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3.2 Cycle Spaces
Cycle basis names

Let G be a directed graph.

Corollary
If G has n vertices, m edges and ¢ weakly connected components, then
w(G) = (|G =m—n+c.
Definition
» A cycle basis in G coming from a cycle basis in |G| is called an
undirected cycle basis.

» A cycle basis in G coming from a spanning tree is called a strictly
fundamental basis.

Definition
Let B = (71,---,7u(c)) be a cycle basis. The (4(G) x m)-matrix I whose
rows are given by v;, i =1,...,u(G), is called the cycle matrix of .
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§3.2 Cycle Spaces
Cycle basis example

1B
Consider the following digraph G with red spanning tree T:

[ [ (@
7 7 L4

We produce a strictly fundamental cycle basis by taking the oriented cycle
for each co-tree edge of T:

SO SO N
L4 L4 4
& & &
A) A A

The cycles C; and (3 use only forward edges, whereas C, uses two
backward edges.
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3.2 Cycle Spaces
Cycle basis example

Label the edges by 1,...,10: zZiB
! SO 2 RV 3 \
i G SE G lls G i“
< 7 \J< 6 U< 5
Collecting the incidence vectors of C;, (o, (3 yields the 3 x 10-cycle matrix:
1 2 3 45 6 7 8 9 10
|1 0 0 0 0 0 1 1 1 0
w»w|0 1 0 0 0 1 0 0O -1 -1
|0 0 1 1 1 0 0 0 O 1

Note that the matrix has full row rank. The part corresponding to the
co-tree edges 5,6,7 of T is a permutation of the identity matrix.
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3.2 Cycle Spaces
Determinant of a cycle basis

ZIB;

Let G be a directed graph and let B be a cycle basis with cycle matrix .

Definition
The determinant of B is defined as

det(B) = (11(G) x p(G))-submatrix of I' corresponding to the
o co-tree edges of some spanning tree of G

This is well-defined:

Theorem (Liebchen, 2003)

Let Ty, To be two spanning trees of G. For i = 1,2, denote by A; the
(u(G) x u(G))-submatrix of I', where exactly the columns corresponding
to e ¢ E(T;) are selected. Then A1 and Ay are both invertible and
det(Al) = :l:det(AQ).
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3.2 Cycle Spaces
Determinant of a cycle basis

Proof.

Let ® be the cycle matrix of a strictly fundamental cycle basis of G coming
from the spanning tree T1. The rows of ® are indexed by the p := u(G)
co-tree edges of T1. We have

cDe,e’ =

1 ife=¢
! T forall e, e ¢ E(T).
0 ife#é,

Note that we can always lift a fundamental cycle in such a way that the
co-tree edge becomes a forward edge. In particular, if ®; denotes the
restriction of ® to the columns corresponding to co-tree edges of Ti, then
®; is the identity matrix.

Since ® and B are bases, there is an invertible (u x p)-matrix S such that
=S5 Te. It follows that A; = S - @y is invertible. This holds analogously
for A,.
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3.2 Cycle Spaces
Determinant of a cycle basis

Proof (cont.)

Let @, denote the restriction of ® to the columns corresponding to the
co-tree edges of Tp. Then A, = S - &5, so it remains to show that
det(®y) = L det(P1) = £1. We use induction on #E(T1)AE(T>).

#E(T1)AE(T,) =0: This is equivalent to E(T1) = E(T3), where
obvioulsy det(®y) = det(Pq).

#E(T1)AE(T2) > 0: Let e; € E(T1) \ E(T2). On the unique path in T
connecting the endpoints of e1, there must be an edge ex ¢ E(T1), as
otherwise T7; would contain a cycle. The fundamental cycle of e; in T
uses e, so that ®, ., = £1. Since there is only one fundamental cycle for
T1 using the co-tree edge e, this means that ®. ., = 0 for e # e;. Use
Laplace expansion along the column e;. []

June 4, 2018 8 /36



3.2 Cycle Spaces

Characterization by determinant
Let G be a digraph with cyclomatic number p and cycle basis B. 4B
Theorem (Liebchen/Rizzi, 2007)

(1) B is undirected if and only if det(B) is odd.

(2) B is strictly fundamental if and only if the cycle matrix of B can be
permuted in such a way that it has the u X p-identity matrix in its last
1 columns.

Proof.

(2) Exercise. (1) Let ' be the cycle matrix of B. Write [ = S - ®, where S
is an invertible p x pu-matrix and ® is the matrix of a strictly fundamental
basis for some spanning tree T. Restricting to the co-tree edges, we obtain
MNeo-tree = S - P|co-tree = S, so det(B) = det(S). If det(B) is odd, then S is
invertible over Fp, so the rows of ' mod 2 form a cycle basis for |G|.
Conversely, if B is undirected, then I|co-tree is invertible mod 2, so that also
S is invertible mod 2 and hence det(B) is odd. O
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3.2 Cycle Spaces
More on the determinant
Let G be a digraph with cyclomatic number p.

Lemma (Liebchen/Peeters, 2003)

Let T be the cycle matrix of a cycle basis for G, and let A be any
W X p-submatrix of [. Then A is invertible if and only if the columns of A
correspond to the co-tree edges of some spanning tree of G.

Proof.

(«<=) Let ® be the cycle matrix of a strictly fundamental basis for some
spanning tree T. As before, = S - ® for some invertible p X p-matrix S.
Let A be the submatrix of I' corresponding to the co-tree edges of T.
Then A =T|cotree = S - Peo-tree = S, so that A is invertible.

(=) Suppose that A is invertible. Let H = {e1,...,e,} € E(G) such that
the columns of A correspond to H. Then any cycle v can be written as

vt = AT for some A € QH, as I is a cycle basis. If v contains no edge of
H, then 0 = (Ye,---,Yeu) = AT A, so that A = 0 as A is invertible, and

~v = 0. In particular, E(G) \ H has no cycle and is thus a spanning tree. [
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3.2 Cycle Spaces
Integral cycle bases
Let G be a digraph with cyclomatic number p.

Definition
A cycle basis B = {v1,...,v,} is called integral if every incidence vector
of an oriented cycle in G can be written as

o
v = Z)\;’y;, where A1,...,\, € Z.
i=1

Theorem (Liebchen/Peeters, 2003)

The following are equivalent for a cycle basis B with cycle matrix T':
(1) B is integral,

(2) every p x p-submatrix of I' has determinant 0 or £1,

(3) det(B) =1.
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3.2 Cycle Spaces
Integral cycle bases

Proof.
(2) < (3): by preceding lemma.

(1) = (2): Let T be a spanning tree, giving rise to a strictly fundamental
cycle basis with matrix . Then ® = S - T for some invertible p X p-matrix
S. Since B is integral, S has integer entries. Let A be the p X p-submatrix
of I restricted to the co-tree edges of T. Then S - A is the identity matrix.
Since S and A have both integer determinants multiplying to 1, we have
det(A) = +1.

(3) = (1): For an arbitrary incidence vector 7 there is a A € Q" such that
vt = AT (cycle basis property). Restricting to the co-tree edges

{e1,...,eu} of a spanning tree yields (7e,, .. .,7e,) = A'A for the suitable
submatrix A of I'. Since A has determinant £1 by (3), it has an integer
inverse and hence \' = (7e,, . .. ,'yeu)A_1 is integer. Ol
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3.2 Cycle Spaces
Summary

Let G be a directed graph.

Classes of cycle bases

arbitrary det #0
Ut
undirected det=>1
Ut
integral det=1
Ut
strictly fundamental det =1 + identity matrix condition

Examples for the strict inclusion: Last tutorial and Problem Set 6.
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§3.3 Cycles in Periodic Timetabling
Back to PESP
Input 4B

> event-activity network £ = (V, E),

» period time T € N,
lower bound vector £ € (R>0)E, 0< ¢ < T,
upper bound vector u € (R>0)E, ¢ <u< T -,

v

v

v

weight vector w € (R>o)£

MIP formulation
Minimize Z Wi Xij

jeE
s.t. xj=mj—mi+p;T, ij € E,
i < xij < ujj, ij € E, (periodic tension)
0<m<T—-1, i€V, (periodic timetable)
pij € Z, ij € E. (periodic offset)
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§3.3 Cycles in Periodic Timetabling
Cycle periodicity constraints
Theorem (Nachtigall, 1994; Liebchen/Peeters, 2002) ZIB

Consider a PESP instance, and let x € RE. The following are equivalent:

(1) There exists a periodic timetable 7 € [0, T)V such that for all ij € E
exist pjj € 7 such that xj; = w; — m; + p;; T.

(2) For each oriented cycle v in £ exists z, € Z such that v'x = z,T.

(3) For each integral cycle basis {1, ...,v.} of €, there are
zi,...,2, € Z such that v} x = z; T foralli=1,...,p.

Proof.
(1) = (2): Let v € {—1,0,1}F be the incidence vector of an oriented
cycle (va,...,vk,v1). If v uses (vj, vit1) € E forward, then

Vivig1 Xvivier = Tvir = T T Pyivi T.
Otherwise, if v uses (vj11, v;) backward, then
Wit1,viXvip,vi = Tvign = Ty = Pvjgg,y T.

Hence v'x = T~%p, and clearly 7'p € Z.
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§3.3 Cycles in Periodic Timetabling
Cycle periodicity constraints

Proof (cont.)

(2) = (3): Trivial. (3) = (2): Let «y be the incidence vector of an
arbitrary oriented cycle. Since {v1,...,7,} is an integral cycle basis, there
are A1, ..., A, € Z such that v = >t Ajv;. In particular

M Iz M
Yx = "Afx =Y NizT = (ZA,—;-) T €Z-T.
i=1 i=1 i=1

(2) = (1): Let T be a spanning tree of £, and pick a vertex s € V(T).
Then there is a unique oriented path from s to each other vertex
v € V(T). Each oriented path in £ can be expressed as an incidence
vector in {—1,0,1}F as in the case of cycles. Set 75 := 0 and 7, := pf, x
for all v.e V(T)\ {s}, where ps, is the unique oriented s-v-path in T.
If ij € E(T), then psj = psi + €jj, so that

ﬂj—ﬂ;:eiz-xzx;j:x;j—i—o- T.
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§3.3 Cycles in Periodic Timetabling
Cycle periodicity constraints

B!

Proof (cont.)

if ij € E\ E(T) is a co-tree edge, then this yields a fundamental cycle .
The cycle v uses the edge ij and then the unique path from j to jin T.
The incidence vector of this path is simply given by psi — psj, so that

v = psi — Psj + €. Hence

t t t t
Tj — Wi = PgiX — PsiX = X — ' X = Xjj + 2z, T,
and we can set p;j := z,.
Finally, reduce m modulo T. O

Corollary
A feasible periodic timetable m can be constructed from a feasible periodic
tension x using a spanning tree.
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§3.3 Cycles in Periodic Timetabling

Cycle-based PESP MIP formulation
In the PESP MIP formulation, we can now replace the constraints 1B

xj=mj—mi+pjl, pj€L
by choosing an integral cycle basis {71,...,7,} and requiring

'y,-tx =zT, z €l

New MIP formulation (cycle & tension)

Let [ be the cycle matrix of an integral cycle basis for £.

Minimize Z Wi Xij
ijeE
s.t. Ix =zT, (cycle periodicity)
< x < u, (periodic tension)
z e 7M. (cycle offset)

This uses less constraints and variables than the original formulation.
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§3.3 Cycles in Periodic Timetabling

Cycle-and-slack-based PESP MIP formulation

Definition
The periodic slack is y := x — /.

Remark

If a periodic timetable 7 is given, then y;; = [m; — m; — £;i] 1.

This gives rise to an equivalent MIP formulation, minimizing the total
slack:

New MIP formulation (cycle & slack)

Minimize Z Wi
iicE
s.t. My +4£)=zT, (cycle periodicity)
0<y<u—/{ (periodic slack)
zeZ7ZM (cycle offset)
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§3.3 Cycles in Periodic Timetabling

Example
Consider the following PESP instance (T = 10): 1B
: SO 2 SO 3 \
mi G 7l Glle G i*
— —O—
Bounds and weights:
1 2 3 4 5 6 7 8 9 10
(V7 3 6 2 6 3 7 2 3 3
ul|7 12 6 11 6 12 7 11 12 12
o 1.0 1 0 1 0 1 1 1
Cycle matrix:
1 2 3 45 6 7 8 9 10
w1 0 0 0 0 0 1 1 1 0
»w/0 1 0 0 0 1 0 0 -1 -1
3]0 0 1 1 1 0 0 0 O 1
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§3.3 Cycles in Periodic Timetabling
Example

The cycle basis is integral (even strictly fundamental). In the
cycle & slack-formulation, this yields the following:

Minimize Y2 +ya+ Yo+ ys + Yo+ yio

s.t. yi+yr+ys+yo— 10z = —19, (cycle periodicity for ~1)
y2+ Y6 — Yo — Y10 — 1022 = 0, (cycle periodicity for 77)

Y3+ Yya+ys +yio — 10z3 = 17, (cycle periodicity for 73)
Y1,¥3,¥5,¥7 =0, (periodic slack, driving)

0 < y2,y4,¥6,¥8, Y9, ¥10 < 9, (periodic slack, transfer)

z1,2,23 € L. (cycle offset)

We may omit the fixed y-variables (i.e., the ones for the driving activities),
giving a MIP with 3 integer and 6 continuous variables, and 3 constraints.

Optimal sol.: yo =ys =yo =y10=22=0,y4 =3, 8 =1, z1 = 23 = 2,
minimal slack: 4.
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§3.3 Cycles in Periodic Timetabling
Offset variable bounds

Question

Recall that in the old timetable-based formulation, we could w.l.o.g.
achieve that the periodic offsets satisfy p;; € {0,1,2}. What about the
cycle offsets in the cycle-based formulation?

B!

Definition
For a PESP instance, define the offset space as
Pofiset :={z€Z' | Iy eRE:0<y <u—0, T(y+0) =Tz}

Theorem (Odijk, 1996)
If z € Pyser, then any cycle vt = AT satisfies the cycle inequality

Vil —~tu PN Yiu—~te
’VT <\ \'z< — |

Conversely, if for given z € Z#, the cycle inequality holds for each oriented
cycle 7y, then z € Pyfrset.
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§3.3 Cycles in Periodic Timetabling
Cycle inequality

Notation
Each incidence vector  of an oriented cycle decomposes as v = v — v_,
where v, € {0,1}F (“forward part”) and v_ € {0,1}£ (“backward part").

Example: (1,1,0,0,—-1,-1) =(1,1,0,0,0,0) — (0,0,0,0,1,1).

Remark

Odjik's theorem gives a strategy to generate valid inequalities for PESP:
All integer solutions satisfy the cycle inequality for all cycles. If an LP
solver finds a fractional solution and there is a cycle  violating the cycle
inequality, then we can add the cycle inequality for v as additional
constraint and solve again.
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§3.3 Cycles in Periodic Timetabling
Cycle inequality: Example

Consider the following PESP instance (T = 10): 1B
AN 3 N
¢ 7 6 5
Bounds:
1 2 3 4 5 6 7 8 9 10
(17 3 6 2 3 7 2 3 3
u|7 12 6 11 6 12 7 11 12 12

Cycle inequalities:
2=[(T+7+2+3)/10]
=[(3+3-12-12)/10]

2=[(6+2+6+3)/10] <
— bounds for the cycle offset variables.

72 < [(T+7+11+12)/10) =3
2 < [(12+412-3-3)/10] =1
23 < [(6+1146+12)/10] =3

VARVAY

June 4, 2018 25 /36



§3.3 Cycles in Periodic Timetabling
Cycle inequality
Proof (=). zZiB

Let z € Pofrser and let vt = AT be an oriented cycle. Since A\'z is integer,
it suffices to prove

t t t t
Yil —~tu : yiu—~te
—_ <Az T
T SN f=ETT
Since z € Pyffset, We find 0 <y < u— ¢ such that ['(y + ¢) = Tz. This
implies vy >0 and Ly < ~f(u—¢), and therefore
Yy +O) =~y -y +y -yl > AL (U —u)+y =y =~ -~
On the other hand, 7Ly <~ (u—¢) and 4Ly > 0, so that
Yy +O) =~y —yly+y =yl <AL (u—0)+y =yl =~ u—At L
Putting this together,
Vil —7lu <Aty + ) <~yfu—Hle

Finally note X'z = AT (y +0)/ T =~ (y +¢)/T.
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§3.3 Cycles in Periodic Timetabling

Cycle inequality
Proof («). 1B

Given z € Z" such that the cycle inequality holds for each oriented cycle,
we have to show that there is 0 <y < u— ¢ with ['(y +¢) = Tz.

Let 4t = AT and let p € ZF be an integer solution of [p = z (integral
cycle basis). By the cycle inequality,

ANz=XTp=r'p<(viu—~L0)/T.

Define ¢/ :== ¢ — pT and «' := u— pT. Then the above inequality reads as
'yiu’ —~t7 >0.

Let £ be the network obtained from £ by adding to each edge ij € E its
anti-parallel edge ji. For each edge ij € E(E’) set

uj if ij € E,
wij 1= P
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§3.3 Cycles in Periodic Timetabling
Cycle inequality

B!

Proof (cont.)

We claim that every directed cycle in £ has non-negative weight.
Indeed, if 4 is such a cycle, then

t~ t pl
w'y = Z uU+ Z ’y+u vl >0,
jey: ijeE jeA: JicE

where v is the corresponding oriented cycle in £ using the edges ij € E
forward and the ji € E backward.

This implies that the shortest path problem in (£, w) behaves well. In
particular, there is a potential 7 € RY such that

T — T < W for all ij € E(g/)

Taking 7 to £, we have

7rj—7r,~§ufj and 7T;—7Tj§—€:-j for all jj € E.
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§3.3 Cycles in Periodic Timetabling
Cycle inequality

B!

Proof (cont.)

This means
eijgﬂ'j—ﬂ',‘—i-p,'jTSU,'j fOr3||Ij€E.

In particular, if we set
yij=mj—mi+p; T — Ly, Ij€E,
then obviously 0 < y < u — £. Moreover
Ny+6)=T -Tp= Tz,

as for each oriented cycle v = (vi, ..., vk, v1), the potential differences
My — Ty ..., Tk — Tk_1,T1 — Tk along v sum up to 0. O
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§3.3 Cycles in Periodic Timetabling
Cycle inequality: Applications

B!

There are two applications for the cycle inequalities to PESP:

» give bounds on the integer variables in the cycle-based MIP, thereby
reducing the search space for optimal solutions
— find an integral cycle basis minimizing the possible values for the
integer variables
— minimum-weight cycle basis

» add violated cycle inequalities as cutting planes in a LP-based MIP
solving procedure
— give an algorithm that checks if there is a violated cycle inequality
— separation of cycle cuts
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§3.3 Cycles in Periodic Timetabling
Minimum-weight cycle basis
Let G be a digraph with a weight vector d € RZOE(G).

Definition
The minimum weight cycle basis problem is to find a cycle basis
{7,...,vu} of G such that

I
Z Z ’7i,ede

i=1 ecE(G)
is minimal.
Application to PESP
For a cycle v, denote by a, and b, the lower and upper bounds of the

cycle inequality for +, respectively. Then using ~1,...,~, for the MIP
formulation produces

o
H(b’w — + 1)
i=1

possible combinations of values for the integer variables z, ..., z,.
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§3.3 Cycles in Periodic Timetabling
Minimum-weight cycle basis

However, this is not a weight vector. 4B
Lemma ' ,
Z ’7e|(u;__ e) < b7 —a, <2+ Z ”Ye|(ufr_ e)
ecE(G) ecE(G)
Proof. Vu— At NYESY
by—a,+1= - - -
t t t t
yiu—~EL Yl —~tu
1— —
Ty (R )
75_(U—£)+7£(U—£) h/e|(ue_€e)
-9 -9 I/eli¥e = "e)
+ - )

ecE
viu—tl A=Aty =y Dellve = fe)
T T ecE U .

by—a,+12>

32/ 36
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§3.3 Cycles in Periodic Timetabling
Minimum-weight cycle basis

1B
As a compromise, compute the minimum weight undirected cycle basis for
the weight vector d := u — £.

Complexity of finding a minimum cycle basis

class ‘ complexity
arbitrary polynomial
undirected polynomial
integral unknown

strictly fundamental | NP-complete

|dea for arbitrary/undirected cycle bases

The set of all (undirected) cycle bases forms a matroid. In particular, a
minimum-weight (undirected) cycle basis can be computed by a greedy
algorithm. However, the set of all (undirected) cycle bases is too large.
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§3.3 Cycles in Periodic Timetabling

The Horton set

Let G be a connected undirected graph with weights w : E(G) — RZZD
For v € V(G), let T, be a shortest path tree w.r.t. w with root v.

Definition
The Horton set H of G consists of the following Horton cycles of G:

Pvi - . Pjv
V=0 v,

where v € V(G), {i,j} € E(G), p.i is the unique v-i-path in T,, pj, is the
unique j-v-path in T,, and p,; and p;, are edge-disjoint.

Remark

The Horton set consists of O(|V(G)||E(G)]) cycles, and can be computed
in polynomial time.

Theorem (Horton, 1987)

‘H contains a minimum-weight cycle basis w.r.t. w. It is computed by the
greedy algorithm on H.
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§3.3 Cycles in Periodic Timetabling
Minimum-weight undirected cycle basis algorithm
Let G be a connected undirected graph with weights w : E(G) — RZZU

Horton's Algorithm

Compute shortest-path trees T, w.r.t. w for all v € V(G).
Build the Horton set .

Sort H by weight w in ascending order.

Set B := 0.

For all cycles v € H in ascending order:

» Add « to B.
» If B is linearly dependent over 5, then remove C.
> If #B = u(G), then return B.

ok

Remark

This computes a minimum-weight cycle basis in an undirected graph. For
directed graphs, the cycle basis may be computed first on the underlying
undirected graph |G|, and then be lifted to oriented cycles on G.
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§3.3 Cycles in Periodic Timetabling
Separation of cycle cuts

Consider a PESP instance with period time T on n events and m activities.

Theorem (Borndorfer/Hoppmann/Karbstein/Lindner, 2015, 2018)

(1) There is an algorithm that, given a point (y,z) of the LP relaxation to
the cycle & slack-MIP formulation, computes an oriented cycle
violating the cycle inequality w.r.t. (y, z) or decides that no such cycle
exists.

This algorithm runs in O(Tn?m) time (i.e., is pseudo-polynomial).

(2) There is no strongly polynomial-time algorithm for cycle cut separation

unless P = NP.
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