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§1.5 Public Transportation Networks

Line Networks

Definition
A line network is a graph G together with a line cover L, i.e.,
L is a set of walks in G such that E (G ) =

⋃
L∈L E (L).
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§1.5 Public Transportation Networks

Line Networks and Event-Activity Networks

Remarks

I Depending on the application, line networks may be undirected or
directed.

I The vertices of a line network are stations or stops.

I The elements of L are lines or routes.

I The two directions of a classical path-shaped line can be modeled by
two separated walks or by a closed walk.

Definition
An event-activity network (EAN) is a directed graph E whose vertices
are called events and whose edges are called activities.
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§1.5 Public Transportation Networks

Timetables for Line Networks

Definition
Let N = (G ,L) be a line network.

I A trip of a line L = (e1, . . . , ek) ∈ L is a pair (τdep, τarr) of maps
τdep, τarr : {1, . . . , k} → R such that

τdep(i) ≤ τarr(i), i = 1, . . . , k

τarr(i) ≤ τdep(i + 1), i = 1, . . . , k − 1.

(10:12, 10:44) (10:46, 10:58)

I A schedule for L is a collection of trips of L.

Trip 1: 10:12 → 10:44
Trip 2: 11:12 → 11:48

Trip 1: 10:46 → 10:58
Trip 2: 11:49 → 12:02

I A timetable for N assigns a schedule to each line.
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§1.5 Public Transportation Networks

Time Expansion
Definition
Consider a timetable T for a line network N . The time expansion of N
w.r.t. T is the event-activity network E , together with the length function
` : E (E)→ R≥0, constructed as follows:

1. For each trip τ = (τdep, τarr) of a line L = (e1, . . . , ek) in N :
I Add departure events (L, τ, i , dep) for i = 1, . . . , k.
I Add arrival events (L, τ, i , arr) for i = 1, . . . , k .
I Add driving activities (L, τ, i , dep)→ (L, τ, i , arr) with length
τarr(i)− τdep(i), i = 1, . . . , k .

I Add waiting activities (L, τ, i , arr)→ (L, τ, i + 1, dep) with length
τdep(i + 1)− τarr(i), i = 1, . . . , k − 1.

2. Add a transfer activity (L, τ, i , arr)→ (L′, τ ′, i ′, dep) with length
τ ′dep(i ′)− τarr(i) for each pair of trips (τ, τ ′) associated to a pair of

lines (L, L′) whenever:
I τ ′dep(i ′)− τarr(i) ≥ 0, and
I the (i + 1)-st vertex of L and the i ′-th vertex of L′ coincide in N ,
I (L, τ, i , arr) and (L′, τ ′, i ′, dep) are not connected by a waiting activity.
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§1.5 Public Transportation Networks

Time Expansion

Remarks
I Trips correspond to certain disjoint directed paths in the EAN.

I The EAN is bipartite, as there are no departure-departure and no
arrival-arrival activities.

I No activity goes “backward in time”: Circuits can only have length 0.

I The number of driving and waiting activities is linear in the number of
trips, whereas the number of transfer activities is quadratic.

I A transfer activity between two trips of a line at one of its endpoints is
called a turnaround activity.

I Often there is no point in a transfer between trips of parallel lines, and
the corresponding transfer activities can be removed.

I Sometimes we want to establish a minimum transfer time, and hence
only add transfer activities where τ ′dep(i ′)− τarr(i) is large enough.

I Footpath information can also be included using transfer activities.
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§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12 → 10:44
Trip 2: 11:12 → 11:48

Trip 1: 10:46 → 10:58
Trip 2: 11:49 → 12:02

Trip 1: 11:00 → 11:37

Line 1

Line 2

↓
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§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12 → 10:44
Trip 2: 11:12 → 11:48

Trip 1: 10:46 → 10:58
Trip 2: 11:49 → 12:02

Trip 1: 11:00 → 11:37

Line 1

Line 2

↓

32 2 121,1,1,dep
10:12

1,1,1,arr
10:44

1,1,2,dep
10:46

1,1,2,arr
10:58
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§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12 → 10:44
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Trip 1: 10:46 → 10:58
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Trip 1: 11:00 → 11:37

Line 1

Line 2

↓

32 2 12

36 1 13

1,1,1,dep
10:12

1,1,1,arr
10:44

1,1,2,dep
10:46

1,1,2,arr
10:58

1,2,1,dep
11:12

1,2,1,arr
11:48

1,2,2,dep
11:49

1,2,2,arr
12:02
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§1.5 Public Transportation Networks

Time Expansion: Example

Trip 1: 10:12 → 10:44
Trip 2: 11:12 → 11:48

Trip 1: 10:46 → 10:58
Trip 2: 11:49 → 12:02

Trip 1: 11:00 → 11:37

Line 1

Line 2

↓

32 2 12

36 1 13

37

1,1,1,dep
10:12

1,1,1,arr
10:44

1,1,2,dep
10:46

1,1,2,arr
10:58

1,2,1,dep
11:12

1,2,1,arr
11:48

1,2,2,dep
11:49

1,2,2,arr
12:02

2,1,1,dep
11:00

2,1,2,arr
11:37
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Time Expansion: Example
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§1.5 Public Transportation Networks

Timetables for EAN

Definition
A timetable for an EAN E with length function ` is a map π : V (E)→ R
such that

∀ (v ,w) ∈ E (E) : π(w)− π(v) = `(v ,w).

Remarks

I By construction, a timetable of a line network yields an equivalent
timetable on the time expansion.

I The timetable for the example on the previous slide is the time written
in the vertex labels.

I In other terms: A timetable is a potential for E .
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§1.5 Public Transportation Networks

Periodic Timetables

Definition

I A periodic timetable for a line network N assigns to each line a
collection of periodic trips, i.e., triples (τdep, τarr, f ), where τdep, τarr
are defined as before and f ∈ N is a frequency.

I A periodic timetable with period time T ∈ N for an EAN E with
length function ` is a map π : V (E)→ [0,T ) such that

∀ (v ,w) ∈ E (E) : π(w)− π(v) ≡ `(v ,w) mod T .

Intuition

I A periodic trip (τdep, τarr, f ) corresponds to aperiodic trips
(τdep + i · f , τarr + i · f ), i ∈ Z.

I The period time of a periodic time expansion should be an integer
multiple of all trip frequencies.
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§1.5 Public Transportation Networks

Periodic Time Expansion

Definition
Given a line network with a periodic timetable, its periodic time
expansion is an EAN, together with a non-negative length function ` and
a period time T ∈ N, constructed as follows:

I T is the least common multiple of all trip frequencies.

I For each periodic trip with frequency f , we add T/f directed paths
for the pairs (τdep + i · f , τarr + i · f ), i = 0, . . . ,T/f − 1, as before.

I Connect any two arrival and departure events with the same
underlying station of the line network by a transfer activity (if there is
no waiting activity). Add a suitable integer multiple of T so that the
length lies in [0,T ).

Remark
Taking departure and arrival times modulo T yields a periodic timetable
for the EAN.
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§1.5 Public Transportation Networks

Periodic Time Expansion: Example

Trip 1: 10:12 → 10:44 (120’)
Trip 2: 11:12 → 11:48 (120’)

Trip 1: 10:46 → 10:58 (120’)
Trip 2: 11:49 → 12:02 (120’)

Trip 1: 11:00 → 11:37 (60’)

Line 1

Line 2

↓
T = 120
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§1.5 Public Transportation Networks

Periodic Time Expansion: Example

Trip 1: 10:12 → 10:44 (120’)
Trip 2: 11:12 → 11:48 (120’)

Trip 1: 10:46 → 10:58 (120’)
Trip 2: 11:49 → 12:02 (120’)

Trip 1: 11:00 → 11:37 (60’)

Line 1

Line 2

↓
T = 120

32 2 12

36 1 13

37

37

1,1,1,dep
12

1,1,1,arr
44

1,1,2,dep
46

1,1,2,arr
58

1,2,1,dep
72

1,2,1,arr
108

1,2,2,dep
109

1,2,2,arr
2

2,11,1,dep
0

2,11,2,arr
37

2,12,1,dep
60

2,12,2,arr
97
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§1.5 Public Transportation Networks

Periodic Time Expansion

Remarks

I The EAN is still bipartite.

I However, the network may now contain circuits of positive length.

I Minimum transfer time analogue: Add a penalty of some multiple of
T to transfers that are too short.

I Travel times along driving activities should not be reduced modulo T .

I The periodic time expansion contains many transfer activities: If a
station of the line network has a arrivals and d departures, there will
be a · d transfer (or waiting) activities. The transfer and waiting
activities at such a station form a complete bipartite graph Ka,d .

I However, for networks with many trips but short frequencies, there are
much less events than in an aperiodic time expansion.
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§1.5 Public Transportation Networks

S-Bahn Challenge Revisited

Let (E , `,T ) be a periodic time expansion of a line network (G ,L).

S-Bahn Challenge 1

Define for v ∈ V (G ) the set Vv of all arrival and departure events in E
associated to v .

Problem: Solve the GATSP on (E , `, {Vv | v ∈ V (G )}).

S-Bahn Challenge 2

Define for e ∈ E (G ) the set Ee of all driving activities in E coming from e,
i.e., the set of all (L, τ, i , dep)→ (L, τ, i + 1, arr) ∈ E (E) where τ is a trip
of a line L ∈ L that has e as its i-th edge.

Problem: Solve the GDRPP on (E , `, {Ee | e ∈ E (G )}).

Exercise
How to compute walks with start 6= end?
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§1.5 Public Transportation Networks

S-Bahn Challenge Revisited
Data of graphs involved in solving the GDRPP S-Bahn Challenge:

Problem # vertices # edges opt. tour

CPP line network 36 45 754
GDRPP periodic expansion 530 3 554 940
GATSP splitting edges 795 3 819 940
ATSP Noon/Bean 265 69 960 381 685
TSP Jonker/Volgenant 530 140 185 2 673 935

I The GDRPP has 45 clusters containing 265 driving activities.

I The optimal closed walk in the GDRPP graph takes 940 minutes.

I The optimal non-closed walk takes 839 minutes.

I Computing a TSP tour which is relatively close to the optimum is not
sufficient: A TSP tour whose value is 1.0001 times the optimum leads
to a GDRPP tour which is more than 4 hours longer.
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Chapter 2

Shortest Routes in
Public Transportation Networks

§2.1 Overview
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§2.1 Overview

Basic Problems
Consider a line network N with a timetable.

Definition
Let s and t be stops in N .

I The earliest arrival problem asks for a journey departing from s no
earlier than a given departure time τ and arriving at t as early as
possible. Short notation: s@τ → t.

I The latest departure problem asks for a journey arriving at t no
later than a given arrival time τ and departing at s as late as possible.

I The profile or range earliest arrival problem asks for a set of
journeys departing from s within a specified range and arriving at t as
early as possible.

Remark
The latest departure problem can be transformed into an earliest arrival
problem by going backwards in time.
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§2.1 Overview

Challenges: Time

Example (BVG – Berliner Verkehrsbetriebe)

BVG had 1 064 million passengers in 2017. Fahrinfo, the trip planner of
BVG, received 332.8 million requests. This is an average of approx. 633
queries per minute.

I Therefore, shortest route algorithms need to have a very short running
time.

I Usually, the algorithms are divided into a preprocessing phase and a
query phase. This trade-off enables query times of at most a few
milliseconds, whereas preprocessing may take days.

I Asymptotic complexity like Dijkstra’s O(|E |+ |V | log |V |) is not
suitable to measure exact query times.
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§2.1 Overview

Challenges: Space

Example (24 hours of VBB)

Building the time expansion for a normal Tuesday of the Berlin-
Brandenburg area produces the following (numbers are rounded):

I 2.4 million events (from 12 000 stops)

I 1.2 million driving activities (from 58 000 trips)

I 1.1 million waiting activities

I 78.8 million transfer activities

I > 32 GB memory usage
(naive python/networkx implementation – this has a big overhead)

Conclusion
Time expansions are large graphs. However, they are still sparse: the
complete digraph on 2.4 · 106 vertices has ≈ 5.76 · 1012 edges.
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§2.1 Overview

Challenges: More

Models

I A good model is crucial for performance – in both speed and space.

I Although a graph model seems to be natural, there might be better
data structures.

Comparison to road networks

Unlike road networks, . . .

I public transportation networks are inherently time-dependent.

I public transportation networks have a poor structure: Shortest routes
in road networks “converge” to highways – this is not the case for
transportation networks within a city.
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§2.1 Overview

Optimization criteria

Usually, finding a journey solving the earliest arrival problem does not
suffice.

More criteria

I minimize the number of transfers

I find the cheapest route

I find a robust route (delays)

I find a generic route that works for most departure times
(guidebook routing)

Multi-criteria optimization

Search for all journeys that are Pareto-optimal, i.e., journeys where a single
criterion cannot be improved without worsening another criterion.
Caveat: There might be exponentially many Pareto-optimal journeys.
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Chapter 2

Shortest Routes in
Public Transportation Networks

§2.2 Graph Methods
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§2.2 Graph Methods

Time-Expanded Dijkstra 1
The easiest approach to solve an earliest arrival query s@τ → t is:

Time-Expanded Dijkstra Algorithm – Version 1

Preprocessing

1. Compute the time expansion E and its timetable π for a sufficiently
long time.

Query

1. Add a start vertex to E and add activities of length 0 to all departure
events of s with departure time ≥ τ .

2. Invoke Dijkstra’s algorithm with start as source. Stop when the first
arrival event of t is labeled permanently. Return the result.

Drawbacks

I We have to insert the start vertex at query time.

I Dijkstra tends to visit a lot of vertices – there are way too many
transfer activities.
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§2.2 Graph Methods

Time-Expanded Dijkstra 1

Query: s@10:15→ t
full time-expanded graph

1

1

0

0

13

21

10

Stop s
Trip 1

arr. 10:11

Stop s
Trip 3

arr. 10:31

Stop s
Trip 1

dep. 10:12

Stop s
Trip 2

dep. 10:24

Stop s
Trip 3

dep. 10:32

Stop t
Trip 233
arr. 11:37

Stop t
Trip 234
arr. 11:47

Stop t
Trip 233
dep. 11:37

Stop t
Trip 234
dep. 11:47

. . .
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§2.2 Graph Methods

Time-Expanded Dijkstra 1

Query: s@10:15→ t
full time-expanded graph

Dijkstra from START to any arrival event of t

1

1

0

0

13

21

10

0

0

Stop s
Trip 1

arr. 10:11

Stop s
Trip 3

arr. 10:31

Stop s
Trip 1

dep. 10:12

Stop s
Trip 2

dep. 10:24

Stop s
Trip 3

dep. 10:32

Stop t
Trip 233
arr. 11:37

Stop t
Trip 234
arr. 11:47

Stop t
Trip 233
dep. 11:37

Stop t
Trip 234
dep. 11:47

. . .

START
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§2.2 Graph Methods

Time-Expanded Dijkstra 2

Let s@τ → t be an earliest arrival query.

Time-Expanded Dijkstra Algorithm – Version 2

Preprocessing

1. Compute the time expansion E and its timetable π without transfer
and waiting activities for a sufficiently long time.

2. For each stop, let v1, . . . , vk be its events in ascending order w.r.t. the
timetable π. Introduce activities (vi , vi+1) with length π(vi+1)− π(vi )
for i = 1, . . . , k − 1.

Query

1. Invoke Dijkstra’s algorithm, the source being the first departure event
v of s with π(v) ≥ τ . Stop when the first arrival event of t is labeled
permanently. Return the result.
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§2.2 Graph Methods

Time-Expanded Dijkstra 2

Query: s@10:15→ t
time-expanded graph without transfer and waiting activities

Stop s
Trip 1

arr. 10:11

Stop s
Trip 3

arr. 10:31

Stop s
Trip 1

dep. 10:12

Stop s
Trip 2

dep. 10:24

Stop s
Trip 3

dep. 10:32

Stop t
Trip 233
arr. 11:37

Stop t
Trip 234
arr. 11:47

Stop t
Trip 233
dep. 11:37

Stop t
Trip 234
dep. 11:47
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§2.2 Graph Methods

Time-Expanded Dijkstra 2

Query: s@10:15→ t
time-expanded graph without transfer and waiting activities

new edges inside stops

1

1
2

7

1

0

10

0

Stop s
Trip 1

arr. 10:11

Stop s
Trip 3

arr. 10:31

Stop s
Trip 1

dep. 10:12

Stop s
Trip 2

dep. 10:24

Stop s
Trip 3

dep. 10:32

Stop t
Trip 233
arr. 11:37

Stop t
Trip 234
arr. 11:47

Stop t
Trip 233
dep. 11:37

Stop t
Trip 234
dep. 11:47
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§2.2 Graph Methods

Time-Expanded Dijkstra 2

Query: s@10:15→ t
time-expanded graph without transfer and waiting activities

new edges inside stops
Dijkstra from first departure event of s after τ to any arrival event of t

1

1
2

7

1

0

10

0

Stop s
Trip 1

arr. 10:11

Stop s
Trip 3

arr. 10:31

Stop s
Trip 1

dep. 10:12

Stop s
Trip 2

dep. 10:24

Stop s
Trip 3

dep. 10:32

Stop t
Trip 233
arr. 11:37

Stop t
Trip 234
arr. 11:47

Stop t
Trip 233
dep. 11:37

Stop t
Trip 234
dep. 11:47
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§2.2 Graph Methods

Time-Expanded Dijkstra 2

Observation
Version 2 uses a linear amount of transfer activities – but all transfer
information has gone.

Correction of Version 2 → Version 3

I If each stop in the line network has a minimum change time, we can
incorporate it by using transfer events.

I This is sometimes called the realistic time-expanded graph.

I Adding transfer activities back in enables variable change times as
well.
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§2.2 Graph Methods

Time-Expanded Dijkstra 3
Time-Expanded Dijkstra Algorithm – Version 3

Preprocessing

1. Compute the time expansion E and its timetable π without transfer,
but with waiting activities for a sufficiently long time.

2. For each stop:
I Let τmin be the minimum change time.
I For each dep. w add a transfer event x with π(x) := π(w)− τmin.
I Let x1, . . . , xk be the transfer events of the stop in ascending order

w.r.t. π. Introduce activities (xi , xi+1) with length π(xi+1)− π(xi ) for
i = 1, . . . , k − 1.

I For each arrival event v , add an activity (v , x) of length π(x)− π(v),
where x is the first transfer event with π(x) ≥ π(v).

Query

1. Invoke Dijkstra’s algorithm, the source being the first transfer event x
of s with π(x) ≥ τ . Stop when the first arrival event of t is labeled
permanently. Return the result.
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§2.2 Graph Methods

Time-Expanded Dijkstra 3

Query: s@10:15→ t
time-expanded graph without transfer activities

1

1

0

0

Stop s
Trip 1

arr. 10:11

Stop s
Trip 3

arr. 10:31

Stop s
Trip 1

dep. 10:12

Stop s
Trip 2

dep. 10:24

Stop s
Trip 3

dep. 10:32

Stop t
Trip 233
arr. 11:37

Stop t
Trip 234
arr. 11:47

Stop t
Trip 233
dep. 11:37

Stop t
Trip 234
dep. 11:47
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§2.2 Graph Methods

Time-Expanded Dijkstra 3

Query: s@10:15→ t
time-expanded graph without transfer activities

transfer vertices

1

1

0

0

11 9

2

1
2

28

2

1

1
0

1

Stop s
Trip 1

arr. 10:11

Stop s
Trip 3

arr. 10:31

Stop s
Trip 1

dep. 10:12

Stop s
Trip 2

dep. 10:24

Stop s
Trip 3

dep. 10:32

Stop t
Trip 233
arr. 11:37

Stop t
Trip 234
arr. 11:47

Stop t
Trip 233
dep. 11:37

Stop t
Trip 234
dep. 11:47

10:10

10:22

10:30

11:36

11:46
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§2.2 Graph Methods

Time-Expanded Dijkstra 3

Query: s@10:15→ t
time-expanded graph without transfer activities

transfer vertices
Dijkstra from first transfer vertex of s after τ to any arrival event of t
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0

0

11 9

2
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2

28

2

1

1
0

1

Stop s
Trip 1

arr. 10:11

Stop s
Trip 3

arr. 10:31

Stop s
Trip 1

dep. 10:12

Stop s
Trip 2

dep. 10:24

Stop s
Trip 3

dep. 10:32

Stop t
Trip 233
arr. 11:37

Stop t
Trip 234
arr. 11:47

Stop t
Trip 233
dep. 11:37

Stop t
Trip 234
dep. 11:47

10:10

10:22

10:30

11:36

11:46
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§2.2 Graph Methods

Time-Expanded Dijkstra 4-

Observation
The source vertex for Dijkstra is now a transfer event, the target vertex is
an arrival event. Therefore we can contract departure events. This reduces
the number of vertices by a third.

Further speed-ups

I A∗ search, using geographical distance divided by top speed as
heuristic

I bidirectional search

I road network techniques: landmarks, geometric containers, arc flags,
contraction hierarchies, . . .
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§2.2 Graph Methods

Time-Dependent Dijkstra

Idea
Since time expansions are large, it could be more efficient not to expand.
The length of the activities then has to be computed at query time.

Let s@τ → t be an earliest arrival query.

Time-Dependent Dijkstra Algorithm

Preprocessing

1. Construct a graph G as follows: Take all stops from the line network.
Add a directed edge (v ,w) whenever there is a trip using (v ,w).

2. Label each edge (v ,w) with a time function f(v ,w) such that for any
departure time τv at v , f(v ,w)(τv ) is the earliest arrival time at w .

Query

1. Run Dijkstra’s algorithm on pairs (v , τv ), the queue being initialized
with (s, τ). Stop if (t, τt) is permanently labeled for some time τt .
Return the result.

April 30, 2018 31 / 35



§2.2 Graph Methods

Time-Dependent Dijkstra

Example

Suppose we have trips 10:12 → 10:24, 10:22 → 10:34, . . . repeating every
10 minutes on an edge e of the line network.
The corresponding time and length functions are piecewise linear:

τ

fe(τ)

10:10 10:20 10:30 10:40 10:50 11:00
10:10

10:20

10:30

10:40

10:50

11:00

11:10

time function fe

τ

fe(τ)− τ

10:10 10:20 10:30 10:40 10:50 11:00
0

5

10

15

20

25

30

length function fe − τ
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§2.2 Graph Methods

Time-Dependent Dijkstra

Time-Dependent Dijkstra Algorithm – Details

1. queue := [(s, τ)], for v ∈ V (G ):

time(v) :=

{
τ if v = s,

∞ otherwise.
, visited(v) := false, path(v) := [v ].

2. While queue 6= ∅:
I Pop minimal element (u, τu) of queue w.r.t. second entry
I visited(u) := true
I If u = t: break
I For all successors of v of u with visited(v) = false:

I τv := f(u,v)(time(u)).
I If τv < time(v): Insert (v , τv ) into queue, remove (v , time(v)) if

time(v) 6= ∞, and set time(v) := τv , path(v) := path(u) + [v ].

3. Return (path(t), time(t)).

April 30, 2018 33 / 35



§2.2 Graph Methods

Time-Dependent Dijkstra

Correctness
The algorithm is correct as long as the FIFO principle holds: Vehicles on
the same edge in the line network are not allowed to overtake each other.

Adjustments
I One can also keep track of the trips.

I The function f does not need to be computed explicitly: During
preprocessing, create a sorted list of all trips on all edges. Computing
f(u,v) at time time(u) reduces to find the first trip departing after
time(u) on (u, v) (binary search).

I Minimum change times (realistic time-dependent graph): At each
stop v , introduce route vertices for each line stopping at v . There are
three types of directed edges:

I stop to route vertex: length = minimum transfer time
I route vertex to route vertex: time function f as before
I route vertex to stop: length = 0
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

Hönow
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:38 7:05 Hönow
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:45

7:47 7:38

7:50

7:05 Hönow

7:53
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:49 7:45 7:50

7:47 7:38

7:50

7:05 Hönow

7:48

7:53
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:52 7:49 7:45 7:50

7:47 7:38

7:50

7:05 Hönow

7:59

7:48

7:53
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:52 7:49 7:45 7:50

7:47 7:38

7:50

7:05 Hönow

7:59

7:57 7:48

8:05

7:53

7:52
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:52 7:50 7:49 7:45 7:50

7:47 7:38

7:50

7:05 Hönow

7:59
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7:53

7:52
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Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:52 7:507:50 7:49 7:45 7:50

7:47 7:38

7:50

7:55

7:05 Hönow

7:59

7:577:53 7:48

8:05

7:53

7:52
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Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times
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8:05
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:55 7:52 7:507:50 7:49 7:45 7:50

7:47 7:38

7:50

7:55

7:05 Hönow

7:59

7:577:53 7:48

8:05

7:53

7:52
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:55 7:52 7:507:50 7:49 7:45 7:50

7:47 7:38

7:50

7:55

7:05 Hönow

7:59

7:577:53

8:04

7:48

8:05

7:53

7:52
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:55 7:52 7:507:50 7:49 7:45 7:50

7:47 7:38

7:50

7:55

7:05 Hönow

7:55

7:577:53

8:04

7:48

8:05

8:03

7:53
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:55 7:52 7:507:50 7:49 7:45 7:50

8:04 7:47 7:38

7:50

7:55

7:05 Hönow

8:11

7:55

7:577:53

8:04

7:48

8:05

8:03

7:53

7:52
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:04 7:47 7:38

7:50

7:55

7:05 Hönow

8:11

7:55

7:577:53

8:04

7:48

8:05

8:03

7:53

7:52
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:04 7:47 7:38

7:50

7:55

8:01

7:05 Hönow

8:11

7:55

7:577:53

8:047:57

7:48

8:05

8:03

7:53

7:52
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:06 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:00 7:47 7:38

7:50

8:00

7:55

8:01

7:05 Hönow

8:11

7:55

7:577:53

8:047:57

7:48

8:05

8:03

7:53

7:52

April 30, 2018 35 / 35



§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:06 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:00 7:47 7:38

7:50

7:59

8:00

7:55

8:01

7:05 Hönow

8:11

7:55

7:577:53

8:047:57

7:48

8:05

8:03

7:53

7:52

8:04
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:06 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:05 8:00 7:47 7:38

7:50

8:20

7:59

8:00

7:55

8:01

7:05 Hönow

8:11

7:55

7:577:53

8:047:57

7:48

8:05

8:03

7:53

7:52

8:04
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:02 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:04 8:008:00 7:47 7:38

7:50

8:20

7:59

8:00

7:55

8:01

7:05 Hönow

8:11

7:55

7:577:53

8:047:57

7:48

8:05

8:03

7:53

7:52

8:04
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§2.2 Graph Methods

Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:01 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:04 8:008:00 7:47 7:38

7:50

8:20

7:59

8:00

7:55

8:01

7:05 Hönow

8:11

7:55

7:577:53

8:047:57

7:48

8:05

8:03

7:53

7:52

8:04
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Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:07 8:01 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:04 8:008:00 7:47 7:38

7:50

8:20

7:59

8:00

7:55

8:01

7:05 Hönow

8:11

7:55

7:577:53

8:047:57

7:48

8:05

8:03

7:53

7:52

8:04
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Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:07 8:01 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:04 8:008:00 7:47 7:38

7:50

8:20

7:59

8:00

7:55

8:01
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7:55
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Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:07 8:01 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:04 8:008:00 7:47 7:38
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Time-Dependent Dijkstra

Example (shortest path tree)

Query: Hönow @ 07:03 → all stations, without minimum change times

8:07 8:01 7:57 7:55 7:52 7:507:50 7:49 7:45 7:50

8:18 8:04 8:008:00 7:47 7:38

7:50

8:20

7:59

8:00

7:55

8:01

7:05 Hönow

8:11

7:55

7:577:53

8:04

8:22

7:57

7:48

8:05

8:03

7:53

7:52

8:04
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