Problem Set 3

due: May 7, 2018

Exercise 1 6 points

Let G=(V,E) be an undirected graph with length vector $\ell\in\mathbb{R}^E$, and let $s,t\in V$ be two distinct vertices. For a subset $S\subseteq V$ define

$$\delta(S) := \{ \{v, w\} \in E \mid v \in S, w \notin S \},\$$

and for $v \in V$ let $\delta(v) := \delta(\{v\})$. Consider the following integer program:

$$\sum_{e \in E} \ell_e x_e$$
 s.t.
$$\sum_{e \in \delta(v)} x_e = 2y_v, \qquad v \in V \setminus \{s, t\},$$

$$\sum_{e \in \delta(v)} x_e = 1, \qquad v \in \{s, t\},$$

$$\sum_{e \in \delta(S)} x_e \ge 2 + \sum_{v \in S} (2y_v - 2) \qquad \emptyset \subsetneq S \subseteq V \setminus \{s, t\},$$

$$x_e \in \{0, 1\}, \qquad e \in E,$$

$$y_v \in \{0, 1\}, \qquad v \in V \setminus \{s, t\}.$$

(a) Let $(x,y) \in \{0,1\}^E \times \{0,1\}^V$ be a feasible solution of (\star) . Show that for any non-empty set $S \subseteq V \setminus \{s,t\}$ holds

$$\sum_{e \in \delta(S)} x_e \ge 2 + \sum_{v \in S} (2y_v - 2) \quad \Leftrightarrow \quad \sum_{e \in E[S]} x_e \le |S| - 1,$$

where $E[S] := \{ \{v, w\} \in E \mid v \in S, w \in S \}.$

- (b) How can feasible solutions of (\star) be interpreted in the graph G? Prove that your interpretation is correct.
- (c) Which graph optimization problem is solved by (\star) ?

Exercise 2 8 points

Consider the following timetable:

Line 10: Berlin \rightarrow Köln					Line 10: Köln \rightarrow Berlin				
Berlin	dep.	06:51	08:51	_	Köln	dep.	06:48	08:48	
Hannover	arr.	08:28	10:28		Köln Hannover	arr.	08:28	10:28	
Hannover	dep.	08:31	10:31		Hannover	dep.	08:31	10:31	
Köln	arr.	11:09	13:09		Berlin				

http://www.zib.de/node/3447

Line 22: Hamburg \rightarrow Stuttgart				Line 22: Stuttgart \rightarrow Hamburg				
Hamburg	dep.	07:06	09:06	Stuttgart	dep.	05:25	07:25	
Hannover	arr.	08:38	10:38	Hannover	arr.	09:17	11:17	
Hannover	dep.	08:41	10:41	Hannover	dep.	09:20	11:20	
Stuttgart	arr.	12:35	14:35	Hamburg	arr.	10:50	12:50	

- (a) Draw the line network corresponding to this timetable. Label the vertices with their station name and highlight the line cover.
- (b) Draw the time-expanded network. Label the events with station name and time, and label each activity with its duration.
- (c) Draw the periodic event-activity network with period time T=120 minutes. Use the same labeling as in (b).
- (d) Solve the following GATSP: Find the shortest closed walk in the network of (c) visiting Berlin, Hamburg, Hannover, Köln and Stuttgart at least once.

Exercise 3 6 points

Consider the following line network (Berlin U-Bahn):

Solve the earliest arrival problem Rathaus Spandau @ 7 May 2018, $15:32 \rightarrow Warschauer Straße$ as follows:

- Apply the time-dependent Dijkstra algorithm with a minimum transfer time of 2 minutes.
- Stick to the line network. You do not need to draw the route vertices.
- Label each vertex with its current time and mark permanently labeled vertices.
- Do not forget to write down the optimal journey and the earliest arrival time.
- Use fahrinfo.bvg.de, mobil.bvg.de or a similar trip planner to find out the timetable. Remember to insert the correct departure date and times.