 30, 2018 12 / 35

§1.5 Public Transportation Networks
Periodic Time Expansion: Example

Trip 1: 10:12 — 10:44 (120') Trip 1: 10:46 — 10:58 (120") ZD

Trip 2: 11:12 — 11:48 (120') Trip 2: 11:49 — 12:02 (120")
O O Line 1

Trip 1: 11:00 — 11:37 (60")
(O Line 2
T =120
1,1,1,dep 32 JLitar] 2 112dep 2 JT12.ar

12 44 - 46 ’ 58

3
1.2,1,dep 36 Jt2tar] 1 [1.22.dep 13 1,22,
72 7l 108 7l 109 712
2,11,1,dep 37 2,11,2,arr
0 37
2,15,1,dep 37 2,15.2,arr
60 97

April 30, 2018 12 / 35

§1.5 Public Transportation Networks
Periodic Time Expansion: Example

Trip 1: 10:12 — 10:44 (120') Trip 1: 10:46 — 10:58 (120")
Trip 2: 11:12 — 11:48 (120') Trip 2: 11:49 — 12:02 (120")
O O Line 1

Trip 1: 11:00 — 11:37 (60')

(O Line 2

I

T =120

1.1,1,dep 32 JT1tar] 2 [1.12.dep 12 JT.12.ar
12 7 a4 ’ =

2,11,1,dep 2,11,2,arr
0 37

2,15,2,arr
97

April 30, 2018

12 /35

§1.5 Public Transportation Networks
Periodic Time Expansion

Remarks

>

>

>

The EAN is still bipartite.
However, the network may now contain circuits of positive length.

Minimum transfer time analogue: Add a penalty of some multiple of
T to transfers that are too short.

Travel times along driving activities should not be reduced modulo T.

The periodic time expansion contains many transfer activities: If a
station of the line network has a arrivals and d departures, there will
be a- d transfer (or waiting) activities. The transfer and waiting
activities at such a station form a complete bipartite graph K 4.

However, for networks with many trips but short frequencies, there are
much less events than in an aperiodic time expansion.

April 30, 2018 13 /35

§1.5 Public Transportation Networks

S-Bahn Challenge Revisited
Let (£,¢, T) be a periodic time expansion of a line network (

S-Bahn Challenge 1

Define for v € V(G) the set V, of all arrival and departure events in £
associated to v.

Problem: Solve the GATSP on (&£,¢,{V, | v € V(G)}).

S-Bahn Challenge 2

Define for e € E(G) the set E. of all driving activities in £ coming from e,
i.e., the set of all (L, 7,i,dep) — (L, 7,i+ 1,arr) € E(E) where 7 is a trip
of a line L € L that has e as its i-th edge.

Problem: Solve the GDRPP on (&,¢,{Ec | e € E(G)}).

A

Exercise
How to compute walks with start % end?

April 30, 2018 14 /35

§1.5 Public Transportation Networks

S-Bahn Challenge Revisited
Data of graphs involved in solving the GDRPP S-Bahn Challenge: B

Problem # vertices | # edges | opt. tour
CPP line network 36 45 754
GDRPP periodic expansion 530 3554 940
GATSP splitting edges 795 3819 940
ATSP Noon/Bean 265 69960 381685
TSP Jonker/Volgenant 530 | 140185 | 2673935

The GDRPP has 45 clusters containing 265 driving activities.
The optimal closed walk in the GDRPP graph takes 940 minutes.

v

v

v

The optimal non-closed walk takes 839 minutes.

v

Computing a TSP tour which is relatively close to the optimum is not
sufficient: A TSP tour whose value is 1.0001 times the optimum leads
to a GDRPP tour which is more than 4 hours longer.

April 30, 2018 15 /35

Chapter 2
Shortest Routes in
Public Transportation Networks

2.1 Overview

April 30, 2018 16 / 35

§2.1 Overview
Basic Problems

Consider a line network A/ with a timetable.

Definition
Let s and t be stops in V.
» The earliest arrival problem asks for a journey departing from s no
earlier than a given departure time 7 and arriving at t as early as
possible. Short notation: s@7 — t.

» The latest departure problem asks for a journey arriving at t no
later than a given arrival time 7 and departing at s as late as possible.

» The profile or range earliest arrival problem asks for a set of
journeys departing from s within a specified range and arriving at t as
early as possible.

Remark
The latest departure problem can be transformed into an earliest arrival
problem by going backwards in time.

April 30, 2018 17 / 35

§2.1 Overview

Challenges: Time

Example (BVG — Berliner Verkehrsbetriebe)

BVG had 1064 million passengers in 2017. Fahrinfo, the trip planner of
BVG, received 332.8 million requests. This is an average of approx. 633
queries per minute.

» Therefore, shortest route algorithms need to have a very short running
time.

» Usually, the algorithms are divided into a preprocessing phase and a
query phase. This trade-off enables query times of at most a few
milliseconds, whereas preprocessing may take days.

» Asymptotic complexity like Dijkstra’'s O(|E| + |V|log|V]) is not
suitable to measure exact query times.

April 30, 2018 18 /35

§2.1 Overview

Challenges: Space

Example (24 hours of VBB)

Building the time expansion for a normal Tuesday of the Berlin-
Brandenburg area produces the following (numbers are rounded):

> 2.4 million events (from 12000 stops)

v

1.2 million driving activities (from 58000 trips)
» 1.1 million waiting activities
» 78.8 million transfer activities

» > 32 GB memory usage
(naive python/networkx implementation — this has a big overhead)

Conclusion
Time expansions are large graphs. However, they are still sparse: the
complete digraph on 2.4 - 10° vertices has ~ 5.76 - 10'? edges.

April 30, 2018 19 /35

§2.1 Overview

Challenges: More

Models

» A good model is crucial for performance — in both speed and space.

» Although a graph model seems to be natural, there might be better
data structures.

Comparison to road networks
Unlike road networks, ...

» public transportation networks are inherently time-dependent.

» public transportation networks have a poor structure: Shortest routes
in road networks “converge” to highways — this is not the case for
transportation networks within a city.

April 30, 2018 20/ 35

§2.1 Overview

Optimization criteria

Usually, finding a journey solving the earliest arrival problem does notZD
suffice.

More criteria

» minimize the number of transfers

v

find the cheapest route

v

find a robust route (delays)

v

find a generic route that works for most departure times
(guidebook routing)

Multi-criteria optimization

Search for all journeys that are Pareto-optimal, i.e., journeys where a single
criterion cannot be improved without worsening another criterion.

Caveat: There might be exponentially many Pareto-optimal journeys.

April 30, 2018 21/ 35

Chapter 2
Shortest Routes in
Public Transportation Networks

2.2 Graph Methods

April 30, 2018 22 /35

§2.2 Graph Methods
Time-Expanded Dijkstra 1 7
The easiest approach to solve an earliest arrival query s@7 — t is: 1B

Time-Expanded Dijkstra Algorithm — Version 1
Preprocessing

1. Compute the time expansion £ and its timetable 7 for a sufficiently
long time.

Query

1. Add a start vertex to £ and add activities of length 0 to all departure
events of s with departure time > 7.

2. Invoke Dijkstra’s algorithm with start as source. Stop when the first
arrival event of t is labeled permanently. Return the result.

Drawbacks
» We have to insert the start vertex at query time.

» Dijkstra tends to visit a lot of vertices — there are way too many
transfer activities.
April 30, 2018 23/ 35

§2.2 Graph Methods
Time-Expanded Dijkstra 1

Query: s@10:15 — ¢t
full time-expanded graph

Stop s 1 Stop s Stop t 0 Stop t
— Tripl > Tripl —> — Trip 233 > Trip 233 —
arr. 10:11 & dep. 10:12 arr. 11:37 & dep. 11:37
2 Stop s Stop t 0 Stop t
Trip2 —> v —> Trip 234 S Trip 234 —>
dep. 10:24 arr. 11:47 dep. 11:47
N
Stop s 1 Stop s
—> Trip3 > Trip3 |—>
arr. 10:31 dep. 10:32

April 30, 2018 24 /35

§2.2 Graph Methods
Time-Expanded Dijkstra 1

Query: s@10:15 — ¢
full time-expanded graph
Dijkstra from START to any arrival event of t

Stop s 1 Stop s Stop t 0 Stop t
— Trip1l > Tripl [—> — Trip 233 3 Trip 233 —>
arr. 10:11 & dep. 10:12 arr. 11:37 & dep. 11:37
27| Stops Stop t 0 Stop t
Trip2 — R — Trip 234 3 Trip 234 |—3
dep. 10:24 arr. 11:47 dep. 11:47
pVa
Stop s 1 / Stop s
—> Trip3 M Trip3 |—>
arr. 10:31] © dep. 10:32
Q
START

April 30, 2018 24 /35

§2.2 Graph Methods
Time-Expanded Dijkstra 2

Let s@r — t be an earliest arrival query.

Time-Expanded Dijkstra Algorithm — Version 2
Preprocessing

1. Compute the time expansion £ and its timetable 7w without transfer
and waiting activities for a sufficiently long time.

2. For each stop, let vi,..., vk be its events in ascending order w.r.t. the
timetable 7. Introduce activities (vj, vi+1) with length 7(vit1) — 7(vi)
fori=1,...,k—1.

Query

1. Invoke Dijkstra’s algorithm, the source being the first departure event
v of s with m(v) > 7. Stop when the first arrival event of t is labeled
permanently. Return the result.

April 30, 2018 25 /35

§2.2 Graph Methods
Time-Expanded Dijkstra 2

Query: s@10:15 — ¢t
time-expanded graph without transfer and waiting activities

Stop s Stop s Stop t Stop t
—> Tripl Trip1 (= — Trip 233 Trip 233 |—>
arr. 10:11 dep. 10:12 arr. 11:37 dep. 11:37
Stop s Stop t Stop t
Trip2 —> —> Trip 234 Trip 234 |—>
dep. 10:24 arr. 11:47 dep. 11:47
Stop s Stop s
—> Trip3 Trip3 —>
arr. 10:31 dep. 10:32

April 30, 2018 26 / 35

§2.2 Graph Methods
Time-Expanded Dijkstra 2

Query: s@10:15 — ¢
time-expanded graph without transfer and waiting activities
new edges inside stops

Stop s 1 Stop s Stop t 0 Stop t
—> Tripl Tripl —> —> Trip 233 Trip 233 (=)
arr. 10:11 dep. 10:12 arr. 11:37 A0 dep. 11:37
[
) /
Stop s Stop t 0 Stop t
Trip2 —> —> Trip 234 Trip 234 —
1 dep. 10:24 arr. 11:47 dep. 11:47
Stop s / Stop s
—> Trip3 Trip3 |—>
arr. 10:31 dep. 10:32

April 30, 2018 26 / 35

§2.2 Graph Methods
Time-Expanded Dijkstra 2

Query: s@10:15 — ¢
time-expanded graph without transfer and waiting activities
new edges inside stops
Dijkstra from first departure event of s after 7 to any arrival event of t

Stop s 1 Stop s Stop t 0 Stop t
— Tripl Trip1 [—> —{ Trip 233 Trip 233 —>
arr. 10:11 dep. 10:12 arr. 11:37| o dep. 11:37
-
N /
Stop s Stop t 0 Stop t
Trip2 —> —> Trip 234 Trip 234 |—)
1 dep. 10:24 arr. 11:47 dep. 11:47
Stop s / Stop s
—> Trip3 Trip3 |—>
arr. 10:31 dep. 10:32

April 30, 2018 26 / 35

§2.2 Graph Methods
Time-Expanded Dijkstra 2

Observation
Version 2 uses a linear amount of transfer activities — but all transfer

information has gone.

Correction of Version 2 — Version 3
» If each stop in the line network has a minimum change time, we can
incorporate it by using transfer events.
» This is sometimes called the realistic time-expanded graph.
» Adding transfer activities back in enables variable change times as
well.

April 30, 2018 27 /35

§2.2 Graph Methods

Time-Expanded Dijkstra 3
Time-Expanded Dijkstra Algorithm — Version 3
Preprocessing

1. Compute the time expansion £ and its timetable m without transfer,
but with waiting activities for a sufficiently long time.

2. For each stop:

> Let 7min be the minimum change time.
» For each dep. w add a transfer event x with m(x) := m(W) — Trmin-

> Let x1,...,xx be the transfer events of the stop in ascending order
w.r.t. 7. Introduce activities (x;, xi+1) with length m(x;11) — 7(x;) for
i=1,... k-1

» For each arrival event v, add an activity (v, x) of length 7(x) — 7(v),
where x is the first transfer event with m(x) > w(v).

Query
1. Invoke Dijkstra's algorithm, the source being the first transfer event x
of s with 7(x) > 7. Stop when the first arrival event of t is labeled

permanently. Return the result.
April 30, 2018 28 / 35

§2.2 Graph Methods
Time-Expanded Dijkstra 3

Query: s@10:15 — ¢t
time-expanded graph without transfer activities

Stop s 1 Stop s Stop t 0 Stop t
— Trip1l > Tripl —> —> Trip 233 3 Trip 233 —>
arr. 10:11 dep. 10:12 arr. 11:37 dep. 11:37
Stop s Stop t 0 Stop t
Trip2 —> — Trip 234 > Trip 234 |—>
dep. 10:24 arr. 11:47 dep. 11:47
Stop s 1 Stop s
—> Trip3 » Trip3 |—>
arr. 10:31 dep. 10:32

April 30, 2018 29 /35

§2.2 Graph Methods
Time-Expanded Dijkstra 3

Query: s@10:15 — ¢
time-expanded graph without transfer activities
transfer vertices

10:10 |2 11:36 | Z
Stop s 1| = Stop s Stop t 0] = Stop t
— Tripl [Tipl — —> Tiip 233 =¥ Trip 233 |—»
arr. 10:11 |37 dep. 10:12 arr. 11:37 | dep. 11:37
[10:22] [11:26] 7
2 Stop s Stop t 0 3 Stopt
o Trip2 —> —> Trip 234 $ Trip 234 (=
dep. 10:24 arr. 11:47 dep. 11:47
[10:30]
Stop s 1, Stop s
—> Trip3 > Trip3 |f—>
arr. 10:31 dep. 10:32

April 30, 2018 29 /35

§2.2 Graph Methods
Time-Expanded Dijkstra 3

Query: s@10:15 — ¢
time-expanded graph without transfer activities
transfer vertices
Dijkstra from first transfer vertex of s after 7 to any arrival event of t

10:10 |2 11:36 | Z
Stop s 1| = Stop s Stop t 0] = Stopt
— Tripl (= Tripl —> — Trip 233 (=23 Trip 233 |—
arr. 10:11 [dep. 10:12 arr. 1137 |7 dep. 11:37
[10:22] [11:46]
P Stop s Stop t 0 7 Stopt
o Trip2 —> —> Trip 234 S Trip 234 —>
dep. 10:24 arr. 11:47 dep. 11:47
[10:30]
Stop s 1 9“ Stop s
—> Trip3 > Trip3 [—>
arr. 10:31 dep. 10:32

April 30, 2018 29 /35

§2.2 Graph Methods
Time-Expanded Dijkstra 4-

Observation

The source vertex for Dijkstra is now a transfer event, the target vertex is
an arrival event. Therefore we can contract departure events. This reduces
the number of vertices by a third.

Further speed-ups
» A* search, using geographical distance divided by top speed as
heuristic

» bidirectional search

» road network techniques: landmarks, geometric containers, arc flags,
contraction hierarchies, . ..

April 30, 2018 30/ 35

§2.2 Graph Methods
Time-Dependent Dijkstra
Idea ZIB

Since time expansions are large, it could be more efficient not to expand.
The length of the activities then has to be computed at query time.

Let s@7 — t be an earliest arrival query.
Time-Dependent Dijkstra Algorithm
Preprocessing

1. Construct a graph G as follows: Take all stops from the line network.
Add a directed edge (v, w) whenever there is a trip using (v, w).
2. Label each edge (v, w) with a time function £, , such that for any
departure time 7, at v, f(v,w)(T\,) is the earliest arrival time at w.
Query

1. Run Dijkstra’s algorithm on pairs (v, 7,), the queue being initialized
with (s, 7). Stop if (t,7¢) is permanently labeled for some time 7.
Return the result.

April 30, 2018 31/35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example

Suppose we have trips 10:12 — 10:24, 10:22 — 10:34, ... repeating every
10 minutes on an edge e of the line network.

The corresponding time and length functions are piecewise linear:

fo(T) fo(r) — 7

11:10 30

11:00 25

10:50 20

10:40 15 \\\\\

10:30 10

10:20 5

10:10 0 T
10:10 10:20 10:30 10:40 10:50 11:00 10:10 10:20 10:30 10:40 10:50 11:00

time function f, length function fo — 7

April 30, 2018 32/35

§2.2 Graph Methods
Time-Dependent Dijkstra

B!

Time-Dependent Dijkstra Algorithm — Details

1. queue :=|(s,)], for v € V(G):

£y
time(v) = T v ts’ , visited(v) := false, path(v) := [v].
oo otherwise.

2. While queue # (:

» Pop minimal element (u,7,) of queue w.r.t. second entry
> visited(u) := true
> If u=t: break
» For all successors of v of u with visited(v) = false:
> 7, 1= fi,.)(time(u)).
> If 7, < time(v): Insert (v, 7,) into queue, remove (v, time(v)) if
time(v) # oo, and set time(v) := 7, path(v) := path(u) + [v].

3. Return (path(t), time(t)).

April 30, 2018 33/35

§2.2 Graph Methods
Time-Dependent Dijkstra

Correctness ZIB

The algorithm is correct as long as the FIFO principle holds: Vehicles on
the same edge in the line network are not allowed to overtake each other.

Adjustments
» One can also keep track of the trips.

» The function f does not need to be computed explicitly: During
preprocessing, create a sorted list of all trips on all edges. Computing
flu,v) at time time(u) reduces to find the first trip departing after
time(u) on (u, v) (binary search).

» Minimum change times (realistic time-dependent graph): At each
stop v, introduce route vertices for each line stopping at v. There are
three types of directed edges:

> stop to route vertex: length = minimum transfer time
> route vertex to route vertex: time function f as before
> route vertex to stop: length =0

April 30, 2018 34 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)

Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)

Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

B!

Query: Honow @ 07:03 — all stations, without minimum change times

Example (shortest path tree)

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

B!

Query: Honow @ 07:03 — all stations, without minimum change times

Example (shortest path tree)

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

B!

Query: Honow @ 07:03 — all stations, without minimum change times

Example (shortest path tree)

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

B!

Query: Honow @ 07:03 — all stations, without minimum change times

Example (shortest path tree)

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

7:47: Hoénow
;

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

7:47: Hoénow
;

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

7:47: Hoénow
;

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

7:47: Hoénow
;

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

7:47: Hoénow
;

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

7:47: Hoénow
;

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

7:47: Hoénow
;

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

7:47: Hoénow
;

April 30, 2018 35 /35

§2.2 Graph Methods
Time-Dependent Dijkstra

Example (shortest path tree)
Query: Honow @ 07:03 — all stations, without minimum change times

April 30, 2018 35 /35

	S-Bahn Challenge
	Public Transportation Networks

	Shortest Routes in Public Transportation Networks
	Overview
	Graph Methods

