Mathematical Aspects of
Public Transportation Networks

Niels Lindner

May 28, 2018

May 28, 2018 1/35



Chapter 3
Periodic Timetabling

3.1 Overview

May 28, 2018 2/35



§3.1 Overview

Periodic Event Scheduling Problem (PESP)

Input

> event-activity network £ = (V, E),

» period time T € N,

lower bound vector £ € (R>0)E, 0< ¢ < T,

upper bound vector u €€ (R>o)E, ¢ <u< T —¢,

v

v

v

weight vector w € (R>o)£

PESP

Find a periodic timetable w € [0, T)V and periodic tensions x € RE,
¢ < x < u, such that

XU:[T['J—T('I—KU]T—FEU fOl’a”IjeE

and } ;g wipxj is minimal.
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§3.1 Overview

Complexity of PESP

B!

Theorem
For fixed T > 3, the PESP feasibility problem is NP-complete.

Remark
This means that
» T is not regarded as part of the input data,

» finding a single feasible solution (7, x) is NP-hard.

Strategy of the proof (Odijk, 1994)
We will reduce the Vertex Coloring problem to PESP feasibility.
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§3.1 Overview

Vertex Coloring

ZI B
Definition
Given a graph G = (V,E) and k € N, the k-Vertex Coloring problem is
to decide whether there is a map f : V — {1,..., k} such that for all
edges vw € E holds f(v) # f(w).
a 3-colorable graph
(not 2-colorable)
5 /35
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§3.1 Overview

Complexity of k-Vertex Coloring

Theorem (Karp, 1972)

k-Vertex Coloring is NP-complete.

SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE
INPUT: Clauses Dj,Dp,...,D,., each consisting of at most 3

literals from the set {uj,up,...,up} U {uy,8y,...,0,}
PROPERTY: The set {Dl,Dz,...,Dr} is satisfiable.

CHROMATIC NUMBER

INPUT: graph G, positive integer k

PROPERTY: There is a function ¢: N > Z such that, if-u
and v are adjacent, then ¢(u) # ¢o(v).

SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE
o« CHROMATIC NUMBER

Assume without loss of generality that m > 4.
N = {uj,up,.e0supb U {T1,8p,...,T,} U {v1,voseen,vy}
U {Dy,Dp,...,D.}

A= {{ui,ﬁi}l i=1,2,...,n} U {{vi,vj}l i#3} U {{vi,x M i#5)
U {{vy, %3} i#3} U {{ug,De}| u; ¢ Dg} U {{Gi,nf}f d; € Dg)
k=r+1
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§3.1 Overview

3-SAT

Definition

Let uq,...,un be variables.

» A literal is a symbol of the form u; or T; (“not u;").
> A clause is a disjunction D; = £ V ---V £} of literals.

» A formula in conjuctive normal form (CNF) is a conjunction
F =Dy A--- A D, of clauses.

» A formula is in 3-CNF if every clause contains at most three literals.

Given a formula F in 3-CNF, the 3-SAT problem is to decide whether
there is a map a: i — {true, false} (truth assignment) such that F
evaluates to true when each variable u; is set ot the truth value a().

Theorem (Karp, 1972)
3-SAT is NP-complete.

Proof.
Transformation from SAT - the first known NP-complete problem. O
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§3.1 Overview

3-SAT < 3-Vertex Coloring

Theorem (Garey/Johnson/Stockmeyer, 1976)
3-Vertex Coloring is NP-complete.

B!

Proof.
Consider the following clause gadget:

» If at least one of a,b,c has color 1, then this extends to a coloring of
the gadget where y is colored with 1.
» If a,b,c all have the same color /, then y must be colored with .
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§3.1 Overview

3-SAT < 3-Vertex Coloring

Given a formula F in 3-CNF, we construct a graph G as follows:

» Start with a truth gadget and a variable gadget:

» For each clause a; V b; V ¢; in F, insert the clause gadget, by replacing
a, b, ¢ with the corresponding vertex u; or u; of the variable gadget.

» Add edges {F,y;} and {X,y;} for each clause.

May 28, 2018 9/35



§3.1 Overview

3-SAT < 3-Vertex Coloring

Proof (:>) Graph for F = u; V up VU3
Suppose that F is satisfiable by some truth assignment.
» Color T with 1, F with 2 and X with 3.

» If u; is true, then color the vertex u; with 1 and T; with 2. Otherwise,
color u; with 2 and ©T; with 1.

» Since F is satisfied, for each clause, at least one of the literals a;, b;, ¢;
has color 1, so this extends to a coloring where all y; have color 1.

» This coloring is compatible with the truth and variable gadget.
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§3.1 Overview

3-SAT < 3-Vertex Coloring

Proof (<:) Graph for F = u; V up VU3
Conversely, suppose that G has a 3-coloring.
» W.l.o.g. T has color 1, F has color 2 and X has color 3.

v

This yields a truth assignment on the variables (1: true, 2: false).

» Moreover, y; is colored with 1 for all clauses.

v

For a clause, not all of a;, b;, ¢; can have color 2, because this would
imply that y; has color 2.

» In particular, F is satisfiable.
May 28, 2018 11 /35




§3.1 Overview
k-Vertex Coloring

Corollary
For fixed k > 3, k-Vertex Coloring is NP-complete.

Proof.

Probably an exercise.

B!

May 28, 2018
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§3.1 Overview

T-Vertex Coloring < T-PESP

Theorem (Odijk, 1994)

Fix an integer T. Then T-Vertex Coloring can be reduced to PESP
feasibility with period time T.

Proof.
Let G = (V, E) be an arbitrary graph (w.l.o.g. directed). Define a PESP
instance on G as follows (weights are unimportant for feasibility):

be =1, we:=T-1, e€kE.

Suppose that G has a T-coloring f : V — {1,2,..., T}. Define
my :=f(v)—1forall v € V. Then 7 takes values in {0,1,..., T —1}. Set

T — T if m: > m; .
xji=4 7 " 1= e E.
mj —mi+ T  otherwise,

B!

Clearly x;; > 0. Since f is a coloring, also x;; > 1 = /;;. Moreover
xjj < T —1=ujj. Hence (m, x) is feasible for PESP.
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§3.1 Overview

T-Vertex Coloring < T-PESP

Proof.
Conversely, let (7, x) be feasible for PESP on the graph G. As lower und
upper bounds are integer, we can assume that this holds for m and x as

well (total unimodularity). Then
flv)=m,+1 €{1,2,...,T}, veV,

is a T-vertex coloring for G. O
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3.2 Cycle Spaces
Motivation: PESP MIP formulation

So far, we considered the following MIP formulation of PESP:

Minimize g Wi Xij

jeE
s.t. xj=mj—mi+p;T, ij € E,
Ci < xij < ujj, ij € E, (periodic tension)
0<m <T-1, i€V, (periodic timetable)
pij € Z, ij € E. (periodic offset)

If the event-activity network has n events and m activities, then this
formulation uses m constraints, m + n continuous variables, and m integer
variables.

We will now construct a formulation with m — n + 1 constraints, m
continuous variables, and m — n+ 1 integer variables. This variant behaves
much better in practice.

May 28, 2018 16 / 35



3.2 Cycle Spaces
Cycles

B!

Let G = (V, E) be an undirected graph.

Definition
A cycle in G is an Eulerian subgraph of G.

Remarks
» In other words, a cycle is a subgraph G’ = (V/, E’') with V/ C V and
E’ C E such that degg/(v) is even for all v € V.
» Any cycle decomposes as an edge-disjoint union of circuits.

» We will sometimes identify a cycle with its sequence of edges or
vertices.
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3.2 Cycle Spaces
Symmetric difference of cycles

i ZIB
emma
Let C1, Gy be two cycles in G. Then the symmetric difference
GAG = (Cl U Cg) \ (Cl N C2)
is acycle in G.
Proof.
Let v € V(GAG). Then
degc,ac,(v) = degc, (v) + deg Co(v) — 2degn,(v)
even even
is even. L]
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3.2 Cycle Spaces

Incidence vectors and cycle space
Let G be an undirected graph. 4B
Definition

For a cycle C define its incidence vector v¢ € {0,1}F as

)1 if e E(C),
Ye ‘= {0 ifegZE(C), eEE(G).

The cycle space of G is the set

C(G):={yc| Cisacyclein G} C {0,1}E.

Lemma
C(G) is an Fa-vector space.

Proof.
Addition < symmetric difference. Ol
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3.2 Cycle Spaces
Cyclomatic number

B!

Let G be an undirected graph.
Definition
The cyclomatic number of G is defined as
u(G) = dimg, C(G).
In other words, the cyclomatic number is the length of any cycle basis.

Lemma
Suppose that G has n vertices, m edges, and ¢ connected components.
Then u(G) =m—n+c.

Proof.
Suppose first that G is connected. Let T be a spanning tree of G, i.e., a
maximal cycle-free subgraph containing all n vertices.

May 28, 2018 20/ 35



3.2 Cycle Spaces
Cyclomatic number

Proof (cont.) zZIiB

We call an edge e € E(G) a co-tree edge if e ¢ E(T). Since T contains
n — 1 edges, there are precisely m — n 4 1 co-tree edges.

Since T is a spanning tree, adding a single co-tree edge e to T produces a
cycle containing e. This way, we obtain m — n+ 1 cycles in G, one for
each co-tree edge.

The incidence vectors of these cycles are F»-linearly independent, since
each co-tree edge is contained in precisely one cycle. In formulae, if
7e € {0,1}F denotes the incidence vector of the cycle produced by the
co-tree edge e, then

1 ife=¢,
Ted =0 ife # € for all co-tree edges ' ¢ E(T).

This shows dimp, C(G) > m — n+ 1 for connected G.

May 28, 2018
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3.2 Cycle Spaces
Cyclomatic number

Proof (cont.)
Let ¢ be the incidence vector of an arbitrary cycle of G. Let

(=C= > Cr €C(G).
egE(T)
Then for any co-tree edge €’ ¢ E(T), the corresponding entry of (' is
C(/e’ = (e — Z ge'ye,e’ = (er — Cer =0,

e¢E(T)

so that ¢’ corresponds to a cycle inside the tree T. Since trees cannot have
cycles, ¢’ = 0 and ( is therefore in the Fa-span of {v. | e ¢ E(T)}.

This finishes the proof for ¢ = 1. If G has several connected components,
then add the cyclomatic numbers of all components. O
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3.2 Cycle Spaces
Fundamental cycles

B!

Definition
Let T be a spanning tree of an undirected graph G.
» A cycle created by adding a co-tree edge to T is called
fundamental cycle.

» A fundamental cycle basis is a cycle basis consisting of fundamental
cycles.

Remark

The following is an algorithm to construct a fundamental cycle basis:
Compute first a spanning tree (Prim, Kruskal, ...) and then take the
fundamental cycle for each co-tree edge.
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§3.2 Cycle Spaces
Example: Undirected cycle basis

Consider the following graph G:

1 ) ©) 0
G has 8 vertices, 10 edges, 1 connected component and hence
u(G)=10-8+1=3.

Fundamental cycle basis:
1 | | I
bhod
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3.2 Cycle Spaces
Directed cycles

B!

Let G be a directed graph.

Definition

A directed cycle in G is an Eulerian subgraph of G.

An oriented cycle in G is a cycle of the undirected graph |G| underlying
G.

Remarks

» Any directed cycle is an oriented cycle.

» An oriented cycle uses edges either in forward or in backward
direction.

» Any directed/oriented cycle decomposes as an edge-disjoint union of
directed /oriented circuits.
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3.2 Cycle Spaces
Incidence vectors and cycle space

Definition
Let C be an oriented cycle in G. Then its incidence vector
vc € {~1,0,1}F is defined as

1 if C uses e as forward edge,
Ye := 4 —1 if C uses e as backward edge, e € E(G).
0 otherwise

The Q-cycle space of G is the Q-vector space
Co(G) :=spang {7c | C oriented cycle of G}.

A basis consisting of incidence vectors of true oriented cycles is called a
cycle basis of G.

The cyclomatic number of G is defined as ;(G) := dimg Co(G).

May 28, 2018 26 / 35



3.2 Cycle Spaces
Undirected cycle bases

B!

Lemma
Let B be a cycle basis for |G|. Then lifting each cycle in B to an oriented
cycle in G yields a Q-basis of Cg(G).

Proof.
Let B = {v1,...,7.} and let 4} be the incidence vector of an oriented

cycle in G projecting to 7, in |G|, i =1,...,u:= u(|G|).

Linear independence: Suppose Zf-‘:l Aivi =0 for some A,..., A, € Q.
Clearing denominators, we can assume that A1,...,\, € Z and

gcd(A1, ..., A,) = 1. Reducing modulo 2, we have Y % [A\j]27i =2 0,
which implies that \; =5 0 for all i, as B is an F»-basis. Since all A\; were
coprime, this means that A\; = --- =), = 0.
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3.2 Cycle Spaces
Undirected cycle bases

Proof (cont.) ZIB

It remains to show that dimg Cg(G) = i(|G|). Consider a spanning tree T
of |G| with its fundamental cycle basis B={v. | e ¢ E(T)}.

Let ¢ € {—1,0,1}E(%) be the incidence vector of an arbitary oriented cycle
in G and suppose that { does not lie in the span of the lifts

{1, | e ¢ E(T)} of the vectors in B to G. Then also

~ 3 Gerbe Espan{yi]ed E(T)}

e¢E(T)

Then ¢, = 0 for any edge in E(G) corresponding to a co-tree edge of T,
so that ( has support only in the tree edges. But T is a tree and hence
cannot contain a cycle, so ¢’ = 0 (contradiction). O

Remark
In particular, fundamental cycle bases work as in the undirected case.
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3.2 Cycle Spaces
Cycle basis names

Let G be a directed graph.

Corollary
If G has n vertices, m edges and ¢ weakly connected components, then
w(G) = (|G =m—n+c.
Definition
» A cycle basis in G coming from a cycle basis in |G| is called an
undirected cycle basis.

» A cycle basis in G coming from a spanning tree is called a strictly
fundamental basis.

Definition
Let B = (71,---,7u(c)) be a cycle basis. The (4(G) x m)-matrix I whose
rows are given by v;, i =1,...,u(G), is called the cycle matrix of .
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§3.2 Cycle Spaces
Cycle basis example

1B
Consider the following digraph G with red spanning tree T:

[ [ (@
7 7 L4

We produce a strictly fundamental cycle basis by taking the oriented cycle
for each co-tree edge of T:

SO SO N
L4 L4 4
& & &
A) A A

The cycles C; and (3 use only forward edges, whereas C, uses two
backward edges.
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3.2 Cycle Spaces
Cycle basis example

Label the edges by 1,...,10: zZiB
! SO 2 RV 3 \
i G SE G lls G i“
< 7 \J< 6 U< 5
Collecting the incidence vectors of C;, (o, (3 yields the 3 x 10-cycle matrix:
1 2 3 45 6 7 8 9 10
|1 0 0 0 0 0 1 1 1 0
w»w|0 1 0 0 0 1 0 0O -1 -1
|0 0 1 1 1 0 0 0 O 1

Note that the matrix has full row rank. The part corresponding to the
co-tree edges 5,6,7 of T is a permutation of the identity matrix.
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3.2 Cycle Spaces
Determinant of a cycle basis

B!

Let G be a directed graph and let B be a cycle basis with cycle matrix .

Definition
The determinant of B is defined as

(1(G) x pu(G))-submatrix of I' corresponding to the

det(B) := co-tree edges of some spanning tree of G

This is well-defined:

Theorem (Liebchen, 2003)

Let Ty, To be two spanning trees of G. For i = 1,2, denote by A; the
(u(G) x u(G))-submatrix of I', where exactly the columns corresponding
to e ¢ E(T;) are selected. Then A1 and Ay are both invertible and
det(Al) = :l:det(AQ).
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3.2 Cycle Spaces
Determinant of a cycle basis

Proof.
Let ® be the cycle matrix of a strictly fundamental cycle basis of G coming
from the spanning tree T1. The rows of ® are indexed by the p := u(G)
co-tree edges of T1. We have

cDe,e’ =

H A

{1 !fe_e, forall e, e’ ¢ E(T).
0 ife#é,

Note that we can always lift a fundamental cycle in such a way that the

co-tree edge becomes a forward edge. In particular, if ®; denotes the

restriction of ® to the columns corresponding to co-tree edges of Ti, then

®; is the identity matrix.

Since ® and B are bases, there is an invertible (u x p)-matrix S such that
=S5 Te. It follows that A; = S - @y is invertible. This holds analogously
for A,.
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3.2 Cycle Spaces
Determinant of a cycle basis

B!
Proof.

Let ¢, denote the restriction of ® to the columns corresponding to the
co-tree edges of Tp. Then Ay = S - ®5, so it remains to show that
det(®,) = +det(P1) = +1. We use induction on #E(T1)AE(T>).

#E(T1)AE(T,) = 0: This is equivalent to E(T1) = E(T2), where
obvioulsy det(®;) = det(P;).

#E(T1)AE(T,) > 0: Let e; € E(T1) \ E(T2). On the unique path in T
connecting the endpoints of e, there must be an edge e; ¢ E(T1), as
otherwise T1 would contain a cycle. The fundamental cycle of e in Ty
uses e, so that ®,, ., = +1. Since there is only one fundamental cycle for
T1 using the co-tree edge ey, this means that ®. ., = 0 for e # e;. Use
Laplace expansion along the column e;. O
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3.2 Cycle Spaces
Characterization by determinant
Let G be a digraph with cyclomatic number p and cycle basis B. 4B

Theorem (Liebchen/Rizzi, 2007)

(1) B is undirected if and only if det(B) is odd.

(2) B is strictly fundamental if and only if the cycle matrix of B can be
permuted in such a way that it has the y X p-identity matrix in its last
w columns.

Proof.

(2) Exercise. (1) Let ' be the cycle matrix of B. Write [ = S - ®, where S
is an invertible p X p-matrix and ® is the matrix of a strictly fundamental
basis for some spanning tree T. Restricting to the co-tree edges, we obtain
F|ﬁ =S- ¢|ﬁ =S, so det(B) = det(S). If det(B) is odd, then S is
invertible over Fy, so the rows of I mod 2 form a cycle basis for |G].
Conversely, if B is undirected, then Hm is invertible mod 2, so that also

S is invertible mod 2 and hence det(B) is odd. O
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