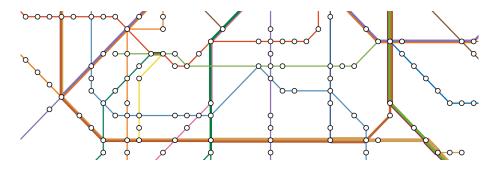
Mathematical Aspects of Public Transportation Networks

Niels Lindner



May 14, 2018

Chapter 2

Shortest Routes in Public Transportation Networks

§2.4 Multi-Modal Routing

Multi-modal routing is a holistic routing approach including

- road networks
- public transportation networks
- flight networks

► ...

The routing on road networks could include private cars, taxis, bicycles, footpaths,

Idea

Merge road networks with graphs coming from the realistic time-dependent model for public transportation/flight networks.

Road networks

Road networks are modeled as a directed graph in the naive way:

- vertices are intersections of roads,
- edges are road segments.

We can also include footpaths into this model. Additionally put a label on each edge specifying whether the corresponding segment is a highway, a local street, a cycle lane, a footpath, This is important for estimating the travel time.

Flight networks

Flight networks can be modeled in the same way as public transportation networks, e.g., as in the realistic time-dependent model. It makes sense to distinguish transfers within an alliance from other transfers.

§2.4 Multi-Modal Routing Linking

Question

How to link road networks with public transportation networks?

Recall that the vertex set of the realistic time-dependent model for a public transportation network comprises station vertices and route vertices:

Idea

Introduce a directed edge from every station vertex to the nearest vertex (i.e., intersection) of the road network. Also add an edge in the backward direction.

More on linking

- The travel time on such a link may be estimated by geographical distance divided by minimum walking speed.
- Station vertices may also be linked to several nearest vertices.
- There is no point in linking every vertex of a road network to the nearest station, as this results in long footpaths.
- ► The linking process between flight and road network is similar.
- Flight and public transport networks should also be linked directly.

Result

The result is a directed graph, where earliest arrival queries can be solved by applying (time-dependent) Dijkstra.

Problems

- > This produces useless journeys, e.g., private car train private car.
- Even a journey private car train is useless for people without cars.

Solution

Restrict the possible sequences of transport modes in a journey. This is called the *label-constrained shortest walk problem*. Here, we label each edge by its mode of transportation.

§2.4 Multi-Modal Routing Formal Languages

Definition

Let Σ be a non-empty finite set (alphabet).

- A word on Σ is a finite sequence $a_1 \cdots a_n$, where $a_1, \ldots, a_n \in \Sigma$.
- Σ* denotes the set of all words on Σ, including the *empty word* ε.
 (Kleene star)
- If x and y are two words in Σ^* , their **concatenation** is $xy \in \Sigma^*$.
- A language L on the alphabet Σ is simply a subset of Σ^* .

Definition

Let G = (V, E) be a weighted directed graph, and $s, t \in V$. Further let $\sigma : E \to \Sigma$ be a labeling of the edges in E with letters from an alphabet Σ , and let $L \subseteq \Sigma^*$ be a language.

The label-constrained shortest *s*-*t*-walk problem (LCSWP) is to find an *s*-*t*-walk (e_1, \ldots, e_k) of minimum length such that $\sigma(e_1) \cdots \sigma(e_k) \in L$.

Theorem (Barret/Jacob/Marathe, 2000)

If L is a regular language, then the LCSWP on L can be solved in polynomial time.

Definition (Regular languages/Regular expressions)

Let Σ be an alphabet. A language $L \subseteq \Sigma^*$ is **regular** if it can be constructed using the following rules:

- ► Ø is regular.
- $\{\varepsilon\}$ is regular.
- $\{a\}$ is regular for all $a \in \Sigma$.
- If L_1 is regular, then so is $L_1^* := \{x_1 \cdots x_n \mid x_1, \dots, x_n \in L_1, n \in \mathbb{N}_0\}.$
- If L_1 and L_2 are regular, then so is $L_1L_2 := \{xy \mid x \in L_1, y \in L_2\}.$
- if L_1 and L_2 are regular, then so is $L_1 \cup L_2$.

Regular Languages: Example

Example

Let $\Sigma = \{c, t, w\}$ (car ride, train ride, walk). Then $L = \{cw^*tw^*\}$ is regular, where w^* denotes an arbitrary finite sequence of w's. That is,

 $L = \{ ct, cwt, ctw, cwwt, cwtw, ctww, cwwwt, cwwtw, cwtww, ctwww, \dots \}$

Construction of L:

1.
$$L_c = \{c\}$$
, $L_w = \{w\}$ and $L_t = \{t\}$ are regular languages.

- 2. L_w^* is regular.
- 3. The concatenation $L_c L_w^* L_t L_w^*$ is regular.

Remark

Expressions of the form cw^*tw^* are called *regular expressions*. Regular languages are precisely the languages generated by regular expressions.

Deterministic Finite Automata

Definition

A deterministic finite automaton (DFA) is a 5-tuple

- $M = (Q, \Sigma, \delta, q_0, F)$, where
 - Q is a finite set of states,
 - Σ is an input alphabet,
 - $\delta: Q \times \Sigma \rightarrow Q$ is a transition function,
 - $q_0 \in Q$ is a start state,
 - $F \subseteq Q$ is a set of *final states*.

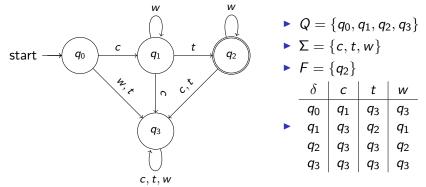
The language accepted by M is

$$\left\{ \left. a_1 \cdots a_n \in \Sigma^* \right| \begin{array}{c} \exists \, q_1, \ldots, q_{n-1} \in Q, q_n \in F : \\ \delta(q_{i-1}, a_i) = q_i \text{ for } i = 1, \ldots, n \end{array} \right\}.$$

§2.4 Multi-Modal Routing DFA: Example

Example

Consider the following DFA:



This DFA accepts all words on a directed walk from q_0 to q_2 , i. e., all regular expressions of the form cw^*tw^* .

Regular Languages, DFA and NFA

Theorem

Let L be a language. Then the following are equivalent:

- L is regular.
- L is accepted by some DFA.
- L is accepted by some NFA.

Definition

A non-deterministic finite automaton (NFA) is a 5-tuple

- $\textit{N} = (\textit{Q}, \Sigma, \delta, \textit{S}, \textit{F})$, where
 - Q, Σ , F are as in the DFA case,
 - $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ takes values in the power set of Q,
 - *S* is a *set* of start states.

The language accepted by N is

$$\left\{ \left. a_1 \cdots a_n \in \Sigma^* \right| \begin{array}{c} \exists \ q_0 \in S, q_1, \ldots, q_{n-1} \in Q, q_n \in F : \\ q_i \in \delta(q_{i-1}, a_i) \text{ for } i = 1, \ldots, n \end{array} \right\}$$

<

Remarks

- ▶ NFA can be drawn as directed graphs in a similar way.
- NFAs accept words for which there is a valid directed walk. Unlike in DFAs, there might be more than one walk corresponding to a word.
- Any DFA is trivially an NFA.
- Every NFA can be turned into an equivalent, but potentially much bigger DFA.
- NFAs are a good choice when alternatives should be modeled, i.e., the union of two regular languages.
- ► NFAs can *die* in the sense that δ(q, a) = Ø for the current state q and input letter a.
- In our example, we could therefore construct a smaller NFA by omitting the state q₃.

Let G be a weighted digraph, $s, t \in V(G)$, $L \subseteq \Sigma^*$ a regular language and $\sigma : E(G) \rightarrow \Sigma$.

LCSWP Algorithm

- 1. Construct an NFA $N = (Q, \Sigma, \delta, S, F)$ accepting precisely L.
- 2. Construct the *product network* G^{\times} as follows:

•
$$V(G^{\times}) := V(G) \times Q$$

- ► $E(G^{\times}) := \{((v_1, q_1), (v_2, q_2)) \mid (v_1, v_2) \in E(G), q_2 \in \delta(q_1, \sigma(v_1, v_2))\},\$ keep the weights.
- 3. Compute all shortest paths from (s, q_s) to (t, q_f) for all $q_s \in S$ and $q_f \in F$.
- 4. Determine the path of minimum length and return its projection to *G* (or return that no walk exists).

§2.4 Multi-Modal Routing LCSWP: Remarks

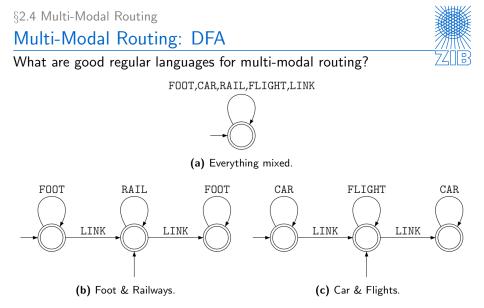
Correctness

- ► Any path in G[×] projects to a walk in G and to a walk in the state graph of the NFA N. In particular, any (s, q_s)-(t, q_f)-path in G[×] gives an s-t-walk in G labeled with a word accepted by N, i.e., a word in L.
- ► Concept: Minimize over all *s*-*t*-walks and all possible words on them.
- Note that the solution to the LCSWP might include repeated vertices.

Complexity

The product network has $|V(G)| \cdot |Q|$ vertices and $O(|E(G)| \cdot |Q|)$ edges. The Dijkstra algorithm needs hence

 $\mathcal{O}(|S||F|(|V(G)||Q|\log(|V(G)||Q|) + |E(G)||Q|))$ elementary operations to solve the many-to-many shortest-path problem. Since $|S|, |F| \leq |Q|$, this is polynomial if we can bound |Q|. Given a regular expression with ℓ characters, *Thompson's construction* yields an NFA with $O(\ell)$ states, so |Q| is linear in the input size of L.

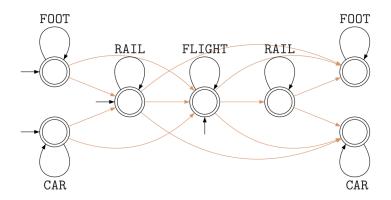


Thomas Pajor: Multi-Modal Route Planning, Diplomarbeit, 2009.

§2.4 Multi-Modal Routing

Multi-Modal Routing: NFA

What are good regular languages for multi-modal routing?



Thomas Pajor: Multi-Modal Route Planning, Diplomarbeit, 2009.

More on Multi-Modal Routing

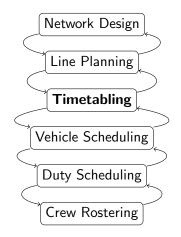
- Of course, running Dijkstra's algorithm on the product network is not the end of the story.
- Several speed-ups (mostly from road network techniques) are available.
- However, some preprocessing strategies do not allow a user to specify his preferences (e.g., is there a private car available?).
- ► Multi-criteria optimization is important as well (number of changes of transport modes, price) ~→ Multi-Modal Multi-Criteria RAPTOR.

Chapter 3 Periodic Timetabling

§3.1 Overview

§3.1 Overview

Public Transport Planning Cycle



strategic planning

operational planning