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§4.1 Periodic Vehicle Scheduling

Vehicle Scheduling: Overview

Main Question
Given a line network with a timetable, how many vehicles are required to
operate the timetable?

Scope

I basic: periodic timetables

I better: aperiodic timetables (e.g., for a day)

I realistic: several depots, vehicle types, capacities, ...

All these versions lead to network flow problems. In some scenarios, the
minimal number of vehicles is replaced by a more general cost function.
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§4.1 Periodic Vehicle Scheduling

Periodic Vehicle Scheduling

Input data

I event-activity network E = (V ,E )

I period time T ∈ N
I periodic timetable π : V → [0,T )

I periodic tensions x : E → R≥0 such that xij ≡T πj − πi for all ij ∈ E

Question
How many vehicles are required to operate the periodic timetable π on E?

Example
8 3 8

6
.

848

5 9
. 8

8

5

3

3 1 4 2

8608

driving activity e
with tension xe
turnaround activity e
with tension xe
event v with time πv
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§4.1 Periodic Vehicle Scheduling

Periodic vehicle schedules
Definition
A periodic vehicle schedule is a collection S of directed cycles in E such
that each driving activity is contained in at least (exactly) one cycle of S .
For a periodic vehicle schedule S , its number of vehicles ν(S) is given by

ν(S) :=
1

T

∑
e∈E

k∑
i=1

γi ,exe ,

where γ1, . . . , γk ∈ {0, 1}E are the incidence vectors of the cycles in S .

Example
8 3 8

6
.

848

5 9
. 8

3 1 4 2

8608

30 + 30 minutes → 6 vehicles

8 3 8

6
.

848
5 9
. 8

3 1 4 2

8608

50 minutes → 5 vehicles

Remark
By the cycle periodicity property of periodic timetabling, ν(S) ∈ Z≥0.
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§4.1 Periodic Vehicle Scheduling

Minimum tension circulation

Definition
The periodic vehicle scheduling problem is to find a periodic vehicle
schedule S with minimal ν(S).

Tension-based integer programming formulation

Minimize
1

T

∑
e∈E

xe fe

s.t.
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0, v ∈ V ,

fe ≥ 1, e ∈ E driving activity,

fe ∈ Z≥0, e ∈ E .

Observation
The periodic vehicle scheduling problem can be formulated as a mininum
cost circulation problem.
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§4.1 Periodic Vehicle Scheduling

Minimum offset circulation

Definition (Recall from periodic timetabling)

For an edge ij ∈ E , define its periodic offset as

pij :=
xij − πj + πi

T
∈ Z≥0.

Cycle periodicity property

For all incidence vectors γ of oriented cycles in E holds γtx = T · γtp.

Offset-based integer programming formulation

Minimize
∑
e∈E

pe fe

s.t.
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0, v ∈ V ,

fe ≥ 1, e ∈ E driving activity,

fe ∈ Z≥0, e ∈ E .
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§4.1 Periodic Vehicle Scheduling

Perfect turnaround matching

Let Ed and Et be the set of driving and turnaround activities, respectively.

Theorem
There is a one-to-one correspondence{

circulations covering all
driving activities exactly once

}
↔
{

perfect matchings
in (V ,Et)

}
,

(fe)e∈E 7→ (fe)e∈Et .

Moreover, a circulation of cost c w.r.t. p (or x) corresponds to a perfect
matching of cost c −

∑
e∈Ed

pe w.r.t. p (or c −
∑

e∈Ed
xe w.r.t. x).

Proof.
The correspondence has been an exercise. For the cost comparison, note
that restricting a circulation to the turnaround activities removes the cost
of all driving activities.
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§4.1 Periodic Vehicle Scheduling

Perfect turnaround matching: Example

8 3 8

6
.

848

5

9
. 8

3 1 4 2

8608

circulation cost w.r.t. x : 60

l
3

6
.

4

5

9
. 8

3 1 4 2

8608

matching cost w.r.t. x : 28

driving act. cost w.r.t. x : 32

8 3 8

6
.

848

5

9
. 8

3 1 4 2

8608

circulation cost w.r.t. x : 50

l
3

6
.

4
5

9
. 8

3 1 4 2

8608

matching cost w.r.t. x : 18

driving act. cost w.r.t. x : 32
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§4.1 Periodic Vehicle Scheduling

Summary

The periodic vehicle scheduling problem has the following interpretations:

I minimum cost circulation w.r.t. periodic tension x covering all driving
activities

I minimum cost circulation w.r.t. periodic offset p covering all driving
activities

I minimum weight perfect matching w.r.t. periodic tension x of
turnaround activities

I minimum weight perfect matching w.r.t. periodic offset p of
turnaround activities

The graph (V ,Et) usually decomposes into many small components, so
that the perfect matching problem decomposes into smaller problems as
well.
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§4.2 Aperiodic Vehicle Scheduling

Single-Depot Vehicle Scheduling

Input Data

I set T of trips (τdep, τarr) ∈ R× R with τdep < τarr

I relation � on T × T , where t1 � t2 holds if a vehicle can use trip t2
after t1

Definition
A vehicle schedule is a collection S = {s1, . . . , sk} of chains
si = ti ,1 � ti ,2 � · · · � ti ,ri such that each trip in T occurs in at least
(exactly) one chain si . The number ν(S) := k is the number of vehicles
of S .

Definition
The (single-depot) vehicle scheduling problem is to find a vehicle
schedule S minimizing ν(S).
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§4.2 Aperiodic Vehicle Scheduling

Network flow model
Build an event-activity network E as follows:

1. Create two events p and q.

2. Create activities (p, dt), (dt , at), (at , q) for each trip t ∈ T (pull-out,
driving, pull-in).

3. For each pair t1 � t2, add an activity (at1 , dt2) (turnaround).

The events p and q are depot vertices.

Example

p q

d1

4:03

a1

4:11

d2

4:13

a2

4:21

d3

4:23

a3

4:31

d4

4:00

a4

4:08

d5

4:10

a5

4:18

d6

4:20

a6

4:28

d7

4:04

a7

4:12

d8

4:14

a8

4:22

d9

4:24

a9

4:32

d10

4:08

a10

4:16

d11

4:18

a11

4:26

d12

4:28

a12

4:36
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§4.2 Aperiodic Vehicle Scheduling

Network flow model

Observation
The single-depot vehicle scheduling problem is solved by finding a minimum
value p-q-flow on E = (V ,E ) covering each driving activity at least once:

Minimize
∑

e∈δ+(p)

fe

s.t.
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0, v ∈ V \ {p, q},

fe ≥ 1, e ∈ E driving activity,

fe ∈ Z≥0, e ∈ E .
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§4.2 Aperiodic Vehicle Scheduling

Network flow model: Example

Example

p q

d1

4:03

a1

4:11

d2

4:13

a2

4:21

d3

4:23

a3

4:31

d4

4:00

a4

4:08

d5

4:10

a5

4:18

d6

4:20

a6

4:28

d7

4:04

a7

4:12

d8

4:14

a8

4:22

d9

4:24

a9

4:32

d10

4:08

a10

4:16

d11

4:18

a11

4:26

d12

4:28

a12

4:36

This is an optimal p-q-flow covering each driving activity exactly once.
The value of flow (= number of vehicles) is 5.

Notation
Let Ed and Et denote the set of driving and turnaround activities,
respectively.
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§4.2 Aperiodic Vehicle Scheduling

Matching interpretation

Lemma
The following numbers are equal:

(a) The minimum value of an p-q-flow covering each e ∈ Ed exactly once.

(b) |Ed | − |M|, where M is a maximum cardinality matching of (V ,Et).

Proof.
A feasible flow with value ν decomposes into ν edge-disjoint p-q-paths,
where the activity types along each path have the pattern (pull-out, driving,
turnaround, driving, turnaround, . . . , driving, pull-in). So each path with k
driving activities uses k − 1 turnaround activities. Summing over all paths
yields a matching M of the turnaround activities with |M| = |Ed | − ν.

Conversely, let M be a matching of (V ,Et). Consider the flow of value
|Ed | using the |Ed | paths (p, dt , at , q) for all trips t. For each edge in M,
connect the corresponding trips, thereby reducing the flow value by 1.
Repeating this process yields a feasible flow of value |Ed | − |M|.
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§4.2 Aperiodic Vehicle Scheduling

Matching interpretation: Example

p q

d1

4:03

a1

4:11

d2

4:13

a2

4:21

d3

4:23

a3

4:31

d4

4:00

a4

4:08

d5

4:10

a5

4:18

d6

4:20

a6

4:28

d7

4:04

a7

4:12

d8

4:14

a8

4:22

d9

4:24

a9

4:32

d10

4:08

a10

4:16

d11

4:18

a11

4:26

d12

4:28

a12

4:36

In (V ,Et), only the 7 arrival vertices a1, a2, a4, a5, a7, a8, a9, a10 are
non-isolated. All of these vertices are matched, so that we obtain a
maximum cardinality (in fact, even perfect) matching. As there are 12
driving activities, the minimal number of vehicles equals 12− 7 = 5.
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§4.2 Aperiodic Vehicle Scheduling

Single-depot case: Summary

Summary

The single-depot vehicle scheduling can be solved by computing a . . .

I minimum value network flow covering all driving activities

I maximum cardinality matching of the turnaround activities

Remarks

I The actual timetable and the actual travel times are not important,
only the feasible sequences of trips matter.

I When costs for trips or turnarounds come into play, this generalizes to
a minimum cost network flow or a weighted matching problem.
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§4.2 Aperiodic Vehicle Scheduling

Multi-Depot Vehicle Scheduling

Input Data

I set T of trips (τdep, τarr) ∈ R× R with τdep < τarr

I relation � on T × T , where t1 � t2 holds if a vehicle can use trip t2
after t1

I set D of depots

I assignment D : T → P(D) of feasible depots for each trip

Definition
The multi-depot vehicle scheduling problem is to find a vehicle
schedule S minimizing ν(S) such that for each chain t1 � · · · � tr in S
holds D(t1) ∩ · · · ∩ D(tr ) 6= ∅.
I.e., the trips served by a vehicle must be feasible for a common depot. In
particular, we can assume that the pull-out and pull-in depots of each
vehicle are the same.
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§4.2 Aperiodic Vehicle Scheduling

Network flow model
Build an event-activity network E as follows:

1. Create two depot vertices pd and qd for each depot d ∈ D.

2. Add driving activities (dt , at) for each trip t ∈ T .

3. Add pull-out activities (pd , dt) for each trip t ∈ T and each d ∈ D(t).

4. Add pull-in activities (at , qd) for each trip t ∈ T and each d ∈ D(t).

5. For each pair t1 � t2, add a turnaround activity (at1 , dt2).

Example (2 depots)

p1

p2

q1

q2

d1

4:03

a1

4:11

d2

4:13

a2

4:21

d3

4:23

a3

4:31

d4

4:00

a4

4:08

d5

4:10

a5

4:18

d6

4:20

a6

4:28

d7

4:04

a7

4:12

d8

4:14

a8

4:22

d9

4:24

a9

4:32

d10

4:08

a10

4:16

d11

4:18

a11

4:26

d12

4:28

a12

4:36
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§4.2 Aperiodic Vehicle Scheduling

Network flow model

Observations

I This is not a normal network flow problem: In a flow with the pd as
sources and the qd as sinks, a vehicle might pull out from depot 1 and
pull in to depot 2.

I Instead, our flow covering all driving activities needs to decompose
into pd -qd -flows for each depot d ∈ D.

I This leads to a multi-commodity flow.
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§4.2 Aperiodic Vehicle Scheduling

Multi-commodity flow model

Minimize
∑
d∈D

∑
e∈δ+(pd )

f de

s.t.
∑

e∈δ+(v)

f de −
∑

e∈δ−(v)

f de = 0, d ∈ D, v ∈ V \ {pd , qd},∑
d∈D(t)

f de = 1, e ∈ E driving activity of trip t,

∑
d /∈D(t)

f de = 0, e ∈ E driving activity of trip t,

f de ∈ {0, 1}, d ∈ D, e ∈ E .

This defines a pd -qd flow f d for each depot d ∈ D. Each driving activity is
covered by exactly one such f d , and d is feasible for the corresponding
trip.
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§4.2 Aperiodic Vehicle Scheduling

Multi-commodity flow: Example

p1

p2

q1

q2

d1

4:03

a1

4:11

d2

4:13

a2

4:21

d3

4:23

a3

4:31

d4

4:00

a4

4:08

d5

4:10

a5

4:18

d6

4:20

a6

4:28

d7

4:04

a7

4:12

d8

4:14

a8

4:22

d9

4:24

a9

4:32

d10

4:08

a10

4:16

d11

4:18

a11

4:26

d12

4:28

a12

4:36

This optimal 2-commodity flow decomposes into 3 p1-q1-paths and 3
p2-q2-paths (→ 6 vehicles required).
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§4.2 Aperiodic Vehicle Scheduling

General multi-commodity flow

Let G = (V ,E ) be a digraph with cost functions c1, . . . , ck : E → R,
balances b1, . . . , bk : V → R, and capacities u, u1, . . . , uk : E → R≥0.
The problem

Minimize
k∑

i=1

∑
e∈E

c ie f
i
e

s.t.
∑

e∈δ+(v)

f ie −
∑

e∈δ−(v)

f ie = biv , i = 1, . . . , k , v ∈ V ,

k∑
i=1

f ie ≤ ue , e ∈ E ,

f ie ∈ {0, 1, . . . , uie}, i = 1, . . . , k , e ∈ E .

is called an integer minimum cost k-commodity flow problem.
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§4.2 Aperiodic Vehicle Scheduling

Multi-commodity flow: Complexity

Remarks

I When the flows f i can be relaxed to rational numbers in [0, ui ], then
there are polynomial-time algorithms (linear programming).

I In fact, for rational f i , there are strongly polynomial-time algorithms.
I.e., the running time does not depend on cost, balance or capacities.

I However, for k ≥ 2 commodities, the total unimodularity property of
single-commodity flows gets lost. In particular, we cannot use linear
programming to obtain integer flows.

I There are non-integral minimum cost 2-commodity flows with integer
costs, balances and capacities.

I Finding an integer k-commodity flow is NP-hard for every fixed k ≥ 2
(Even/Itai/Shamir 1974: SAT ≤ integer 2-commodity flow).
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§4.2 Aperiodic Vehicle Scheduling

Path-based multi-commodity flow/Set partitioning

p1

p2

q1

q2

d1

4:03

a1

4:11

d2

4:13

a2

4:21

d3

4:23

a3

4:31

d4

4:00

a4

4:08

d5

4:10

a5

4:18

d6

4:20

a6

4:28

d7

4:04

a7

4:12

d8

4:14

a8

4:22

d9

4:24

a9

4:32

d10

4:08

a10

4:16

d11

4:18

a11

4:26

d12

4:28

a12

4:36

Observation
A feasible multi-commodity flow consists certain pd -qd -paths. Let Pd
denote the set of all pd -qd -paths for a depot d . Then

I Every driving activity of some trip t must be covered by exactly one
path p ∈ Pd with d ∈ D(t).

I We want to minimize the number of required paths.
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§4.2 Aperiodic Vehicle Scheduling

Path-based multi-commodity flow model
For a driving activity e of trip t, let Pe :=

⋃
d∈D(t){p ∈ Pd | e ∈ p} denote

the set of pd -qd -paths using e coming from a feasible depot d ∈ D(t) for t.

Integer program

Minimize
∑
d∈D

∑
p∈Pd

fp

s.t.
∑
p∈Pe

fp = 1, e ∈ E driving activity of trip t,

fp ∈ {0, 1}, p ∈
⋃
d∈D
Pd .

Remarks

I Any multi-commodity flow problem has a path-based formulation.

I The number of paths is enormous. → column generation (pricing:
shortest path problems).
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§4.2 Aperiodic Vehicle Scheduling

Extensions

I depot capacities κd : In the path-based multi-commodity flow
formulation, these are modeled as∑

p∈Pd

fp ≤ κd , d ∈ D.

I operational costs (e.g., fuel)

I fixed costs (e.g., maintenance, investment)

I multiple vehicle types: one commodity for each feasible combination
of a depot and a vehicle type

I time windows: regular trips (e.g., according to line frequency) vs.
irregular trips (e.g., school trips)

I route constraints (e.g., battery vehicles)
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§4.2 Aperiodic Vehicle Scheduling

Real-world examples

Berlin (BVG) Hamburg (HHA) Hamburg (VHH)

Depots 10 14 10
Vehicle types 9 9 9
Combinations 44 40 19
Trips 25 000 16 000 5 500
Turnarounds 70 000 000 15 100 000 10 000 000

Löbel, Optimal Vehicle Scheduling in Public Transit, 1997

June 18, 2018 30 / 36



Chapter 4

Vehicle Scheduling

§4.3 Railway Stock Rotation Planning

June 18, 2018 31 / 36



§4.3 Railway Stock Rotation Planning

Terminology

I Find an optimal periodic vehicle schedule for a standard week
(rotation).

I A vehicle configuration is a multiset of vehicles.

I For each trip, there is a feasible set of vehicle configurations.

I Before or after a trip, a vehicle configuration can be changed by
coupling.

I A train is a set of at most seven trips haven the same departure and
arrival stops and the same departure and arrival times, but on
different days.
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§4.3 Railway Stock Rotation Planning

Hypergraph model
Define a hypergraph G = (V ,H,A) as follows:

I A node v ∈ V is a tuple (t, c , f ,m), where t is a trip, c is a feasible
vehicle configuration for t, and f is a vehicle used m times by c .

I A hypernode h ∈ H is a collection V (t, c) of all nodes (t, c , f ,m) for
a given trip t and a given configuration c .

I A hyperarc a ∈ A is a non-empty set of pairs (v ,w) ∈ V × V ,
constructed as follows:

I Configuration conserving arcs: If a vehicle can go from trip t1 to trip t2
with the same configuration, then add an hyperarc consisting of
|V (t1, c)| = |V (t2, c)| arcs connecting them.

I Coupling arcs: Connect trips with different configurations.
I Regularity hyperarcs: Let T1,T2 be trains, let c be a configuration and

let o ∈ {0, . . . , 6}. Let a be the set of all arcs connecting any trip from
T1 with any trip of T2 with configuration c such that midnight is
passed o times between the arrival of t1 and the departure of t2. If
|a| ≥ 2, then add a hyperarc {(v ,w) ∈ V × V | ∃a ∈ a : (v ,w) ∈ a}.
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§4.3 Railway Stock Rotation Planning

Hypergraph model: Conservation and coupling

Borndörfer et. al., A Hypergraph Model for Railway Vehicle Rotation Planning, 2011
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§4.3 Railway Stock Rotation Planning

Hypergraph model: Regularity

Borndörfer et. al., A Hypergraph Model for Railway Vehicle Rotation Planning, 2011
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§4.3 Railway Stock Rotation Planning

Hypergraph model: Torus

ICE-A network, HyDraw output
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