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§3.2 Cycle Spaces

Cycle basis names

Let G be a directed graph.

Corollary

If G has n vertices, m edges and c weakly connected components, then
µ(G ) = µ(|G |) = m − n + c .

Definition

I A cycle basis in G coming from a cycle basis in |G | is called an
undirected cycle basis.

I A cycle basis in G coming from a spanning tree is called a strictly
fundamental basis.

Definition
Let B = (γ1, . . . , γµ(G)) be a cycle basis. The (µ(G )×m)-matrix Γ whose
rows are given by γi , i = 1, . . . , µ(G ), is called the cycle matrix of B.
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§3.2 Cycle Spaces

Cycle basis example

Consider the following digraph G with red spanning tree T :

We produce a strictly fundamental cycle basis by taking the oriented cycle
for each co-tree edge of T :

C1 C2 C3

The cycles C1 and C3 use only forward edges, whereas C2 uses two
backward edges.
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§3.2 Cycle Spaces

Cycle basis example

Label the edges by 1, . . . , 10:

1 2 3

4

56.7

8

9
.

1
0C1 C2 C3

Collecting the incidence vectors of C1,C2,C3 yields the 3× 10-cycle matrix:

1 2 3 4 5 6 7 8 9 10

γ1 1 0 0 0 0 0 1 1 1 0
γ2 0 1 0 0 0 1 0 0 −1 −1
γ3 0 0 1 1 1 0 0 0 0 1

Note that the matrix has full row rank. The part corresponding to the
co-tree edges 5, 6, 7 of T is a permutation of the identity matrix.
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§3.2 Cycle Spaces

Determinant of a cycle basis

Let G be a directed graph and let B be a cycle basis with cycle matrix Γ.

Definition
The determinant of B is defined as

det(B) :=

∣∣∣∣ (µ(G )× µ(G ))-submatrix of Γ corresponding to the
co-tree edges of some spanning tree of G

∣∣∣∣ .
This is well-defined:

Theorem (Liebchen, 2003)

Let T1,T2 be two spanning trees of G . For i = 1, 2, denote by Ai the
(µ(G )× µ(G ))-submatrix of Γ, where exactly the columns corresponding
to e /∈ E (Ti ) are selected. Then A1 and A2 are both invertible and
det(A1) = ± det(A2).
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§3.2 Cycle Spaces

Determinant of a cycle basis

Proof.
Let Φ be the cycle matrix of a strictly fundamental cycle basis of G coming
from the spanning tree T1. The rows of Φ are indexed by the µ := µ(G )
co-tree edges of T1. We have

Φe,e′ =

{
1 if e = e ′,

0 if e 6= e ′,
for all e, e ′ /∈ E (T ).

Note that we can always lift a fundamental cycle in such a way that the
co-tree edge becomes a forward edge. In particular, if Φ1 denotes the
restriction of Φ to the columns corresponding to co-tree edges of T1, then
Φ1 is the identity matrix.

Since Φ and B are bases, there is an invertible (µ× µ)-matrix S such that
Γ = S · ΓΦ. It follows that A1 = S ·Φ1 is invertible. This holds analogously
for A2.
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§3.2 Cycle Spaces

Determinant of a cycle basis

Proof (cont.)

Let Φ2 denote the restriction of Φ to the columns corresponding to the
co-tree edges of T2. Then A2 = S · Φ2, so it remains to show that
det(Φ2) = ± det(Φ1) = ±1. We use induction on #E (T1)∆E (T2).

#E (T1)∆E (T2) = 0: This is equivalent to E (T1) = E (T2), where
obvioulsy det(Φ2) = det(Φ1).

#E (T1)∆E (T2) > 0: Let e1 ∈ E (T1) \ E (T2). On the unique path in T2

connecting the endpoints of e1, there must be an edge e2 /∈ E (T1), as
otherwise T1 would contain a cycle. The fundamental cycle of e1 in T1

uses e2, so that Φe1,e2 = ±1. Since there is only one fundamental cycle for
T1 using the co-tree edge e2, this means that Φe,e2 = 0 for e 6= e1. Use
Laplace expansion along the column e2.
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§3.2 Cycle Spaces

Characterization by determinant
Let G be a digraph with cyclomatic number µ and cycle basis B.

Theorem (Liebchen/Rizzi, 2007)

(1) B is undirected if and only if det(B) is odd.

(2) B is strictly fundamental if and only if the cycle matrix of B can be
permuted in such a way that it has the µ× µ-identity matrix in its last
µ columns.

Proof.
(2) Exercise. (1) Let Γ be the cycle matrix of B. Write Γ = S · Φ, where S
is an invertible µ× µ-matrix and Φ is the matrix of a strictly fundamental
basis for some spanning tree T . Restricting to the co-tree edges, we obtain
Γ|co-tree = S · Φ|co-tree = S , so det(B) = det(S). If det(B) is odd, then S is
invertible over F2, so the rows of Γ mod 2 form a cycle basis for |G |.
Conversely, if B is undirected, then Γ|co-tree is invertible mod 2, so that also
S is invertible mod 2 and hence det(B) is odd.
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§3.2 Cycle Spaces

More on the determinant
Let G be a digraph with cyclomatic number µ.

Lemma (Liebchen/Peeters, 2003)

Let Γ be the cycle matrix of a cycle basis for G , and let A be any
µ× µ-submatrix of Γ. Then A is invertible if and only if the columns of A
correspond to the co-tree edges of some spanning tree of G .

Proof.
(⇐) Let Φ be the cycle matrix of a strictly fundamental basis for some
spanning tree T . As before, Γ = S · Φ for some invertible µ× µ-matrix S .
Let A be the submatrix of Γ corresponding to the co-tree edges of T .
Then A = Γ|co-tree = S · Φco-tree = S , so that A is invertible.

(⇒) Suppose that A is invertible. Let H = {e1, . . . , eµ} ⊆ E (G ) such that
the columns of A correspond to H. Then any cycle γ can be written as
γt = λtΓ for some λ ∈ Qµ, as Γ is a cycle basis. If γ contains no edge of
H, then 0 = (γe1 , . . . , γeµ) = λTA, so that λ = 0 as A is invertible, and
γ = 0. In particular, E (G ) \H has no cycle and is thus a spanning tree.
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§3.2 Cycle Spaces

Integral cycle bases
Let G be a digraph with cyclomatic number µ.

Definition
A cycle basis B = {γ1, . . . , γµ} is called integral if every incidence vector γ
of an oriented cycle in G can be written as

γ =

µ∑
i=1

λiγi , where λ1, . . . , λµ ∈ Z.

Theorem (Liebchen/Peeters, 2003)

The following are equivalent for a cycle basis B with cycle matrix Γ:

(1) B is integral,

(2) every µ× µ-submatrix of Γ has determinant 0 or ±1,

(3) det(B) = 1.
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§3.2 Cycle Spaces

Integral cycle bases

Proof.
(2) ⇔ (3): by preceding lemma.

(1) ⇒ (2): Let T be a spanning tree, giving rise to a strictly fundamental
cycle basis with matrix Φ. Then Φ = S · Γ for some invertible µ× µ-matrix
S . Since B is integral, S has integer entries. Let A be the µ× µ-submatrix
of Γ restricted to the co-tree edges of T . Then S · A is the identity matrix.
Since S and A have both integer determinants multiplying to 1, we have
det(A) = ±1.

(3) ⇒ (1): For an arbitrary incidence vector γ there is a λ ∈ Qµ such that
γt = λtΓ (cycle basis property). Restricting to the co-tree edges
{e1, . . . , eµ} of a spanning tree yields (γe1 , . . . , γeµ) = λtA for the suitable
submatrix A of Γ. Since A has determinant ±1 by (3), it has an integer
inverse and hence λt = (γe1 , . . . , γeµ)A−1 is integer.
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§3.2 Cycle Spaces

Summary

Let G be a directed graph.

Classes of cycle bases

arbitrary

(

undirected

(

integral

(

strictly fundamental

det 6= 0

det ≡2 1

det = 1

det = 1 + identity matrix condition

Examples for the strict inclusion: Last tutorial and Problem Set 6.

June 4, 2018 13 / 36



Chapter 3

Periodic Timetabling

§3.3 Cycles in Periodic Timetabling

June 4, 2018 14 / 36



§3.3 Cycles in Periodic Timetabling

Back to PESP
Input

I event-activity network E = (V ,E ),

I period time T ∈ N,

I lower bound vector ` ∈ (R≥0)E , 0 ≤ ` < T ,

I upper bound vector u ∈ (R≥0)E , ` ≤ u < T − `,
I weight vector w ∈ (R≥0)E

MIP formulation

Minimize
∑
ij∈E

wijxij

s.t. xij = πj − πi + pijT , ij ∈ E ,

`ij ≤ xij ≤ uij , ij ∈ E , (periodic tension)

0 ≤ πi ≤ T − 1, i ∈ V , (periodic timetable)

pij ∈ Z, ij ∈ E . (periodic offset)
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§3.3 Cycles in Periodic Timetabling

Cycle periodicity constraints

Theorem (Nachtigall, 1994; Liebchen/Peeters, 2002)

Consider a PESP instance, and let x ∈ RE . The following are equivalent:

(1) There exists a periodic timetable π ∈ [0,T )V such that for all ij ∈ E
exist pij ∈ Z such that xij = πj − πi + pijT .

(2) For each oriented cycle γ in E exists zγ ∈ Z such that γtx = zγT .

(3) For each integral cycle basis {γ1, . . . , γµ} of E , there are
z1, . . . , zµ ∈ Z such that γti x = ziT for all i = 1, . . . , µ.

Proof.
(1) ⇒ (2): Let γ ∈ {−1, 0, 1}E be the incidence vector of an oriented
cycle (v1, . . . , vk , v1). If γ uses (vi , vi+1) ∈ E forward, then

γvi ,vi+1xvi ,vi+1 = πvi+1 − πvi + pvi ,vi+1T .

Otherwise, if γ uses (vi+1, vi ) backward, then

γvi+1,vi xvi+1,vi = πvi+1 − πvi − pvi+1,viT .

Hence γtx = Tγtp, and clearly γtp ∈ Z.
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§3.3 Cycles in Periodic Timetabling

Cycle periodicity constraints

Proof (cont.)

(2) ⇒ (3): Trivial. (3) ⇒ (2): Let γ be the incidence vector of an
arbitrary oriented cycle. Since {γ1, . . . , γµ} is an integral cycle basis, there
are λ1, . . . , λµ ∈ Z such that γ =

∑µ
i=1 λiγi . In particular

γtx =

µ∑
i=1

λiγ
t
i x =

µ∑
i=1

λiziT =

(
µ∑

i=1

λizi

)
· T ∈ Z · T .

(2) ⇒ (1): Let T be a spanning tree of E , and pick a vertex s ∈ V (T ).
Then there is a unique oriented path from s to each other vertex
v ∈ V (T ). Each oriented path in E can be expressed as an incidence
vector in {−1, 0, 1}E as in the case of cycles. Set πs := 0 and πv := ptsvx
for all v ∈ V (T ) \ {s}, where psv is the unique oriented s-v -path in T .
If ij ∈ E (T ), then psj = psi + eij , so that

πj − πi = etijx = xij = xij + 0 · T .
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§3.3 Cycles in Periodic Timetabling

Cycle periodicity constraints

Proof (cont.)

if ij ∈ E \ E (T ) is a co-tree edge, then this yields a fundamental cycle γ.
The cycle γ uses the edge ij and then the unique path from j to i in T .
The incidence vector of this path is simply given by psi − psj , so that
γ = psi − psj + eij . Hence

πj − πi = ptsjx − ptsix = etijx − γtx = xij + zγT ,

and we can set pij := zγ .

Finally, reduce π modulo T .

Corollary

A feasible periodic timetable π can be constructed from a feasible periodic
tension x using a spanning tree.
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§3.3 Cycles in Periodic Timetabling

Cycle-based PESP MIP formulation
In the PESP MIP formulation, we can now replace the constraints

xij = πj − πi + pijT , pij ∈ Z

by choosing an integral cycle basis {γ1, . . . , γµ} and requiring

γti x = ziT , zi ∈ Z.

New MIP formulation (cycle & tension)

Let Γ be the cycle matrix of an integral cycle basis for E .

Minimize
∑
ij∈E

wijxij

s.t. Γx = zT , (cycle periodicity)

` ≤ x ≤ u, (periodic tension)

z ∈ Zµ. (cycle offset)

This uses less constraints and variables than the original formulation.
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§3.3 Cycles in Periodic Timetabling

Cycle-and-slack-based PESP MIP formulation

Definition
The periodic slack is y := x − `.

Remark
If a periodic timetable π is given, then yij = [πj − πi − `ij ]T .

This gives rise to an equivalent MIP formulation, minimizing the total
slack:

New MIP formulation (cycle & slack)

Minimize
∑
ij∈E

wijyij

s.t. Γ(y + `) = zT , (cycle periodicity)

0 ≤ y ≤ u − `, (periodic slack)

z ∈ Zµ. (cycle offset)
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§3.3 Cycles in Periodic Timetabling

Example
Consider the following PESP instance (T = 10):

1 2 3

4
56.7

8

9
.

1
0C1 C2 C3

Bounds and weights:

1 2 3 4 5 6 7 8 9 10

` 7 3 6 2 6 3 7 2 3 3
u 7 12 6 11 6 12 7 11 12 12
w 0 1 0 1 0 1 0 1 1 1

Cycle matrix:

1 2 3 4 5 6 7 8 9 10

γ1 1 0 0 0 0 0 1 1 1 0
γ2 0 1 0 0 0 1 0 0 −1 −1
γ3 0 0 1 1 1 0 0 0 0 1
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§3.3 Cycles in Periodic Timetabling

Example
The cycle basis is integral (even strictly fundamental). In the
cycle & slack-formulation, this yields the following:

Minimize y2 + y4 + y6 + y8 + y9 + y10

s.t. y1 + y7 + y8 + y9 − 10z1 = −19, (cycle periodicity for γ1)

y2 + y6 − y9 − y10 − 10z2 = 0, (cycle periodicity for γ2)

y3 + y4 + y5 + y10 − 10z3 = −17, (cycle periodicity for γ3)

y1, y3, y5, y7 = 0, (periodic slack, driving)

0 ≤ y2, y4, y6, y8, y9, y10 ≤ 9, (periodic slack, transfer)

z1, z2, z3 ∈ Z. (cycle offset)

We may omit the fixed y -variables (i.e., the ones for the driving activities),
giving a MIP with 3 integer and 6 continuous variables, and 3 constraints.

Optimal sol.: y2 = y6 = y9 = y10 = z2 = 0, y4 = 3, y8 = 1, z1 = z3 = 2,
minimal slack: 4.
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§3.3 Cycles in Periodic Timetabling

Offset variable bounds

Question
Recall that in the old timetable-based formulation, we could w.l.o.g.
achieve that the periodic offsets satisfy pij ∈ {0, 1, 2}. What about the
cycle offsets in the cycle-based formulation?

Definition
For a PESP instance, define the offset space as

Poffset := {z ∈ Zµ | ∃y ∈ RE : 0 ≤ y ≤ u − `, Γ(y + `) = Tz}.

Theorem (Odijk, 1996)

If z ∈ Poffset, then any cycle γt = λtΓ satisfies the cycle inequality⌈
γt+`− γt−u

T

⌉
≤ λtz ≤

⌊
γt+u − γt−`

T

⌋
.

Conversely, if for given z ∈ Zµ, the cycle inequality holds for each oriented
cycle γ, then z ∈ Poffset.
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§3.3 Cycles in Periodic Timetabling

Cycle inequality

Notation
Each incidence vector γ of an oriented cycle decomposes as γ = γ+ − γ−,
where γ+ ∈ {0, 1}E (“forward part”) and γ− ∈ {0, 1}E (“backward part”).

Example: (1, 1, 0, 0,−1,−1) = (1, 1, 0, 0, 0, 0)− (0, 0, 0, 0, 1, 1).

Remark
Odjik’s theorem gives a strategy to generate valid inequalities for PESP:
All integer solutions satisfy the cycle inequality for all cycles. If an LP
solver finds a fractional solution and there is a cycle γ violating the cycle
inequality, then we can add the cycle inequality for γ as additional
constraint and solve again.
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§3.3 Cycles in Periodic Timetabling

Cycle inequality: Example
Consider the following PESP instance (T = 10):

1 2 3

4
56.7

8

9
.

1
0C1 C2 C3

Bounds:

1 2 3 4 5 6 7 8 9 10

` 7 3 6 2 6 3 7 2 3 3
u 7 12 6 11 6 12 7 11 12 12

Cycle inequalities:

2 = d(7 + 7 + 2 + 3)/10e ≤ z1 ≤ b(7 + 7 + 11 + 12)/10c = 3

−1 = d(3 + 3− 12− 12)/10e ≤ z2 ≤ b(12 + 12− 3− 3)/10c = 1

2 = d(6 + 2 + 6 + 3)/10e ≤ z3 ≤ b(6 + 11 + 6 + 12)/10c = 3

→ bounds for the cycle offset variables.
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§3.3 Cycles in Periodic Timetabling

Cycle inequality

Proof (⇒).
Let z ∈ Poffset and let γt = λtΓ be an oriented cycle. Since λtz is integer,
it suffices to prove

γt+`− γt−u
T

≤ λtz ≤
γt+u − γt−`

T
.

Since z ∈ Poffset, we find 0 ≤ y ≤ u − ` such that Γ(y + `) = Tz . This
implies γt+y ≥ 0 and γt−y ≤ γt−(u − `), and therefore

γt(y + `) = γt+y −γt−y +γt+`−γt−` ≥ γt−(`−u) +γt+`−γt−` = γt+`−γt−u.

On the other hand, γt+y ≤ γt+(u − `) and γt−y ≥ 0, so that

γt(y + `) = γt+y −γt−y +γt+`−γt−` ≤ γt+(u− `) +γt+`−γt−` = γt+u−γt−`.

Putting this together,

γt+`− γt−u ≤ γt(y + `) ≤ γt+u − γt−`.

Finally note λtz = λtΓ(y + `)/T = γt(y + `)/T .
June 4, 2018 26 / 36



§3.3 Cycles in Periodic Timetabling

Cycle inequality

Proof (⇐).

Given z ∈ Zµ such that the cycle inequality holds for each oriented cycle,
we have to show that there is 0 ≤ y ≤ u − ` with Γ(y + `) = Tz .

Let γt = λtΓ and let p ∈ ZE be an integer solution of Γp = z (integral
cycle basis). By the cycle inequality,

λtz = λtΓp = γtp ≤ (γt+u − γt−`)/T .

Define `′ := `− pT and u′ := u − pT . Then the above inequality reads as

γt+u
′ − γt−`′ ≥ 0.

Let E ′ be the network obtained from E by adding to each edge ij ∈ E its
anti-parallel edge ji . For each edge ij ∈ E (E ′) set

wij :=

{
u′ij if ij ∈ E ,

−`′ji if ji ∈ E .
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§3.3 Cycles in Periodic Timetabling

Cycle inequality

Proof (cont.)

We claim that every directed cycle in E ′ has non-negative weight.
Indeed, if γ̃ is such a cycle, then

w t γ̃ =
∑

ij∈γ̃: ij∈E
u′ij +

∑
ij∈γ̃: ji∈E

(−`ij) = γt+u
′ − γt−`′ ≥ 0,

where γ is the corresponding oriented cycle in E using the edges ij ∈ E
forward and the ji ∈ E backward.

This implies that the shortest path problem in (E ′,w) behaves well. In
particular, there is a potential π ∈ RV such that

πj − πi ≤ wij for all ij ∈ E (E ′).

Taking π to E , we have

πj − πi ≤ u′ij and πi − πj ≤ −`′ij for all ij ∈ E .
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§3.3 Cycles in Periodic Timetabling

Cycle inequality

Proof (cont.)

This means
`ij ≤ πj − πi + pijT ≤ uij for all ij ∈ E .

In particular, if we set

yij := πj − πi + pijT − `ij , ij ∈ E ,

then obviously 0 ≤ y ≤ u − `. Moreover

Γ(y + `) = T · Γp = Tz ,

as for each oriented cycle γ = (v1, . . . , vk , v1), the potential differences
π2 − π1, . . . , πk − πk−1, π1 − πk along γ sum up to 0.
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§3.3 Cycles in Periodic Timetabling

Cycle inequality: Applications

There are two applications for the cycle inequalities to PESP:

I give bounds on the integer variables in the cycle-based MIP, thereby
reducing the search space for optimal solutions
→ find an integral cycle basis minimizing the possible values for the
integer variables
→ minimum-weight cycle basis

I add violated cycle inequalities as cutting planes in a LP-based MIP
solving procedure
→ give an algorithm that checks if there is a violated cycle inequality
→ separation of cycle cuts

June 4, 2018 30 / 36



§3.3 Cycles in Periodic Timetabling

Minimum-weight cycle basis
Let G be a digraph with a weight vector d ∈ R≥0

E(G).

Definition
The minimum weight cycle basis problem is to find a cycle basis
{γ1, . . . , γµ} of G such that

µ∑
i=1

∑
e∈E(G)

γi ,ede

is minimal.

Application to PESP

For a cycle γ, denote by aγ and bγ the lower and upper bounds of the
cycle inequality for γ, respectively. Then using γ1, . . . , γµ for the MIP
formulation produces

µ∏
i=1

(bγi − aγi + 1)

possible combinations of values for the integer variables z1, . . . , zm.
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§3.3 Cycles in Periodic Timetabling

Minimum-weight cycle basis
However, this is not a weight vector.

Lemma ∑
e∈E(G)

|γe |(ue − `e)

T
≤ bγ − aγ < 2 +

∑
e∈E(G)

|γe |(ue − `e)

T

Proof.
bγ − aγ + 1 =

⌈
γt+u − γt−`

T

⌉
−
⌊
γt+`− γt−u

T

⌋
<
γt+u − γt−`

T
+ 1−

(
γt+`− γt−u

T
− 1

)
= 2 +

γt+(u − `) + γt−(u − `)
T

= 2 +
∑
e∈E

|γe |(ue − `e)

T
,

bγ − aγ + 1 ≥
γt+u − γt−`

T
−
γt+`− γt−u

T
=
∑
e∈E

|γe |(ue − `e)

T
.
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§3.3 Cycles in Periodic Timetabling

Minimum-weight cycle basis

As a compromise, compute the minimum weight undirected cycle basis for
the weight vector d := u − `.

Complexity of finding a minimum cycle basis

class complexity

arbitrary polynomial
undirected polynomial
integral unknown
strictly fundamental NP-complete

Idea for arbitrary/undirected cycle bases

The set of all (undirected) cycle bases forms a matroid. In particular, a
minimum-weight (undirected) cycle basis can be computed by a greedy
algorithm. However, the set of all (undirected) cycle bases is too large.
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§3.3 Cycles in Periodic Timetabling

The Horton set
Let G be a connected undirected graph with weights w : E (G )→ R≥0.
For v ∈ V (G ), let Tv be a shortest path tree w.r.t. w with root v .

Definition
The Horton set H of G consists of the following Horton cycles of G :

v
pvi−→ i → j

pjv−→ v ,

where v ∈ V (G ), {i , j} ∈ E (G ), pvi is the unique v -i-path in Tv , pjv is the
unique j-v -path in Tv , and pvi and pjv are edge-disjoint.

Remark
The Horton set consists of O(|V (G )||E (G )|) cycles, and can be computed
in polynomial time.

Theorem (Horton, 1987)

H contains a minimum-weight cycle basis w.r.t. w . It is computed by the
greedy algorithm on H.
June 4, 2018 34 / 36



§3.3 Cycles in Periodic Timetabling

Minimum-weight undirected cycle basis algorithm
Let G be a connected undirected graph with weights w : E (G )→ R≥0.

Horton’s Algorithm

1. Compute shortest-path trees Tv w.r.t. w for all v ∈ V (G ).

2. Build the Horton set H.

3. Sort H by weight w in ascending order.

4. Set B := ∅.
5. For all cycles γ ∈ H in ascending order:

I Add γ to B.
I If B is linearly dependent over F2, then remove C .
I If #B = µ(G ), then return B.

Remark
This computes a minimum-weight cycle basis in an undirected graph. For
directed graphs, the cycle basis may be computed first on the underlying
undirected graph |G |, and then be lifted to oriented cycles on G .
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§3.3 Cycles in Periodic Timetabling

Separation of cycle cuts

Consider a PESP instance with period time T on n events and m activities.

Theorem (Borndörfer/Hoppmann/Karbstein/Lindner, 2015, 2018)

(1) There is an algorithm that, given a point (y , z) of the LP relaxation to
the cycle & slack-MIP formulation, computes an oriented cycle
violating the cycle inequality w.r.t. (y , z) or decides that no such cycle
exists.
This algorithm runs in O(Tn2m) time (i.e., is pseudo-polynomial).

(2) There is no strongly polynomial-time algorithm for cycle cut separation
unless P = NP.
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