# Mathematical Aspects of Public Transportation Networks

Niels Lindner



May 28, 2018

## Chapter 3 Periodic Timetabling

§3.1 Overview

## Periodic Event Scheduling Problem (PESP)

Input

- event-activity network  $\mathcal{E} = (V, E)$ ,
- period time  $T \in \mathbb{N}$ ,
- ▶ lower bound vector  $\ell \in (\mathbb{R}_{\geq 0})^E$ ,  $0 \leq \ell < T$ ,
- ▶ upper bound vector  $u \in (\mathbb{R}_{\geq 0})^E$ ,  $\ell \leq u < T \ell$ ,
- weight vector  $w \in (\mathbb{R}_{\geq 0})^E$

#### PESP

Find a *periodic timetable*  $\pi \in [0, T)^V$  and *periodic tensions*  $x \in \mathbb{R}^E$ ,  $\ell \leq x \leq u$ , such that

$$\mathbf{x}_{ij} = [\pi_j - \pi_i - \ell_{ij}]_T + \ell_{ij}$$
 for all  $ij \in E$ 

and  $\sum_{ij\in E} w_{ij} x_{ij}$  is minimal.





#### Theorem

For fixed  $T \ge 3$ , the PESP feasibility problem is NP-complete.

#### Remark

This means that

- T is not regarded as part of the input data,
- finding a single feasible solution  $(\pi, x)$  is NP-hard.

## Strategy of the proof (Odijk, 1994)

We will reduce the Vertex Coloring problem to PESP feasibility.

## §3.1 Overview Vertex Coloring



#### Definition

Given a graph G = (V, E) and  $k \in \mathbb{N}$ , the k-Vertex Coloring problem is to decide whether there is a map  $f : V \to \{1, \ldots, k\}$  such that for all edges  $vw \in E$  holds  $f(v) \neq f(w)$ .



## Complexity of k-Vertex Coloring

## Theorem (Karp, 1972)

k-Vertex Coloring is NP-complete.

SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE INPUT: Clauses  $D_1, D_2, \ldots, D_r$ , each consisting of at most 3 literals from the set  $\{u_1, u_2, \ldots, u_m\} \cup \{\overline{u}_1, \overline{u}_2, \ldots, \overline{u}_m\}$ PROPERTY: The set  $\{D_1, D_2, \ldots, D_r\}$  is satisfiable.

CHROMATIC NUMBER INPUT: graph G, positive integer k PROPERTY: There is a function  $\phi: N \rightarrow Z_k$  such that, if u and v are adjacent, then  $\phi(u) \neq \phi(v)$ .

SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE  $\mbox{$\propto$}$  CHROMATIC NUMBER

Assume without loss of generality that 
$$m \ge 4$$
.  
N = {u<sub>1</sub>, u<sub>2</sub>,..., u<sub>m</sub>}  $\cup$  { $\bar{u}_1, \bar{u}_2, ..., \bar{u}_m$ }  $\cup$  {v<sub>1</sub>, v<sub>2</sub>,..., v<sub>m</sub>}  
 $\cup$  {D<sub>1</sub>, D<sub>2</sub>,..., D<sub>r</sub>}  
A = {{u<sub>i</sub>, \bar{u}\_i}} i=1,2,..., N  $\cup$  {{v<sub>i</sub>, v<sub>j</sub>}|  $i\neq j$ }  $\cup$  {{v<sub>i</sub>, x<sub>j</sub>}|  $i\neq j$ }  
 $\cup$  {{v<sub>i</sub>,  $\bar{x}_j$ }|  $i\neq j$ }  $\cup$  {{u<sub>i</sub>, D<sub>f</sub>}|  $u_i \notin$  D<sub>f</sub>}  $\cup$  {{ $\bar{u}_i, D_f$ }|  $\bar{u}_i \in$  D<sub>f</sub>}  
k = r+1

## 3-SAT

## Definition

Let  $u_1, \ldots, u_m$  be variables.

- A *literal* is a symbol of the form  $u_i$  or  $\overline{u_i}$  ("not  $u_i$ ").
- A *clause* is a disjunction  $D_j = \ell_{j_1} \vee \cdots \vee \ell_{j_k}$  of literals.
- A formula in conjuctive normal form (CNF) is a conjunction  $F = D_1 \wedge \cdots \wedge D_r$  of clauses.

▶ A formula is in 3-CNF if every clause contains at most three literals. Given a formula F in 3-CNF, the **3-SAT** problem is to decide whether there is a map  $a : i \rightarrow \{true, false\}$  (*truth assignment*) such that F evaluates to *true* when each variable  $u_i$  is set of the truth value a(i).

Theorem (Karp, 1972)

3-SAT is NP-complete.

#### Proof.

Transformation from SAT - the first known NP-complete problem.



 $3-SAT \leq 3-Vertex Coloring$ 

Theorem (Garey/Johnson/Stockmeyer, 1976) 3-Vertex Coloring is NP-complete.

Proof.

Consider the following *clause gadget*:



- If at least one of a,b,c has color 1, then this extends to a coloring of the gadget where y is colored with 1.
- ▶ If *a*,*b*,*c* all have the same color *i*, then *y* must be colored with *i*.



 $3-SAT \leq 3-Vertex Coloring$ 

Theorem (Garey/Johnson/Stockmeyer, 1976) 3-Vertex Coloring is NP-complete.

Proof.

Consider the following *clause gadget*:



- If at least one of a,b,c has color 1, then this extends to a coloring of the gadget where y is colored with 1.
- ▶ If *a*,*b*,*c* all have the same color *i*, then *y* must be colored with *i*.





Given a formula F in 3-CNF, we construct a graph G as follows:

Start with a *truth gadget* and a *variable gadget*:



- For each clause a<sub>i</sub> ∨ b<sub>i</sub> ∨ c<sub>i</sub> in F, insert the clause gadget, by replacing a, b, c with the corresponding vertex u<sub>i</sub> or u<sub>i</sub> of the variable gadget.
- Add edges  $\{F, y_i\}$  and  $\{X, y_i\}$  for each clause.

## $3-SAT \leq 3-Vertex Coloring$



## Proof ( $\Rightarrow$ ).

Graph for  $F = u_1 \lor u_2 \lor \overline{u_3}$ 

- ► Color *T* with 1, *F* with 2 and *X* with 3.
- If u<sub>i</sub> is true, then color the vertex u<sub>i</sub> with 1 and u<sub>i</sub> with 2. Otherwise, color u<sub>i</sub> with 2 and u<sub>i</sub> with 1.
- Since F is satisfied, for each clause, at least one of the literals a<sub>i</sub>, b<sub>i</sub>, c<sub>i</sub> has color 1, so this extends to a coloring where all y<sub>i</sub> have color 1.
- This coloring is compatible with the truth and variable gadget.

## $3-SAT \leq 3-Vertex Coloring$



## Proof ( $\Rightarrow$ ).

Graph for  $F = u_1 \lor u_2 \lor \overline{u_3}$ 

- ► Color *T* with 1, *F* with 2 and *X* with 3.
- If u<sub>i</sub> is true, then color the vertex u<sub>i</sub> with 1 and u<sub>i</sub> with 2. Otherwise, color u<sub>i</sub> with 2 and u<sub>i</sub> with 1.
- Since F is satisfied, for each clause, at least one of the literals a<sub>i</sub>, b<sub>i</sub>, c<sub>i</sub> has color 1, so this extends to a coloring where all y<sub>i</sub> have color 1.
- This coloring is compatible with the truth and variable gadget.

## $3-SAT \leq 3-Vertex Coloring$



## Proof ( $\Rightarrow$ ).

Graph for  $F = u_1 \lor u_2 \lor \overline{u_3}$ 

- ► Color *T* with 1, *F* with 2 and *X* with 3.
- If u<sub>i</sub> is true, then color the vertex u<sub>i</sub> with 1 and u<sub>i</sub> with 2. Otherwise, color u<sub>i</sub> with 2 and u<sub>i</sub> with 1.
- Since F is satisfied, for each clause, at least one of the literals a<sub>i</sub>, b<sub>i</sub>, c<sub>i</sub> has color 1, so this extends to a coloring where all y<sub>i</sub> have color 1.
- This coloring is compatible with the truth and variable gadget.

## $3-SAT \leq 3-Vertex Coloring$



## Proof ( $\Rightarrow$ ).

Graph for  $F = u_1 \lor u_2 \lor \overline{u_3}$ 

- ▶ Color *T* with 1, *F* with 2 and *X* with 3.
- If u<sub>i</sub> is true, then color the vertex u<sub>i</sub> with 1 and u<sub>i</sub> with 2. Otherwise, color u<sub>i</sub> with 2 and u<sub>i</sub> with 1.
- Since F is satisfied, for each clause, at least one of the literals a<sub>i</sub>, b<sub>i</sub>, c<sub>i</sub> has color 1, so this extends to a coloring where all y<sub>i</sub> have color 1.
- This coloring is compatible with the truth and variable gadget.

## $3-SAT \leq 3-Vertex Coloring$



## Proof ( $\Leftarrow$ ).

Graph for  $F = u_1 \lor u_2 \lor \overline{u_3}$ 

Conversely, suppose that G has a 3-coloring.

- ▶ W.I.o.g. *T* has color 1, *F* has color 2 and *X* has color 3.
- ▶ This yields a truth assignment on the variables (1: true, 2: false).
- Moreover,  $y_i$  is colored with 1 for all clauses.
- ▶ For a clause, not all of a<sub>i</sub>, b<sub>i</sub>, c<sub>i</sub> can have color 2, because this would imply that y<sub>i</sub> has color 2.
- ▶ In particular, *F* is satisfiable.



#### Corollary

For fixed  $k \ge 3$ , k-Vertex Coloring is NP-complete.

#### Proof.

Probably an exercise.

## T-Vertex Coloring $\leq T$ -PESP

## Theorem (Odijk, 1994)



Fix an integer T. Then T-Vertex Coloring can be reduced to PESP feasibility with period time T.

#### Proof.

Let G = (V, E) be an arbitrary graph (w.l.o.g. directed). Define a PESP instance on G as follows (weights are unimportant for feasibility):

$$\ell_{e}:=1, \quad u_{e}:=T-1, \quad e\in E.$$

Suppose that G has a T-coloring  $f: V \to \{1, 2, ..., T\}$ . Define  $\pi_v := f(v) - 1$  for all  $v \in V$ . Then  $\pi$  takes values in  $\{0, 1, ..., T-1\}$ . Set

$$\mathsf{x}_{ij} := egin{cases} \pi_j - \pi_i & ext{if } \pi_j \geq \pi_i, \ \pi_j - \pi_i + T & ext{otherwise}, \end{cases} \quad ij \in E.$$

Clearly  $x_{ij} \ge 0$ . Since f is a coloring, also  $x_{ij} \ge 1 = \ell_{ij}$ . Moreover  $x_{ij} \le T - 1 = u_{ij}$ . Hence  $(\pi, x)$  is feasible for PESP.



#### Proof.

Conversely, let  $(\pi, x)$  be feasible for PESP on the graph *G*. As lower und upper bounds are integer, we can assume that this holds for  $\pi$  and x as well (total unimodularity). Then

$$f(v) := \pi_v + 1 \quad \in \{1, 2, \dots, T\}, \quad v \in V,$$

is a T-vertex coloring for G.

## Chapter 3 Periodic Timetabling

§3.2 Cycle Spaces

#### §3.2 Cycle Spaces

## Motivation: PESP MIP formulation

ZUB

So far, we considered the following MIP formulation of PESP:

$$\begin{array}{ll} \text{Minimize} & \sum_{ij \in E} w_{ij} x_{ij} \\ \text{s.t.} & x_{ij} = \pi_j - \pi_i + p_{ij} T, & ij \in E, \\ & \ell_{ij} \leq x_{ij} \leq u_{ij}, & ij \in E, \ & (\text{periodic tension}) \\ & 0 \leq \pi_i \leq T - 1, & i \in V, \ & (\text{periodic timetable}) \\ & p_{ij} \in \mathbb{Z}, & ij \in E. \ & (\text{periodic offset}) \end{array}$$

If the event-activity network has n events and m activities, then this formulation uses m constraints, m + n continuous variables, and m integer variables.

We will now construct a formulation with m - n + 1 constraints, m continuous variables, and m - n + 1 integer variables. This variant behaves much better in practice.



Let G = (V, E) be an undirected graph.

#### Definition

A cycle in G is an Eulerian subgraph of G.

## Remarks

- ▶ In other words, a cycle is a subgraph G' = (V', E') with  $V' \subseteq V$  and  $E' \subseteq E$  such that deg<sub>G'</sub>(v) is even for all  $v \in V'$ .
- Any cycle decomposes as an edge-disjoint union of circuits.
- We will sometimes identify a cycle with its sequence of edges or vertices.

§3.2 Cycle Spaces Symmetric difference of cycles



#### Lemma

Let  $C_1, C_2$  be two cycles in G. Then the symmetric difference

 $C_1 \Delta C_2 := (C_1 \cup C_2) \setminus (C_1 \cap C_2)$ 

is a cycle in G.



#### Proof.

Let  $v \in V(C_1 \Delta C_2)$ . Then

$$\deg_{C_1 \Delta C_2}(v) = \deg_{C_1}(v) + \deg_{C_2}(v) - 2\deg_{C_1 \cap C_2}(v)$$

is even.

 $\S3.2$  Cycle Spaces

Incidence vectors and cycle space

Let G be an undirected graph.

Definition

For a cycle *C* define its **incidence vector**  $\gamma_{C} \in \{0, 1\}^{E}$  as

$$\gamma_e := egin{cases} 1 & ext{if } e \in E(\mathcal{C}), \ 0 & ext{if } e \notin E(\mathcal{C}), \end{cases} \quad e \in E(\mathcal{G}).$$

The cycle space of G is the set

$$\mathcal{C}(G) := \{\gamma_C \mid C \text{ is a cycle in } G\} \subseteq \{0,1\}^E.$$

#### Lemma

 $\mathcal{C}(G)$  is an  $\mathbb{F}_2$ -vector space.

 $\begin{array}{l} \mbox{Proof.} \\ \mbox{Addition} \leftrightarrow \mbox{symmetric difference.} \end{array}$ 



§3.2 Cycle Spaces
Cyclomatic number

Let G be an undirected graph.

#### Definition

The cyclomatic number of G is defined as

$$\mu(G) := \dim_{\mathbb{F}_2} \mathcal{C}(G).$$

In other words, the cyclomatic number is the length of any cycle basis.

#### Lemma

Suppose that G has n vertices, m edges, and c connected components. Then  $\mu(G) = m - n + c$ .

#### Proof.

Suppose first that G is connected. Let T be a spanning tree of G, i.e., a maximal cycle-free subgraph containing all n vertices.



§3.2 Cycle Spaces

## Cyclomatic number

## Proof (cont.)

We call an edge  $e \in E(G)$  a *co-tree edge* if  $e \notin E(T)$ . Since T contains n-1 edges, there are precisely m-n+1 co-tree edges.

Since T is a spanning tree, adding a single co-tree edge e to T produces a cycle containing e. This way, we obtain m - n + 1 cycles in G, one for each co-tree edge.

The incidence vectors of these cycles are  $\mathbb{F}_2$ -linearly independent, since each co-tree edge is contained in precisely one cycle. In formulae, if  $\gamma_e \in \{0,1\}^E$  denotes the incidence vector of the cycle produced by the co-tree edge e, then

$$\gamma_{e,e'} = \begin{cases} 1 & \text{ if } e = e', \\ 0 & \text{ if } e \neq e' \text{ for all co-tree edges } e' \notin E(T). \end{cases}$$

This shows  $\dim_{\mathbb{F}_2} \mathcal{C}(G) \ge m - n + 1$  for connected G.

May 28, 2018

## §3.2 Cycle Spaces Cyclomatic number

Proof (cont.)

Let  $\boldsymbol{\zeta}$  be the incidence vector of an arbitrary cycle of  $\boldsymbol{G}.$  Let

$$\zeta' := \zeta - \sum_{e \notin E(T)} \zeta_e \gamma_e \quad \in \mathcal{C}(G).$$

Then for any co-tree edge  $e' \notin E(T)$ , the corresponding entry of  $\zeta'$  is

$$\zeta'_{e'} = \zeta_{e'} - \sum_{e \notin E(T)} \zeta_e \gamma_{e,e'} = \zeta_{e'} - \zeta_{e'} = 0,$$

so that  $\zeta'$  corresponds to a cycle inside the tree T. Since trees cannot have cycles,  $\zeta' = 0$  and  $\zeta$  is therefore in the  $\mathbb{F}_2$ -span of  $\{\gamma_e \mid e \notin E(T)\}$ .

This finishes the proof for c = 1. If G has several connected components, then add the cyclomatic numbers of all components.





## Definition

- Let T be a spanning tree of an undirected graph G.
  - ► A cycle created by adding a co-tree edge to T is called fundamental cycle.
  - A fundamental cycle basis is a cycle basis consisting of fundamental cycles.

#### Remark

The following is an algorithm to construct a fundamental cycle basis: Compute first a spanning tree (Prim, Kruskal, ...) and then take the fundamental cycle for each co-tree edge.



Consider the following graph G:



G has 8 vertices, 10 edges, 1 connected component and hence  $\mu(G) = 10 - 8 + 1 = 3$ .





Consider the following graph G:



G has 8 vertices, 10 edges, 1 connected component and hence  $\mu(G) = 10 - 8 + 1 = 3$ .





Consider the following graph G:



G has 8 vertices, 10 edges, 1 connected component and hence  $\mu(G) = 10 - 8 + 1 = 3$ .





Consider the following graph G:



G has 8 vertices, 10 edges, 1 connected component and hence  $\mu(G) = 10 - 8 + 1 = 3$ .





Consider the following graph G:



G has 8 vertices, 10 edges, 1 connected component and hence  $\mu(G) = 10 - 8 + 1 = 3$ .





Let G be a *directed* graph.

#### Definition

A **directed cycle** in *G* is an Eulerian subgraph of *G*. An **oriented cycle** in *G* is a cycle of the undirected graph |G| underlying *G*.

#### Remarks

- Any directed cycle is an oriented cycle.
- An oriented cycle uses edges either in *forward* or in *backward* direction.
- Any directed/oriented cycle decomposes as an edge-disjoint union of directed/oriented circuits.

#### $\S3.2$ Cycle Spaces

## Incidence vectors and cycle space

Definition

Let C be an oriented cycle in G. Then its incidence vector  $\gamma_C \in \{-1,0,1\}^E$  is defined as

$$\gamma_e := egin{cases} 1 & ext{if } \mathcal{C} ext{ uses } e ext{ as forward edge}, \ -1 & ext{if } \mathcal{C} ext{ uses } e ext{ as backward edge}, \quad e \in \mathcal{E}(\mathcal{G}). \ 0 & ext{otherwise} \end{cases}$$

The  $\mathbb{Q}$ -cycle space of *G* is the  $\mathbb{Q}$ -vector space

$$\mathcal{C}_{\mathbb{Q}}(G) := \operatorname{span}_{\mathbb{Q}} \left\{ \gamma_{C} \mid C \text{ oriented cycle of } G \right\}.$$

A basis consisting of incidence vectors of true oriented cycles is called a **cycle basis** of G.

The cyclomatic number of G is defined as  $\mu(G) := \dim_{\mathbb{Q}} C_{\mathbb{Q}}(G)$ .





#### Lemma

Let  $\mathcal{B}$  be a cycle basis for |G|. Then lifting each cycle in  $\mathcal{B}$  to an oriented cycle in G yields a  $\mathbb{Q}$ -basis of  $\mathcal{C}_{\mathbb{Q}}(G)$ .

#### Proof.

Let  $\mathcal{B} = \{\gamma_1, \ldots, \gamma_\mu\}$  and let  $\gamma'_i$  be the incidence vector of an oriented cycle in G projecting to  $\gamma_i$  in |G|,  $i = 1, \ldots, \mu := \mu(|G|)$ .

Linear independence: Suppose  $\sum_{i=1}^{\mu} \lambda_i \gamma'_i = 0$  for some  $\lambda_1, \ldots, \lambda_{\mu} \in \mathbb{Q}$ . Clearing denominators, we can assume that  $\lambda_1, \ldots, \lambda_{\mu} \in \mathbb{Z}$  and  $gcd(\lambda_1, \ldots, \lambda_{\mu}) = 1$ . Reducing modulo 2, we have  $\sum_{i=1}^{\mu} [\lambda_i]_2 \gamma_i \equiv_2 0$ , which implies that  $\lambda_i \equiv_2 0$  for all *i*, as  $\mathcal{B}$  is an  $\mathbb{F}_2$ -basis. Since all  $\lambda_i$  were coprime, this means that  $\lambda_1 = \cdots = \lambda_{\mu} = 0$ .

## §3.2 Cycle Spaces Undirected cycle bases

## Proof (cont.)

It remains to show that  $\dim_{\mathbb{Q}} C_{\mathbb{Q}}(G) = \mu(|G|)$ . Consider a spanning tree T of |G| with its fundamental cycle basis  $\mathcal{B} = \{\gamma_e \mid e \notin E(T)\}$ . Let  $\zeta \in \{-1, 0, 1\}^{E(G)}$  be the incidence vector of an arbitrary oriented cycle in G and suppose that  $\zeta$  does not lie in the span of the lifts  $\{\gamma'_e \mid e \notin E(T)\}$  of the vectors in  $\mathcal{B}$  to G. Then also

$$\zeta' := \zeta - \sum_{e \notin E(T)} \zeta_e \cdot \gamma'_{e,e} \quad \notin \operatorname{span}\{\gamma'_e \mid e \notin E(T)\}$$

Then  $\zeta'_e = 0$  for any edge in E(G) corresponding to a co-tree edge of T, so that  $\zeta$  has support only in the tree edges. But T is a tree and hence cannot contain a cycle, so  $\zeta' = 0$  (contradiction).

#### Remark

In particular, fundamental cycle bases work as in the undirected case.

May 28, 2018



§3.2 Cycle Spaces Cycle basis names

Let G be a directed graph.

Corollary

If G has n vertices, m edges and c weakly connected components, then  $\mu(G) = \mu(|G|) = m - n + c$ .

## Definition

- ► A cycle basis in G coming from a cycle basis in |G| is called an undirected cycle basis.
- ► A cycle basis in *G* coming from a spanning tree is called a **strictly fundamental basis**.

#### Definition

Let  $\mathcal{B} = (\gamma_1, \ldots, \gamma_{\mu(G)})$  be a cycle basis. The  $(\mu(G) \times m)$ -matrix  $\Gamma$  whose rows are given by  $\gamma_i$ ,  $i = 1, \ldots, \mu(G)$ , is called the **cycle matrix** of  $\mathcal{B}$ .



## §3.2 Cycle Spaces Cycle basis example



Consider the following digraph G with red spanning tree T:



We produce a strictly fundamental cycle basis by taking the oriented cycle for each co-tree edge of T:



The cycles  $C_1$  and  $C_3$  use only forward edges, whereas  $C_2$  uses two backward edges.

## §3.2 Cycle Spaces Cycle basis example



Label the edges by  $1, \ldots, 10$ :



Collecting the incidence vectors of  $C_1$ ,  $C_2$ ,  $C_3$  yields the  $3 \times 10$ -cycle matrix:

|            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |
|------------|---|---|---|---|---|---|---|---|----|----|
| $\gamma_1$ | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1  | 0  |
| $\gamma_2$ | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | -1 |
| $\gamma_3$ | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0  | 1  |

Note that the matrix has full row rank. The part corresponding to the co-tree edges 5, 6, 7 of T is a permutation of the identity matrix.

§3.2 Cycle Spaces

Determinant of a cycle basis



Let G be a directed graph and let  ${\mathcal B}$  be a cycle basis with cycle matrix  $\Gamma.$ 

#### Definition

The **determinant** of  $\mathcal{B}$  is defined as

 $\mathsf{det}(\mathcal{B}) := \left| \begin{array}{c} (\mu(G) \times \mu(G)) \text{-submatrix of } \Gamma \text{ corresponding to the} \\ \text{co-tree edges of some spanning tree of } G \end{array} \right|.$ 

This is well-defined:

## Theorem (Liebchen, 2003)

Let  $T_1$ ,  $T_2$  be two spanning trees of G. For i = 1, 2, denote by  $A_i$  the  $(\mu(G) \times \mu(G))$ -submatrix of  $\Gamma$ , where exactly the columns corresponding to  $e \notin E(T_i)$  are selected. Then  $A_1$  and  $A_2$  are both invertible and  $\det(A_1) = \pm \det(A_2)$ .

§3.2 Cycle Spaces

## Determinant of a cycle basis

#### Proof.

Let  $\Phi$  be the cycle matrix of a strictly fundamental cycle basis of G coming from the spanning tree  $T_1$ . The rows of  $\Phi$  are indexed by the  $\mu := \mu(G)$ co-tree edges of  $T_1$ . We have

$$\Phi_{e,e'} = egin{cases} 1 & ext{if } e = e', \ 0 & ext{if } e \neq e', \end{cases} ext{ for all } e, e' \notin E(T).$$

Note that we can always lift a fundamental cycle in such a way that the co-tree edge becomes a forward edge. In particular, if  $\Phi_1$  denotes the restriction of  $\Phi$  to the columns corresponding to co-tree edges of  $T_1$ , then  $\Phi_1$  is the identity matrix.

Since  $\Phi$  and  $\mathcal{B}$  are bases, there is an invertible  $(\mu \times \mu)$ -matrix S such that  $\Gamma = S \cdot \Gamma_{\Phi}$ . It follows that  $A_1 = S \cdot \Phi_1$  is invertible. This holds analogously for  $A_2$ .



## Determinant of a cycle basis



#### Proof.

Let  $\Phi_2$  denote the restriction of  $\Phi$  to the columns corresponding to the co-tree edges of  $T_2$ . Then  $A_2 = S \cdot \Phi_2$ , so it remains to show that  $\det(\Phi_2) = \pm \det(\Phi_1) = \pm 1$ . We use induction on  $\#E(T_1)\Delta E(T_2)$ .

 $#E(T_1)\Delta E(T_2) = 0$ : This is equivalent to  $E(T_1) = E(T_2)$ , where obvioulsy  $det(\Phi_2) = det(\Phi_1)$ .

 $#E(T_1)\Delta E(T_2) > 0$ : Let  $e_1 \in E(T_1) \setminus E(T_2)$ . On the unique path in  $T_2$  connecting the endpoints of  $e_1$ , there must be an edge  $e_2 \notin E(T_1)$ , as otherwise  $T_1$  would contain a cycle. The fundamental cycle of  $e_1$  in  $T_1$  uses  $e_2$ , so that  $\Phi_{e_1,e_2} = \pm 1$ . Since there is only one fundamental cycle for  $T_1$  using the co-tree edge  $e_2$ , this means that  $\Phi_{e,e_2} = 0$  for  $e \neq e_1$ . Use Laplace expansion along the column  $e_2$ .

#### §3.2 Cycle Spaces

## Characterization by determinant



Let G be a digraph with cyclomatic number  $\mu$  and cycle basis B. Theorem (Liebchen/Rizzi, 2007)

- (1)  $\mathcal{B}$  is undirected if and only if det( $\mathcal{B}$ ) is odd.
- (2)  $\mathcal{B}$  is strictly fundamental if and only if the cycle matrix of  $\mathcal{B}$  can be permuted in such a way that it has the  $\mu \times \mu$ -identity matrix in its last  $\mu$  columns.

## Proof.

(2) Exercise. (1) Let  $\Gamma$  be the cycle matrix of  $\mathcal{B}$ . Write  $\Gamma = S \cdot \Phi$ , where S is an invertible  $\mu \times \mu$ -matrix and  $\Phi$  is the matrix of a strictly fundamental basis for some spanning tree T. Restricting to the co-tree edges, we obtain  $\Gamma|_{\overline{E(T)}} = S \cdot \Phi|_{\overline{E(T)}} = S$ , so det $(\mathcal{B}) = \det(S)$ . If det $(\mathcal{B})$  is odd, then S is invertible over  $\mathbb{F}_2$ , so the rows of  $\Gamma$  mod 2 form a cycle basis for |G|. Conversely, if  $\mathcal{B}$  is undirected, then  $\Gamma|_{\overline{E(T)}}$  is invertible mod 2, so that also S is invertible mod 2 and hence det $(\mathcal{B})$  is odd.