Problem Set 10

due: July 9, 2018

Exercise 1

Let G = (V, E) be an undirected graph. Denote by \mathcal{L} the set of all paths in G. For an edge $e \in E$, define $\mathcal{L}_e := \{\ell \in \mathcal{L} \mid e \in \ell\}$. Further let $f^{\min}, f^{\max} : E \to \mathbb{N}_0$ be frequency bounds with $f^{\min} \leq f^{\max}$, and set $F := \max_{e \in E} f_e^{\max}$.

For $k \in \mathbb{N}$, the *k*-line pool generation problem is to find a vector $x \in \{0, 1\}^{\mathcal{L}}$ satisfying the following constraints:

$$\begin{split} \sum_{\ell \in \mathcal{L}} x_{\ell} &\leq k, \\ f_{e}^{\min} &\leq \sum_{\ell \in \mathcal{L}_{e}} f_{\ell} \leq f_{e}^{\max}, \\ f_{\ell} &\leq F x_{\ell}, \\ f_{\ell} &\in \mathbb{N}_{0}, \\ x_{\ell} &\in \{0,1\}, \end{split} \qquad e \in \mathcal{L}, \end{split}$$

(a) Give a trivial solution to the k-line pool generation problem for $k \ge |E|$.

(b) Construct a polynomial-time reduction from the directed Hamiltonian path problem to the 1-line pool generation problem.

Exercise 2

5 points

Let G = (V, E) be an undirected graph, and let \mathcal{P} be a set of walks in G. For a subset $W \subseteq V$ define

 $\mathcal{P}(W) := \{ p \in \mathcal{P} \mid p \text{ contains an edge } \{v, w\} \text{ s.t. } v \notin W \text{ and } w \in W \}.$

Further let $T \subseteq V$ be a set of terminal nodes, and let $c : \mathcal{P} \to \mathbb{R}_{\geq 0}$ be a cost function. Prove that the following integer program solves the Steiner connectivity problem on (G, \mathcal{P}, T, c) :

$$\begin{array}{ll} \text{Minimize} & \displaystyle \sum_{p \in \mathcal{P}} c_p x_p \\ \text{s.t.} & \displaystyle \sum_{p \in \mathcal{P}(W)} x_p \geq 1, & W \subseteq V, \ \emptyset \neq W \cap T \neq T, \\ & x_p \in \{0,1\}, & p \in \mathcal{P}. \end{array}$$

6 points

Exercise 3

9 points

Consider the following undirected graph with costs on its edges:

- (a) Find a Steiner tree of minimum cost connecting $T = \{A, B, C, D, F, G\}$.
- (b) Define $\mathcal{L}_0 := \{AD, AEB, AEF, DGC, GEBF, BCGF, DGF\}$ and consider the following OD matrix:

		to			
		A	B	C	F
from	A	0	50	0	50
	D	0	0	80	20
	G	0	40	0	0
	C	30	0	0	0

Every line $\ell \in \mathcal{L}_0$ can be operated with frequency $f_\ell \in \{0, 1, 2\}$ and vehicles of capacity 50. Find a line plan satisfying all demands with the minimum number of lines.