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§3.1 Overview

Periodic Event Scheduling Problem (PESP)

Input

I event-activity network E = (V ,E ),

I period time T ∈ N,

I lower bound vector ` ∈ (R≥0)E , 0 ≤ ` < T ,

I upper bound vector u ∈∈ (R≥0)E , ` ≤ u < T − `,
I weight vector w ∈ (R≥0)E

PESP
Find a periodic timetable π ∈ [0,T )V and periodic tensions x ∈ RE ,
` ≤ x ≤ u, such that

xij = [πj − πi − `ij ]T + `ij for all ij ∈ E

and
∑

ij∈E wijxij is minimal.
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§3.1 Overview

Complexity of PESP

Theorem
For fixed T ≥ 3, the PESP feasibility problem is NP-complete.

Remark
This means that

I T is not regarded as part of the input data,

I finding a single feasible solution (π, x) is NP-hard.

Strategy of the proof (Odijk, 1994)

We will reduce the Vertex Coloring problem to PESP feasibility.
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§3.1 Overview

Vertex Coloring

Definition
Given a graph G = (V ,E ) and k ∈ N, the k-Vertex Coloring problem is
to decide whether there is a map f : V → {1, . . . , k} such that for all
edges vw ∈ E holds f (v) 6= f (w).

a 3-colorable graph
(not 2-colorable)
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§3.1 Overview

Complexity of k-Vertex Coloring

Theorem (Karp, 1972)

k-Vertex Coloring is NP-complete.
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§3.1 Overview

3-SAT
Definition
Let u1, . . . , um be variables.

I A literal is a symbol of the form ui or ui (“not ui”).

I A clause is a disjunction Dj = `j1 ∨ · · · ∨ `jk of literals.

I A formula in conjuctive normal form (CNF) is a conjunction
F = D1 ∧ · · · ∧ Dr of clauses.

I A formula is in 3-CNF if every clause contains at most three literals.

Given a formula F in 3-CNF, the 3-SAT problem is to decide whether
there is a map a : i → {true, false} (truth assignment) such that F
evaluates to true when each variable ui is set ot the truth value a(i).

Theorem (Karp, 1972)

3-SAT is NP-complete.

Proof.
Transformation from SAT - the first known NP-complete problem.
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§3.1 Overview

3-SAT ≤ 3-Vertex Coloring

Theorem (Garey/Johnson/Stockmeyer, 1976)

3-Vertex Coloring is NP-complete.

Proof.
Consider the following clause gadget:

a

b

c

y

I If at least one of a,b,c has color 1, then this extends to a coloring of
the gadget where y is colored with 1.

I If a,b,c all have the same color i , then y must be colored with i .
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§3.1 Overview

3-SAT ≤ 3-Vertex Coloring

Given a formula F in 3-CNF, we construct a graph G as follows:

I Start with a truth gadget and a variable gadget:

T

F

X

u1

u1

u2

u2

. . .

um

um

I For each clause ai ∨ bi ∨ ci in F , insert the clause gadget, by replacing
a, b, c with the corresponding vertex ui or ui of the variable gadget.

I Add edges {F , yi} and {X , yi} for each clause.
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§3.1 Overview

3-SAT ≤ 3-Vertex Coloring

y

T

F

X

u1

u1

u2

u2

u3

u3

Graph for F = u1 ∨ u2 ∨ u3Proof (⇒).

Suppose that F is satisfiable by some truth assignment.

I Color T with 1, F with 2 and X with 3.

I If ui is true, then color the vertex ui with 1 and ui with 2. Otherwise,
color ui with 2 and ui with 1.

I Since F is satisfied, for each clause, at least one of the literals ai , bi , ci
has color 1, so this extends to a coloring where all yi have color 1.

I This coloring is compatible with the truth and variable gadget.
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§3.1 Overview

3-SAT ≤ 3-Vertex Coloring

y

T

F

X

u1

u1

u2

u2

u3

u3

Graph for F = u1 ∨ u2 ∨ u3Proof (⇐).

Conversely, suppose that G has a 3-coloring.

I W.l.o.g. T has color 1, F has color 2 and X has color 3.

I This yields a truth assignment on the variables (1: true, 2: false).

I Moreover, yi is colored with 1 for all clauses.

I For a clause, not all of ai , bi , ci can have color 2, because this would
imply that yi has color 2.

I In particular, F is satisfiable.
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§3.1 Overview

k-Vertex Coloring

Corollary

For fixed k ≥ 3, k-Vertex Coloring is NP-complete.

Proof.
Probably an exercise.
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§3.1 Overview

T -Vertex Coloring ≤ T -PESP

Theorem (Odijk, 1994)

Fix an integer T . Then T -Vertex Coloring can be reduced to PESP
feasibility with period time T .

Proof.
Let G = (V ,E ) be an arbitrary graph (w.l.o.g. directed). Define a PESP
instance on G as follows (weights are unimportant for feasibility):

`e := 1, ue := T − 1, e ∈ E .

Suppose that G has a T -coloring f : V → {1, 2, . . . ,T}. Define
πv := f (v)−1 for all v ∈ V . Then π takes values in {0, 1, . . . ,T −1}. Set

xij :=

{
πj − πi if πj ≥ πi ,
πj − πi + T otherwise,

ij ∈ E .

Clearly xij ≥ 0. Since f is a coloring, also xij ≥ 1 = `ij . Moreover
xij ≤ T − 1 = uij . Hence (π, x) is feasible for PESP.
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§3.1 Overview

T -Vertex Coloring ≤ T -PESP

Proof.
Conversely, let (π, x) be feasible for PESP on the graph G . As lower und
upper bounds are integer, we can assume that this holds for π and x as
well (total unimodularity). Then

f (v) := πv + 1 ∈ {1, 2, . . . ,T}, v ∈ V ,

is a T -vertex coloring for G .
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§3.2 Cycle Spaces

Motivation: PESP MIP formulation

So far, we considered the following MIP formulation of PESP:

Minimize
∑
ij∈E

wijxij

s.t. xij = πj − πi + pijT , ij ∈ E ,

`ij ≤ xij ≤ uij , ij ∈ E , (periodic tension)

0 ≤ πi ≤ T − 1, i ∈ V , (periodic timetable)

pij ∈ Z, ij ∈ E . (periodic offset)

If the event-activity network has n events and m activities, then this
formulation uses m constraints, m + n continuous variables, and m integer
variables.
We will now construct a formulation with m − n + 1 constraints, m
continuous variables, and m− n + 1 integer variables. This variant behaves
much better in practice.
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§3.2 Cycle Spaces

Cycles

Let G = (V ,E ) be an undirected graph.

Definition
A cycle in G is an Eulerian subgraph of G .

Remarks

I In other words, a cycle is a subgraph G ′ = (V ′,E ′) with V ′ ⊆ V and
E ′ ⊆ E such that degG ′(v) is even for all v ∈ V ′.

I Any cycle decomposes as an edge-disjoint union of circuits.

I We will sometimes identify a cycle with its sequence of edges or
vertices.
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§3.2 Cycle Spaces

Symmetric difference of cycles

Lemma
Let C1,C2 be two cycles in G . Then the symmetric difference

C1∆C2 := (C1 ∪ C2) \ (C1 ∩ C2)

is a cycle in G .

Proof.
Let v ∈ V (C1∆C2). Then

degC1∆C2
(v) = degC1

(v)
even

+ degC2(v)
even

− 2 degC1∩C2
(v)

is even.
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§3.2 Cycle Spaces

Incidence vectors and cycle space
Let G be an undirected graph.

Definition
For a cycle C define its incidence vector γC ∈ {0, 1}E as

γe :=

{
1 if e ∈ E (C ),

0 if e /∈ E (C ),
e ∈ E (G ).

The cycle space of G is the set

C(G ) := {γC | C is a cycle in G} ⊆ {0, 1}E .

Lemma
C(G ) is an F2-vector space.

Proof.
Addition ↔ symmetric difference.
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§3.2 Cycle Spaces

Cyclomatic number

Let G be an undirected graph.

Definition
The cyclomatic number of G is defined as

µ(G ) := dimF2 C(G ).

In other words, the cyclomatic number is the length of any cycle basis.

Lemma
Suppose that G has n vertices, m edges, and c connected components.
Then µ(G ) = m − n + c .

Proof.
Suppose first that G is connected. Let T be a spanning tree of G , i.e., a
maximal cycle-free subgraph containing all n vertices.
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§3.2 Cycle Spaces

Cyclomatic number

Proof (cont.)

We call an edge e ∈ E (G ) a co-tree edge if e /∈ E (T ). Since T contains
n − 1 edges, there are precisely m − n + 1 co-tree edges.

Since T is a spanning tree, adding a single co-tree edge e to T produces a
cycle containing e. This way, we obtain m − n + 1 cycles in G , one for
each co-tree edge.

The incidence vectors of these cycles are F2-linearly independent, since
each co-tree edge is contained in precisely one cycle. In formulae, if
γe ∈ {0, 1}E denotes the incidence vector of the cycle produced by the
co-tree edge e, then

γe,e′ =

{
1 if e = e ′,

0 if e 6= e ′ for all co-tree edges e ′ /∈ E (T ).

This shows dimF2 C(G ) ≥ m − n + 1 for connected G .
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§3.2 Cycle Spaces

Cyclomatic number

Proof (cont.)

Let ζ be the incidence vector of an arbitrary cycle of G . Let

ζ ′ := ζ −
∑

e /∈E(T )

ζeγe ∈ C(G ).

Then for any co-tree edge e ′ /∈ E (T ), the corresponding entry of ζ ′ is

ζ ′e′ = ζe′ −
∑

e /∈E(T )

ζeγe,e′ = ζe′ − ζe′ = 0,

so that ζ ′ corresponds to a cycle inside the tree T . Since trees cannot have
cycles, ζ ′ = 0 and ζ is therefore in the F2-span of {γe | e /∈ E (T )}.

This finishes the proof for c = 1. If G has several connected components,
then add the cyclomatic numbers of all components.
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§3.2 Cycle Spaces

Fundamental cycles

Definition
Let T be a spanning tree of an undirected graph G .

I A cycle created by adding a co-tree edge to T is called
fundamental cycle.

I A fundamental cycle basis is a cycle basis consisting of fundamental
cycles.

Remark
The following is an algorithm to construct a fundamental cycle basis:
Compute first a spanning tree (Prim, Kruskal, . . . ) and then take the
fundamental cycle for each co-tree edge.
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§3.2 Cycle Spaces

Example: Undirected cycle basis

Consider the following graph G :

1 2 3 4

5 6 7 8

G has 8 vertices, 10 edges, 1 connected component and hence
µ(G ) = 10− 8 + 1 = 3.

Fundamental cycle basis:

1 2 3 4

5 6 7 8
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§3.2 Cycle Spaces

Directed cycles

Let G be a directed graph.

Definition
A directed cycle in G is an Eulerian subgraph of G .
An oriented cycle in G is a cycle of the undirected graph |G | underlying
G .

Remarks

I Any directed cycle is an oriented cycle.

I An oriented cycle uses edges either in forward or in backward
direction.

I Any directed/oriented cycle decomposes as an edge-disjoint union of
directed/oriented circuits.
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§3.2 Cycle Spaces

Incidence vectors and cycle space

Definition
Let C be an oriented cycle in G . Then its incidence vector
γC ∈ {−1, 0, 1}E is defined as

γe :=


1 if C uses e as forward edge,

−1 if C uses e as backward edge,

0 otherwise

e ∈ E (G ).

The Q-cycle space of G is the Q-vector space

CQ(G ) := spanQ {γC | C oriented cycle of G} .

A basis consisting of incidence vectors of true oriented cycles is called a
cycle basis of G .

The cyclomatic number of G is defined as µ(G ) := dimQ CQ(G ).
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§3.2 Cycle Spaces

Undirected cycle bases

Lemma
Let B be a cycle basis for |G |. Then lifting each cycle in B to an oriented
cycle in G yields a Q-basis of CQ(G ).

Proof.
Let B = {γ1, . . . , γµ} and let γ′i be the incidence vector of an oriented
cycle in G projecting to γi in |G |, i = 1, . . . , µ := µ(|G |).

Linear independence: Suppose
∑µ

i=1 λiγ
′
i = 0 for some λ1, . . . , λµ ∈ Q.

Clearing denominators, we can assume that λ1, . . . , λµ ∈ Z and
gcd(λ1, . . . , λµ) = 1. Reducing modulo 2, we have

∑µ
i=1[λi ]2γi ≡2 0,

which implies that λi ≡2 0 for all i , as B is an F2-basis. Since all λi were
coprime, this means that λ1 = · · · = λµ = 0.
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§3.2 Cycle Spaces

Undirected cycle bases

Proof (cont.)

It remains to show that dimQ CQ(G ) = µ(|G |). Consider a spanning tree T
of |G | with its fundamental cycle basis B = {γe | e /∈ E (T )}.
Let ζ ∈ {−1, 0, 1}E(G) be the incidence vector of an arbitary oriented cycle
in G and suppose that ζ does not lie in the span of the lifts
{γ′e | e /∈ E (T )} of the vectors in B to G . Then also

ζ ′ := ζ −
∑

e /∈E(T )

ζe · γ′e,e /∈ span{γ′e | e /∈ E (T )}

Then ζ ′e = 0 for any edge in E (G ) corresponding to a co-tree edge of T ,
so that ζ has support only in the tree edges. But T is a tree and hence
cannot contain a cycle, so ζ ′ = 0 (contradiction).

Remark
In particular, fundamental cycle bases work as in the undirected case.
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§3.2 Cycle Spaces

Cycle basis names

Let G be a directed graph.

Corollary

If G has n vertices, m edges and c weakly connected components, then
µ(G ) = µ(|G |) = m − n + c .

Definition

I A cycle basis in G coming from a cycle basis in |G | is called an
undirected cycle basis.

I A cycle basis in G coming from a spanning tree is called a strictly
fundamental basis.

Definition
Let B = (γ1, . . . , γµ(G)) be a cycle basis. The (µ(G )×m)-matrix Γ whose
rows are given by γi , i = 1, . . . , µ(G ), is called the cycle matrix of B.
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§3.2 Cycle Spaces

Cycle basis example

Consider the following digraph G with red spanning tree T :

We produce a strictly fundamental cycle basis by taking the oriented cycle
for each co-tree edge of T :

C1 C2 C3

The cycles C1 and C3 use only forward edges, whereas C2 uses two
backward edges.
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§3.2 Cycle Spaces

Cycle basis example

Label the edges by 1, . . . , 10:

1 2 3

4

56.7

8

9
.

1
0C1 C2 C3

Collecting the incidence vectors of C1,C2,C3 yields the 3× 10-cycle matrix:

1 2 3 4 5 6 7 8 9 10

γ1 1 0 0 0 0 0 1 1 1 0
γ2 0 1 0 0 0 1 0 0 −1 −1
γ3 0 0 1 1 1 0 0 0 0 1

Note that the matrix has full row rank. The part corresponding to the
co-tree edges 5, 6, 7 of T is a permutation of the identity matrix.
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§3.2 Cycle Spaces

Determinant of a cycle basis

Let G be a directed graph and let B be a cycle basis with cycle matrix Γ.

Definition
The determinant of B is defined as

det(B) :=

∣∣∣∣ (µ(G )× µ(G ))-submatrix of Γ corresponding to the
co-tree edges of some spanning tree of G

∣∣∣∣ .
This is well-defined:

Theorem (Liebchen, 2003)

Let T1,T2 be two spanning trees of G . For i = 1, 2, denote by Ai the
(µ(G )× µ(G ))-submatrix of Γ, where exactly the columns corresponding
to e /∈ E (Ti ) are selected. Then A1 and A2 are both invertible and
det(A1) = ± det(A2).
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§3.2 Cycle Spaces

Determinant of a cycle basis

Proof.
Let Φ be the cycle matrix of a strictly fundamental cycle basis of G coming
from the spanning tree T1. The rows of Φ are indexed by the µ := µ(G )
co-tree edges of T1. We have

Φe,e′ =

{
1 if e = e ′,

0 if e 6= e ′,
for all e, e ′ /∈ E (T ).

Note that we can always lift a fundamental cycle in such a way that the
co-tree edge becomes a forward edge. In particular, if Φ1 denotes the
restriction of Φ to the columns corresponding to co-tree edges of T1, then
Φ1 is the identity matrix.

Since Φ and B are bases, there is an invertible (µ× µ)-matrix S such that
Γ = S · ΓΦ. It follows that A1 = S ·Φ1 is invertible. This holds analogously
for A2.
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§3.2 Cycle Spaces

Determinant of a cycle basis

Proof.
Let Φ2 denote the restriction of Φ to the columns corresponding to the
co-tree edges of T2. Then A2 = S · Φ2, so it remains to show that
det(Φ2) = ± det(Φ1) = ±1. We use induction on #E (T1)∆E (T2).

#E (T1)∆E (T2) = 0: This is equivalent to E (T1) = E (T2), where
obvioulsy det(Φ2) = det(Φ1).

#E (T1)∆E (T2) > 0: Let e1 ∈ E (T1) \ E (T2). On the unique path in T2

connecting the endpoints of e1, there must be an edge e2 /∈ E (T1), as
otherwise T1 would contain a cycle. The fundamental cycle of e1 in T1

uses e2, so that Φe1,e2 = ±1. Since there is only one fundamental cycle for
T1 using the co-tree edge e2, this means that Φe,e2 = 0 for e 6= e1. Use
Laplace expansion along the column e2.
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§3.2 Cycle Spaces

Characterization by determinant
Let G be a digraph with cyclomatic number µ and cycle basis B.

Theorem (Liebchen/Rizzi, 2007)

(1) B is undirected if and only if det(B) is odd.

(2) B is strictly fundamental if and only if the cycle matrix of B can be
permuted in such a way that it has the µ× µ-identity matrix in its last
µ columns.

Proof.
(2) Exercise. (1) Let Γ be the cycle matrix of B. Write Γ = S · Φ, where S
is an invertible µ× µ-matrix and Φ is the matrix of a strictly fundamental
basis for some spanning tree T . Restricting to the co-tree edges, we obtain
Γ|E(T ) = S · Φ|E(T ) = S , so det(B) = det(S). If det(B) is odd, then S is

invertible over F2, so the rows of Γ mod 2 form a cycle basis for |G |.
Conversely, if B is undirected, then Γ|E(T ) is invertible mod 2, so that also

S is invertible mod 2 and hence det(B) is odd.

May 28, 2018 35 / 35


	Periodic Timetabling
	Overview
	Cycle Spaces


