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§2.4 Multi-Modal Routing

Multi-Modal Routing

Multi-modal routing is a holistic routing approach including

I road networks

I public transportation networks

I flight networks

I . . .

The routing on road networks could include private cars, taxis, bicycles,
footpaths, . . . .

Idea
Merge road networks with graphs coming from the realistic time-dependent
model for public transportation/flight networks.
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Road and Flight Networks

Road networks
Road networks are modeled as a directed graph in the naive way:

I vertices are intersections of roads,

I edges are road segments.

We can also include footpaths into this model. Additionally put a label on
each edge specifying whether the corresponding segment is a highway, a
local street, a cycle lane, a footpath, . . . . This is important for estimating
the travel time.

Flight networks

Flight networks can be modeled in the same way as public transportation
networks, e.g., as in the realistic time-dependent model. It makes sense to
distinguish transfers within an alliance from other transfers.
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Linking

Question
How to link road networks with public transportation networks?

Recall that the vertex set of the realistic time-dependent model for a public
transportation network comprises station vertices and route vertices:

Alexander-
platz

U2

U5

U8

Schillingstr.U5

Rosa-Luxemburg-
Platz

U2Klosterstr. U2

Jannowitzbrücke U8 Weinmeisterstr.U8

Route vertices are neither startpoints nor endpoints of a journey.

Idea
Introduce a directed edge from every station vertex to the nearest vertex
(i.e., intersection) of the road network. Also add an edge in the backward
direction.
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Linking

More on linking

I The travel time on such a link may be estimated by geographical
distance divided by minimum walking speed.

I Station vertices may also be linked to several nearest vertices.

I There is no point in linking every vertex of a road network to the
nearest station, as this results in long footpaths.

I The linking process between flight and road network is similar.

I Flight and public transport networks should also be linked directly.

Result
The result is a directed graph, where earliest arrival queries can be solved
by applying (time-dependent) Dijkstra.
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Label-Constrained Shortest Walks

Problems

I This produces useless journeys, e.g., private car - train - private car.

I Even a journey private car - train is useless for people without cars.

Solution
Restrict the possible sequences of transport modes in a journey. This is
called the label-constrained shortest walk problem. Here, we label each
edge by its mode of transportation.
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Formal Languages

Definition
Let Σ be a non-empty finite set (alphabet).

I A word on Σ is a finite sequence a1 · · · an, where a1, . . . , an ∈ Σ.

I Σ∗ denotes the set of all words on Σ, including the empty word ε.
(Kleene star)

I If x and y are two words in Σ∗, their concatenation is xy ∈ Σ∗.

I A language L on the alphabet Σ is simply a subset of Σ∗.

Definition
Let G = (V ,E ) be a weighted directed graph, and s, t ∈ V . Further let
σ : E → Σ be a labeling of the edges in E with letters from an alphabet Σ,
and let L ⊆ Σ∗ be a language.
The label-constrained shortest s-t-walk problem (LCSWP) is to find
an s-t-walk (e1, . . . , ek) of minimum length such that σ(e1) · · ·σ(ek) ∈ L.
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Regular Languages

Theorem (Barret/Jacob/Marathe, 2000)

If L is a regular language, then the LCSWP on L can be solved in
polynomial time.

Definition (Regular languages/Regular expressions)

Let Σ be an alphabet. A language L ⊆ Σ∗ is regular if it can be
constructed using the following rules:

I ∅ is regular.

I {ε} is regular.

I {a} is regular for all a ∈ Σ.

I If L1 is regular, then so is L∗1 := {x1 · · · xn | x1, . . . , xn ∈ L1, n ∈ N0}.
I If L1 and L2 are regular, then so is L1L2 := {xy | x ∈ L1, y ∈ L2}.
I if L1 and L2 are regular, then so is L1 ∪ L2.

May 14, 2018 9 / 21



§2.4 Multi-Modal Routing

Regular Languages: Example

Example

Let Σ = {c , t,w} (car ride, train ride, walk). Then L = {cw∗tw∗} is
regular, where w∗ denotes an arbitrary finite sequence of w ’s. That is,

L = {ct, cwt, ctw , cwwt, cwtw , ctww , cwwwt, cwwtw , cwtww , ctwww , . . . }

Construction of L:

1. Lc = {c}, Lw = {w} and Lt = {t} are regular languages.

2. L∗w is regular.

3. The concatenation LcL
∗
wLtL

∗
w is regular.

Remark
Expressions of the form cw∗tw∗ are called regular expressions. Regular
languages are precisely the languages generated by regular expressions.
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Deterministic Finite Automata

Definition
A deterministic finite automaton (DFA) is a 5-tuple
M = (Q,Σ, δ, q0,F ), where

I Q is a finite set of states,

I Σ is an input alphabet,

I δ : Q × Σ→ Q is a transition function,

I q0 ∈ Q is a start state,

I F ⊆ Q is a set of final states.

The language accepted by M is{
a1 · · · an ∈ Σ∗

∣∣∣∣ ∃ q1, . . . , qn−1 ∈ Q, qn ∈ F :
δ(qi−1, ai ) = qi for i = 1, . . . , n

}
.
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DFA: Example

Example

Consider the following DFA:

c

w
, t

w

t

c

w

c,
t

c, t,w

q0start q1 q2

q3

I Q = {q0, q1, q2, q3}
I Σ = {c , t,w}
I F = {q2}

I

δ c t w

q0 q1 q3 q3
q1 q3 q2 q1
q2 q3 q3 q2
q3 q3 q3 q3

This DFA accepts all words on a directed walk from q0 to q2, i. e., all
regular expressions of the form cw∗tw∗.

May 14, 2018 12 / 21



§2.4 Multi-Modal Routing

Regular Languages, DFA and NFA
Theorem
Let L be a language. Then the following are equivalent:

I L is regular.

I L is accepted by some DFA.

I L is accepted by some NFA.

Definition
A non-deterministic finite automaton (NFA) is a 5-tuple
N = (Q,Σ, δ,S ,F ), where

I Q, Σ, F are as in the DFA case,

I δ : Q × Σ→ P(Q) takes values in the power set of Q,

I S is a set of start states.

The language accepted by N is{
a1 · · · an ∈ Σ∗

∣∣∣∣ ∃ q0 ∈ S , q1, . . . , qn−1 ∈ Q, qn ∈ F :
qi ∈ δ(qi−1, ai ) for i = 1, . . . , n

}
.
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DFA and NFA

Remarks

I NFA can be drawn as directed graphs in a similar way.

I NFAs accept words for which there is a valid directed walk. Unlike in
DFAs, there might be more than one walk corresponding to a word.

I Any DFA is trivially an NFA.

I Every NFA can be turned into an equivalent, but potentially much
bigger DFA.

I NFAs are a good choice when alternatives should be modeled, i.e., the
union of two regular languages.

I NFAs can die in the sense that δ(q, a) = ∅ for the current state q and
input letter a.

I In our example, we could therefore construct a smaller NFA by
omitting the state q3.
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LCSWP: Algorithm

Let G be a weighted digraph, s, t ∈ V (G ), L ⊆ Σ∗ a regular language and
σ : E (G )→ Σ.

LCSWP Algorithm

1. Construct an NFA N = (Q,Σ, δ,S ,F ) accepting precisely L.

2. Construct the product network G× as follows:
I V (G×) := V (G )× Q
I E (G×) := {((v1, q1), (v2, q2)) | (v1, v2) ∈ E (G ), q2 ∈ δ(q1, σ(v1, v2))},

keep the weights.

3. Compute all shortest paths from (s, qs) to (t, qf ) for all qs ∈ S and
qf ∈ F .

4. Determine the path of minimum length and return its projection to G
(or return that no walk exists).
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LCSWP: Remarks

Correctness

I Any path in G× projects to a walk in G and to a walk in the state
graph of the NFA N. In particular, any (s, qs)-(t, qf )-path in G× gives
an s-t-walk in G labeled with a word accepted by N, i.e., a word in L.

I Concept: Minimize over all s-t-walks and all possible words on them.

I Note that the solution to the LCSWP might include repeated vertices.

Complexity

The product network has |V (G )| · |Q| vertices and O(|E (G )| · |Q|) edges.
The Dijkstra algorithm needs hence

O(|S ||F |(|V (G )||Q| log(|V (G )||Q|) + |E (G )||Q|))

elementary operations to solve the many-to-many shortest-path problem.
Since |S |, |F | ≤ |Q|, this is polynomial if we can bound |Q|. Given a
regular expression with ` characters, Thompson’s construction yields an
NFA with O(`) states, so |Q| is linear in the input size of L.
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Multi-Modal Routing: DFA
What are good regular languages for multi-modal routing?

Thomas Pajor: Multi-Modal Route Planning, Diplomarbeit, 2009.
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Multi-Modal Routing: NFA
What are good regular languages for multi-modal routing?

Thomas Pajor: Multi-Modal Route Planning, Diplomarbeit, 2009.
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More on Multi-Modal Routing

I Of course, running Dijkstra’s algorithm on the product network is not
the end of the story.

I Several speed-ups (mostly from road network techniques) are available.

I However, some preprocessing strategies do not allow a user to specify
his preferences (e.g., is there a private car available?).

I Multi-criteria optimization is important as well (number of changes of
transport modes, price)  Multi-Modal Multi-Criteria RAPTOR.
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§3.1 Overview
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Public Transport Planning Cycle

Network Design

Line Planning

Timetabling

Vehicle Scheduling

Duty Scheduling

Crew Rostering

strategic planning

operational planning
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